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0.1 Necessary Matrix Algebra Tools For Regression

0.1.1 Preliminaries

A matrix is merely an array of numbers; for example,
⎛
⎜⎜⎜⎜⎜⎝

4 −1 3 1

4 6 0 2

7 2 1 4

⎞
⎟⎟⎟⎟⎟⎠

is a matrix. In general, we denote a matrix by an uppercase (capi-

tal) boldface letter such as A (or using a proofreader representation

on the blackboard, a capital letter with a wavy line underneath to

indicate boldface):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a1V
a21 a22 a23 · · · a2V
... ... ... . . . ...

aU1 aU2 aU3 · · · aUV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix has U rows and V columns and is said to have order

U × V . An arbitrary element auv refers to the element in the uth

row and vth column, with the row index always preceding the column

index (and therefore, we might use the notation of A = {auv}U×V

to indicate the matrix A as well as its order).

A 1× 1 matrix such as (4)1×1 is just an ordinary number, called a

scalar. So without loss of any generality, numbers are just matrices.

A vector is a matrix with a single row or column; we denote a column

vector by a lowercase boldface letter, e.g., x, y, z, and so on. The

vector
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x =

⎛
⎜⎜⎜⎜⎜⎝

x1
...

xU

⎞
⎟⎟⎟⎟⎟⎠
U×1

is of order U×1; the column indices are typically omitted since there

is only one. A row vector is written as

x′ = (x1, . . . , xU)1×U

with the prime indicating the transpose of x, i.e., the interchange of

row(s) and column(s). This transpose operation can be applied to

any matrix; for example,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 −1

3 7

4 1

⎞
⎟⎟⎟⎟⎟⎠
3×2

A′ =
⎛
⎜⎝ 1 3 4

−1 7 1

⎞
⎟⎠
2×3

If a matrix is square, defined by having the same number of rows

as columns, say U , and if the matrix and its transpose are equal, the

matrix is said to be symmetric. Thus, in A = {auv}U×U , auv = avu
for all u and v. As an example,

A = A′ =

⎛
⎜⎜⎜⎜⎜⎝

1 4 3

4 7 −1

3 −1 3

⎞
⎟⎟⎟⎟⎟⎠

For a square matrix AU×U , the elements auu, 1 ≤ u ≤ U , lie along

the main or principal diagonal. The sum of main diagonal entries

of a square matrix is called the trace ; thus,
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trace(AU×U ) ≡ tr(A) = a11 + · · · + aUU

A number of special matrices appear periodically in the notes to

follow. A U×V matrix of all zeros is called a null matrix, and might

be denoted by

∅ =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0
... . . . ...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

Similarly, we might at times need an U × V matrix of all ones, say

E:

E =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1
... . . . ...

1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

A diagonal matrix is square with zeros in all the off main-diagonal

positions:

DU×U =

⎛
⎜⎜⎜⎜⎜⎝

a1 · · · 0
... . . . ...

0 · · · aU

⎞
⎟⎟⎟⎟⎟⎠
U×U

Here, we again indicate the main diagonal entries with just one index

as a1, a2, . . . , aU . If all of the main diagonal entries in a diagonal

matrix are 1s, we have the identity matrix denoted by I:

I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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To introduce some useful operations on matrices, suppose we have

two matrices A and B of the same U × V order:

A =

⎛
⎜⎜⎜⎜⎜⎝

a11 · · · a1V
... . . . ...

aU1 · · · aUV

⎞
⎟⎟⎟⎟⎟⎠
U×V

B =

⎛
⎜⎜⎜⎜⎜⎝

b11 · · · b1V
... . . . ...

bU1 · · · bUV

⎞
⎟⎟⎟⎟⎟⎠
U×V

As a definition for equality of two matrices of the same order (and

for which it only makes sense to talk about equality), we have:

A = B if and only if auv = buv for all u and v.

Remember, the “if and only if” statement (sometimes abbreviated

as “iff”) implies two conditions:

if A = B, then auv = buv for all u and v;

if auv = buv for all u and v, then A = B.

Any definition by its very nature implies an “if and only if” state-

ment.

