Psychology 407 Assignment D

Suppose that an experimenter is interested in "level of aspiration" as the dependent variable in an experiment. An experimental task has been developed consisting of a difficult game apparently involving motor skill, yielding a numerical score that can be attached to a person's performance. But this appearance is deceptive: unknown to the subject, the game is actually under the control of the experimenter, so that each subject is made to obtain exactly the same score. After a fixed number of trials, during which the subject unknowingly receives the preassigned score, the individual is asked to predict what the score will be on the next group of trials. However, before this prediction, the subject is given "information" about how the score compares with some fictitious norm group. In one experimental condition, the subject is told that the first performance is above average for the norm group; in the second that it is average; and in the third that it is below average. There are thus three possible experimental "standings" that might be given to any subject. (Of course, after the experiment, each subject is full informed of this little ruse by the experimenter.)

The dependent score value Y is based on the report the subject makes about anticipated performance in the next group of trials. Because each subject has obtained the same score, this anticipated score on the next set of trials is treated as equivalent to a level of aspiration that the subject has set. Each subject is tested privately, and no communication is allowed between subjects until the entire experiment is completed. Each of the three groups contains 20 randomly assigned subjects.

In addition to the dependent measure, Y, prior to the experiment each subject had been tested on a game very similar to that used in the experiment proper, and a "skill score", X_1 , obtained for each. The data that resulted from this experiment can be represented in the following form:

above	average	ave	rage	below	v average
Y	X_1	Y	X_1	Y	X_1
52	44	28	38	15	23
48	47	35	26	14	17
43	30	34	36	23	31
50	38	32	30	21	25
43	40	34	36	14	27
44	45	27	23	20	35
46	36	31	45	21	25
46	41	27	28	16	28
43	40	29	34	20	30
49	43	25	37	14	37
38	48	43	40	23	32
42	24	34	36	25	32
42	39	33	41	18	34
35	36	42	29	26	48
33	46	41	39	18	39
38	33	37	37	26	38
39	38	37	47	20	30
34	26	40	34	19	24
33	41	36	47	22	31
34	36	35	31	17	19

In addition to Y and X₁, define three "dummy" variables, X₂, X₃, and X₄: X_j = 1, if the subject belongs to group j - 1; = 0, otherwise. The SYSTAT output that is attached gives the basic statistics in addition to information on fitting a variety of models. (In giving the basic statistics, Groups 1, 2, and 3 are above average, average, and below average, respectively.) The models that are fitted are given as (a) through (f) below:

Model (a):

$$Y = \beta_0 + \beta_1(X_1X_2) + \beta_2(X_1X_3) + \beta_3(X_1X_4) + \epsilon$$

Model (b):

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \epsilon$$

Model (c):

$$Y = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \epsilon$$

Model (d):

 $Y = \beta_0 + \beta_1(X_1X_2) + \beta_2(X_1X_3) + \beta_3(X_1X_4) + \beta_4X_2 + \beta_5X_3 + \epsilon$ Model (e):

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \beta_3 \mathbf{X}_3 + \epsilon$$

Model (f):

$$X_1 = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \epsilon$$

Questions:

i) Model (c) performs a "one-way analysis of variance" on the dependent measure Y in relation to the 3 groups. Show explicitly the relation between the means on Y within each of the three groups (given in the basic statistics) and the estimated means on Y for all the various combinations of values that X_2 and X_3 can take on. What does the analysis-of-variance table say about the "effectiveness" of the 3 treatments? Why isn't an X_4 term included in model (c)?

ii) Looking at model (f), carry out a similar interpretation as in (c). Are the results surprising? Why?

iii) Plot the regression lines of Y on X_1 implied by model (d) for the three separate groups. Superimpose on this plot the regressions of Y on X_1 implied by model (e) for the three separate groups. Carry out a test of model (d) versus model (e) and interpret.

iv) Plot the regression lines of Y on X_1 implied by model (e) and model (b).

Carry out a test of model (e) versus model (b) and interpret. This is called "analysis-of-covariance", and supposedly is a way of assessing the effectiveness of the three treatments. How is it different than what was done in (i)? (It may help to interpret what was done in (i) as a comparison of model (c) against a restricted model, $Y = \beta_0 + \epsilon$.)

Analysis of covariance is based on an assumption that model (e) is the "Full Model". How does this relate to what was done in (iii)?

v) Suppose I have some given value on X_1 , say P. Using model (e), what are the expected values on Y for the three separate groups. Suppose I have a second given value on X_1 , say Q. What are the expected values on Y for the three separate groups, again using model (e), and what are the relationships between the two sets of expected values.

