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With the extreme dimensionality of functional neuroimaging
data comes extreme risk for false positives. Across the
130, 000 voxels in a typical fMRI volume the probability of at
least one false positive is almost certain. Proper correction for
multiple comparisons should be completed during the analy-
sis of these datasets, but is often ignored by investigators. To
highlight the danger of this practice we completed an fMRI
scanning session with a post-mortem Atlantic Salmon as the
subject. The salmon was shown the same social perspective-
taking task that was later administered to a group of human
subjects. Statistics that were uncorrected for multiple com-
parisons showed active voxel clusters in the salmon’s brain
cavity and spinal column. Statistics controlling for the family-
wise error rate (FWER) and false discovery rate (FDR) both
indicated that no active voxels were present, even at relaxed
statistical thresholds. We argue that relying on standard sta-
tistical thresholds (p < 0.001) and low minimum cluster sizes
(k > 8) is an ineffective control for multiple comparisons. We
further argue that the vast majority of fMRI studies should be
utilizing proper multiple comparisons correction as standard
practice when thresholding their data.
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1 INTRODUCTION
Fifty years ago few researchers ever thought of doing
thousands of statistical tests on the same contrast. Com-
pleting the required calculations by hand would have
been impractical and computers were not powerful
enough to store and operate on that quantity of data.
The situation is quite different today, as the capacity
for data acquisition and analysis has evolved considera-
bly. A prime example of this evolution is the ability to
record in vivo images of brain anatomy and function.
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With 130, 000 voxels in a single functional neuroima-
ging volume it is now common practice to do tens of
thousands of tests per contrast over multiple contrasts.
While this extreme dimensionality offers dramatic new
opportunities in terms of analysis it also comes with
dramatic new opportunities for false positives in the
results. As a result the nagging issue of multiple compa-
risons has been thrust to the forefront of discussion in
a diverse array of scientific fields, including cognitive
neuroscience. More and more researchers have realized
that correcting for chance discoveries is a necessary part
of imaging analysis. This is a positive trend, but it over-
looks the fact that a sizable percentage of results still
utilize uncorrected statistics. An unknown quantity of
these results may be false positives.

There are well-established techniques that can and
should be used for the correction of multiple compa-
risons in fMRI. When they are applied these methods
hold the probability of a false positive to a specified,
predetermined rate. Two widely utilized approaches are
to place limits on the family-wise error rate (FWER)
and the false discovery rate (FDR). The family-wise
error rate represents the probability of observing one or
more false positives after carrying out multiple signifi-
cance tests. Using a familywise error rate ofFWER =
0.05 would mean that there is a5% chance of one
or more false positives across the entire set of hypo-
thesis tests. The Bonferroni correction is probably the
most widely known FWER control and is the correc-
tion method that most investigators are familiar with. In
functional imaging the control of FWER is most often
done through the use of Gaussian Random Field Theory
or permutation methods. There are excellent articles
by Brettet al.(2004) and Nichols and Hayasaka (2003)
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that provide greater detail on the control of familywise
errors in the analysis of fMRI data.

Controlling the FWER does the best job of limiting
false positives but also comes at the greatest cost of
statistical power. A second approach to multiple compa-
risons correction is to place limits on the false discovery
rate. Using a false discovery rate ofFDR = 0.05
would mean that at most5% of the detected results
are expected to be false positives. See Benjamini and
Hochberg (1995), Benjamini and Yekutieli (2001), and
Genoveseet al.(2002) for a more in-depth discussion of
false discovery rate in fMRI. FDR is a less conservative
approach relative to FWER methods, but it may repre-
sent a more ideal balance between statistical power and
multiple comparisons control.

