
Correlation and Regression (also known as the
general problem of assessing association be-
tween variables) –

We start with the simplest case of just two
variables and then extend this –

First of all, three distinctions must be made
– these three distinctions with be covered in
turn.

1) Descriptive nature and use of correlation
and regression

2) Correlational model

3) Regression model

These last two are based on differing under-
lying assumptions about the populations that
we observe.

Best to present the distinctions in terms of an
example – we will carry through this example
for a while.
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Example: an investigation of the relationship

between the number of licensed vehicles in a

community and the number of accidents.

community licensed vehicles accidents
(thousands) (hundreds)

1 4 1
2 10 4
3 15 5
4 12 4
5 8 3
6 16 4
7 5 2
8 7 1
9 9 4

10 10 2

Yogi Berra: you can see a lot by just looking
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1) the descriptive nature of this problem is to

find the line that approximates this scatter of

points the best – it is called the least-squares

line because it is the line at which the squared

deviations from the line are at a minimum.

2) regression – the x variable, i.e., accidents,

is considered fixed and we observe a number

of vehicles within each fixed value.

3) correlation – both sets of scores are random

variables and we select the pair together from

some bivariate population – one set is not fixed

in advance.

We begin with the descriptive aspects of the

problem.
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For each unit on x, we go b units on y.

Slope-intercept form for the line: y = bx + a
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Descriptive Statistics of Correlation and Re-
gression:

Suppose I have two sets of scores that are
paired (N pairs):

Set 1 Set 2
X1 Y1
X2 Y2
... ...

XN YN

For example, number of vehicles and accidents.

To make things somewhat more standard, sup-
pose I normalize each of the variables to z-
scores (so the z-scores have mean zero and
standard deviation of one):

ZXi
= Xi−MX

SX
and ZYi = Yi−MY

SY

where MX and SX (MY and SY ) are the mean
and standard deviation of the X (Y ) scores
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So, we have:

Set 1 Set 2
ZX1

ZY1
ZX2

ZY2... ...
ZXN

ZYN

What we are looking for is some linear function

of the ZXi
scores that will predict the ZYi scores

“well” –

In other words, we are looking for a good equa-

tion of the form:

Z
′
Yi

= bZXi
+ a

that produces a line in the scatterplot; Z
′
Yi

is

the predicted value for ZYi

In addition, we would like to choose a and b so

it is a “good” equation.
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If I have an equation of the form Z
′
Yi

= bZXi
+a,

the term Z
′
Yi
− ZYi is a “deviation” or “error”

of what the equation says and what the actual

observed quantity is for ZYi (a vertical discrep-

ancy in the scatterplot).

We will say that the a and b are the best co-

efficients in a least-squares sense if

∑N
i=1(Z

′
Yi
−ZYi

)2

N

is at a minimum. If a and b are these co-

efficients, then the equation Z
′
Yi

= bZXi
+ a

is called the “least-squares line” for predicting

ZYi from ZXi
.

The “correlation” between ZYi and ZXi
is de-

fined as

rXY =

∑N
i=1 ZXi

ZYi
N
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I want to show that the best we can do is to

let b = rXY , a = 0. So, the least-squares line

is Z
′
Yi

= rXY ZXi

First, show a = 0:

∑N
i=1(Z

′
Yi
−ZYi

)2

N has to be at a minimum.

∑N
i=1(Z

′
Yi
−ZYi

)2

N =

∑N
i=1(bZXi

+a−ZYi
)2

N = ... =

∑N
i=1(bZXi

−ZYi
)2

N + a2

which is a minimum when a = 0;
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now,

∑N
i=1(bZXi

−ZYi
)2

N = b2 − 2brXY + 1;

suppose b = rXY +c for some value of c. Then,

b2−2brXY + 1 = (1− rXY ) + c2, which is min-

imized when c = 0.

Note that

∑N
i=1(Z

′
Yi
−ZYi

)2

N = 1− r2
XY

when b = rXY and a = 0. This is called

the “sample variance of estimate for standard

scores”, and denote it by S2
ZY ·ZX

(= 1− r2
XY ).

Or, SZY ·ZX
(=

√
1− r2

XY ) is the “sample stan-

dard deviation of estimate for standardized scores”

(also, called the “standard error of estimate for

standardized scores”) –
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Because

∑N
i=1(Z

′
Yi
−ZYi

)2

N = 1−r2
XY ≥ 0, 1 ≥ r2

XY
and −1 ≤ rXY ≤ 1, i.e., the correlation lies

between minus 1.0 and plus 1.0.