Now, do the same for model (d) and comment on the differences from using model (e).

Using these interpretations, why is it argued that one cannot compare the effectiveness of treatments merely by comparing model (d) and (a) (when model (e) cannot be assumed correct)?

Also, why is it argued that we can actually "control" for the effect of X_1 in assessing treatment effectiveness when model (e) is "true" but not if model (d) is "true"?

vi) Carry out a test of model (d) versus (b). What is this a test of any how does it differ from a comparison of model (d) versus model (a) and of model (e) versus model (b)?

Y 60 14.000 52.000 31.733 10.457 s are for: 1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	X1 60 17.000 48.000 34.833 7.549 X1 20 24.000 48.000 38.550 6.557 X1	X2 60 0.0 1.000 0.333 0.475 X2 20 1.000 1.000 1.000 0.0	X3 60 0.0 1.000 0.333 0.475 X3 20 0.0 0.0 0.0 0.0 0.0 0.0	X4 60 0.0 1.000 0.333 0.475 X4 20 0.0 0.0 0.0 0.0 0.0 0.0
52.000 31.733 10.457 s are for: 1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	17.000 48.000 34.833 7.549 X1 20 24.000 48.000 38.550 6.557	0.0 1.000 0.333 0.475 X2 20 1.000 1.000 1.000 1.000	0.0 1.000 0.333 0.475 X3 20 0.0 0.0 0.0 0.0	0.0 1.000 0.333 0.475 X4 20 0.0 0.0 0.0 0.0
31.733 10.457 s are for: 1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	48.000 34.833 7.549 X1 20 24.000 48.000 38.550 6.557	1.000 0.333 0.475 X2 20 1.000 1.000 1.000 1.000	1.000 0.333 0.475 X3 20 0.0 0.0 0.0 0.0	1.000 0.333 0.475 X4 20 0.0 0.0 0.0 0.0
31.733 10.457 s are for: 1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	34.833 7.549 X1 20 24.000 48.000 38.550 6.557	0.333 0.475 X2 20 1.000 1.000 1.000 1.000	0.333 0.475 X3 20 0.0 0.0 0.0 0.0	0.333 0.475 X4 20 0.0 0.0 0.0 0.0
s are for: 1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	X1 20 24.000 48.000 38.550 6.557	0.475 X2 20 1.000 1.000 1.000	0.475 X3 20 0.0 0.0 0.0 0.0	0.475 X4 20 0.0 0.0 0.0 0.0
1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	20 24.000 48.000 38.550 6.557	20 1.000 1.000 1.000	20 0.0 0.0 0.0	20 0.0 0.0 0.0
1.000 Y 20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	20 24.000 48.000 38.550 6.557	20 1.000 1.000 1.000	20 0.0 0.0 0.0	20 0.0 0.0 0.0
Y 20 33.000 52.000 41.600 5.915 5 are for: 2.000 Y 20	20 24.000 48.000 38.550 6.557	20 1.000 1.000 1.000	20 0.0 0.0 0.0	20 0.0 0.0 0.0
20 33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	20 24.000 48.000 38.550 6.557	20 1.000 1.000 1.000	20 0.0 0.0 0.0	20 0.0 0.0 0.0
33.000 52.000 41.600 5.915 s are for: 2.000 Y 20	24.000 48.000 38.550 6.557	1.000 1.000 1.000	0.0 0.0 0.0	0.0 0.0 0.0
52.000 41.600 5.915 5 are for: 2.000 Y 20	48.000 38.550 6.557	1.000 1.000	0.0	0.0
41.600 5.915 5 are for: 2.000 Y 20	38.550 6.557	1.000	0.0	0.0
5.915 s are for: 2.000 Y 20	6.557			
s are for: 2.000 Y 20		0.0	0.0	0.0
2.000 Y 20	X1			
2.000 Y 20	X1			
20	X1			
		X2	X3	X4
25 000	20	20	20	20
25.000	23.000	0.0	1.000	0.0
43.000	47.000	0.0	1.000	0.0
34.000	35.700	0.0	1.000	0.0
5.171	6.602	0.0	0.0	0.0
are for.				
3.000				
Y	Xl	X2	Х3	X4
20	20	20	20	20
14.000	17.000	0.0	0.0	1.000
26.000	48.000	0.0	0.0	1.000
19.600	30.250	0.0	0.0	1.000
3.872	7.276	0.0	0 0	0.0
	are for: 3.000 Y 20 14.000 26.000 19.600 3.872	Y X1 20 20 14.000 17.000 26.000 48.000 19.600 30.250 3.872 7.276	Y X1 X2 20 20 20 14.000 17.000 0.0 26.000 48.000 0.0 19.600 30.250 0.0 3.872 7.276 0.0	Y X1 X2 X3 20 20 20 20 14.000 17.000 0.0 0.0 26.000 48.000 0.0 0.0 19.600 30.250 0.0 0.0

Analysis of Variance

.

