Algorithm AS 225: Minimizing Linear Inequality Constrained Mahalanobis
Distances

Peter C. Wollan, Richard L. Dykstra

Applied Statistics, Volume 36, Issue 2 (1987), 234-240.

Stable URL:
http://links jstor.org/sici?sici=0035-9254%281987%2936%3 A2%3C234%3AAA2MLI%3E2.0.CO%3B2-0

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Applied Statistics s published by Royal Statistical Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/rss.html.

Applied Statistics
©1987 Royal Statistical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Fri Nov 15 05:35:03 2002

234 APPLIED STATISTICS

IF (ITR .EQ. 0) ITR = 9999
DO 24 J = 1, IBS
IF (NCOMP(N, I, J) .NE. -ITR) GOTO 24
IF (ITR .EQ. 9999) ITR = 0
NCOMP(N, I, J) = ITR
GOTO 25
24 CONTINUE
25 CONTINUE

TRY TO REFIT REMOVED TREATMENT
OR REMOVE ANOTHER OCCURRENCE OF SAME TREATMENT

[eNeNoNel

IF (KREP .EQ. IR(IL)) GOTO 18
N = ND

GOTO 12

END

Algorithm AS 225

Minimizing Linear Inequality Constrained Mahalanobis Distances

By Peter C. Wollan
Michigan Technological University, U.S.A.

and

Richard L. Dykstrat
University of lowa, U.S.A.
[Received November 1985. Final revision December 1986]

Keywords: Mahalanobis Distance; Linear Inequality Constraints; Kuhn-Tucker Vectors; Iteration;
Active Constraints
Language

Fortran 66

Description and Purpose

Least squares problems with affine equality constraints occur frequently in a variety of
contexts, and efficient algorithms for their solution exist in several locations (such as Stirling

t Address for correspondence: Department of Statistics and Acturial Science University of Iowa, Iowa City,
1A 52242, US.A.

© 1987 Royal Statistical Society 0035-9254/87/36234 $2.00

STATISTICAL ALGORITHMS 235

(1981). When the equality constraints are replaced by inequality constraints, the problem takes
on a very different character, especially when the number of constraints is large. This is
primarily because it is difficult to identify the active constraints. Here we present a Fortran
program for obtaining the solution to the problem.

Minimize (g — x)'S~ (g — x), 1.1
x:Ax<b
where g"*! and b** ! are specified vectors, S"*" is a given positive definite matrix and
a(ly
plxn=| A2
alky

denotes a matrix corresponding to k simultaneous affine constraints. The program implements
an interative procedure proposed in Dykstra (1983) which in this context proceeds by cyclically
estimating Kuhn-Tucker vectors. The estimated Kuhn-Tucker vectors are then used to form
a simpler, approximating problem which is easily solvable. The Kuhn-Tucker estimates are
then updated and the process repeated. The procedure is guaranteed to converge correctly if
a solution exists, usually in an efficient manner. The procedure is exceptionally simple and
straightforward and easy to program. The constraint matrix need not be full rank, and k may
exceed n. Redundant constraints cause no problems, and in some cases may actually speed
convergence.

The procedure simultaneously generates a sequence of estimated solutions x%*! and a
sequence of Kuhn-Tucker vectors u¥*! (where u,(j) denotes the jth coordinate of u,
corresponding to the jth constraint a(j)x < b(j)). The procedure is initiated by setting u® =
and x, = g, and by defining m' =m mod k=i if m= Ik + i for integers I >0 and 1 <i<k. To
move from (x,,_ ;> U,_1) to (X, U,), the algorithm sets

Y= X1 + Sa(m Y, _ 1 (m)/2,
and then defines (x,, u,,) by

u (i)={um—1(j) },]?gm/
m max{0,2(a(j)y — b())/a(ySa(j)}, j=m,

Xm = J — Sa(m')u,,(m')/2.

The factor of 2 appears here because of the choice of squared Mahalanobis distance as the
objective function. Even if the minimization problems are equivalent, different objective
functions yield different values for the Kuhn-Tucker coefficients. In practice, one is usually
interested only in whether or not the coefficient is zero. A non-zero value indicates that the
corresponding constraint is active, while a zero value indicates that the constraint is inactive.
In some sense, larger values indicate that the corresponding constraints are more important.
The program terminates when x,,, and x, .y, are sufficiently close in the usual /,, norm, in
which case the program returns x, ; 1 as its estimated solution (denoted by X HA Tin program
output).

