Psychology 407 Assignment C

In an experiment designed to assess a possible curvilinear relationship between level of background noise on task performance, an experimenter assigned (at random) 10 subjects to each of 6 noise levels (assumed to be equally-spaced values of 1, 2, ..., 6) and obtained a "number correct" score on a heavily speeded performance measure. The data for this study turned out as follows (the columns are labeled by Noise Level):

one	two	three	four	five	six
18	34	39	37	15	14
24	36	41	32	18	19
20	39	35	25	27	5
26	43	48	28	28	25
23	48	44	29	22	$\overline{7}$
29	28	38	31	24	13
27	30	42	34	21	10
33	33	47	38	19	16
32	37	53	43	13	20
38	42	33	23	33	11

Because of possible computational issue in fitting polynomial models (question: what are they?), the 6 noise levels will be coded as deviations from the mean noise level (a value of 3.5); thus, the 6 noise levels are actually -2.5, -1.5, -.5, +.5, +1.5, +2.5. These latter deviation values should be assumed in *everything* that follows.

Summary Information on Performance (the standard deviation is based on an unbiased variance estimate):

Noise level	Sample Size	Mean	Standard Deviation
-2.5	10	27.0	6.164
-1.5	10	37.0	6.164
5	10	42.0	6.164
+.5	10	32.0	6.164
+1.5	10	22.0	6.164
+2.5	10	14.0	6.164
Overall	60	29.0	11.087

(Any indication that these data are "made up"?)

The end two pages give SYSTAT results on fitting a variety of polynomial models. Here, PER stands for performance and NOISED stands for noise deviated from the mean.

Questions:

a) Plot the data: noise against performance. Indicate on the plot the mean performance level within each noise level.

b) Replot just the mean performance levels within each noise level and on this graph represent all *five* linear/curvilenear functions given by the SYSTAT output. Comment on what appears to provide a "reasonable" fit.

c) Calculate a "pure error" sum-of-squares from the summary information provided for performance. What would a plot in (b) look like if a polynomial of order 5 were fitted? And what would be the residual sum-of-squares? Provide the analysis-of-variance table for fitting the order 5 polynomial. (If in a previous life you studied one-way analysis-of-variance, comment on the correspondence between the last table you gave and what would be usually provided in the one-way analysis of variance context.)

d) Obtain the "extra" sums-of-squares indicated (here, X is the noise level):

 $\begin{aligned} & SSR(X); \, SSR(X^2 \mid X); \\ & SSR(X^3 \mid X, \, X^2); \\ & SSR(X^4 \mid X, \, X^2, \, X^3); \end{aligned}$

 $\begin{aligned} & \text{SSR}(X^5 \mid X, \, X^2, \, X^3, \, X^4); \text{ and} \\ & \text{SSR}(X^3, \, X^4, \, X^5 \mid X, \, X^2) \\ & \text{SSR}(X^4, \, X^5 \mid X, \, X^2, \, X^3). \end{aligned}$

Test whether there is a significant lack-of-fit for a second order and for a third order model using the "pure error" term — give the two corresponding analysis-of-variance tables. Comment on how these tests relate to the intuition you provided in (b).

e) What is the relation between all of the residual mean squares generated in the SYSTAT analyses and the mean square for pure error? Are they all estimates of error? In what sense and under what conditions?

f) Look at the SYSTAT analysis for the third order model. Show numerically how the test for the coefficient on X^3 can be generated using the extra sum of squares principle. In carrying out this test, what assumption is being made about the residual mean-squares for the third order model.

g) Look at the SYSTAT analysis for the second order model. What do the given tolerances tell you about the relation between X and X^2 ? Why should this relation hold here for our data? Comment on the change or lack of change in the regression coefficients as the order of the model increases. How general would you expect such a result to be when other data sets are considered?

Dep Var: PERFORMANCE N: 60 Multiple R: 0.0 Squared multiple R: 0.0Adjusted squared multiple R: 0.000Standard error of estimate:11.087EffectCoefficientStd ErrorStd Coef TolerancetP(2 Tail)CONSTANT29.0001.4310.0.20.2610.000

Dep Var: PERFORMANCE N: 60 Multiple R: 0.533 Squared multiple R: 0.284 Adjusted squared multiple R: 0.272 Standard error of estimate: 9.461 Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail) CONSTANT 29.003 1.221 0.0 . 23.745 0.000 NOISED -3.430 0.715 -0.533 1.000 -4.797 0.000

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	Р
Regression Residual	2060.151 5191.849	1 58	2060.151 89.515	23.015	0.000

Dep Var: PERFC	DRMANCE N: 60 Mu	ltiple R: 0	.809 Squared n	multiple R:	0.655	
Adjusted squar	ed multiple R:	0.643 St	andard error o	of estimate	2:	6.628
Effect	Coefficient	Std Error	Std Coef To	olerance	t P	(2 Tail)
CONSTANT NOISED	36.837 -3.426	1.317 0.501	0.0	1.000	27.962 -6.842	0.000
NOISED *NOISED	-2.684	0.343	-0.609	1.000	-7.821	0.000

Analysis of Variance

Source	Sum-of-Squares	DF	Mean-Square	F-Ratio	P
Regression Residual	4747.738 2504.262	2 57	2373.869 43.934	54.032	0.000

