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The specification of sample size is an important aspect of the planning 
of every experiment. When the investigator intends to use the techniques of 
analysis of variance in the study of treatments effects, ho should, in specify- 
ing sample size, take into consideration the power of the F tests which will 
be made. The charts presented in this paper make possible ~ simple and 
direct estimate of the sample size required for F tests of specified power. 

A primary consideration in the design of any experiment is the specifica- 
tion of the number of subjects to be selected from the various treatment 
populations. This number should be such that the important statistical 
tests will be reasonably sensitive in detecting false null hypotheses. Statistical 
theory provides the basis for designing such tests; in many psychological 
and educational experiments sufficient preliminary information is available 
to permit an application of this theory. The purpose of this paper is to provide 
power function charts which will simplify the application of the theory and 
thus facilitate the specification of sample size in experiments employing the 
techniques of analysis of variance. 

The power of the statistical test in any experimental setup--that is, 
the probability of rejecting the null hypothesis when it is false--depends 
on the level of significance a at which the test is made, the nmnber of obser- 
vations or subjects n on which data are available, and the degree of falsity ~' 
of the hypothesis under test,. The latter factor is defined as the square root 
of the ratio of the variance of the treatment population means to the variance 
%r error within the treatment populations. Symbolically, 

ff 

For every F test at a given level of significance in any given design, the 
power P against any specified alternative to the null hypothesis is uniquely 
determined by the value of n. Conversely, for every test there exists a value 
of n which wilt result in a test of specified power against a specified alternative. 
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In those experiments in which the power requirements of the F test can be 
rationally fixed against a specific alternative, it is possible to determine the 
appropriate sample size. It is for such situations that  the present charts 
are intended. 

Nature o] the Charts 

The charts presented in this paper are for use with tests of the mairL 
effects of treatments in experiments involving two to five levels of the treat- 
ment variable. The charts are strictly valid only for the completely random- 
ized design; however, they may be applied with relatively little error to tests 
of treatments effects in randomized block designs and factorial designs 
employing a within-cells estimate of error variance. A chart presents two 
families of three curves each. The families pertain to the .05 and .01 levels 
of significance; the curves within families correspond to power values of 
.5, .7 and .9. 

A separate chart is provided for each value of k, the number of levels 
of the treatment variable, ]1 = ]c - 1, from 2 through 5. The chart and 
family appropriate for a given experimental test is entered with the param- 
eter ¢' along the abscissa. The value of n, the number of observations required 
per treatment for a test of specified power, is read directly from tile ordinate 
of the chart. 

Historical Development 

The distribution of ~he F statistic under hypotheses alternative to the 
null hypothesis was first considered by Fisher [1] and Wishart [9], who 
derived expressions for the noncentral F distribution in the form of the 
correlation ratio. Later Tang [8] derived the same result from the distribution 
of the noncentral x ~. Tang also presented extensive tables of the power 
function. These tables are entered with the parameter ¢, defined as 

n z .):tk _ 

For fixed values of a, ¢, ]~ , and f2 the probability of retaining a false null 
hypothesis may be determined. Unfortunately, the interval of tabulation 
for ¢ is .50, an interval which is not sufficiently fine for satisfactory inter- 
polation. 

Following Tang's procedure, Lehmer [4] tabulated the values of ¢ for 
a = .05 and .01, P = .7 and .8 over a wide range of fl and ]2 • These tables 
are quite complete within the power range considered; however they cannot 
be conveniently used in the planning of experiments. From the tables the 
experimenter can tell only that a projected test will have a power less than .7, 
between .7 and .8, or greater than .8 against a specified alternative. A greater 
range of power values would make such tables considerably more useful. 
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Patnaik [6] made an extensive study of the power function of analysis 
of variance tests. By the method of moments, he derived an approximation 
to the noncentral F distribution based on the central F distribution. This 
approximation is computationally feasible but somewhat tedious, especially 
if a number of power estimates are required. Its primary limitation to psycho- 
logical experimenters is the labor involved in utilizing Pearson's Tables o] 
the Incomplete Beta Function in obtaining power values. This limitation is 
especially marked in the many instances which demand interpolation within 
these tables. 

Pearson and Hartley [7] presented families of power curves for various 
combinations of a, ]1 , and ]~, which make possible a direct estimate of the 
power of analysis of variance tests. These curves, like the tables of Tang, 
are entered with the parameter ¢. For any given experimental setup, the 
power of the test may be read directly from the ordinate of the curve. These 
curves are well suited to the evaluation of the power of any given test. They 
cannot be easily employed in the inverse manner, however, to indicate the 
value of n which should be adopted in order to secure a test of specified 
power. For this purpose, the experimenter must adopt the relatively in- 
efficient approach of making repeated approximations until the value of n 
has been estimated with sufficient accuracy. 

