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Supervised Learning (Machine Learning) Workflow and
Algorithms

In this section...

“Steps in Supervised Learning (Machine Learning)” on page 13-2

“Characteristics of Algorithms” on page 13-6

Steps in Supervised Learning (Machine Learning)
Supervised learning (machine learning) takes a known set of input data
and known responses to the data, and seeks to build a predictor model that
generates reasonable predictions for the response to new data.

Known Data

Known Responses
Model

Model

New Data
Predicted Responses

1

2

For example, suppose you want to predict if someone will have a heart attack
within a year. You have a set of data on previous people, including their
ages, weight, height, blood pressure, etc. You know if the previous people had
heart attacks within a year of their data measurements. So the problem is
combining all the existing data into a model that can predict whether a new
person will have a heart attack within a year.

Supervised learning splits into two broad categories:

• Classification for responses that can have just a few known values, such
as 'true' or 'false'. Classification algorithms apply to nominal, not
ordinal response values.
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• Regression for responses that are a real number, such as miles per gallon
for a particular car.

You can have trouble deciding whether you have a classification problem or a
regression problem. In that case, create a regression model first—regression
models are often more computationally efficient.

While there are many Statistics Toolbox algorithms for supervised learning,
most use the same basic workflow for obtaining a predictor model:

1 “Prepare Data” on page 13-3

2 “Choose an Algorithm” on page 13-4

3 “Fit a Model” on page 13-4

4 “Choose a Validation Method” on page 13-5

5 “Examine Fit; Update Until Satisfied” on page 13-5

6 “Use Fitted Model for Predictions” on page 13-6

Prepare Data
All supervised learning methods start with an input data matrix, usually
called X in this documentation. Each row of X represents one observation.
Each column of X represents one variable, or predictor. Represent missing
entries with NaN values in X. Statistics Toolbox supervised learning algorithms
can handle NaN values, either by ignoring them or by ignoring any row with
a NaN value.

You can use various data types for response data Y. Each element in Y
represents the response to the corresponding row of X. Observations with
missing Y data are ignored.

• For regression, Y must be a numeric vector with the same number of
elements as the number of rows of X.

• For classification, Y can be any of these data types. The table also contains
the method of including missing entries.
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Data Type Missing Entry

Numeric vector NaN

Categorical vector <undefined>

Character array Row of spaces

Cell array of strings ''

Logical vector (not possible to represent)

Choose an Algorithm
There are tradeoffs between several characteristics of algorithms, such as:

• Speed of training

• Memory utilization

• Predictive accuracy on new data

• Transparency or interpretability, meaning how easily you can understand
the reasons an algorithm makes its predictions

Details of the algorithms appear in “Characteristics of Algorithms” on page
13-6. More detail about ensemble algorithms is in “Choose an Applicable
Ensemble Method” on page 13-53.

Fit a Model
The fitting function you use depends on the algorithm you choose.

• For classification trees or regression trees, use ClassificationTree.fit
or RegressionTree.fit.

• For classification or regression trees using an older toolbox function, use
classregtree.

• For classification or regression ensembles, use fitensemble.

• For classification or regression ensembles in parallel, or to use specialized
TreeBagger functionality such as outlier detection, use TreeBagger.
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Choose a Validation Method
The three main methods for examining the accuracy of the resulting fitted
model are:

• Examine resubstitution error. For examples, see:

- “Example: Resubstitution Error of a Classification Tree” on page 13-33

“Example: Cross Validating a Regression Tree” on page 13-34

“Example: Test Ensemble Quality” on page 13-59

• Examine the cross-validation error. For examples, see:

- “Example: Cross Validating a Regression Tree” on page 13-34

- “Example: Test Ensemble Quality” on page 13-59

- “Example: Classification with Many Categorical Levels” on page 13-71

• Examine the out-of-bag error for bagged decision trees. For examples, see:

- “Example: Test Ensemble Quality” on page 13-59

- “Workflow Example: Regression of Insurance Risk Rating for Car
Imports with TreeBagger” on page 13-97

- “Workflow Example: Classifying Radar Returns for Ionosphere Data
with TreeBagger” on page 13-106

Examine Fit; Update Until Satisfied
After validating the model, you might want to change it for better accuracy,
better speed, or to use less memory.

