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Tests for Comparing Elements
of a Correlation Matrix

James H. Steiger
University of British Columbia, Vancouver, British Columbia, Canada

In a variety of situations in psychological research, it is desirable to be able to
make statistical comparisons between correlation coefficients measured on the
same individuals. For example, an experimenter may wish to assess whether
two predictors correlate equally with a criterion variable. In another situation,
the experimenter may wish to test the hypothesis that an entire matrix of
correlations has remained stable over time. The present article reviews the
literature on such tests, points out some statistics that should be avoided, and
presents a variety of techniques that can be used safely with medium to large
samples. Several illustrative numerical examples are provided.

Statistical tests for comparing two or more
elements of a correlation matrix are of con-
siderable potential value for interpreting the
outcomes of psychological research. As a
simple example, suppose an experimenter
wishes to test the hypothesis that a predictor-
criterion correlation has not changed from an
earlier value obtained on the same subjects.
This can be treated statistically as a hypothesis
of the form p1s = pzs. Unfortunately, the test
of such a hypothesis is not straightforward
because correlation coefficients measured on
the same individuals are not, in general, inde-
pendent. However, in the past 10 years, mathe-
matical statisticians have developed efficient
methods for testing such a hypothesis. Re-
grettably, the better techniques have not yet
filtered through to psychological statistics
texts, and some authoritative sources cite
methods that are clearly suboptimal.

The purpose of the present article is to re-
view the recent literature and correct some
misconceptions about tests for comparing cor-
relation coefficients. In addition, some new
techniques are presented that yield improved
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small-sample performance and computational
efficiency. Several techniques are illustrated
with numerical examples.

Tests for the Equality of Two
Dependent Correlations

Two sample correlations obtained on the
same individuals are not, in general, inde-
pendent of each other. Indeed, correlations
have a correlation matrix of their own. As
early as 1898, Pearson and Filon obtained
asymptotic expressions for the variance—co-
variance matrix of a set of correlations. De-
noting the covariance between r; and 7, as
ojx,;n and the variance of r;; as ;)% expres-
sions equivalent to those of Pearson and Filon
are

Y = Nop? = (1 — pii)*; (1
and

Yirm = Najrwm = 5{[(0in — pirpin)
X (pkm — penprm) ]+ [(oim — Pirpam)
X (pin — pripin)] + [(ojn — pjmomn)
X (pxm — pripim)] + [(oim — pjkprm)
X (per — prmpmn) 1} (2)

When two correlations have an index in
common, the covariance expression in Equa-
tion 2 can be simplified to the equivalent form,

Virin = Nojin = pan(l — piu? — pjn?)
—Llpjroin) (1 — pji® — pin® — pra?).  (3)
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The above results led to some early asymp-
totic z tests for null hypotheses of the forms
pix = pum and pjx = pjn. It is well-known from
asymptotic distribution theory that as the
sample size becomes large, the distribution of
a set of correlation coefficients approaches the
multivariate normal in form. Hence, with large
samples, two sample correlation coefficients
(and their differences) have an approximately
normal distribution. To construct a practical
test statistic, one must estimate the ¥;? and
the Y1 nm with some consistent estimator, but
this will not affect the asymptotic result.
Hence, if ¢ denotes expressions obtained by
substituting r;: for p; in Equations 1-3, then

Zy= N¥rji — 7;n)

X Wt + Ui — W)t (4
will have an asymptotic distribution that is
standard normal. Statistic Z; provides a large-
sample statistic for testing the equality of two

correlations with one index in common.
Similarly, the statistic,

Z2 = N’(fjk - fhm)
X (&jkz + Pam? — Z‘zjk.hm)_i; (5)

allows a large-sample test of the hypothesis
pit = pwm- Z1 and Z, were popularized by
Peters and Van Voorhis (1940) in their classic
introductory text.