To add two matrices together, they first have to be of the same or-

der (referred to as conformable for addition); we then do the addition

component by component:

A +B =

⎛
⎜⎜⎜⎜⎜⎝

a11 + b11 · · · a1V + b1V
... . . . ...

aU1 + bU1 · · · aUV + bUV

⎞
⎟⎟⎟⎟⎟⎠
U×V

To preform scalar multiplication of a matrix A by, say, a constant

c, we again do the multiplication component by component:
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cA =

⎛
⎜⎜⎜⎜⎜⎝

ca11 · · · ca1V
... . . . ...

caU1 · · · caUV

⎞
⎟⎟⎟⎟⎟⎠ = c

⎛
⎜⎜⎜⎜⎜⎝

a11 · · · a1V
... . . . ...

aU1 · · · aUV

⎞
⎟⎟⎟⎟⎟⎠

Thus, if one wished to define the difference of two matrices, we could

proceed rather obviously as follows:

A−B ≡ A + (−1)B = {auv − buv}
One of the more important matrix operations is multiplication

where two matrices are said to be conformable for multiplication if

the number of rows in one matches the number of columns in the

second. For example, suppose A is U × V and B is V ×W ; then,

because the number of columns in A matches the number of rows

in B, we can define AB as CU×W , where {cuw} = {∑V
k=1 aukbkw}.

This process might be referred to as row (of A) by column (of B)

multiplication; the following simple example should make this clear:

A3×2 =

⎛
⎜⎜⎜⎜⎜⎝

1 4

3 1

−1 0

⎞
⎟⎟⎟⎟⎟⎠ , B2×4 =

⎛
⎜⎝ −1 2 0 1

1 0 1 4

⎞
⎟⎠ ;

AB = C3×4 =⎛
⎜⎜⎜⎜⎜⎝

1(−1) + 4(1) 1(2) + 4(0) 1(0) + 4(1) 1(1) + 4(4)

3(−1) + 1(1) 3(2) + 1(0) 3(0) + 1(1) 3(1) + 1(4)

−1(−1) + 0(1) −1(2) + 0(0) −1(0) + 0(1) −1(1) + 0(4)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

3 2 4 17

−2 6 1 7

1 −2 0 −1

⎞
⎟⎟⎟⎟⎟⎠
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Some properties of matrix addition and multiplication follow, where

the matrices are assumed conformable for the operations given:

(A) matrix addition is commutative:

A +B = B +A

(B) matrix addition is associative:

A + (B +C) = (A +B) +C

(C) matrix multiplication is right and left distributive over matrix

addition:

A(B +C) = AB +AC

(A +B)C = AC +BC

(D) matrix multiplication is associative:

A(BC) = (AB)C

In general, AB �= BA even if both products are defined. Thus,

multiplication is not commutative as the following simple example

shows:

A2×2 =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠ ; B2×2 =

⎛
⎜⎝ 1 1

0 1

⎞
⎟⎠ ; AB =

⎛
⎜⎝ 0 1

1 1

⎞
⎟⎠ ; BA =

⎛
⎜⎝ 1 1

1 0

⎞
⎟⎠

In the product AB, we say that B is premultiplied by A and A

is postmultiplied by B. Thus, if we pre- or postmultiply a matrix

by the identity, the same matrix is retrieved:

IU×UAU×V = AU×V ; AU×V IV×V = AU×V
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If we premultiply A by a diagonal matrix D, then each row of A is

multiplied by a particular diagonal entry in D:

DU×UAU×V =

⎛
⎜⎜⎜⎜⎜⎝

d1a11 · · · d1a1V
... . . . ...

dUaU1 · · · dUaUV

⎞
⎟⎟⎟⎟⎟⎠

If A is post-multiplied by a diagonal matrix D, then each column of

A is multiplied by a particular diagonal entry in D:

AU×VDV×V =

⎛
⎜⎜⎜⎜⎜⎝

d1a11 · · · dV a1V
... . . . ...

d1aU1 · · · dV aUV

⎞
⎟⎟⎟⎟⎟⎠

Finally, we end this section with a few useful results on the transpose

operation and matrix multiplication and addition:

(AB)′ = B′A′; (ABC)′ = C′B′A′; . . .

(A′)′ = A; (A +B)′ = A′ +B′

0.1.2 The Data Matrix

A very common type of matrix encountered in multivariate analysis

is what is referred to as a data matrix containing, say, observations

for N subjects on P variables. We will typically denote this matrix

by XN×P = {xij}, with a generic element of xij referring to the

observation for subject or row i on variable or column j (1 ≤ i ≤ N

and 1 ≤ j ≤ P ):

XN×P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 · · · x1P
x21 x22 · · · x2P
... ... . . . ...

xN1 xN2 · · · xNP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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All right-thinking people always list subjects as rows and variables

as columns, conforming also to the now-common convention for com-

puter spreadsheets.