A closely related problem for which the algorithm may be used is

Minimize (g—x)'S (g —x) 1.2)

k
x; x=Y0d;, ;>0 for all i
1

whered}* !, ..., di* ! are a specified collection of vectors. To use the algorithm for this problem,
set

236 APPLIED STATISTICS

d;js1!
a=| 457
is!
in problem (1.1) and apply the algorithm. If x* denotes the limiting value from the algorithm.
g — x* solves problem (1.2). If the «’s are also desired, they are given by one-half the
Kuhn-Tucker vector (which is XK Tin the output).
Equality constraints are handled for forcing them to be active: the Ith constraint is treated
as either an equality or inequality constraint, depending on the value of the indicator variable

IFLAG(I). If the problem is such that blocks of constraints can be handled simultaneously,
greater economies are possible (see Dykstra and Robertson, 1982).

Restrictions

For simplicity, the program examines the input only enough to protect against dividing by
zero. In particular, it does not verify the existence of a solution before proceeding. Thus the
program will run even though there may not exist any vectors which are feasible (satisfy all
constraints). However, since the procedure used must converge to the true solution (if it exists),
failure to converge (IFAULT = 1 and SUPDIF relatively large) is evidence that there may not
be any feasible vectors. The evidence for this increases if the program is repeated with a
larger inputted value of ITMAX, and the outputted value of SUPDIF is not decreased.

Structure

SUBROUTINE LSTSQ(X, S, A, B,IFLAG,N, K, NWORK, ITMAX, EPS, EPS2, W, XHAT,
XKT, ITER, SUPDIF, IFAULT

Formal parameters

X Real array(N) input: data vector

S Real array(N,N) input: covariance matrix

A Real array(K,N) input: constraint array
The Ith constraint is of the form
YN AULD*XJ)L <, =1BU), <if IFLAG()=0,

=ifIFIAG(I)=1

B Real array(K) input: constraint constants

IFLAG Integer array(K) input: if IFLAG(1) =0, the Ith constraint is an
inequality constraint. If IFIAG(I) =1, it is an
equality constraint

N Integer input: length of the data vector

K Integer input: number of constraints

NWORK Integer input: length of workspace array: must be at least
2*N*K + N+ K

ITMAX Integer input: upper bound for number of iterations to be
attempted

EPS Real input: accuracy parameter for the convergence criterion.
The program terminates when SUPDIF is smaller
than EPS

EPS2 Real input: # a real number is less than EPS2 in absolute value,
it is considered to be zero

|14 Real array(NWORK) workspace

XHAT Real array(N) output: estimate vector

XKT Real array(K)- output: vector of Kuhn-Tucker coefficients

ITER Integer output: number of iterations carried out.

STATISTICAL ALGORITHMS 237

SUPDIF Real output: greatest difference between estimates across a full
cycle

IFAULT Integer output: error indicator
0: no error.

1: ITMAX exceeded.

2: invalid constants among N, K, NWORK,
ITMAX, EPS, or EPS2

3: invalid constraint function. For some row
AD*S*A(ly =0

4: insufficient workspace

Applications

Many problems can be phrased in the form of (1.1) and/or (1.2). For example, consider the
linear model
Y=XpB+¢

where Y™ ! is a vector of observations, X ™" is a full rank design matrix, the components of
¢ are independent n(0, 6?) random variables, and the regression coefficients f,, f, have
linear inequality restrictions imposed upon them.

If the restrictions are that the f, are non-negative, the problem of finding the maximum
likelihood estimate of f is exactly of the form of (1.2) where the d;’s are the columns of X, g
is the observed vector y, and S is the identity matrix. The minimizing « is of course the desired
maximum likelihood estimate of f.

However, since the projection onto a convex set contained within a subspace can be
accomplished by an iterated projection, the above problem can also be phrased as problem
(1.1) where g is the unrestricted MLE of B8, S™! = X 'X, and Af <b denotes the inequality
constraints on the regression coefficients. Since this problem is phrased in a lower dimensional
space, this is usually preferable.

As another example, several authors have considered the problem of finding at least squares
fit to a set of points subject to the fitted points being concave (or convex), e.g. Hildreth (1954).
This problem can be phrased in the form of (1.1) by taking the ith row of A to have 1, ~2,
and 1 in the ith, (i + 1)th and (i + 2)th positions and zero everywhere else, and setting b equal
to zero.