Hotelling (1940) suggested an alternative to
Z, for testing null hypotheses of the form
pir = p;i. Hotelling’s statistic was

Ty= (N—=3)rp—rn)
X (14 ra)t(2|R))Y,(6)

where
[R] = (1 — rj? — rin2 — ria?) + (rjrinrien)

is the determinant of the 3 X 3 correlation
matrix containing the coefficients being tested.
Under highly restrictive assumptions, T is
distributed as Student’s ¢ with df = N — 3.
Although Z, and Z, are useful for large
samples, Hotelling’s T is basically useless as
a replacement for Z; with any sample size
because it does not have its designated dis-
tribution (or even come close to it) under a
variety of conditions in which pjx = pjsn. For
example, if P12 = p13 = (5)* and Pz = 0, the
null hypothesis is true. Yet, at a nominal
Type I error rate (&) of .05, T will almost
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always reject the null hypothesis. Williams
(1959) proposed a modification of T; to
alleviate this difficulty. Williams’s formula is

T2= (fjk_rjh) N_(N_ 1)(1+’kh)
o

1 b
N—_§)|R| +7(1=ri)°
(@)

where 7 = 3(rjx + 7jn). To, like Ty, has a
t distribution with df = N — 3. Unfortunately,
some prominent psychological statistics texts
(Ferguson, 1976; McNemar, 1969) and articles
(Kenny, 1975) have recommended T; for
comparing two correlations with an index in
common. However, T; need not and should
not be used for this purpose. '

In 1964, Olkin and Siota.i (Note 1) de-
veloped a number of important results in cor-
relational theory, including a succinct rederiva-
tion of Equations 1-3. Olkin (1967) provided
a readable, popularized account of several
correlational statistics, including Z; and Z,.
Unfortunately, formulas for Z, and Z, given
in Olkin’s text have typographical errors.
Glass and Stanley (1970) give a correct
formula for Z,. Kenny (1973) recommends Z,
as a test of significance in cross-lagged panel
correlation analysis.

The normality of Z; and Z; depends on the
asymptotic normality of sample correlation
coefficients. However, if the sample is not
large and population correlations have extreme
values, these statistics depart from their
nominal Type I error rates (Steiger, Note 2).
The Fisher (1921) r-to-z transform,

1 + Tjk)

l—r]-k

Zik = %lﬂ( (8)
helps to eliminate this problem because it
transforms a sample correlation to a variable
that is close to normally distributed, even with
small sample sizes and extreme p;;. To capital-
ize on the virtues of this transformation, Dunn
and Clark (1969) developed statistics that are
analogous to Z; and Z, but that use the
Fisher transform instead of raw correlations.
As a straightforward consequence of a theorem
in Olkin and Siotani (Note 1), it can be shown,
the 2, have asymptotic variances and covari-
ances that can be expressed as

e = (N — 3)“:,1;2 =1; )
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Cikgh = (N = 3oz = Vir i Y™
= Yie, /(L — pi®)(1 — pjn?); (10)

and

Cjk,hm = (N - 3)¢Tz,-;,,q,,. = ik hm¥ it Whm !
= Yikam/ (1 = pi?) (1 — prm?).  (11)

In the following discussion, sample estimates
of ¢jk,;n and cjx,am, Obtained by substituting
sample correlations for population correlations
in Equations 10 and 11, are denoted s;i,;» and
S;k,hm, TESpEctively.

Fisher-transformed correlations have an as-
ymptotic distribution that like that of the 7,
is multivariate normal. However, the z; re-
tain their marginal normality in small samples,
and their variance in small samples is extremely
close to the asymptotic value 1/(N — 3).
Hence, we would have strong intuitive reason
to suspect that Equations 9-11 could be used
to obtain improved analogs of statistics Z;
and Z,. These statistics, given in Dunn and
Clark (1969), are

Zy* = (N — 3) @i — 2) (2 — 2550,50)7Y; (12)
and
Z2* = (N - 3)*(21'1; —_ th) (2 - ZSjk‘hm)—%. (13)

Monte Carlo simulation experiments (Neill
& Dunn, 1975; Steiger, Note 2) have con-
firmed that statistics Z,* and Z,* (as well as
T,) are notably superior to Z; and Z, in main-
taining Type I error rate control at small
sample sizes. All three statistics can be used
with confidence when sample size exceeds 20.