Any matrix in general, including a data matrix, can be viewed

either as a collection of its row vectors or of its column vectors,

and these interpretations can be generally useful. For a data matrix

XN×P , let x
′
i = (xi1, . . . , xiP )1×P denote the row vector for subject

i, 1 ≤ i ≤ N , and let vj denote the N×1 column vector for variable

j:

vj =

⎛
⎜⎜⎜⎜⎜⎝

x1j
...

xNj

⎞
⎟⎟⎟⎟⎟⎠
N×1

Thus, each subject could be viewed as providing a vector of coordi-

nates (1× P ) in P -dimensional “variable space,” where the P axes

correspond to the P variables; or each variable could be viewed as

providing a vector of coordinates (N × 1) in “subject space,” where

the N axes correspond to the N subjects:

XN×P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
1

x′
2
...

x′
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
v1 v2 · · · vP

)

0.1.3 Inner Products

The inner product (also called the dot or scalar product) of two

vectors , xU×1 and yU×1, is defined as
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x′y = (x1, . . . , xU)

⎛
⎜⎜⎜⎜⎜⎝

y1
...

yU

⎞
⎟⎟⎟⎟⎟⎠ =

U∑
u=1

xuyu

Thus, the inner product of a vector with itself is merely the sum of

squares of the entries in the vector: x′x =
∑U
u=1 x

2
u. Also, because

an inner product is a scalar and must equal it own transpose (i.e.,

x′y = (x′y)′ = y′x), we have the end result that

x′y = y′x

If there is an inner product, there should also be an outer product

defined as the U × U matrices given by xy′ or as yx′. As indicated
by the display equations below, xy′ is the transpose of yx′:

xy′ =

⎛
⎜⎜⎜⎜⎜⎝

x1
...

xU

⎞
⎟⎟⎟⎟⎟⎠ (y1, . . . , yN) =

⎛
⎜⎜⎜⎜⎜⎝

x1y1 · · · x1yU
... . . . ...

xUy1 · · · xUyU

⎞
⎟⎟⎟⎟⎟⎠

yx′ =

⎛
⎜⎜⎜⎜⎜⎝

y1
...

yU

⎞
⎟⎟⎟⎟⎟⎠ (x1, . . . , xU) =

⎛
⎜⎜⎜⎜⎜⎝

y1x1 · · · y1xU
... . . . ...

yUx1 · · · yUxU

⎞
⎟⎟⎟⎟⎟⎠

A vector can be viewed as a geometrical vector in U dimensional

space. Thus, the two 2× 1 vectors

x =

⎛
⎜⎝ 3

4

⎞
⎟⎠ ; y =

⎛
⎜⎝ 4

1

⎞
⎟⎠

can be represented in the two-dimensional Figure 1 below, with the

entries in the vectors defining the coordinates of the endpoints of the

arrows.
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Figure 1: Two vectors plotted in two-dimensional space

The Euclidean distance between two vectors, x and y, is given

as:
√√√√√ U∑
u=1

(xu − yu)2 =
√
(x− y)′(x− y)

and the length of any vector is the Euclidean distance between the

vector and the origin. Thus, in Figure 1, the distance between x and

y is
√
10 with respective lengths of 5 and

√
17.

The cosine of the angle between the two vectors x and y is defined

by:

cos(θ) =
x′y

(x′x)1/2(y′y)1/2

Thus, in the figure we have
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Figure 2: Illustration of projecting one vector onto another

cos(θ) =

(
3 4

) ⎛
⎜⎝ 4

1

⎞
⎟⎠

5
√
17

=
16

5
√
17

= .776

The cosine value of .776 corresponds to an angle of 39.1 degrees or

.68 radians; these later values can be found with the inverse (or arc)

cosine function (on, say, a hand calculator, or using MATLAB as we

suggest in the next section).

When the means of the entries in x and y are zero (i.e., deviations

from means have been taken), then cos(θ) is the correlation between

the entries in the two vectors. Vectors at right angles have cos(θ) = 0,

or alternatively, the correlation is zero.

Figure 2 shows two generic vectors, x and y, where without loss

of any real generality, y is drawn horizontally in the plane and x
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is projected at a right angle onto the vector y resulting in a point

defined as a multiple d of the vector y. The formula for d that

we demonstrate below is based on the Pythagorean theorem that

c2 = b2 + a2:

c2 = b2 + a2 ⇒ x′x = (x− dy)′(x− dy) + d2y′y ⇒

x′x = x′x− dx′y − dy′x + d2y′y + d2y′y ⇒

0 = −2dx′y + 2d2y′y ⇒

d =
x′y
y′y

The diagram in Figure 2 is somewhat constricted in the sense that the

angle between the vectors shown is less than 90 degrees; this allows

the constant d to be positive. Other angles might lead to negative d

when defining the projection of x onto y, and would merely indicate

the need to consider the vector y oriented in the opposite (negative)

direction. Similarly, the vector y is drawn with a larger length than

x which gives a value for d that is less than 1.0; otherwise, d would

be greater than 1.0, indicating a need to stretch y to represent the

point of projection onto it.