• Change fitting parameters to try to get a more accurate model. For
examples, see:

- “Example: Tuning RobustBoost” on page 13-92

- “Example: Unequal Classification Costs” on page 13-66

• Change fitting parameters to try to get a smaller model. This sometimes
gives a model with more accuracy. For examples, see:

- “Example: Selecting Appropriate Tree Depth” on page 13-35

- “Example: Pruning a Classification Tree” on page 13-38
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- “Example: Surrogate Splits” on page 13-76

- “Example: Regularizing a Regression Ensemble” on page 13-82

- “Workflow Example: Regression of Insurance Risk Rating for Car
Imports with TreeBagger” on page 13-97

- “Workflow Example: Classifying Radar Returns for Ionosphere Data
with TreeBagger” on page 13-106

• Try a different algorithm. For applicable choices, see:

- “Characteristics of Algorithms” on page 13-6

- “Choose an Applicable Ensemble Method” on page 13-53

When you are satisfied with the model, you can trim it using the appropriate
compact method (compact for classification trees, compact for classification
ensembles, compact for regression trees, compact for regression ensembles).
compact removes training data and pruning information, so the model uses
less memory.

Use Fitted Model for Predictions
To predict classification or regression response for most fitted models, use
the predict method:

Ypredicted = predict(obj,Xnew)

• obj is the fitted model object.

• Xnew is the new input data.

• Ypredicted is the predicted response, either classification or regression.

For classregtree, use the eval method instead of predict.

Characteristics of Algorithms
This table shows typical characteristics of the various supervised learning
algorithms. The characteristics in any particular case can vary from the listed
ones. Use the table as a guide for your initial choice of algorithms, but be
aware that the table can be inaccurate for some problems. SVM is available if
you have a Bioinformatics Toolbox™ license.
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Characteristics of Supervised Learning Algorithms

Algorithm Predictive
Accuracy

Fitting
Speed

Prediction
Speed

Memory
Usage

Easy to
Interpret

Handles
Categorical
Predictors

Trees Low Fast Fast Low Yes Yes

Boosted
Trees

High Medium Medium Medium No Yes

Bagged
Trees

High Slow Slow High No Yes

SVM High Medium * * * No

Naive
Bayes

Low ** ** ** Yes Yes

Nearest
Neighbor

*** Fast*** Medium High No Yes***

* — SVM prediction speed and memory usage are good if there are few
support vectors, but can be poor if there are many support vectors. When you
use a kernel function, it can be difficult to interpret how SVM classifies data,
though the default linear scheme is easy to interpret.

** — Naive Bayes speed and memory usage are good for simple distributions,
but can be poor for kernel distributions and large data sets.

*** — Nearest Neighbor usually has good predictions in low dimensions, but
can have poor predictions in high dimensions. For linear search, Nearest
Neighbor does not perform any fitting. For kd-trees, Nearest Neighbor does
perform fitting. Nearest Neighbor can have either continuous or categorical
predictors, but not both.
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Classification Using Nearest Neighbors

In this section...

“Pairwise Distance” on page 13-8

“k-Nearest Neighbor Search” on page 13-11

Pairwise Distance
Categorizing query points based on their distance to points in a training
dataset can be a simple yet effective way of classifying new points. You can
use various metrics to determine the distance, described next. Use pdist2 to
find the distance between a sets of data and query points.

Distance Metrics
Given an mx-by-n data matrix X, which is treated as mx (1-by-n) row vectors
x1, x2, ..., xmx, and my-by-n data matrix Y, which is treated as my (1-by-n)
row vectors y1, y2, ...,ymy, the various distances between the vector xs and yt
are defined as follows:

• Euclidean distance

d x y x yst s t s t
2 = − − ′( )( )

The Euclidean distance is a special case of the Minkowski metric, where p
= 2.