If rXY = 0, then Z
′
Yi

is 0.0, and we estimate

ZYi by the mean of the ZYi’s; in other words,

rXY = 0 implies

∑N
i=1(Z

′
Yi
−ZYi

)2

N =

∑N
i=1(ZYi

)2

N =

1, which is the original variance of the ZYi
scores (so no predictive advantage is achieved).

One would expect to see a circular smear in the

scatterplot of ZYi against ZXi
.

If rXY = 1, then

∑N
i=1(Z

′
Yi
−ZYi

)2

N = 0 and we

have perfect prediction. All the scores in the

scatterplot of ZYi against ZXi
lie on a line with

slope of 1.0. If rXY = −1, then

∑N
i=1(Z

′
Yi
−ZYi

)2

N =

0 and we again have perfect prediction. All the

scores in the scatterplot of ZYi against ZXi
lie

on a line with slope of -1.0.
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ZY regression of zy on zx

regression of zx on zy

ZX

ZY
1st component

2nd component
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The quantity r2
XY is called the “coefficient of

determination” and indicates the percent of
variance in Y and can be accounted for by a
simple linear function of X

The sample variance of the predicted scores,
Z
′
Y1
, . . . , Z

′
YN

(or, rXY ZX1
, . . . , rXY ZXN

) is

(1/N)
∑N

i=1(Z
′
Yi

)2 − ((1/N)
∑N

i=1(Z
′
Yi

))2,

which reduces to r2
XY .

Explained variance = (sample variance of pre-
dicted scores)/(total sample variance) = r2

XY /1.0
= r2

XY , the coefficient off determination. The
unexplained variance is 1 − r2

XY , which is the
value of the least-squares loss criterion.

For our example of predicting the number of
accidents from the number of vehicles, it will
be shown (i.e., computed) later that rXY =
.80; thus, r2

XY = .64, so 64% of the variance
in accidents can be accounted from by a simple
linear function of the number of vehicles.
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Regression toward the mean –

Z
′
Y = rXY ZX, but because −1 ≤ rXY ≤ +1,

the predicted score for Z
′
Y will be closer toward

its mean of zero than was ZX toward its mean

of zero.

For example, let Y be a child’s height, and

X be a father’s height. The best estimate

of the child’s height is closer to the average

height than was his father’s (this is also true if

reversed: the best estimate of a father’s height

is closer to the average height than was the

child’s – Z
′
Xi

= rXY ZYi)

This was once considered to be some type of

natural law called regression toward the mean

(and we were all moving toward a “sea of medi-

ocrity”). We now realize it to be a function

of fallible measurement and imperfect relations

rather than because of any linear rule.



ZX

ZY regression of zy on zx

Beware of regression effects in such things as

test scores, or in selecting extreme scores to

form groups. One expects regression effects

on repeat testing (and therefore we do not

have a causal argument that what you did to

the groups “caused” them to “get better”) –
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Raw Scores –

We have developed all of our techniques in

terms of standardized scores but it is conve-

nient to rephrase our equations in terms of raw

scores (Y
′

is the (implicitly defined) predicted

raw score on Y ) –

Z
′
Y = rXY ZX implies Y

′−MY
SY

= rXY (X−MX
SX

)

or, Y
′
= rXY SY

SX
(X −MX) + MY =

Y
′
= rXY SY

SX
X + (MY −

rXY SY
SX

MX)

These are the raw score forms of the regression

equation for the prediction of Y from X

The sample regression coefficient is denoted

by bY ·X (≡ rXY SY
SX

)

15



∑N
i=1(Z

′
Yi
−ZYi

)2

N = 1− r2
XY (≡ S2

ZY ·ZX
) =

∑N
i=1((

Y
′
i
−MY
SY

)−(
Yi−MY

SY
))2

N = 1− r2
XY ,

or

∑N
i=1(Yi−Y

′
i )2

N = S2
Y (1− r2

XY )(≡ S2
Y ·X) –

So, the “variance” around the predicted values

(rather than around the mean) and is called the

“sample variance of estimate” for predicting Y

from X; the square root (SY ·X = SY

√
(1− r2

XY ))

is called the “sample standard error (deviation)

of estimate”
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Computational form for the correlation:

rXY = N
∑

XY−(
∑

X)(
∑

Y )√
(N

∑
X2−(

∑
X)2)(N

∑
Y 2−(

∑
Y )2)