Sadly, while methods for multiple comparisons cor-
rection are included in every major neuroimaging soft-
ware package these techniques are not always invoked
in the analysis of functional imaging data. For the year
2008 only74% of articles in the journal NeuroImage
reported results from a general linear model analysis
of fMRI data that utilized multiple comparisons cor-
rection (193/260 studies). Other journals we examined
were Cerebral Cortex (67.5%, 54/80 studies), Social
Cognitive and Affective Neuroscience (60%, 15/25 stu-
dies), Human Brain Mapping (75.4%, 43/57 studies),
and the Journal of Cognitive Neuroscience (61.8%,
42/68 studies). A list of these studies is available in the
online supplemental materials. The issue is not limited
to published articles, as proper multiple comparisons
correction is somewhat rare during neuroimaging con-
ference presentations. During one poster session at a
recent neuroscience conference only21% of the rese-
archers used multiple comparisons correction in their
research (9/42). A further, more insidious problem is
that some researchers would apply correction to some
contrasts but not to others depending on the results of
each comparison.

Many researchers who report uncorrected statistics
tend to rely on increased significance thresholds
(0.001 < p < 0.005) and minimum cluster sizes
(6 < k < 20 voxels) to restrict the rate of false
positives. While this does increase the effective signifi-
cance threshold, it is an inadequate approach to address
the multiple comparisons problem. These same thres-
hold values are used in contrasts testing across15, 000
voxels and45, 000 voxels. The same cutoff value sim-
ply cannot be accurate in all cases. Simulation data has
shown that a significance threshold ofp < 0.005 com-
bined with a10 voxel minimum cluster size is likely to

yield significant voxel clusters almost100% of the time
in data comprised of random noise (Vulet al., 2009). It
remains the case that high significance thresholds with
predefined minimum cluster sizes are an unknown, soft
control to the multiple comparisons problem.

For some situations a cutoff value ofp < 0.001
might be too conservative while in other cases it will
be too liberal. Still, in every case it is an unprincipled
approach. The reader can’t possibly know what per-
centage of the reported results might be false positives,
seriously impairing the interpretability of the findings.
To illustrate the magnitude of the problem we carried
out a real experiment that demonstrates the danger of
not correcting for chance properly.

2 METHODS
One mature Atlantic Salmon (Salmo salar) participated
in the fMRI study. The salmon measured approximately
18 inches long, weighed3.8 lbs, and was not alive at
the time of scanning. It is not known if the salmon was
male or female, but given the post-mortem state of the
subject this was not thought to be a critical variable.

Image acquisition was completed on a1.5-tesla GE
Signa MR scanner (General Electric Medical Systems,
Milwaukee, WI). A quadrature birdcage head coil was
used for RF transmission and reception. Foam padding
was placed within the head coil as a method of limi-
ting salmon movement during the scan, but proved to
be largely unnecessary as subject motion was exceptio-
nally low. Scanning parameters for theT2∗ echo-planar
imaging (EPI) sequence were:25 slices (4mm thick,
1mm gap),TR = 2500ms, TE = 30ms, flipangle =
90◦, and256x256 field of view. Only a subset of sli-
ces were necessary to ensure whole-brain coverage in
the salmon. Dummy shots were used during the first
10 seconds of scanning to ensure magnetization equi-
librium. Stimuli were projected onto a ground glass
screen located at the head of the magnet bore by an
LCD projector. A mirror directly above the head coil
allowed the salmon to observe experiment stimuli.

The task administered to the salmon involved comple-
ting an open-ended mentalizing task. The salmon was
shown a series of photographs depicting human indi-
viduals in social situations with a specified emotional
valence, either socially inclusive or socially exclusive.
The salmon was asked to determine which emotion the
individual in the photo must have been experiencing.
The photo stimuli were presented in a block design,
with each block consisting of four photos presented
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individually for 2.5 seconds each (10 seconds total) fol-
lowed by 12 seconds of rest. A total of12 blocks of
photo presentation were completed with48 photos pre-
sented during the run. Photos were presented with the
experiment-scripting program Psyscope (Cohenet al.,
1993) and advanced by a TTL voltage trigger from the
scanner. Total scan time for the task was5.8 minutes,
with 140 acquired image volumes.