• Standardized Euclidean distance

d x y V x yst s t s t
2 1= − − ′−( ) ( )

where V is the n-by-n diagonal matrix whose jth diagonal element is S(j)2,
where S is the vector containing the inverse weights.

• Mahalanobis distance

d x y C x yst s t s t
2 1= − − ′−( ) ( )

where C is the covariance matrix.

13-8



Classification Using Nearest Neighbors

• City block metric

d x yst sj tj
j

n
= −

=
∑

1

The city block distance is a special case of the Minkowski metric, where p
= 1.

• Minkowski metric

d x yst sj tj
p

j

n
p= −

=
∑

1

For the special case of p = 1, the Minkowski metric gives the city block
metric, for the special case of p = 2, the Minkowski metric gives the
Euclidean distance, and for the special case of p = ∞, the Minkowski metric
gives the Chebychev distance.

• Chebychev distance

d x yst j sj tj= −{ }max

The Chebychev distance is a special case of the Minkowski metric, where p
= ∞.

• Cosine distance

d
x y

x x y y
st

s t

s s t t

= −
′

′( ) ′( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1

• Correlation distance

d
x x y y

x x x x y y y y
st

s s t t

s s s s t t t t

= −
−( ) −( )′

−( ) −( )′ −( ) −( )′
1

where
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x
n

xs sj
j

= ∑1

and

y
n

yt tj
j

= ∑1

• Hamming distance

d x y nst sj tj= ≠(#( ) / )

• Jaccard distance

d
x y x y

x y
st

sj tj sj tj

sj tj

=
≠( ) ∩ ≠( ) ∪ ≠( )( )⎡

⎣
⎤
⎦

≠( ) ∪ ≠( )⎡
⎣

⎤
⎦

#

#

0 0

0 0

• Spearman distance

d
r r r r

r r r r r r r r
st

s s t t

s s s s t t t t

= −
−( ) −( )′

−( ) −( )′ −( ) −( )′
1

where

- rsj is the rank of xsj taken over x1j, x2j, ...xmx,j, as computed by tiedrank.

- rtj is the rank of ytj taken over y1j, y2j, ...ymy,j, as computed by tiedrank.

- rs and rt are the coordinate-wise rank vectors of xs and yt, i.e., rs = (rs1,
rs2, ... rsn) and rt = (rt1, rt2, ... rtn).

- r
n

r
n

s sj
j

= =
+( )∑1 1

2
.

- r
n

r
n

t tj
j

= =
+( )∑1 1

2
.
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k-Nearest Neighbor Search
Given a set X of n points and a distance function D, k-nearest neighbor
(kNN) search lets you find the k closest points in X to a query point or set of
points. The kNN search technique and kNN-based algorithms are widely
used as benchmark learning rules—the relative simplicity of the kNN search
technique makes it easy to compare the results from other classification
techniques to kNN results. They have been used in various areas such as
bioinformatics, image processing and data compression, document retrieval,
computer vision, multimedia database, and marketing data analysis. You
can use kNN search for other machine learning algorithms, such as kNN
classification, local weighted regression, missing data imputation and
interpolation, and density estimation. You can also use kNN search with
many distance-based learning functions, such as K-means clustering.

k-Nearest Neighbor Search Using Exhaustive Search
When your input data meets any of the following criteria, knnsearch uses the
exhaustive search method by default to find the k-nearest neighbors:

• The number of columns of X is more than 10.

• X is sparse.

• The distance measure is either:

- 'seuclidean'

- 'mahalanobis'

- 'cosine'

- 'correlation'

- 'spearman'

- 'hamming'

- 'jaccard'

- A custom distance function

knnsearch also uses the exhaustive search method if your search object is
an ExhaustiveSearcher object. The exhaustive search method finds the
distance from each query point to every point in X, ranks them in ascending
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order, and returns the k points with the smallest distances. For example, this
diagram shows the k = 3 nearest neighbors.

k-Nearest Neighbor Search Using a kd-Tree
When your input data meets all of the following criteria, knnsearch creates a
kd-tree by default to find the k-nearest neighbors:

• The number of columns of X is less than 10.