Computational form for the regression coeffi-

cient:

bY ·X = N
∑

XY−(
∑

X)(
∑

Y )
N

∑
X2−(

∑
X)2

For our data on X (number of accidents) and

Y (number of vehicles),

∑
X = 30;

∑
Y = 96;

∑
X2 = 108;

∑
Y 2 =

1060;
∑

XY = 328;N = 10



Plugging into the computational formulas, rXY =

.80 and bY ·X = 2.22; thus, the least-squares

line has the form:

Y ′ = 2.22(X − 3) + 9.6 = 2.22X + 2.94

Because r2
XY = .64, 64% of the variance in Y is

accounted for by a linear relation to X. Also,

because S2
Y = 13.86, the sample variance of

estimation is S2
Y ·X = 13.86(1 − .64) = 4.98;

SY ·X =
√

4.98 = 2.23 and represents deviation

within the X values across the regression line.
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Because correlation is defined in terms of stan-

dard scores, a linear function of the original

scores does not change the correlation. Thus,

if Ui = cXi + g and Vi = dYi + h, then rUV =

±rXY (positive if both c and d have the same

signs, and negative if c and d have opposite

signs)

The regression coefficient bY ·X changes with

linear transformation of the original variables.

Moral: be wary of any attempt to interpret the

regression coefficient without a mention of the

scale on which the variables are measured.
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Remember that we have assumed that a linear
rule is the “true” one. Thus, one might have
a perfect curvilinear relationship (i.e., the X

and Y pairs lie on a simple curved structure)
but not have values on the correlation close to
plus (or minus) one. If one changes to ranks
and recomputes the correlation (now called the
Spearman rank-correlation coefficient) and the
curved structure is one where X and Y are
monotonically related – as X goes up, so does
Y – then a perfect Spearman correlation would
ensue.

Final point: no assumptions about what kind
of variables we were using (e.g., normally dis-
tributed). Our concern was only with descrip-
tive statistics, and the best “linear” rule for
predicting Y from X.

To make inferences, we need to make some
stronger assumptions – we will cover the re-
gression and correlation models in the popula-
tion.
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Doing it in R:

accidents = c(1,4,5,4,3,4,2,1,4,2)

comm.labels = c(’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’)

vehicles = c(4,10,15,12,8,16,5,7,9,10)

police = c(20,6,2,8,9,8,12,15,10,10)

community =

data.frame(comm.labels,accidents,vehicles,police)

community.model = lm(vehicles ∼ accidents)

plot(vehicles ∼ accidents)

abline(community.model)

coef(community.model)

summary(community.model)
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To replicate this analysis in SYSTAT we have

a file called community data.syz ;

for MATLAB we have a file called commu-

nity data.dat

Demo follows –
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Algebraic restrictions on correlations:

In any multiple variable context, it is possi-

ble to derive the algebraic restrictions present

among any subset of the variables based on

the correlations among all the variables.

The simplest case involves three variables, say

X, Y , and W .

From the basic formula for the partial correla-

tion between X and Y “holding W constant,”

an algebraic restriction is present on rXY given

the values of rXW and rYW :

rXW rYW −
√

(1− r2
XW )(1− r2

YW ) ≤

rXY ≤ rXW rYW +
√

(1− r2
XW )(1− r2

YW ) .
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Note that this is not a probabilistic statement

(that is, it is not a confidence interval); it says

that no dataset exists where the correlation

rXY lies outside of the upper and lower bounds

provided by rXW rYW ±
√

(1− r2
XW )(1− r2

YW ).

As a numerical example, suppose X and Y refer

to height and weight, respectively, and W is a

measure of age. If, say, the correlations, rXW

and rYW are both .8, then .28 ≤ rXY ≤ 1.00.

In fact, if a high correlation value of .64 were

observed for rXY , should we be impressed by

the magnitude of the association between X

and Y ?

Probably not;

if the partial correlation between X and Y “hold-

ing W constant” were computed with rXY =

.64, a value of zero would be obtained.
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All of the observed high association between

X and Y can be attributed to their association

with the developmentally related variable.

Conversely, if X and Y are both uncorrelated

with W (so rXW = rYW = 0), then no restric-

tions are placed on rXY ;

the algebraic inequalities reduce to a triviality:

−1 ≤ rXY ≤ +1.

These very general restrictions on correlations

have been known for a long time and appear,

for example, in Yule’s first edition (1911) of An

Introduction to the Theory of Statistics under

the title, “Conditions of Consistence Among

Correlation Coefficients.”

Also, see the chapter, “Fallacies in the Inter-

pretation of Correlation Coefficients,” in this

same volume.
24