Image processing was completed using the program
SPM2 (Wellcome Department of Imaging Neuros-
cience, London, UK) in the MATLAB 6.5.1 envi-
ronment (Mathworks Inc, Natick, MA). Preprocessing
steps for the functional imaging data included a6-
parameter rigid-body affine realignment of the functio-
nal timeseries, coregistration of the functional data to a
T1-weighted anatomical image, and8 mm full-width at
half-maximum (FWHM) Gaussian smoothing. Spatial
normalization was not completed as there is currently
no standardized MRI atlas space for the Atlantic Sal-
mon.

Voxelwise statistics on the salmon data were calcula-
ted through an ordinary least-squares estimation of the
general linear model. Predictors of the hemodynamic
response were modeled by a boxcar convolved with a
canonical hemodynamic response function. A temporal
high pass filter with a cutoff period of128 seconds was
included to account for low frequency drift in the func-
tional imaging data. No autocorrelation correction was
applied.

3 RESULTS
A t-contrast was used to test for regions with significant
BOLD signal change during the presentation of photos
as compared to rest. The parameters for this comparison
weret(131) > 3.15, p(uncorrected) < 0.001, 3 voxel
extent threshold. The relatively low extent threshold
value was chosen due to the small size of the salmon’s
brain relative to voxel size. Several active voxels were
observed in a cluster located within the salmon’s brain
cavity (see Fig. 1). The size of this cluster was81 mm3

with a cluster-level significance ofp = 0.001. Ano-
ther, smaller region was observed in the dorsal spinal
column. Due to the coarse resolution of the echo-planar
image acquisition and the relatively small size of the
salmon brain further discrimination between regions
could not be completed.

Identical t-contrasts were also completed that con-
trolled for multiple comparisons. The first additional

contrast controlled for the proportion of false discove-
ries in the results. This method, titled the Benjamimi-
Hochberg correction but commonly referred to as FDR,
allows an investigator to set the expected proportion of
false discoveries in the results to a desired value (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli,
2001). For the purposes of this contrast the propor-
tion of false discoveries was set atFDR = 0.05.
A second additional contrast controlled for the fami-
lywise error rate in the results. The selected method
controls the FWER through the use of Gaussian Ran-
dom Field Theory (Fristonet al., 1996; Worsleyet al.,
1996, 2004). Using this strategy the spatial smooth-
ness of the results is estimated and the probability of
a false positive in a random field of similar Gaussians is
calculated. For the purposes of this contrast the proba-
bility of a familywise error was set atFWER = 0.05.
Both of the additional contrasts controlling for multiple
comparisons indicated that no significant voxels were
present in the dataset. This was true even at the relaxed
thresholds ofFDR = 0.25 andFWER = 0.25.

4 DISCUSSION
Either we have stumbled onto a rather amazing dis-
covery in terms of post-mortem ichthyological cogni-
tion, or there is something a bit off with regard to
our uncorrected statistical approach. Could we con-
clude from this data that the salmon is engaging in
the perspective-taking task? Certainly not. By control-
ling for the cognitive ability of the subject we have
thoroughly eliminated that possibility. What we can
conclude is that random noise in the EPI timeseries
may yield spurious results if multiple testing is not con-
trolled for. In a functional image volume of130, 000
voxels the probability of a false discovery is almost cer-
tain. Even in the restricted set of60, 000 voxels that
represent the human brain false positives will continue
to be present. This issue has faced the neuroimaging
field for some time, but the implementation of statisti-
cal correction remains optional when publishing results
of neuroimaging analyses.