There are other formulas possible based on this geometric infor-

mation: the length of the projection is merely d times the length of

y; and cos(θ) can be given as the length of dy divided by the length

of x, which is d
√
y′y/

√
x′x = x′y/(

√
x′x

√
y′y).
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0.1.4 Determinants

To each square matrix,AU×U , there is an associated scalar called the

determinant of A that is denoted by |A| or det(A). Determinants

up to a 3× 3 can be given by formula:

det(
(
a

)
1×1

) = a; det(

⎛
⎜⎝ a b

c d

⎞
⎟⎠
2×2

) = ad− bc;

det(

⎛
⎜⎜⎜⎜⎜⎝

a b c

d e f

g h i

⎞
⎟⎟⎟⎟⎟⎠
3×3

) = aei + dhc + gfb− (ceg + fha + idb)

Beyond a 3×3 we can use a recursive process illustrated below. This

requires the introduction of a few additional matrix terms that we

now give: for a square matrix AU×U , define Auv to be the (n −
1) × (n − 1) submatrix of A constructed by deleting the uth row

and vth column of A. We call det(Auv) the minor of the entry auv;

the signed minor of (−1)u+v det(Auv) is called the cofactor of auv.

The recursive algorithm would chose some row or column (rather

arbitrarily), and find the cofactors for the entries in it; the cofactors

would then be weighted by the relevant entries and summed.

As an example, consider the 4× 4 matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 3 1

−1 1 0 −1

3 2 1 2

1 2 4 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and choose the second row. The expression below involves the weighted

cofactors for 3×3 submatrices that can be obtained by formulas. Be-

yond a 4× 4 there will be nesting of the processes:
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(−1)((−1)2+1) det(

⎛
⎜⎜⎜⎜⎜⎝

−1 3 1

2 1 2

2 4 3

⎞
⎟⎟⎟⎟⎟⎠) + (1)((−1)2+2) det(

⎛
⎜⎜⎜⎜⎜⎝

1 3 1

3 1 2

1 4 3

⎞
⎟⎟⎟⎟⎟⎠)+

(0)((−1)2+3) det(

⎛
⎜⎜⎜⎜⎜⎝

1 −1 1

3 2 2

1 2 3

⎞
⎟⎟⎟⎟⎟⎠) + (−1)((−1)2+4) det(

⎛
⎜⎜⎜⎜⎜⎝

1 −1 3

3 2 1

1 2 4

⎞
⎟⎟⎟⎟⎟⎠) =

5 + (−15) + 0 + (−29) = −39

Another strategy to find the determinant of a matrix is to reduce it

a form in which we might note the determinant more or less by simple

inspection. The reductions could be carried out by operations that

have a known effect on the determinant; the form which we might

seek is a matrix that is either upper-triangular (all entries below the

main diagonal are all zero), lower-triangular (all entries above the

main diagonal are all zero), or diagonal. In these latter cases, the

determinant is merely the product of the diagonal elements. Once

found, we can note how the determinant might have been changed

by the reduction process and carry out the reverse changes to find

the desired determinant.

The properties of determinants that we could rely on in the above

iterative process are as follows:

(A) if one row ofA is multiplied by a constant c, the new determinant

is c det(A); the same is true for multiplying a column by c;

(B) if two rows or two columns of a matrix are interchanged, the sign

of the determinant is changed;

(C) if two rows or two columns of a matrix are equal, the determinant

is zero;
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(D) the determinant is unchanged by adding a multiple of some row

to another row; the same is true for columns;

(E) a zero row or column implies a zero determinant;

(F) det(AB) = det(A) det(B)

0.1.5 Linear Independence/Dependence of Vectors

Suppose I have a collection ofK vectors each of sizeU×1, x1, . . . ,xK .