Another important application concerns maximum likelihood estimation problems with
ordered parameters. Problems of this nature can often be solved by linearly restricted least
squares projections for a wide variety of different families of distributions. For example, ordered
parameter MLE’s for binomial, Poisson, multinomial, gamma, geometric and other families
all fall into this category (see Barlow, Bartholomew, Bremner and Brunk (1972)). Since these
problems can be solved by least squares projections, this algorithm is applicable for obtaining
the MLE’s.

Time and Accuracy

Convergence is generally quite fast. For the problem of projecting random data, with a
fixed non-diagonal covariance matrix, onto the linear-order isotonic cone in R'?, convergence
to within + 107> was usually obtained within 75 iterations, using no more than 2 seconds of
CPU time on a PRIME 850 computer. However, the convergence rate depends on the
eigenvalues of the covariance matrix, the configuration of the data, the covariance eigenvectors
and the constraint vectors.

Intuitively, the program adjusts coordinates of XHAT to satisfy each constraint in turn.
In some situations, convergence may be speeded up by adding redundant constraints.
For example, suppose the constraints are x; —x, <0, x, —x3 <0, and x;—x,<0, S7!
= diag(w;, w,, w;, w,) where w, and w, are large and w, and w; are small, and
g1 =g, = g3 = g4 Then the solution will have all coordinates equal to a weighted average of

238 APPLIED STATISTICS

the g;s. The algorithm will proceed by successive weighted averagings between pairs of
coordinates. However, largely because of the unequal weights, it may take a long time until
the solution is reached. By adding the redundant constraint x; — x, <0, convergence is much
faster. It is much easier to identify redundant constraints which may be helpful when dealing
with order constraints than when dealing with general linear inequalities. We know of no
systematic method for adding additional redundant constraints to improve convergence,
however.

Accuracy is determined by the variable EPS: the program terminates when the estimate
under each constraint changes by less than EPS, in the usual I, norm. If greater accuracy is
needed than can be obtained with single precision arithmetic, the program can readily be
converted to double precision by including a type statement of the form “IMPLICIT DOUBLE
PRECISION A-H, P-Z”, replacing the function 4BS with DABS, and replacing the constants
in the DATA statement.

- Acknowledgement

We would like to thank the editor and referee for their helpful comments. This work was
partially supported by ONR Contract N00014-83-K-0249.

References

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972) Statistical Inference Under Order
Restrictions. New York: Wiley.

Dykstra, Richard L. (1983) An algorithm for restricted least squares regression. J. Amer. Statist. Ass., 8, 837-842.
Dykstra, Richard L. and Robertson, Tim (1982). An algorithm for isotonic regression for two or more independent
variables. Ann. Statist., 10, 708-716.

Hildreth, C. (1954) Point estimates of ordinates of concave functions. J. Amer. Statist. Ass., 49, 598-619.
Stirling, W. D. (1981) Algorithm AS 164. Least squares subject to linear constraints. Appl. Statist., 30, 204-212.

SUBROUTINE LSTSQ(X, S, A, B, IFLAG, N, K, NWORK, ITMAX, EPS, EPS2,
* W, XHAT, XKT, ITER, SUPDIF, IFAULT)

DIMENSION X(N), S(N, N), A(K, N), B(K), IFLAG(K), W(NWORK),

* XHAT(N), XKT(K)

ALGORITHM AS225 APPL. STATIST. (1987) VOL. 36, NO. 2

COMPUTES THE LEAST-SQUARES PROJECTION OF X ONTO

THE INTERSECTION OF K SIMULTANEOUS AFFINE CONSTRAINTS,
USING THE MAHALANOBIS DISTANCE DETERMINED BY S.

THE ITH CONSTRAINT IS OF THE FORM

SUM OVER J OF A(I,J)*X(J) (.LE.,.EQ.) B(I)

--.LE. IF IFLAG(I) .EQ. 0

--.EQ. IF IFLAG(I) .EQ. 1

leNe X XesEeEsNeNeNe RN el

DATA 2ZERO, TWO /0.0E0, 2.0EO0/

[}

IFAULT = 0
NK = N * K
NK2 = NK + NK
NK2K = NK2 + K

CHECK INPUTS.