• X is not sparse.

• The distance measure is either:

- 'euclidean' (default)

- 'cityblock'
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- 'minkowski'

- 'chebychev'

knnsearch also uses a kd-tree if your search object is a KDTreeSearcher object.

kd-trees divide your data into nodes with at most BucketSize (default is
50) points per node, based on coordinates (as opposed to categories). The
following diagrams illustrate this concept using patch objects to color code
the different “buckets.”

When you want to find the k-nearest neighbors to a given query point,
knnsearch does the following:
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1 Determines the node to which the query point belongs. In the following
example, the query point (32,90) belongs to Node 4.

2 Finds the closest k points within that node and its distance to the query
point. In the following example, the points in red circles are equidistant
from the query point, and are the closest points to the query point within
Node 4.

3 Chooses all other nodes having any area that is within the same distance,
in any direction, from the query point to the kth closest point. In this
example, only Node 3 overlaps the solid black circle centered at the query
point with radius equal to the distance to the closest points within Node 4.

4 Searches nodes within that range for any points closer to the query point.
In the following example, the point in a red square is slightly closer to the
query point than those within Node 4.
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Using a kd-tree for large datasets with fewer than 10 dimensions (columns)
can be much more efficient than using the exhaustive search method, as
knnsearch needs to calculate only a subset of the distances. To maximize the
efficiency of kd-trees, use a KDTreeSearcher object.

What Are Search Objects?
Basically, objects are a convenient way of storing information. Classes of
related objects (for example, all search objects) have the same properties
with values and types relevant to a specified search method. In addition to
storing information within objects, you can perform certain actions (called
methods) on objects.
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All search objects have a knnsearch method specific to that class. This lets
you efficiently perform a k-nearest neighbors search on your object for that
specific object type. In addition, there is a generic knnsearch function that
searches without creating or using an object.

To determine which type of object and search method is best for your data,
consider the following:

• Does your data have many columns, say more than 10? The
ExhaustiveSearcher object may perform better.

• Is your data sparse? Use the ExhaustiveSearcher object.

• Do you want to use one of these distance measures to find the nearest
neighbors? Use the ExhaustiveSearcher object.

- 'seuclidean'

- 'mahalanobis'

- 'cosine'

- 'correlation'

- 'spearman'

- 'hamming'

- 'jaccard'

- A custom distance function

• Is your dataset huge (but with fewer than 10 columns)? Use the
KDTreeSearcher object.

• Are you searching for the nearest neighbors for a large number of query
points? Use the KDTreeSearcher object.

For more detailed information on object-oriented programming in MATLAB,
see Object-Oriented Programming.

Example: Classifying Query Data Using knnsearch

1 Classify a new point based on the last two columns of the Fisher iris data.
Using only the last two columns makes it easier to plot:
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load fisheriris
x = meas(:,3:4);
gscatter(x(:,1),x(:,2),species)
set(legend,'location','best')

2 Plot the new point:

newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...

'markersize',10,'linewidth',2)
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3 Find the 10 sample points closest to the new point:

[n,d] = knnsearch(x,newpoint,'k',10)
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...

'linestyle','none','markersize',10)
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4 It appears that knnsearch has found only the nearest eight neighbors. In
fact, this particular dataset contains duplicate values:

x(n,:)

ans =

5.0000 1.5000
4.9000 1.5000
4.9000 1.5000
5.1000 1.5000
5.1000 1.6000
4.8000 1.4000
5.0000 1.7000
4.7000 1.4000
4.7000 1.4000
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4.7000 1.5000

5 To make duplicate values visible on the plot, use the following code:

% jitter to make repeated points visible
xj = x + .05*(rand(150,2)-.5);
gscatter(xj(:,1),xj(:,2),species)

The jittered points do not affect any analysis of the data, only the
visualization. This example does not jitter the points.