Further improvement in Type I error rate
control can be obtained by modifying Z,*
and Z,* to incorporate the null hypothesis.
Specifically, we estimate those correlations
that are equal under the null hypothesis by
pooling corresponding sample correlations. For
example, if the null hypothesis pjx = pim is
true, then #;z,am = % (rjx + 71m) gives a pooled,
more reliable estimate (an ordinary least
squares estimate) of both pj; and pp. than
either sample correlation taken separately.
The pooled estimate can be used in place of
rjx and 74, in Equation 11 for computing
Sik.am- 1f we denote an sz am computed with a
pooled estimate as §;i,am, then the modified
test statistics can be written

Zy* = (N = 3)Ma ~ 2) 2 = Wiea)H; (19)
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and

Zy* = (N = 3) (s — 5am) (2 — 28j00m) .
(15)

Comparisons Among More Than
Two Correlations

A large number of hypotheses involving the
comparison of two correlations can be sub-
sumed under a common descriptive heading as
pattern hypotheses and can be tested statis-
tically within the same general framework. A
pattern hypothesis on a population correlation
matrix P is any hypothesis that states that
some of its elements are equal to each other
and/or to specified numerical values.

If we extract the k= (m? — m)/2 unique
off-diagonal elements of P, the m X m popula-
tion correlation matrix, and place them in a
kX 1 vector p, we can express any pattern
hypothesis in the form

Ho: p = po = Ay + p¥, (16)

where A is a £ X ¢ matrix of zeros and ones
with elements 6;; = dpoi/dv;, v is a ¢ X 1
vector of common (unspecified) correlations,
and p* is a k£ X 1 vector containing specified
values for elements of p and containing zeros
in other positions. For example, let P be 4 X 4.
Let Ho be that P31 = P21 = Y1, that P32 = .6
(a specified value), and that py = ps2 = pu3
='v,. Then Hy may be written in the matrix
notation of Equation 16 as

P21
P31
P32
Pa1
P42
P43
p = A

22+

v + p*.

There are a number of alternative approaches
for estimation and hypothesis testing of corre-
lational pattern hypotheses. Estimates of pg
generally take the form p = A9 + p*, so the
problem of estimating p is essentially equiva-
lent to obtaining an estimate () for v.

Maximum likelihood estimates (fm1) can
be obtained by treating the pattern hypothesis
as a special case of the analysis of covariance
structures. McDonald (1974, 1975) developed

OO OO =
—_—_—-O OO
coocooo
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TESPAR, a highly efficient computer algorithm
that yields maximum likelihood estimates for
the elements of p (and the population covari-
ance matrix) when p* = #, a null vector.
These estimates can then be used to calculate
a likelihood ratio chi-square statistic with
df = k — q. The statistic is of the form
U = N®, with

® = In|C*|— In|S|+ trace (SC*1) — m,
17

where C* is the maximum likelihood estimate
of C, the population covariance matrix, under
H,, and S is the sample covariance matrix.

The maximum likelihood (likelihood ratio
test) approach, as currently used, appears to
have at least two major drawbacks. First, it -
requires sometimes lengthy computer iteration
of pmr. Second, U is a large-sample statistic
that can be shown, through Monte Carlo
simulations, to reject the null hypothesis too
frequently for moderate to small sample sizes
(see Neill & Dunn, 1975; Steiger, Note 3).

The latter difficulty can be overcome, for all
practical purposes, by using puy in a quadratic
form statistic that like the Dunn-Clark and
Neill-Dunn statistics, uses the distributional
stability of the Fisher transform to achieve
improved small-sample performance. Let r be
a vector of observed sample correlations, with
indices corresponding to the elements of p.
Let z(pm1) be a vector of Fisher transforms
of the elements of pmr, and define z(r) like-
wise for r. Define Sy, as NV times the estimated
variance—covariance matrix for z(r). Elements
of Sy are obtained by substituting elements
of pur, for population correlations in Equations
9-11. Then the statistic,

Xy = (V= 3)[z(r) — z(pmr) ]
X Smr7![z(r) — z(pur)],

has, like U, an asymptotic X2_, distribution.

An alternative approach to estimation and
testing of pattern hypotheses, one that avoids
lengthy computer iteration, is based on the
use of generalized least squares estimators
(pors). The calculation of pgrLs proceeds as
follows: Define prs as a vector of ordinary
least squares estimators for po. As a straight-
forward extension of the estimator fz nm dis-

(18)
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cussed earlier, prs is given as
'?LS = (A’A)_IA,(I’ - p*)
(19)

prs = AfLs + p*;

Next, we define an estimate of N times the
variance-covariance matrix of r, Zpg, as the
matrix whose elements are obtained by sub-
stituting elements of prg for p,i in Equations
1-3. Then pcus, the vector of generalized least
squares estimates, is

Pors = AfgLs + p*;
foLs = (A'SrsA) LA S s (r — p*)]. (20)

