
The Correlational Model: Correlation problems
in the population:

We observe pairs of numbers (X,Y ) and both
X and Y are random variables.

Example, X may denote some “I.Q.” score and
Y an achievement score obtained for one sub-
ject –

Suppose we standardize these two random vari-
ables: X−µX

σX
and Y−µY

σY

Before, in descriptive statistics we took the
sum of the multiplied z-scores and divided by
N :∑
ZXZY
N = rXY .

This now becomes E[(X−µXσX
)(Y−µYσY

)] = ρXY ,

the population correlation coefficient.
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E[(X−µXσX
)(Y−µYσY

)] =

( 1
σXσY

)E[(X − µX)(Y − µY )] =

Covariance(X,Y )/(σXσY ) =

Cov(X,Y )/(σXσY ) = ρXY

In the sample:

rXY = ( 1
N )

∑N
i=1(Xi−MX

SX
)(Yi−MY

SY
) =

1
SXSY

[( 1
N )

∑N
i=1(Xi −MX)(Yi −MY )] =

1
SXSY

times the sample covariance between X

and Y .
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Fact: if X and Y are independent, then cov(X,Y ) =

0 (and also, the correlation rXY is zero)

This is not true the other way around unless

we make a more stringent assumption that X

and Y have a bivariate normal distribution –

then cov(X,Y ) = 0 (or rXY = 0) if and only if

X and Y are statistically independent.

If X and Y are bivariate normal, then X ∼
N(µX , σ

2
X) and Y ∼ N(µY , σ

2
Y ) and when taken

together X and Y have a certain joint distri-

bution (it looks like a three-dimensional bell

sitting on the X and Y plane.

If you sever the bell horizontally at a certain

height, an ellipse is drawn out whose orienta-

tion and “tightness“ (or elongation) are deter-

mined by ρXY – a value of plus or minus 1.0

gives a line (a degenerate ellipse); a value of

0.0 gives a circle.
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There are a number of facts about correlation

problems that are directly pertinent to descrip-

tive aspects discussed previously.

1) −1 ≤ ρXY ≤ +1

2) If X and Y are bivariate normal, then know-

ing the value for X gives you some information

about Y :

E(Y |X) = ρXY (σYσX
)(X−µX)+µY ; this is called

“the regression of Y on X” (the conditional

expectation of Y given X)

3) βY ·X = ρXY (σYσX
) is the population regres-

sion coefficient

4) σ2
Y ·X = σ2

Y (1 − ρ2
XY ) is the variance of the

random variable Y given that you know an X

value
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5) σY ·X = σY

√
(1− ρ2

XY ) is the standard error

of estimate

6) the proportion of variance accounted for by

linear regression:
σ2
Y−σ

2
Y ·X

σ2
Y

= ρ2
XY
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7) our best estimate of the population regres-

sion equation:

ρXY (σYσX
)(X − µX) + µY =

βY ·X(X − µX) + µY is

bY ·X(X −MX) +MY , the descriptive equation

8) finally, an unbiased estimate of σ2
Y ·X is N

N−2S
2
Y ·X,

i.e.,

σ̂2
Y ·X = N

N−2S
2
Y (1− r2

XY )
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Inference procedures in the normal (correla-

tional) model:

First, note that E(rXY ) 6= ρXY , i.e., the sam-

ple correlation is not an unbiased estimate of

the population correlation. There are ways of

correcting the sample correlation to make it

unbiased but I have never seen it done in prac-

tice.

To test Ho : ρXY = 0, use t = rXY
√
N−2√

1−r2
XY

with

N − 2 degrees of freedom.

The same test can be used for Ho : βY ·X = 0

The sampling distribution of the sample cor-

relation, rXY , has a difficult form (when the

population correlation is not zero) where the

sampling variance is a function of the popula-

tion correlation, ρXY .
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To work around this problem for testing a non-

zero value of a correlation or constructing a

confidence interval on ρXY , Fisher’s r to Z

transformation is used:

Z = 1
2 loge(

1+rXY
1−rXY

), which is the inverse hyper-

bolic tangent function (tanh−1) –

We know that approximately Z ∼ N(E(Z), 1
N−3)

where E(Z) = 1
2 loge(

1+ρXY
1−ρXY

); V ar(Z) = 1
N−3

as indicated, and does not include the popu-

lation correlation ρXY (Z is called a variance-

stabilizing transformation).