6 Make the axes equal so the calculated distances correspond to the apparent
distances on the plot axis equal and zoom in to see the neighbors better:

set(gca,'xlim',[4.5 5.5],'ylim',[1 2]); axis square

7 Find the species of the 10 neighbors:
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tabulate(species(n))

Value Count Percent
virginica 2 20.00%

versicolor 8 80.00%

Using a rule based on the majority vote of the 10 nearest neighbors, you
can classify this new point as a versicolor.

8 Visually identify the neighbors by drawing a circle around the group of
them:

% Define the center and diameter of a circle, based on the
% location of the new point:
ctr = newpoint - d(end);
diameter = 2*d(end);
% Draw a circle around the 10 nearest neighbors:
h = rectangle('position',[ctr,diameter,diameter],...

'curvature',[1 1]);
set(h,'linestyle',':')
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9 Using the same dataset, find the 10 nearest neighbors to three new points:

figure
newpoint2 = [5 1.45;6 2;2.75 .75];
gscatter(x(:,1),x(:,2),species)
legend('location','best')
[n2,d2] = knnsearch(x,newpoint2,'k',10);
line(x(n2,1),x(n2,2),'color',[.5 .5 .5],'marker','o',...

'linestyle','none','markersize',10)
line(newpoint2(:,1),newpoint2(:,2),'marker','x','color','k',...

'markersize',10,'linewidth',2,'linestyle','none')
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10 Find the species of the 10 nearest neighbors for each new point:

tabulate(species(n2(1,:)))
Value Count Percent

virginica 2 20.00%
versicolor 8 80.00%

tabulate(species(n2(2,:)))
Value Count Percent

virginica 10 100.00%

tabulate(species(n2(3,:)))
Value Count Percent

versicolor 7 70.00%
setosa 3 30.00%
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For further examples using knnsearch methods and function, see the
individual reference pages.
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Classification Trees and Regression Trees

In this section...

“What Are Classification Trees and Regression Trees?” on page 13-25

“Creating Classification Trees and Regression Trees” on page 13-26

“Predicting Responses With Classification Trees and Regression Trees” on
page 13-32

“Improving Classification Trees and Regression Trees” on page 13-33

“Alternative: classregtree” on page 13-42

What Are Classification Trees and Regression Trees?
Classification trees and regression trees predict responses to data. To predict
a response, follow the decisions in the tree from the root (beginning) node
down to a leaf node. The leaf node contains the response. Classification trees
give responses that are nominal, such as 'true' or 'false'. Regression
trees give numeric responses.

Statistics Toolbox trees are binary. Each step in a prediction involves
checking the value of one predictor (variable). For example, here is a simple
classification tree:

This tree predicts classifications based on two predictors, x1 and x2. To
predict, start at the top node, represented by a triangle (Δ). The first decision
is whether x1 is smaller than 0.5. If so, follow the left branch, and see that
the tree classifies the data as type 0.
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If, however, x1 exceeds 0.5, then follow the right branch to the lower-right
triangle node. Here the tree asks if x2 is smaller than 0.5. If so, then follow
the left branch to see that the tree classifies the data as type 0. If not, then
follow the right branch to see that the that the tree classifies the data as
type 1.

Creating Classification Trees and Regression Trees

1 Collect your known input data into a matrix X. Each row of X represents
one observation. Each column of X represents one variable (also called a
predictor). Use NaN to represent a missing value.

2 Collect the responses to X in a response variable Y. Each entry in Y
represents the response to the corresponding row of X. Represent missing
values as shown in Response Data Types on page 13-26.

• For regression, Y must be a numeric vector with the same number of
elements as the number of rows of X.

• For classification, Y can be any of the following data types; the table also
contains the method of including missing entries:

Response Data Types

Data Type Missing Entry

Numeric vector NaN

Categorical vector <undefined>

Character array Row of spaces

Cell array of strings ''

Logical vector (not possible to represent)

For example, suppose your response data consists of three observations in
this order: true, false, true. You could express Y as:

• [1;0;1] (numeric vector)

• nominal({'true','false','true'}) (categorical vector)

• [true;false;true] (logical vector)
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• ['true ';'false';'true '] (character array, padded with spaces so
each row has the same length)

• {'true','false','true'} (cell array of strings)

Use whichever data type is most convenient.