What, then, is the best solution to the multiple com-
parisons problem in functional imaging? The Bonfer-
roni correction (Bonferroni, 1936) is perhaps the most
well-known formula for the control of false positives.
The Bonferroni correction is quite flexible as it does
not require the data to be independent for it to be
effective. However, there is some consensus that Bon-
ferroni may be too conservative for most fMRI data
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Fig. 1. Sagittal and axial images of significant brain voxels in thetask > rest contrast. The parameters for this comparison
weret(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold. Two clusters were observed in the salmon central
nervous system. One cluster was observed in the medial brain cavity and another was observed in the upper spinal column.

sets (Loganet al., 2008). This is because the value of
one voxel is not an independent estimate of local signal.
Instead, it is highly correlated with the values of sur-
rounding voxels due to the intrinsic spatial correlation
of the BOLD signal and to Gaussian smoothing applied
during preprocessing. This causes the corrected Bonfer-
roni threshold to be unnecessarily high, leading to Type
II error and the elimination of valid results. More adap-
tive methods are necessary to avoid the rejection of true
signal while controlling for false positives.

The other methods mentioned earlier use aspects
of the data itself to determine the optimal corrected
statistical threshold. For functional imaging there are
strategies such as Benjamini and Hochberg’s FDR,
resampling FWER, and Gaussian Random Field FWER
estimation that have proven to be effective options. All
of them provide multiple comparisons correction with
increased statistical power relative to Bonferroni. One
or more of these methods are available in all major
fMRI analysis packages, including SPM, AFNI, FSL,
FMRISTAT, and BrainVoyager. The only decision an
investigator has to make is what kind of balance to
strike between the detection of legitimate results and
presence of false positives. In the future other methods
such as topological FDR (Chumbley and Friston, 2009)

have the potential to further improve false positive con-
trol while minimizing the impact on statistical power.

It is important to note that correction for multiple
comparisons does not address other important statisti-
cal issues in fMRI. Specifically, a distinction should
be drawn between the multiple comparisons problem
and the ‘non-independence error’ highlighted by Vul
et al. (2009) and Kriegeskorteet al. (2009). The non-
independence error refers to the inflation of cluster-wise
statistical estimates when the constituent voxels were
selected using the same statistical measure. For exam-
ple, the correlation value of a voxel cluster will be
inflated if the voxels were originally selected based on
the criteria that they have a high correlation. Voxels
with beneficial noise that increases their correlation
value will be selected during the first stage, inflating
the apparent cluster-wise correlation during the second
stage. This stands in contrast to the multiple compa-
risons problem, which is related to the prevalence of
false positives present across the set of selected voxels
at the first stage. Other statistical issues, such as tem-
poral autocorrelation and low frequency drift, are also
separate statistical problems that are best addressed
with their own set of corrections (Nandy and Cordes,
2007). It is also important to recognize that there are
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some situations where a lower statistical threshold can
still be used. For example, in a split-half analysis a
researcher may use a more liberal threshold to define
a region-of-interest (ROI) for later testing in a sepa-
rate, independent set of data. These are special cases
though, and as currently conducted the vast majority
of neuroimaging studies require some form of multiple
comparisons correction.

The multiple testing problem is not unique to neuroi-
maging. Instead, it is an issue that most scientific fields
face as data analysis is completed. Anytime that multi-
ple tests are completed without proper correction it has
the potential to impact the conclusions drawn from the
results. See Austinet al. (2006) for an example from
clinical epidemiology of how multiple testing can lead
to spurious associations between astrological sign and
health outcome. This commentary is not intended as a
specific accusation against functional imaging, but rat-
her an argument in favor of continued evolution in the
standards of fMRI analysis. There have been several
in-depth articles regarding the multiple testing problem
in neuroimaging, but a sizable fraction of published
research still report results using uncorrected statistics.
The control of false positives is not a matter of diffi-
culty, as all major analysis packages for fMRI include
some form of multiple comparisons correction. Rather
it seems to be the case that investigators do not want to
jeopardize their results through a reduction in statistical
power. While we must guard against the elimination of
legitimate results through Type II error, the alternative
of continuing forward with uncorrected statistics cannot
be an option.
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