If no vector in the set can be written as a linear combination of the

remaining ones, the set of vectors is said to be linearly indepen-

dent ; otherwise, the vectors are linearly dependent. As an example,

consider the three vectors:

x1 =

⎛
⎜⎜⎜⎜⎜⎝

1

4

0

⎞
⎟⎟⎟⎟⎟⎠ ; x2 =

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ ; x3 =

⎛
⎜⎜⎜⎜⎜⎝

3

7

1

⎞
⎟⎟⎟⎟⎟⎠

Because 2x1+x2 = x3, we have a linear dependence among the three

vectors; however, x1 and x2, or, x2 and x3, are linearly independent.

If the U vectors (each of size U × 1), x1,x2, . . . ,xU , are linearly

independent, then the collection defines a basis, i.e., any vector can

be written as a linear combination of x1,x2, . . . ,xU . For example,

using the standard basis, e1, e2, . . . , eU , where eu is a vector of all

zeros except for a single one in the uth position, any vector x′ =
(x1, . . . , xU) can be written as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= x1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ x2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + xU

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
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x1e1 + x2e2 + · · · + xUeU

Bases that consist of orthogonal vectors (where all inner products are

zero) are important later in what is known as principal components

analysis. The standard basis involves orthogonal vectors, and any

other basis may always be modified by what is called the Gram-

Schmidt orthogonalization process to produce a new basis that does

contain all orthogonal vectors.

0.1.6 Matrix Inverses

Suppose A and B are both square and of size U × U . If AB = I,

then B is said to be an inverse of A and is denoted by A−1(≡ B).

Also, if AA−1 = I, then A−1A = I holds automatically. If A−1

exists, the matrix A is said to be nonsingular ; if A−1 does not

exist, A is singular.

An example:
⎛
⎜⎝ 1 3

2 1

⎞
⎟⎠

⎛
⎜⎝ −1/5 3/5

2/5 −1/5

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎛
⎜⎝ −1/5 3/5

2/5 −1/5

⎞
⎟⎠

⎛
⎜⎝ 1 3

2 1

⎞
⎟⎠ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

Given a matrix A, the inverse A−1 can be found using the follow-

ing four steps:

(A) form a matrix of the same size as A containing the minors for

all entries of A;

(B) multiply the matrix of minors by (−1)u+v to produce the

matrix of cofactors;
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(C) divide all entries in the cofactors matrix by det(A);

(D) the transpose of the matrix found in (C) gives A−1.

As a mnemonic device to remember these four steps, we have the

phrase “My Cat Does Tricks” for Minor, Cofactor, Determinant Di-

vision, Transpose” (I tried to work “my cat turns tricks” into the

appropriate phrase but failed with the second to the last “t”). Ob-

viously, an inverse exists for a matrix A if det(A) �= 0, allowing the

division in step (C) to take place.

An example: for

A =

⎛
⎜⎜⎜⎜⎜⎝

1 3 2

0 1 1

0 2 1

⎞
⎟⎟⎟⎟⎟⎠ ; det(A) = −1

Step (A), the matrix of minors:
⎛
⎜⎜⎜⎜⎜⎝

−1 0 0

−1 1 2

1 1 1

⎞
⎟⎟⎟⎟⎟⎠

Step (B), the matrix of cofactors:
⎛
⎜⎜⎜⎜⎜⎝

−1 0 0

1 1 −2

1 −1 1

⎞
⎟⎟⎟⎟⎟⎠

Step (C), determinant division:
⎛
⎜⎜⎜⎜⎜⎝

1 0 0

−1 −1 2

−1 1 −1

⎞
⎟⎟⎟⎟⎟⎠

Step (D), matrix transpose:
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A−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 −1

0 −1 1

0 2 −1

⎞
⎟⎟⎟⎟⎟⎠

We can easily verify that AA−1 = I:
⎛
⎜⎜⎜⎜⎜⎝

1 3 2

0 1 1

0 2 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 −1 −1

0 −1 1

0 2 −1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

As a very simple instance of the mnemonic in the case of a 2 × 2

matrix with arbitrary entries:

A =

⎛
⎜⎝ a b

c d

⎞
⎟⎠

the inverse exists if det(A) = ad− bc �= 0:

A−1 =
1

ad− bc

⎛
⎜⎝ d −b

−c a

⎞
⎟⎠

Several properties of inverses are given below that will prove useful

in our continuing presentation:

(A) if A is symmetric, then so is A−1;

(B) (A′)−1 = (A−1)′; or, the inverse of a transpose is the transpose
of the inverse;

(C) (AB)−1 = B−1A−1; (ABC)−1 = C−1B−1A−1; or, the in-

verse of a product is the product of inverses in the opposite order;

(D) (cA)−1 = (1
c
)A−1; or, the inverse of a scalar times a matrix

is the scalar inverse times the matrix inverse;
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(E) the inverse of a diagonal matrix, is also diagonal with the

entries being the inverses of the entries from the original matrix (as-

suming none are zero):
⎛
⎜⎜⎜⎜⎜⎝

a1 · · · 0
... . . . ...