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P	
Regression Residual	4926.017 1525.716	3 56	1642.006 27.245	60.268	0.	000
Dep Var: Y N: 60	Multiple R: 0.53	1 Squ	ared multiple	R: 0.285		
Adjusted squared	multiple R: 0.27	3	Standard error	of estimate	5:	8.918
Effect Co	efficient Std I	Error	Std Coef	Tolerance	t P	(2 Tail)
CONSTANT X1		5.480).154		1.000	1.090 4.808	0.280

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	1838.561 4613.173	1 58	1838.561 79.537	23.116	0.000

Dep Var:	Y N: 60 Multiple R:	0.880 Squared m	ultiple R:	0.774		
Adjusted	squared multiple R:	0.766 Standa	rd error o	f estimat	le:	5.057
Effect	Coefficient	Std Error S	td Coef To	lerance	t P	(2 Tail)
CONSTANT X2 X3	19.600 22.000 14.400	1.131 1.599 1.599	0.0 1.000 0.655	0.750 0.750	17.334 13.758 9.005	0.000 0.000 0.000

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	4994.133 1457.600	2 57	2497.067 25.572	97.649	0.000

Dep Var: Y N: 60 Multiple R: 0.892 Squared multiple R: 0.796

Adjusted squa	red multiple R:	0.777 Sta	ndard error d	of estimat	e:	4.938
Effect	Coefficient	Std Error	Std Coef To	olerance	t	P(2 Tail)
CONSTANT X2 X3 X1*X2 X1*X3 X1*X4	11.209 22.162 16.412 0.213 0.179 0.277	4.837 8.305 7.883 0.173 0.172 0.156	0.0 1.007 0.746 0.382 0.297 0.397	0.027 0.029 0.040 0.046 0.076	2.317 2.669 2.082 1.236 1.042 1.782	0.010 0.042 0.222

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	5135.207 1316.526	5 54	1027.041 24.380	42.126	0.000
Dep Var: Y N· 6	0 Multiple D. 0.000				

Dep Var: Y N: 60 Multiple R: 0.892 Squared multiple R: 0.795

Adjusted squar	ed multiple R:	0.784	Standard error	of estimat	ce:	4.857
Effect	Coefficient	Std Error	Std Coef	Tolerance	t P	(2 Tail)
CONSTANT X1 X2 X3	12.737 0.227 20.117 13.164	3.053 0.094 1.724 1.620	0.0 0.164 0.915 0.598	0.788 0.595 0.674	4.171 2.405 11.669 8.127	0.000 0.020 0.000 0.000

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	5130.571 1321.163	3 56	1710.190 23.592	72.490	0.000
Dep Var: Y N: 60 M	Aultiple R: 0.880	Squa	ared multiple R:	0.774	

Adjusted squared multiple R: 0.766 Standard error of estimate: 5.057 Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail) CONSTANT 19.600 1.131 0.0 17.334 0.000 X2 22.000 1.0000.75013.7580.0000.6550.7509.0050.000 1.599 X3 14.400 1.599

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	Р
Regression Residual	4994.133 1457.600	2 57	2497.067 25.572	97.649	0.000

Variables in Y	the SYSTAT Rec			X4		
Dep Var: X1 M	1: 60 Multiple	R: 0.460 Squ	ared multiple	R: 0.212		
Adjusted squa	ared multiple R	: 0.184 S	tandard error	of estima	te:	6.820
Effect	Coefficient	Std Error	Std Coef To	olerance	t P(2	Tail)
CONSTANT X2 X3	30.250 8.300 5.450	1.525 2.157 2.157	0.0 0.523 0.343	0.750 0.750	19.837 3.849 2.527	0.000 0.000 0.014
		Analysis of	Variance			
Source	Sum-of-So	quares DF	Mean-Square	F-Ratio	P	

source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	711.433 2650.900	2 57	355.717 46.507	7.649	0.001