Dep Var: PER	RFORMANCE N: 60 MU	ultiple R: (0.838 Squared	multiple 1	R: 0.703	
Adjusted squ	ared multiple R:	0.687 St	andard error	of estimat	te:	6.201
Effect	Coefficient	Std Error	Std Coef I	olerance	t P	
CONSTANT	36.832	1.232	0.0		00 005	
NOISED	-7.145					
NOISED	/.110	T • 2 T /	- 7 • 7 7 0	0.127	-5.425	0.000
*NOISED	-2.682	0.321	-0.608	1 000	-8.356	0.000
NOISED		0.0011	0.000	1.000	-0.356	0.000
*NOISED						
*NOISED	0.736	0.244	0.618	0.127	3.021	0 004
		0.211	0.010	0.127	3.021	0.004
		Analysis of	Variance			
Source	Sum-of-Squ	ares DF M	lean-Square	F-Ratio	P	
Dogradation						
Regression Residual	5098.	694 3	1699.565	44.200	0.0	00
	2153.	306 56	38.452			
	FORMANCE N: 60 Mu					
Dep Var: PER		ltiple R: 0	.843 Squared 1	multiple R	2: 0.710	
Dep Var: PER Adjusted squa	FORMANCE N: 60 Mu	ltiple R: 0 0.689 St	.843 Squared andard error o	multiple R of estimat	e: 0.710	6.182
Dep Var: PER Adjusted squa Effect	FORMANCE N: 60 Mu ared multiple R: Coefficient	ltiple R: 0 0.689 St Std Error	.843 Squared m andard error of Std Coef To	multiple R of estimat olerance	t P(6.182 2 Tail)
Dep Var: PER Adjusted squa Effect CONSTANT	FORMANCE N: 60 Mu ared multiple R:	ltiple R: 0 0.689 St Std Error 1.642	.843 Squared m andard error of Std Coef To 0.0	multiple R of estimat olerance	e: 0.710 e: t P(23.199	6.182 2 Tail) 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091	ltiple R: 0 0.689 St Std Error	.843 Squared m andard error of Std Coef To 0.0	multiple R of estimat olerance	e: 0.710 e: t P(23.199	6.182 2 Tail) 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091	ltiple R: 0 0.689 St Std Error 1.642 1.313	.843 Squared m andard error of Std Coef To 0.0 -1.110	multiple R of estimat olerance 0.127	e: 0.710 e: t P(23.199 -5.439	6.182 2 Tail) 0.000 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142	ltiple R: 0 0.689 St Std Error 1.642	.843 Squared m andard error of Std Coef To 0.0 -1.110	multiple R of estimat olerance 0.127	e: 0.710 e: t P(23.199	6.182 2 Tail) 0.000 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED NOISED NOISED NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142	ltiple R: 0 0.689 St Std Error 1.642 1.313	.843 Squared m andard error of Std Coef To 0.0 -1.110	multiple R of estimat olerance 0.127	e: 0.710 e: t P(23.199 -5.439	6.182 2 Tail) 0.000 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991	multiple R of estimat olerance 0.127 0.046	t P(23.199 -5.439 -2.925	6.182 2 Tail) 0.000 0.000 0.005
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369	ltiple R: 0 0.689 St Std Error 1.642 1.313	.843 Squared m andard error of Std Coef To 0.0 -1.110	multiple R of estimat olerance 0.127 0.046	e: 0.710 e: t P(23.199 -5.439	6.182 2 Tail) 0.000 0.000
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED VOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991	multiple R of estimat olerance 0.127 0.046	t P(23.199 -5.439 -2.925	6.182 2 Tail) 0.000 0.000 0.005
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991	multiple R of estimat olerance 0.127 0.046	t P(23.199 -5.439 -2.925	6.182 2 Tail) 0.000 0.000 0.005
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369 0.736	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494 0.243	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991 0.618	multiple R of estimat olerance 0.127 0.046 0.127	e: 0.710 e: t P(23.199 -5.439 -2.925 3.029	6.182 2 Tail) 0.000 0.000 0.005 0.004
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991	multiple R of estimat olerance 0.127 0.046	t P(23.199 -5.439 -2.925	6.182 2 Tail) 0.000 0.000 0.005
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369 0.736 0.249	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494 0.243	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991 0.618 0.392	multiple R of estimat olerance 0.127 0.046 0.127	e: 0.710 e: t P(23.199 -5.439 -2.925 3.029	6.182 2 Tail) 0.000 0.000 0.005 0.004
Dep Var: PER Adjusted squa Effect CONSTANT NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369 0.736 0.249	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494 0.243 0.215 Analysis of V	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991 0.618 0.392	multiple R of estimat olerance 0.127 0.046 0.127	e: 0.710 e: t P(23.199 -5.439 -2.925 3.029	6.182 2 Tail) 0.000 0.000 0.005 0.004
Dep Var: PER Adjusted squa Effect CONSTANT NOISED NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369 0.736 0.249 Zum-of-Squa	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494 0.243 0.215 Analysis of V ares DF Me	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991 0.618 0.392 Variance ean-Square	multiple R of estimat olerance 0.127 0.046 0.127 0.046 F-Ratio	<pre>2: 0.710 .e: t P(23.199 -5.439 -2.925 3.029 1.156 P</pre>	6.182 2 Tail) 0.000 0.005 0.004 0.253
Dep Var: PER Adjusted squa Effect CONSTANT NOISED NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED *NOISED	FORMANCE N: 60 Mu ared multiple R: Coefficient 38.091 -7.142 -4.369 0.736 0.249	ltiple R: 0 0.689 St Std Error 1.642 1.313 1.494 0.243 0.243 0.215 Analysis of V ares DF Me	.843 Squared m andard error of Std Coef To 0.0 -1.110 -0.991 0.618 0.392 Variance	multiple R of estimat olerance 0.127 0.046 0.127 0.046	<pre>2: 0.710 .e: t P(23.199 -5.439 -2.925 3.029 1.156</pre>	6.182 2 Tail) 0.000 0.005 0.004 0.253