3 Create a tree using one of these methods:

• For a classification tree, use ClassificationTree.fit:

tree = ClassificationTree.fit(X,Y);

• For a regression tree, use RegressionTree.fit:

tree = RegressionTree.fit(X,Y);

Example: Creating a Classification Tree
To create a classification tree for the ionosphere data:

load ionosphere % contains X and Y variables
ctree = ClassificationTree.fit(X,Y)

ctree =

ClassificationTree:
PredictorNames: {1x34 cell}

CategoricalPredictors: []
ResponseName: 'Y'

ClassNames: {'b' 'g'}
ScoreTransform: 'none'
NObservations: 351

Example: Creating a Regression Tree
To create a regression tree for the carsmall data based on the Horsepower
and Weight vectors for data, and MPG vector for response:

load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG)
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rtree =

RegressionTree:
PredictorNames: {'x1' 'x2'}

CategoricalPredictors: []
ResponseName: 'Y'

ResponseTransform: 'none'
NObservations: 94

Viewing a Tree
There are two ways to view a tree:

• view(tree) returns a text description of the tree.

• view(tree,'mode','graph') returns a graphic description of the tree.

“Example: Creating a Classification Tree” on page 13-27 has the following
two views:

load fisheriris
ctree = ClassificationTree.fit(meas,species);
view(ctree)

Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica

view(ctree,'mode','graph')
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Similarly, “Example: Creating a Regression Tree” on page 13-27 has the
following two views:

load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG,'MinParent',30);
view(rtree)

Decision tree for regression
1 if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181
2 if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931
3 if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417
4 if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375
5 fit = 24.0882
6 fit = 19.625
7 fit = 14.375
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8 fit = 33.3056
9 fit = 29

view(rtree,'mode','graph')

How the Fit Methods Create Trees
The ClassificationTree.fit and RegressionTree.fit methods perform
the following steps to create decision trees:

1 Start with all input data, and examine all possible binary splits on every
predictor.

2 Select a split with best optimization criterion.
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• If the split leads to a child node having too few observations (less
than the MinLeaf parameter), select a split with the best optimization
criterion subject to the MinLeaf constraint.

3 Impose the split.

4 Repeat recursively for the two child nodes.

The explanation requires two more items: description of the optimization
criterion, and stopping rule.

Stopping rule: Stop splitting when any of the following hold:

• The node is pure.

- For classification, a node is pure if it contains only observations of one
class.

- For regression, a node is pure if the mean squared error (MSE) for the
observed response in this node drops below the MSE for the observed
response in the entire data multiplied by the tolerance on quadratic
error per node (qetoler parameter).

• There are fewer than MinParent observations in this node.

• Any split imposed on this node would produce children with fewer than
MinLeaf observations.

Optimization criterion:

• Regression: mean-squared error (MSE). Choose a split to minimize the
MSE of predictions compared to the training data.

• Classification: One of three measures, depending on the setting of the
SplitCriterion name-value pair:

- 'gdi' (Gini’s diversity index, the default)

- 'twoing'

- 'deviance'

For details, see ClassificationTree “Definitions” on page 20-203.
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For a continuous predictor, a tree can split halfway between any two adjacent
unique values found for this predictor. For a categorical predictor with L
levels, a classification tree needs to consider 2L–1–1 splits. To obtain this
formula, observe that you can assign L distinct values to the left and right
nodes in 2L ways. Two out of these 2L configurations would leave either left or
right node empty, and therefore should be discarded. Now divide by 2 because
left and right can be swapped. A classification tree can thus process only
categorical predictors with a moderate number of levels. A regression tree
employs a computational shortcut: it sorts the levels by the observed mean
response, and considers only the L–1 splits between the sorted levels.