0 · · · aU

⎞
⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎝

1
a1

· · · 0
... . . . ...

0 · · · 1
aU

⎞
⎟⎟⎟⎟⎟⎠

0.1.7 Matrices as Transformations

Any U × V matrix A can be seen as transforming a V × 1 vector

xV×1 to another U × 1 vector yU×1:

yU×1 = AU×V xV×1

or,
⎛
⎜⎜⎜⎜⎜⎝

y1
...

yU

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a11 · · · a1V
... . . . ...

aU1 · · · aUV

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1
...

xV

⎞
⎟⎟⎟⎟⎟⎠

where yu = au1x1 + au2x2 + · · · + auV xV . Alternatively, y can be

written as a linear combination of the columns of A with weights

given by x1, . . . , xV :
⎛
⎜⎜⎜⎜⎜⎝

y1
...

yU

⎞
⎟⎟⎟⎟⎟⎠ = x1

⎛
⎜⎜⎜⎜⎜⎝

a11
...

aU1

⎞
⎟⎟⎟⎟⎟⎠ + x2

⎛
⎜⎜⎜⎜⎜⎝

a12
...

aU2

⎞
⎟⎟⎟⎟⎟⎠ + · · · + xV

⎛
⎜⎜⎜⎜⎜⎝

a1V
...

aUV

⎞
⎟⎟⎟⎟⎟⎠

To indicate one common usage for matrix transformation in a data

context, suppose we consider our data matrix X = {xij}N×P , where

xij represents an observation for subject i on variable j. We would
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like to use matrix transformations to produce a standardized matrix

Z = {(xij − x̄j)/sj}N×P , where x̄j is the mean of the entries in

the jth column and sj is the corresponding standard deviation; thus,

the columns of Z all have mean zero and standard deviation one. A

matrix expression for this transformation could be written as follows:

ZN×P = (IN×N − (
1

N
)EN×N )XN×PDP×P

where I is the identity matrix,E contains all ones, andD is a diagonal

matrix containing 1
s1
, 1
s2
, . . . , 1

sP
, along the main diagonal positions.

Thus, (IN×N − ( 1
N
)EN×N)XN×P produces a matrix with columns

deviated from the column means; a postmultiplication by D carries

out the within column division by the standard deviations. Finally, if

we define the expression ( 1
N
)(Z′Z)P×P ≡ RP×P , we have the familiar

correlation coefficient matrix among the P variables.

0.1.8 Matrix and Vector Orthogonality

Two vectors, x and y, are said to be orthogonal if x′y = 0, and

would lie at right angles when graphed. If, in addition, x and y are

both of unit length (i.e.,
√
x′x =

√
y′y = 1), then they are said to

be orthonormal. A square matrix TU×U is said to be orthogonal

if its rows form a set of mutually orthonormal vectors. An example

(called a Helmert matrix of order 3) follows:

T =

⎛
⎜⎜⎜⎜⎜⎝

1/
√
3 1/

√
3 1/

√
3

1/
√
2 −1/

√
2 0

−1/
√
6 −1/

√
6 2/

√
6

⎞
⎟⎟⎟⎟⎟⎠

There are several nice properties of orthogonal matrices that we

will see again in our various discussions to follow:
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(A) TT′ = T′T = I; thus, the inverse of T is T′;
(B) the columns of T are orthonormal;

(C) det(T) = ±1;

(D) if T and R are orthogonal, then so is TR;

(E) vectors lengths do not change under an orthogonal transfor-

mation: to see this, let y = Tx; then

y′y = (Tx)′(Tx) = x′T′Tx = x′Ix = x′x

0.1.9 Matrix Rank

An arbitrary matrix,A, of order U×V can be written either in terms

of its U rows, say, r′1, r
′
2, . . . , r

′
U or its V columns, c1, c2, . . . , cV ,

where

r′u =
(
au1 · · · auV

)
; cv =

⎛
⎜⎜⎜⎜⎜⎝

a1v
...

aUv

⎞
⎟⎟⎟⎟⎟⎠

and

AU×V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r′1
r′2
...

r′U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
c1 c2 · · · cV

)

The maximum number of linearly independent rows of A and the

maximum number of linearly independent columns is the same; this

common number is defined to be the rank of A. A matrix is said to

be of full rank is the rank is equal to the minimum of U and V .