To get a confidence interval on ρXY , first get

a confidence interval on E(Z) = 1
2 loge(

1+ρXY
1−ρXY

)

as Z±z.025

√
1

N−3 and work the tables backward

(here, z.025 = 1.96)
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There is a nice review paper by James Steiger

about “tests for comparing elements of a cor-

relation matrix” (Psychological Bulletin, 1980,

87, 245-251). Here’s the abstract:

In a variety of situations in psychological re-

search, it is desirable to be able to make sta-

tistical comparisons between correlation coef-

ficients measured on the same individuals.

For example, an experimenter may wish to as-

sess whether two predictors correlate equally

with a criterion variable.

In another situation, the experimenter may wish

to test the hypothesis that an entire matrix of

correlations has remained stable over time.

The present article reviews the literature on

such tests, points out some statistics that should
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be avoided, and presents a variety of tech-
niques that can be used safely with medium
to large samples.

Several illustrative numerical examples are pro-
vided.

—————–

An example of the approach(es) used by Steiger:

Suppose θ̂1 and θ̂2 are independent and esti-
mate θ1 and θ2 respectively. I know Var(θ̂1)
and Var(θ̂2) and that θ̂1 ∼ N(θ1,Var(θ̂1)) and
θ̂2 ∼ N(θ2,Var(θ̂2))

Thus, (θ̂1−θ̂2)−(θ1−θ2)√
Var(θ̂1)+Var(θ̂2)

∼ N(0,1)

Using this result we can test Ho : θ1 = θ2 or
put a confidence interval on θ1 − θ2. If we
know the covariance between the estimates,
we could also do the same for estimates that
are not independent.



Linear Regression Model:

We essentially would like to get to the same

results as we did for the bivariate normal model

Assume the following theoretical model that

relates Y and X:

Yi = β0 + β1Xi + εi

Yi is the dependent variable, the criterion vari-

able, the response variable, or if you are a (pre-

tentious) economist, the endogenous variable

Xi is assumed fixed (i.e., not a random vari-

able); called the independent variable, or the

predictor variable, or the exogenous variable
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ε is a random variable for error and induces Yi
to also be a random variable; the errors εi are

n observations on ε ∼ (0, σ2);

could assume that a) the errors are indepen-

dent so E(εiεj) = E(εi)E(εj) = 0, or b) that

the errors have zero covariance or are uncorre-

lated –

From these assumptions, E(Yi) = β0 + β1Xi
and V (Yi) = σ2

These are very much like the forms in the nor-

mal correlational model for E(Y |X = x) and

V (Y |X = x)

Generically, we can write Y = β0 + β1X + ε.

The Y1, . . . , Yn are independent (uncorrelated)

because ε1, . . . , εn are independent (uncorrelated)
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In both cases (models), for a given value on X,

there is a probability distribution for Y – the

mean of these distributions vary with X (i.e.,

the regression function of Y on X);

the variance of these distributions do not

The simple linear regression model – simple

because we have only one independent vari-

able; linear in the parameters (they don’t sit

as exponents, for example); linear in the inde-

pendent variable (we don’t have the squared

independent variable in the equation)

Could also phrase as a deviation model:

Y = β∗0 + β1(X − X̄) + ε, where β∗0 = β0 + β1X̄
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In the simple linear regression model, how do
you estimate β0 and β1:

Least-squares: β̂0 ≡ b0 = MY −
rXY SY
SX

MX =

(Ȳ − rXY SY
SX

X̄)

β̂1 ≡ b1 = rXY SY
SX

These are numerically the same as before in
the correlational model.