Predicting Responses With Classification Trees and
Regression Trees
After creating a tree, you can easily predict responses for new data. Suppose
Xnew is new data that has the same number of columns as the original data
X. To predict the classification or regression based on the tree and the new
data, enter

Ynew = predict(tree,Xnew);

For each row of data in Xnew, predict runs through the decisions in tree and
gives the resulting prediction in the corresponding element of Ynew. For more
information for classification, see the classification predict reference page;
for regression, see the regression predict reference page.

For example, to find the predicted classification of a point at the mean of
the ionosphere data:

load ionosphere % contains X and Y variables
ctree = ClassificationTree.fit(X,Y);
Ynew = predict(ctree,mean(X))

Ynew =
'g'

To find the predicted MPG of a point at the mean of the carsmall data:

load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
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Ynew = predict(rtree,mean(X))

Ynew =
28.7931

Improving Classification Trees and Regression Trees
You can tune trees by setting name-value pairs in ClassificationTree.fit
and RegressionTree.fit. The remainder of this section describes how to
determine the quality of a tree, how to decide which name-value pairs to set,
and how to control the size of a tree:

• “Examining Resubstitution Error” on page 13-33

• “Cross Validation” on page 13-34

• “Control Depth or “Leafiness”” on page 13-34

• “Pruning” on page 13-38

Examining Resubstitution Error
Resubstitution error is the difference between the response training data and
the predictions the tree makes of the response based on the input training
data. If the resubstitution error is high, you cannot expect the predictions
of the tree to be good. However, having low resubstitution error does not
guarantee good predictions for new data. Resubstitution error is often an
overly optimistic estimate of the predictive error on new data.

Example: Resubstitution Error of a Classification Tree. Examine the
resubstitution error of a default classification tree for the Fisher iris data:

load fisheriris
ctree = ClassificationTree.fit(meas,species);
resuberror = resubLoss(ctree)

resuberror =
0.0200

The tree classifies nearly all the Fisher iris data correctly.
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Cross Validation
To get a better sense of the predictive accuracy of your tree for new data,
cross validate the tree. By default, cross validation splits the training data
into 10 parts at random. It trains 10 new trees, each one on nine parts of
the data. It then examines the predictive accuracy of each new tree on the
data not included in training that tree. This method gives a good estimate
of the predictive accuracy of the resulting tree, since it tests the new trees
on new data.

Example: Cross Validating a Regression Tree. Examine the
resubstitution and cross-validation accuracy of a regression tree for predicting
mileage based on the carsmall data:

load carsmall
X = [Acceleration Displacement Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
resuberror = resubLoss(rtree)

resuberror =
4.7188

The resubstitution loss for a regression tree is the mean-squared error. The
resulting value indicates that a typical predictive error for the tree is about
the square root of 4.7, or a bit over 2.

Now calculate the error by cross validating the tree:

cvrtree = crossval(rtree);
cvloss = kfoldLoss(cvrtree)

cvloss =
23.4808

The cross-validated loss is almost 25, meaning a typical predictive error for
the tree on new data is about 5. This demonstrates that cross-validated loss
is usually higher than simple resubstitution loss.

Control Depth or “Leafiness”
When you grow a decision tree, consider its simplicity and predictive power. A
deep tree with many leaves is usually highly accurate on the training data.
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However, the tree is not guaranteed to show a comparable accuracy on an
independent test set. A leafy tree tends to overtrain, and its test accuracy
is often far less than its training (resubstitution) accuracy. In contrast, a
shallow tree does not attain high training accuracy. But a shallow tree can be
more robust — its training accuracy could be close to that of a representative
test set. Also, a shallow tree is easy to interpret.

If you do not have enough data for training and test, estimate tree accuracy
by cross validation.

For an alternative method of controlling the tree depth, see “Pruning” on
page 13-38.

Example: Selecting Appropriate Tree Depth. This example shows how to
control the depth of a decision tree, and how to choose an appropriate depth.