Matrix rank has a number of useful properties:
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(A) A and A′ have the same rank;

(B) A′A, AA′, and A have the same rank;

(C) the rank of a matrix is unchanged by a pre- or postmultipli-

cation by a nonsingular matrix;

(D) the rank of a matrix is unchanged by what are called elemen-

tary row and column operations: (a) interchange of two rows or two

columns; (2) multiplication or a row or a column by a scalar; (3) ad-

dition of a row (or column) to another row (or column). This is true

because any elementary operation can be represented by a premul-

tiplication (if the operation is to be on rows) or a postmultiplication

(if the operation is to be on columns) of a nonsingular matrix.

To give a simple example, suppose we wish to perform some ele-

mentary row and column operations on the matrix
⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

To interchange the first two rows of this latter matrix, interchange the

first two rows of an identity matrix and premultiply; for the first two

columns to be interchanged, carry out the operation on the identity

and post-multiply:
⎛
⎜⎜⎜⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 2

1 1 1

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

0 1 2

2 3 4

⎞
⎟⎟⎟⎟⎟⎠
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To multiply a row of our example matrix (e.g., the second row by 5),

multiply the desired row of an identity matrix and premultiply; for

multiplying a specific column (e.g., the second column by 5), carry

out the operation of the identity and post-multiply:
⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 5 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

5 0 10

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 5 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 5 1

1 0 2

3 10 4

⎞
⎟⎟⎟⎟⎟⎠

To add one row to a second (e.g., the first row to the second), carry

out the operation on the identity and premultiply; to add one column

to a second (e.g., the first column to the second), carry out the

operation of the identity and post-multiply:
⎛
⎜⎜⎜⎜⎜⎝

1 0 0

1 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

2 1 3

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 1 1

1 0 2

3 2 4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

1 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 2 1

1 1 2

3 5 4

⎞
⎟⎟⎟⎟⎟⎠

In general, by performing elementary row and column operations,

any U × V matrix can be reduced to a canonical form :
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0 · · · 0
... . . . ... ... . . . ...

0 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0
... . . . ... ... . . . ...

0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The rank of a matrix can then be found by counting the number of

ones in the above matrix.

Given a U×V matrix,A, there exist s nonsingular elementary row

operation matrices, R1, . . . ,Rs, and t nonsingular elementary col-

umn operation matrices, C1, . . . ,Ct such that Rs · · ·R1AC1 · · ·Ct

is in canonical form. Moreover, if A is square (U × U) and of full

rank (i.e., det(A) �= 0), then there are s nonsingular elementary row

operation matrices, R1, . . . ,Rs, and t nonsingular elementary col-

umn operation matrices, C1, . . . ,Ct, such that Rs · · ·R1A = I or

AC1 · · ·Ct = I. Thus, A−1 can be found either as Rs · · ·R1 or as

C1 · · ·Ct. In fact, a common way in which an inverse is calculated

“by hand” starts with both A and I on the same sheet of paper;

when reducing A step-by-step, the same operations are then applied

to I, building up the inverse until the canonical form is reached in

the reduction of A.

0.1.10 Using Matrices to Solve Equations

Suppose we have a set of U equations in V unknowns:
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a11x1 + · · · + a1V x1 = c1
... ... · · · ... ... ... ...

aU1x1 + · · · + aUV xV = cU

If we let

A =

⎛
⎜⎜⎜⎜⎜⎝

a11 · · · a1V
... . . . ...

aU1 · · · aUV

⎞
⎟⎟⎟⎟⎟⎠ ; x =

⎛
⎜⎜⎜⎜⎜⎝

x1
...

xV

⎞
⎟⎟⎟⎟⎟⎠ ; c =

⎛
⎜⎜⎜⎜⎜⎝

c1
...

cU

⎞
⎟⎟⎟⎟⎟⎠

then the equations can be written as follows: AU×V xV×1 = cU×1.