Browne (1974) showed that pgrs is as-
ymptotically equivalent to pmi. If we define
Sis as the matrix whose elements are obtained
by substituting elements of prs for p; in
Equations 9-11, then

X, = (N — 3)[z(r) — z(pcrs) ]
X Sps7![z(r) — z(pers)] (21)

is, like X,, asymptotically X%_,. Browne
(1977), who has pioneered the use of generalized
least squares estimators for testing pattern
hypotheses, has pointed out that in many
cases, pors and prs are formally equivalent
and that, generally, they differ only slightly.
Hence, in situations in which computational
convenience is paramount, an approximate
X%,_, statistic may be computed by substitu-
ting prs for perLs in Equation 21. Recent un-
published Monte Carlo experiments (Steiger,
Note 3) on the relative performance of U, X},
and X indicate that U is notably inferior in
Type I error rate (a) control to X; and X at
small to moderate sample sizes. U rejects the
null hypothesis too often, whereas X; and X
have essentially equivalent performance. The
latter two statistics maintain essentially nomi-
nal a for N > 30, and performance is adequate
for samples as small as 20.

Some Numerical Examples

The following numerical examples provide
concrete illustrations of many of the computa-
tional methods. To consolidate the various
examples, all significance tests (a = .05) are
based on the same hypothetical correlation
matrix, given in Table 1. Table 1 contains
sample correlations, based on 103 observa-
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tions, for a hypothetical longitudinal study of
sex stereotypes and verbal achievement. Three
variables are measured twice on the same
individuals.

Case A: Ho.’ Pik = Pjh

A number of efficient statistics are available
for testing this hypothesis. Computations for
T, and Z,* are illustrated. Suppose that the
experimenter hypothesizes that p3; = pss, that
is, that masculinity and femininity scores cor-
relate equally with verbal achievement at
Time 1. We have rg; = 40,73, = .50, 75, = .10,
N =103, |R| = .62,and 7 = }(r3; + 732) = .45.
Substituting in Equation 7, we obtain T, =
— .8913, which, referred to the ¢ distribution

with df = 100, is not significant. To compute.

Z.*, we substitute 7 = 45 for r3 and 7z in
computing ss1,32. Hence, from Equations 3
and 10,

$31,832 = [(10)(1 — 452 — 452)
—3(45)(45)(1 — 4532 — 43— 100/
(1 — 459)(1 — 45?) = .0042.

Z:* is then computed from Equation 14 as
—.8890. This value, when compared to the
standard normal curve rejection points of
+-1.96, is not significant.

Case B: Ho.' Pik = Phm

In this case, suppose the experimenter were
interested in testing the hypothesis that
the correlation between femininity and verbal
achievement was the same at Times 1 and 2.
This hypothesis, that pgz = pg;, can be tested
with Z,* as follows. First, 3,65 = 1(.50 + .60)
= .55 is substituted for 73 and 7 in com-
puting §;2.65 from Equation 11. We also have
Yik = 736 = 80, Yiep = Yog = 50, Yiem = 7o
= .70, 7;m = 735 = .50, and N = 103. Substi-
tuting in Equations 11 and 2, we obtain 253, 65
= 9517. Since 23; = .5493 and z4 = .6931,
Z,* may be computed from Equation 15 as
—1.4045. On the basis of this result, the null
hypothesis would not be rejected.

Case C: The Identity Hypothesis, Hy: P = 1

As Larzelere and Mulaik (1977) have
pointed out, performance of a large number of
individual significance tests of the form
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Table 1
Correlation Matrix for a Hypothetical
Longitudinal Study

Variable M1 F1 Vi M2 F2 V2
M1 —
F1 .10 —
Vi 40 .50 —
M2 .70 .05 .50 —
F2 .05 .70 .50 .50 —
V2 45 .50 .80 .50 .60 —

Note. M1 = masculinity at Time 1; F1 = feminin-
ity at Time 1; V1 = verbal ability at Time 1; M2
= masculinity at Time 2; F2 = femininity at Time
2; V2 = verbal ability at Time 2.

pi; = 0 can be analogous to the fallacy of
multiple ¢ tests in the analysis of variance
unless special statistical precautions are taken.
One way of obtaining experimentwise error-
rate protection in such situations is to routinely
perform a simultaneous hypothesis test that
all correlations are O or that P = I, an identity
matrix. If the preliminary overall test fails to
reject, then no further individual tests are
performed. Larzelere and Mulaik reviewed
several methods for testing the identity hy-
pothesis, but the present method, a simple
special case of statistic X, is computationally
much simpler than the tests they mention
and, unlike these other tests, can be performed
easily by hand. Specifically, if P = I, then
Sits = I, and pers = B, a null vector. Hence,
under this null hypothesis, Equation 21 re-

duces to
Xg = (N -_ 3) Z ZZUZ.

