Matrix reexpression for simple linear regression:

Consider our simple regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

This could be written out as:

$$Y_1 = \beta_0 + \beta_1 X_1 + \epsilon_1$$

$$Y_2 = \beta_0 + \beta_1 X_2 + \epsilon_2$$

:

$$Y_n = \beta_0 + \beta_1 X_n + \epsilon_n$$

Now, define

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}; \mathbf{X} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}; \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}; \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

My equations could be written as:

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

or

$$Y = X\beta + \epsilon$$

or as

$$Y = E(Y) + \epsilon$$

because

$$E(Y) = \begin{bmatrix} E(Y_1) \\ \vdots \\ E(Y_n) \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 X_1 \\ \vdots \\ \beta_0 + \beta_1 X_n \end{bmatrix} = X\beta$$

Defining the Variance-Covariance Matrix:

Suppose I have a random vector
$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

Let $\sigma^2(Y_i)$ be the variance of Y_i ;

 $\sigma(Y_i, Y_j)$ be the covariance of Y_i and Y_j , i.e.,

$$\sigma(Y_i, Y_j) = E(Y_i Y_j) - E(Y_i) E(Y_j) =$$

$$E[(Y_i - E(Y_i))(Y_j - E(Y_j))]$$

Variance-Covariance Matrix:

$$\sigma^{2}(\mathbf{Y}) = \begin{bmatrix} \sigma^{2}(Y_{1}) & \sigma(Y_{1}, Y_{2}) & \dots & \sigma(Y_{1}, Y_{n}) \\ \sigma(Y_{2}, Y_{1}) & \sigma^{2}(Y_{2}) & \dots & \sigma(Y_{2}, Y_{n}) \\ \vdots & & & \vdots \\ \sigma(Y_{n}, Y_{1}) & \sigma(Y_{n}, Y_{2}) & \dots & \sigma^{2}(Y_{n}) \end{bmatrix} =$$

$$E[(Y - E(Y))(Y - E(Y))']$$

Remember that the expectation operator, $E(\cdot)$, just means to take the expectation of each entry.

Thus, the simple regression model can be restated as:

$$Y = X\beta + \epsilon$$
,

where ϵ is a vector of independent normal random variables with

$$E(\epsilon) = 0$$
 and $\sigma^2(\epsilon) = \sigma^2 I$

The regression coefficients can be obtained as the solution to the normal equation:

$$(X^{\prime}X)b = X^{\prime}Y$$

where
$$b = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

or

$$b = (X'X)^{-1}X'Y$$

This minimizes

$$(Y - Xb)^{'}(Y - Xb)$$

Fitted values:

$$\hat{\mathbf{Y}} = \begin{bmatrix} \hat{Y}_1 \\ \vdots \\ \hat{Y}_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} b_0 + b_1 X_1 \\ \vdots \\ b_0 + b_1 X_n \end{bmatrix} = \mathbf{X}\mathbf{b}$$

So,

$$e = \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} = \begin{bmatrix} Y_1 - \widehat{Y}_1 \\ \vdots \\ Y_n - \widehat{Y}_n \end{bmatrix} = Y - Xb$$

Computations:

$$\mathbf{Y'Y} = \sum Y_i^2$$

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & \sum X_i \\ \sum X_i & \sum X_i^2 \end{bmatrix}$$

$$\mathbf{X'Y} = \left[\begin{array}{c} \sum Y_i \\ \sum X_i Y_i \end{array}\right]$$

$$(\boldsymbol{X}'\boldsymbol{X})^{-1} = \frac{1}{n\sum X_i^2 - (\sum X_i)^2} \begin{bmatrix} \sum X_i^2 & -\sum X_i \\ -\sum X_i & n \end{bmatrix}$$

So,

$$(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y} = \frac{1}{n^2 S_X^2} \left[\begin{array}{c} \sum X_i^2 \sum Y_i - \sum X_i \sum X_i Y_i \\ -\sum X_i \sum X_i Y_i + n \sum X_i Y_i \end{array} \right] =$$

$$\begin{bmatrix} \bar{Y} - r_{XY} \frac{S_Y}{S_X} \bar{X} \\ r_{XY} \frac{S_Y}{S_X} \end{bmatrix}$$

Residuals:

 $Y = X \beta + \epsilon$: original model

Y = Xb + e : fitted model

So,
$$Y - Xb = e = Y - X(X'X)^{-1}X'Y =$$

$$(I - X(X'X)^{-1}X')Y = (I - H)Y$$

 $H\equiv X(X'X)^{-1}X'$ is called the "hat" matrix;

HH=H and is thus referred to as "idempotent"