In the simplest instance, A is square and nonsingular, implying that

a solution may be given simply as x = A−1c. If there are fewer

(say, S < V linearly independent) equations than unknowns (so, S

is the rank of A), then we can solve for S unknowns in terms of the

constants c1, . . . , cU and the remaining V − S unknowns. We will

see how this works in our discussion of obtaining eigenvectors that

correspond to certain eigenvalues in a section to follow. Generally,

the set of equations is said to be consistent if a solution exists, i.e., a

linear combination of the column vectors of A can be used to define

c:

x1

⎛
⎜⎜⎜⎜⎜⎝

a11
...

aU1

⎞
⎟⎟⎟⎟⎟⎠ + · · · + xV

⎛
⎜⎜⎜⎜⎜⎝

a1V
...

aUV

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

c1
...

cU

⎞
⎟⎟⎟⎟⎟⎠

or the augmented matrix (A c) has the same rank asA; otherwise no

solution exists and the system of equations is said to be inconsistent.
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0.1.11 Quadratic Forms

Suppose AU×U is symmetric and let x′ = (x1, . . . , xU). A quadratic

form is defined by

x′Ax =
U∑

u=1

U∑
v=1

auvxuxv =

a11x
2
1+a22x

2
2+· · ·+aUUx

2
U+2a12x1x2+· · ·+2a1Ux1xU+· · ·+2a(U−1)UxU−1xU

For example,
∑U
u=1(xu− x̄)2, where x̄ is the mean of the entries in x,

is a quadratic form because it can be written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

′ ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(U − 1)/U −1/U · · · −1/U

−1/U (U − 1)/U · · · −1/U
... ... . . . ...

−1/U −1/U · · · (U − 1)/U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Due to the ubiquity of sum-of-squares in statistics, it should be of

no surprise that quadratic forms play a central role in multivariate

analysis.

A symmetric matrix A (and associated quadratic form) are called

positive definite (p.d.) if x′Ax > 0 for all x �= 0 (the zero vector);

if x′Ax ≥ 0 for all x, then A is positive semi-definite (p.s.d). We

could have negative definite, negative semi-definite, and indefinite

forms as well. Note that a correlation or covariance matrix is at

least positive semi-definite, and satisfies the stronger condition of

being positive definite if the vectors of the variables on which the

correlation or covariance matrix is based, are linearly independent.
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0.1.12 Multiple Regression

One of the most common topics in any beginning statistics class is

multiple regression that we now formulate (in matrix terms) as the

relation between a dependent random variable Y and a collection

of K independent variables, X1, X2, . . . , XK . Suppose we have N

subjects on which we observe Y , and arrange these values into an

N × 1 vector:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2
...

YN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The observations on the K independent variables are also placed in

vectors:

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X11

X21
...

XN1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
; X2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X12

X22
...

XN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
; . . . ; XK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1K

X2K
...

XNK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It would be simple if the vectorY were linearly dependent onX1,X2, . . . ,XK

because then

Y = b1X1 + b2X2 + · · · + bKXK

for some values b1, . . . , bK. We could always write for any values of

b1, . . . , bK :

Y = b1X1 + b2X2 + · · · + bKXK + e
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where

e =

⎛
⎜⎜⎜⎜⎜⎝

e1
...

eN

⎞
⎟⎟⎟⎟⎟⎠

is an error vector. To formulate our task as an optimization problem

(least-squares), we wish to find a good set of weights, b1, . . . , bK , so

the length of e is minimized, i.e., e′e is made as small as possible.

As notation, let

YN×1 = XN×KbK×1 + eN×1

where

X =
(
X1 . . . XK

)
; b =

⎛
⎜⎜⎜⎜⎜⎝

b1
...

bK

⎞
⎟⎟⎟⎟⎟⎠

To minimize e′e = (Y −Xb)′(Y −Xb), we use the vector b that

satisfies what are called the normal equations:

X′Xb = X′Y

IfX′X is nonsingular (i.e., det(X′X) �= 0; or equivalently,X1, . . . ,XK

are linearly independent), then

b = (X′X)−1X′Y

The vector that is “closest” to Y in our least-squares sense, is Xb;

this is a linear combination of the columns of X (or in other jargon,

Xb defines the projection of Y into the space defined by (all linear

combinations of) the columns of X.
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In statistical uses of multiple regression, the estimated variance-

covariance matrix of the regression coefficients, b1, . . . , bK , is given as

( 1
N−K

)e′e(X′X)−1, where ( 1
N−K

)e′e is an (unbiased) estimate of the

error variance for the distribution from which the errors are assumed

drawn. Also, in multiple regression instances that usually involve an

additive constant, the latter is obtained from a weight attached to

an independent variable defined to be identically one.

In multivariate multiple regression where there are, say, T depen-

dent variables (each represented by an N × 1 vector), the dependent

vectors are merely concatenated together into an N × T matrix,

YN×T ; the solution to the normal equations now produces a matrix

BK×T = (X′X)−1X′Y of regression coefficients. In effect, this gen-

eral expression just uses each of the dependent variables separately

and adjoins all the results.
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