<i

22

Applying the test statistic to the correlation
matrix in Table 1, we obtain X, = 543.17,
which, when referred to a X?%;; distribution,
leads to overwhelming rejection of the null
hypothesis.

Case D: Hy: ps1 = ps1 = pa2 = 71

In this example, the experimenter hypothe-
sizes that the three variables have equal inter-
correlations at Time 1. This hypothesis may be
expressed in the notation of Equation 16 as

P21 1 0
[PMJ = {1J [y + [OJ
paz 1 0
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Table 2
Null Hypothesis of Longitudinal Stability
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Elements
of p

Elements of A

Elements Elements
of v of p*

(Pa1)
P31
P32
2%}
P42
P43
Ps51
Ps2
(3]
P54
Pet
Pe2
Pes
P
Pss)

OO0 OO—O
HOOOOOOOQLOOCOO=OO
COO0OOCOCOOOOOO—ROOO
COOOODOOOOORLOOOO
OO0 OCOOCOCOOHOOOOO
COCOCOOOCORrOOOOOOO
COOCCLO OO0 OOCO
SCOO0OOOOROOO0OOCQCCOO

s

]
ocooCocOoOROoOOoOoOCOOR

]

4!
Y2
Y3
Y4
Y5
Y&
i
Y8
Yo
Y10
Tu
Y1z

SO OO OOOO0COCOOOCOC

+
CDCOOOoCOoOOoOOoOOOoCOoOoCQ

e

COOOOOOOoOOCOoOOOOC
COOROOOOOOOOOCOCO

I

We find in this case that fgLs = F1s = 3.
Using Equation 21, we obtain X, = 14.95.
In thiscase,df = k —¢=3— 1= 2,and H
is rejected.

Case E: Testing Longitudinal Stability of a
Correlation Matrix

A potentially important use for the pattern
hypothesis is in testing whether a set of correla-
tions (or perhaps an entire correlation matrix)
has remained constant at two (or more) points
in time. In the present example, suppose the
experimenter wishes to hypothesize that the
intercorrelations among masculinity, femi-
ninity, and verbal achievement remain con-
stant at Times 1 and 2. This null hypothesis,
which specifies simultaneously that ps; = ps4
= Y1, ps1 = Pet = 7Yz, aNd p32 = pgs = 73, Can
be stated in the notation of Equation 16 as
shown in Table 2. In this case, X; can be
computed as X, 34.097, which, when re-
ferred to the X?; distribution, is significant.

Conclusions and Recommendations

Tests for Comparing Two Dependent
Correlations

Some highly efficient techniques are avail-
able, and empirical evidence suggests that
they can be used with confidence on sample
sizes as small as 20. The decision concerning

which of the good techniques to use is perhaps
less important than the knowledge of which
tests are clearly suboptimal and should be
avoided. When the null hypothesis of interest
is of the form p,;x = pj», tests Ty and Z; should
not be used, whereas Ts, Zi* and Z,* are
acceptable, with T, perhaps the best all-round
choice.

When the null hypothesis is of the form
Pik = pum, tests Zo* and Z,* are acceptable,
with the latter probably preferable in most
applications as the slightly more conservative
statistic. Z,, on the other hand, should never
be used because its performance is markedly
inferior to the other two statistics. All three
require about the same computational effort.

Tests for Comparing Several Dependent
Correlations

Many hypotheses of interest involving the
comparison of several dependent correlations
can be expressed as pattern hypotheses and
can be tested using the general techniques
described. The more traditional approach has
been to compute pur, followed by the likeli-
hood ratio test statistic U. However, it is now
clear from Monte Carlo research that if the
maximum likelihood approach is used, U is not
an optimal test statistic because it rejects a
true null hypothesis too often at small to
moderate sample sizes. One solution to this
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problem that works well is to compute the
quadratic form test statistic X, instead of U.
An alternative approach might be to develop
a generalized correction constant to be used
in place of N in calculating U.