Nieholson [5] and Hodges [3] have derived general formulas for the 
computatiou of the power of the analysis of variance test when f2 is an even 
number. The formulas involve the evaluation of terms in a certain series, 
the number of terms being dependent on the number of degrees of freedom 
for error. The latter feature is a serious practical limitation, for when f2 is 
:greater than 20, as it often is in psychological experiments, the evaluation 
becomes too laborious to be of practical utility. 

Fox [2] developed charts which overcome some of the objections to 
earlier works and facilitate the determination of sample size. These charts 
were constructed from the tables of Tang and Lehmer and are essentially 
graphs of constant ¢ for varying values of ]1 and f2 • By a method of suc- 
cessive approximations, the value of n may be determined for a fixed value of 
a and a fixed value of P against a specified alternative hypothesis. These 
charts are somewhat laborious to apply, however, because of the iterative 
nature of the approximation for n. Also, the charts do not extend below 
], = 3: For psychological experimenters, who typically deal with fixed 
treatments effects, this limitation considerably restricts their usefulness. 

In theory, the problem of evaluating the power of the test of treatments 
effects in the simpler analyses of variance has been completely solved. Exact, 
approximate, and graphical solutions have been derived. However, neither 
the computational formulas nor the graphical solutions make possible a 
simple, direct, noniterative approximation of the sample size required for 
a test of specified power. The charts presented in this paper permit this 
direct approximation for n, and hence should be of considerable value. 
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Construction o] the Charts 

Each chart in this series presents, for a = .05 and .01, a family of three 
curves which correspond to P = .5, .7, and .9. The numerical calculations 
for the coordinates of the points on the curve P = .7 were carried out from 
the tables of Lehmer; the calculations for the remaining curves were based 
on data read from the charts of Pearson and Hartley. The three basic steps 
in the calculations were as follows. 

(1) Determine (from chart or table) pairs of values for ¢ and 12 for a 
specified value of P, ]l , and a. 

(2) Solve ]~ for n from the relationship n = 1 q- ]o/k, where k is the  
number of t reatments  and n the number of observations per  
t reatment.  

(3) Divide ¢ by v ' n  to obtain ¢'. 

The pairs of coordinates for n and ¢'  were then plotted and smooth curves, 
fitted through the points. 

Example 

An experimenter wishes to compare the level of mastery reached t)y 
three groups of college subjects who memorize a list of paired adjectives 
under three levels of motivation. From a tentat ive theoretical formulation of  
the learning task the experimenter predicts the following array of meai~ 
differences for the t rea tment  populations at the three levels: 

Mx - MH = 5.0; 

MI - - M m  = 8.0; 

M H - M m  = 3 . 0 .  

Against this alternative to the null hypothesis the experimenter wishes a 
power of .90 for a test made at  the 5 per cent level. Previous experimentation 
with this list has given rise to an error variance of 100.0, a value which m a y  
be taken as a population parameter  for this purpose. 

From the array of differences the variance of the t reatment  population 
means can be computed equal to 10.89. The value of ¢'  is therefore equal to, 
.33. Entering Figure 2 with this value, the required number of subjects is, 
equal to 40. 

Note on the Generality o] the Charts 

The charts presented in this paper are strictly valid only for the test 
of main effects in the completely randomized design. However, values of n 
read from these charts underestimate only slightly the values of n which_ 
would be required in the randomized block or factorial designs. 
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The specificity of the charts stems from the unique relationship which 
holds between n and J2 in each experimental design. For example, for the 
completely randomized design (and the one used in the construction of 
these charts) the relationship is 

n = 1 + J~/k. 

In the randomized block design 

n = 1 + ] 2 / ( k -  1). 

For the test of the factor with lc levels in the h X h factorial design (meal~ 
square within cells being used as the error term) the relationship is 

n = h + f . , /k .  

Because of the differences among these relationships, the numerical 
relationship of ¢ to ~' varies from one design to another, and charts based 
on tha t  which holds for the completely randomized design will be only 
~pproximately correct for the other setups. However, for values of ]2 > 20, 
the relationship of ¢ to ¢' is almost identical for all three designs. We may  
demonstrate the relatively small error involved in using the present charts 
for planning randomized block and factorial designs by applying the charts 
to two examples which tend to maximize the extent of the inaccuracy. This 
occurs in the randomized block design when lc = 2; it occurs in the factorial 
design employing a within-cells error term and proportional frequencies 
when the number of measures per cell approaches 2. According to Figure 1, 
a completely randomized design involving two levels of the t reatment  variable 
and a = .05 will require n = l l  (f.~ = 20) for P = .90 against ¢' = .725. 
The value of n which is actually needed :in a randomized block design for 
P = .90 is approximately 12.0. The comparable value for a 2 X 6 factorial 
design is 1 1.9. 

This discrepancy, which for even this extreme case is probably of little 
consequence in the planning of most experiments, is considerably smaller 
for larger values of ]~ and 1'~ . Therefore, for practical purposes of approxi- 
mating the necessary sample size in randomized block and factorial experi- 
ments, the tables presented in this paper wmfld seem sufficiently precise. 
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