000

IF (N .LE. 0 .OR. K .LE. 0 ,OR, ITMAX .LE. 0 .OR. EPS .LE.
* ZERO .OR. NWORK .LE. 0 .QR, EPS2 .LE. ZERO) GOTO 300
IF (NWORK .LT. NK2K + N) GOTO 320
DO 10 I =1, K
IF (IFLAG(I) .EQ. 0 .OR. IFLAG(I) .EQ. 1) GOTO 10
GOTO 300
10 CONTINUE

[sXeNeNeReNesNeNeNe]

[NeNe] [eNeNe]

[eNeNe)

o000

20
30
40

50

6

o

70
80

110

120

130

STATISTICAL ALGORITHMS

INITIALIZE ARRAYS, AND COMPUTE
MATRIX PRODUCTS A*S AND DIAG(A*S*A’).
WORKSPACE STRUCTURE IS AS FOLLOWS:

W(1)-W(N*K): ARRAY OF INCREMENT VECTORS.

IS (XKT(I)/2)*S*A(I,.).
W(NK+1)-W(N*K*2): MATRIX A*S.

W(NK2+1)-W(NK2+4K): VECTOR DIAG(A*S*A').
W(NK2K+1)-W(NK2K+N): PREVIOUS XHAT VECTOR, TO CHECK FOR CONV.

DO 40 I =1, K

DO 30 J =1, N

INDEX = NK + (J - 1) * K + I

W(INDEX) = ZERO

DO 20 L =1, N

W(INDEX) = W(INDEX) + A(I, L) * S(L, J)
CONTINUE

CONTINUE

DO 60 I =1, K

INDEX = NK2 + I

W(INDEX) = ZERO

DO S0 J =1, N

IND2 = NK + (J - 1) *K+ I

W(INDEX) = W(INDEX) + A(I, J) * W(IND2)
CONTINUE

IF (ABS(W(INDEX)) .LE. EPS2) GOTO 310
CONTINUE

DO 80 J =1, N

INDEX = NK2K + J

W(INDEX) = X(J)

XHAT(J) = X(J)

DO 70 I =1, K

INDEX = (I - 1) * N+ J

W(INDEX) = ZERO

CONTINUE

CONTINUE

ITER = 0

THE ITERATION LOOP: LINES 100-200.

ITER = ITER + 1
SUPDIF = ZERO
DC 200 I =1, K

REMOVE OLD INCREMENT VECTOR:

DO 110 J =1, N

INDEX = (I - 1) * N +J
XHAT(J) = XHAT(J) + W(INDEX)
CONTINUE

EVALUATE ITH CONSTRAINT:

SUM = ZERO

DO 120 J =1, N

SUM = SUM + A(I, J) * XHAT(J)
SUM = SUM - B(I)

IF (IFLAG(I) .EQ. O .AND. SUM .LE. ZERO) GOTO 140

COMPUTE NEW INCREMENT VECTOR THAT FORCES EQUALITY IN ITH CONST.

INDEX = NK2 + I

TEMP = SUM / W(INDEX)

DO 130 J =1, N

INDL = (I - 1) * N + J

IND2 = NK + (J - 1) * K + I
W(IND1) = W(IND2) * TEMP
XHAT(J) = XHAT(J) - W(IND1)
CONTINUE

GOTO 160

IF CONSTRAINT WAS SATISFIED, SET INCREMENT TO ZERO:

ITH INC VECTOR

239

240

[eNeNe]

140

15

0

160

170
200

21

o

410

42

43

0

o

APPLIED STATISTICS

DO 150 J = 1, N
INDEX = (I - 1) * N+ J
W(INDEX) = ZERO
CONTINUE

FIND LARGEST CHANGE, AND CHECK FOR CONVERGENCE:

DO 170 J =1, N
INDEX = NK2K + J

ABDIF = ABS(XHAT(J) - W(INDEX))

IF (SUPDIF .LT. ABDIF) SUPDIF = ABDIF
CONTINUE

CONTINUE

IF (SUPDIF .LE. EPS) GOTO 400

DO 210 J =1, N

INDEX = NK2K + J

W(INDEX) = XHAT(J)

CONTINUE

IF (ITER .LT. ITMAX) GOTO 100

IFAULT = 1

RETURN

IFAULT = 2

RETURN

IFAULT = 3

RETURN

IFAULT = 4

RETURN

COMPUTE KUHN-TUCKER COEFFICIENTS AND RETURN.
DO 430 I =1, K
FIND A NON-ZERO DENOMINATOR:

DO 410 J =1, N

INDEX = NK + (J - 1) * K + I

IF (ABS(W(INDEX)) .GT. EPS2) GOTO 420
CONTINUE

IND2 = (I - 1) * N + J

XKT(I) = TWO * W(IND2) / W(INDEX)
CONTINUE

RETURN

END