Unfortunately, even if an efficient statistic
is calculated instead of U, pmr must be ob-
tained by computer iteration. On the other
hand, iteration is not required in calculating
the generalized least squares estimates. pors
shares many of the asymptotic properties of
pmr, tends in practice to be almost identical
to it, even at small samples, and can be com-
puted at a fraction of the cost (in many cases,
if necessary, with an advanced hand cal-
culator). Hence, for most practical purposes,
the generalized least squares approach yields
hypothesis tests that are, at worst, only
slightly less accurate than those obtained by
maximum likelihood methods but that require
far less computational effort. On balance, the
generalized least squares approach has much
to recommend it.!

1A computer program, MULTICORR, that computes
statistic X, for any pattern hypothesis on correlation
matrices of order 20 X 20 or less is available from the
author for a nominal charge.

Reference Notes

1. Olkin, I., & Siotani, M. Asympiotic distribution of
Sunctions of a correlation matrix (Tech. Rep. 6).
Stanford, Calif.: Stanford University, Laboratory
for Quantitative Research in Education, 1964.

2. Steiger, J. H. Multivariate analysis for correlations
(Tech. Rep. 78-35). Vancouver: University of
British Columbia, Institute of Applied Mathematics
and Statistics, September 1978.

3. Steiger, J. H. Testing paitern hypotheses on correlation
matrices: Alternalive statistics and some empirical
results. Paper presented at the meeting of the
Psychometric Society, Monterey, Calif., June 1979.

References

Browne, M. W. Generalized least squares estimators in
the analysis of covariance structures. South African
Statistical Journal, 1974, 8, 1-24.

251

Browne, M. W. The analysis of patterned correlation
matrices by generalized least squares. British Journal
of Mathematical and Statistical Psychology, 1977, 30,
113-124.

Dunn, O. J.,, & Clark, V. A. Correlation coefficients
measured on the same individuals. Journal of the
American Statistical Association, 1969, 64, 366-377.

Ferguson, G. A. Statistical analysis in psychology &
education (4th ed.). New York : McGraw-Hill, 1976.

Fisher, R. A. On the probable error of a coefficient of
correlation deduced from a small sample. Metron,
1921, 1, 1-32.

Glass, G. V, & Stanley, J. C. Statistical methods in educa-
tion and psychology. Englewood Cliffs, N.J.: Prentice-
Hall, 1970.

Hotelling, H. The selection of variates for use in pre-
diction with some comments on the general problem
of nuisance parameters. Annals of Mathematical
Statistics, 1940, 11, 271-283.

Kenny, D. A. A quasi-experimental approach to
assessing treatment effects in the nonequivalent con-
trol group design. Psychological Bulletin, 1973, 82,
345-362.

Kenny, D. A. Cross-lagged panel correlation: A test
for spuriousness. Psychological Bulletin, 1975, 82,
887-903.

Larzelere, R. E., & Mulaik, S. A. Single-sample tests
for many correlations. Psychological Bulletin, 1977,
84, 557-569.

McDonald, R. P. Testing pattern hypotheses for co-
variance matrices. Psychometrika, 1974, 39, 189-201.

McDonald, R. P. Testing pattern hypotheses for corre-
lation matrices. Psychometrika, 1975, 40, 253-2535.

McNemar, Q. Psychological statistics (4th ed.). New
York : Wiley, 1969.

Neill, J. J., & Dunn, O. J. Equality of dependent corre-
lation coefficients. Biometrics, 1975, 31, 531-543.

Olkin, I. Correlations revisited. In J. C. Stanley (Ed.),
Improving experimental design and statistical analysis.
Chicago: Rand McNally, 1967.

Pearson, K., & Filon, L. N. G. Mathematical contribu-
tions to the theory of evolution: IV. On the probable
errors of frequency constants and on the influence of
random selection on variation and correlation. Philo-
sophical Transactions of the Royal Society of London,
Series A, 1898, 191, 229-311.

Peters, C. C., & Van Voorhis, W. R. Statistical pro-
cedures and the mathemaiical bases. New York:
McGraw-Hill, 1940.

Williams, E. J. The comparison of regression variables-
Journal of the Royal Statistical Society, Series B, 1959,
21, 396-399.

Received October 30, 1978 m