Properties: (Gauss-Markov theorem)

a) Unbiased: E(b0) = β0 and E(b1) = β1

b) Minimum variance among all unbiased linear
estimates:

b1 =
∑n
i=1 kiYi, where ki = Xi−X̄∑

(Xi−X̄)2

b0 =
∑n
i=1 liYi, where li = (1

n −
Xi−X̄∑
(Xi−X̄)2)
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Simple Linear Regression Model:

Model: Yi = β0 + β1Xi+ εi = E(Yi) + εi, where

ε ∼ (0, σ2)

Fitted: Yi = b0 + b1Xi + ei = Ŷi + ei,

where Ŷi (= b0 + b1Xi) is called the “fitted

value”

E(b0 + b1Xi) = β0 + β1Xi,

so Ŷi is an unbiased estimate of E(Yi) = β0 +

β1Xi;

also, minimum variance in the class of unbiased

linear estimators
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Residual:

Model: Yi − E(Yi) = εi

Fitted: Yi − Ŷi = ei

One can’t say, however, that ei is an unbiased

estimator of εi since εi is actually a random

variable:

E(ei) = E(Yi − Ŷi) = E(Yi) − E(Ŷi) = β0 +

β1Xi − (β0 + β1Xi) = 0
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Some properties of the fitted regression line:

1)
∑n
i=1 ei = 0

2)
∑n
i=1 e

2
i is at a minimum because of the

least squares line

3) Because of (1),
∑n
i=1 Yi =

∑n
i=1 Ŷi

4)
∑n
i=1Xiei = 0

5)
∑n
i=1 Ŷiei = 0

6) Because Ŷi = Ȳ + rXY SY
SX

(Xi − X̄),

the regression line goes through (X̄, Ȳ ) (if Xi =

X̄, then Ŷi = Ȳ )
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Estimation of the Error Variance:

As we said in the correlational model, an un-

biased estimate of σ2
Y ·X is N

N−2S
2
Y ·X,

i.e., σ̂2
Y ·X = N

N−2S
2
Y (1− r2

XY )

Using n for N , this latter term is

1
n−2

∑n
i=1(Yi − Ŷi) = 1

n−2
∑n
i=1 e

2
i

The term
∑n
i=1 e

2
i is called the “sum of squared

errors” (SSE) (or the “residual sum of squares”

or the “error sum of squares”);

1
n−2

∑n
i=1 e

2
i is the “mean square error” (MSE)

(or the “error mean square” or the “residual

mean square”)
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Normal error model:

If we make the further assumption that

εi ∼ N(0, σ2), then Yi ∼ N(β0 + β1Xi, σ
2).

The parallel to the normal correlational model

is then complete (uncorrelatedness implies sta-

tistical independence).

The parameter estimates, b0 and b1, are then

maximum likelihood estimates; the maximum

likelihood estimate for σ2 is the biased estimate

with a division by n rather than n− 2

These estimates are consistent, sufficient, and

minimum variance unbiased (period, without

qualification as to being linear estimates)
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Inference Using the Regression Model:

Model: Yi = β0 + β1Xi+ εi, where β0 + β1Xi is

a constant, and εi ∼ N(0, σ2)

Three basic sampling distribution results:

1) b1 ∼ N(β1,
σ2∑

(Xi−X̄)2)

so, (b1 − β1)/
√

MSE∑
(Xi−X̄)2 ∼ tn−2

2) b0 ∼ N(β0, σ
2(1
n + X̄2∑

(Xi−X̄)2))

so, (b0 − β0)/
√

MSE(1
n + X̄2∑

(Xi−X̄)2) ∼ tn−2
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3) Ŷh = b0 + b1Xh estimates β0 + β1Xh which

is E(Yh) when the independent variable is Xh

Ŷh ∼ N(β0 + β1Xh, σ
2(1
n + (Xh−X̄)2∑

(Xi−X̄)2))

so, (Ŷh − (β0 + β1Xh))/
√

MSE(1
n + (Xh−X̄)2∑

(Xi−X̄)2)

∼ tn−2

Note the effect of the various terms in the vari-

ance.
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Prediction Intervals:

Suppose I would like to predict where a new

observation, Yh, will be (and not just give a

confidence interval on E(Yh) = β0 + β0Xh)

Because Yh and Ŷh are independent,

Ŷh − Yh ∼ N(0, σ2(1 + 1
n + (Xh−X̄)2∑

(Xi−X̄)2))

(Ŷh − Yh)/
√

MSE(1 + 1
n + (Xh−X̄)2∑

(Xi−X̄)2) ∼ tn−2

This latter expression leads to the prediction

(not a confidence) interval for Yh as

Ŷh ± (t− value)
√

MSE(1 + 1
n + (Xh−X̄)2∑

(Xi−X̄)2)
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The Analysis-of-Variance (ANOVA) Approach
to Regression:

Trivial result: Yi − Ȳ = (Yi − Ŷi) + (Ŷi − Ȳ )

∑
(Yi − Ȳ )2 =

∑
[(Yi − Ŷi) + (Ŷi − Ȳ )]2

After some algebra, this reduces to

∑
(Yi − Ŷi)2 +

∑
(Ŷi − Ȳ )2

Or, the sum of squares total (SSTO) (i.e.,
the amount of “stuff” we would like to ex-
plain) is additively decomposed into the sum of
squared error (SSE) (i.e.., the amount of un-
explained “stuff”) and the sum of squares re-
gression (SSR) (i.e., the amount of explained
“stuff”) (so, in summary, SSTO = SSE +
SSR)

Remember that the mean of the Ŷi’s is Ȳ

The degrees of freedom for SSTO also decom-
poses: n−1 (SSTO) = (n−2) (SSE)+1 (SSR)
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A convenient computational formula:

SSR = b21
∑

(Xi − X̄)2

Mean Square Regression (MSR) = SSR/1

Mean Square Error (MSE) = SSE/(n− 2)

E(MSE) = σ2

E(MSR) = σ2 + β2
1
∑

(Xi − X̄)2

Remember when we are dealing with “vari-

ance” estimators in a ratio (i.e., s2

σ2), if the

top estimator estimates the bottom parame-

ter unbiasedly, we have ∼ χ2
ν
ν
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Thus, MSE
σ2 ∼

χ2
n−2
n−2 and under Ho : β1 = 0,

MSR
σ2 ∼

χ2
1

1 , and these two random variables are

independent.

Thus, under Ho,
MSR/σ2

MSE/σ2 = MSR
MSE

∼
χ2

1
1

χ2
n−2
n−2

= F1,n−2
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Thus, we have the familiar ANOVA table:

Source df SS MS F
(of variation)

Regression 1 SSR MSR MSR/MSE
Error n− 2 SSE MSE
Total n− 1 SSTO
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Test for lack of linear regression:

Suppose I have repeat observations at c levels

of X: X1, . . . , Xc

Y11, . . . Yn11, Y12, . . . Yn22, . . . , Y1c, . . . Ync1

Let Ȳ1, . . . , Ȳc denote the means on Y for the c

levels of X for which we have repeats

∑c
j=1 nj = n and Ȳ is the grand mean

We take another look at the decomposition of

SSTO (sum of squares total) into SSE (sum

of squares error) and SSR (sum of squares re-

gression
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∑n
i=1(Yi− Ȳ )2 =

∑n
i=1(Yi− Ŷi)2+

∑n
i=1(Ŷi− Ȳ )2

SSTO =
∑c
j=1

∑nj
i=1(Yij − Ȳ )2

SSR =
∑c
j=1

∑nj
i=1(Ŷij − Ȳ )2

(but since Ŷij = Ŷj) this is equal to

∑c
j=1

∑nj
i=1(Ŷj− Ȳ )2 =

∑c
j=1(Ŷj− Ȳ )2 ∑nj

i=1 1 =

∑c
j=1 nj(Ŷj − Ȳ )2
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SSE =
∑c
j=1

∑nj
i=1(Yij − Ŷij)2 =

∑c
j=1

∑nj
i=1(Yij − Ŷj)2 =

∑c
j=1

∑nj
i=1(Yij − Ȳj)2 (sum of squares for pure

error (SSPE)) +

∑c
j=1 nj(Ȳj − Ŷj)

2 (sum of squares for lack of

fit (SSLF))

SSE has n − 2 degrees of freedom, split into

n− c ( = n1 − 1 + · · ·+ nc − 1) for SSPE; and

n− 2− (n− c) = c− 2 for SSLF

MSPE = SSPE/(n− c)

MSLF = SSLF/(c− 2)
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E(MSPE) = σ2 (always)

E(MSLF) = σ2 +

∑c
j=1 nj(E(Yi)−(β0+β1Xj))2

c−2

Thus, under Ho : E(Yi) = β0 + β1Xj,

MSLF/MSPE ∼ Fc−2,n−c

——————

Run SYSTAT, R, and Matlab demos –
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