1 Load the ionosphere data:

load ionosphere

2 Generate minimum leaf occupancies for classification trees from 10 to 100,
spaced exponentially apart:

leafs = logspace(1,2,10);

3 Create cross validated classification trees for the ionosphere data with
minimum leaf occupancies from leafs:

N = numel(leafs);
err = zeros(N,1);
for n=1:N

t = ClassificationTree.fit(X,Y,'crossval','on',...
'minleaf',leafs(n));

err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('Min Leaf Size');
ylabel('cross-validated error');
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The best leaf size is between about 20 and 50 observations per leaf.

4 Compare the near-optimal tree with at least 40 observations per leaf
with the default tree, which uses 10 observations per parent node and 1
observation per leaf.

DefaultTree = ClassificationTree.fit(X,Y);
view(DefaultTree,'mode','graph')
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OptimalTree = ClassificationTree.fit(X,Y,'minleaf',40);
view(OptimalTree,'mode','graph')

resubOpt = resubLoss(OptimalTree);
lossOpt = kfoldLoss(crossval(OptimalTree));
resubDefault = resubLoss(DefaultTree);
lossDefault = kfoldLoss(crossval(DefaultTree));
resubOpt,resubDefault,lossOpt,lossDefault

resubOpt =
0.0883
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resubDefault =
0.0114

lossOpt =
0.1054

lossDefault =
0.1026

The near-optimal tree is much smaller and gives a much higher
resubstitution error. Yet it gives similar accuracy for cross-validated data.

Pruning
Pruning optimizes tree depth (leafiness) is by merging leaves on the same tree
branch. “Control Depth or “Leafiness”” on page 13-34 describes one method
for selecting the optimal depth for a tree. Unlike in that section, you do not
need to grow a new tree for every node size. Instead, grow a deep tree, and
prune it to the level you choose.

Prune a tree at the command line using the prune method (classification) or
prune method (regression). Alternatively, prune a tree interactively with
the tree viewer:

view(tree,'mode','graph')

To prune a tree, the tree must contain a pruning sequence. By default, both
ClassificationTree.fit and RegressionTree.fit calculate a pruning
sequence for a tree during construction. If you construct a tree with the
'Prune' name-value pair set to 'off', or if you prune a tree to a smaller level,
the tree does not contain the full pruning sequence. Generate the full pruning
sequence with the prune method (classification) or prune method (regression).

Example: Pruning a Classification Tree. This example creates a
classification tree for the ionosphere data, and prunes it to a good level.

1 Load the ionosphere data:

load ionosphere
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2 Construct a default classification tree for the data:

tree = ClassificationTree.fit(X,Y);

3 View the tree in the interactive viewer:

view(tree,'mode','graph')
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4 Find the optimal pruning level by minimizing cross-validated loss:

[~,~,~,bestlevel] = cvLoss(tree,...
'subtrees','all','treesize','min')

bestlevel =
6

5 Prune the tree to level 6 in the interactive viewer:
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The pruned tree is the same as the near-optimal tree in “Example:
Selecting Appropriate Tree Depth” on page 13-35.

6 Set 'treesize' to 'se' (default) to find the maximal pruning level for
which the tree error does not exceed the error from the best level plus one
standard deviation:
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[~,~,~,bestlevel] = cvLoss(tree,'subtrees','all')

bestlevel =
6

In this case the level is the same for either setting of 'treesize'.

7 Prune the tree to use it for other purposes:

tree = prune(tree,'Level',6);
view(tree,'mode','graph')

Alternative: classregtree
The ClassificationTree and RegressionTree classes are new in MATLAB
R2011a. Previously, you represented both classification trees and regression
trees with a classregtree object. The new classes provide all the
functionality of the classregtree class, and are more convenient when used
in conjunction with “Ensemble Methods” on page 13-50.

Before the classregtree class, there were treefit, treedisp, treeval,
treeprune, and treetest functions. Statistics Toolbox software maintains
these only for backward compatibility.
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Example: Creating Classification Trees Using classregtree
This example uses Fisher’s iris data in fisheriris.mat to create a
classification tree for predicting species using measurements of sepal length,
sepal width, petal length, and petal width as predictors. Here, the predictors
are continuous and the response is categorical.

1 Load the data and use the classregtree constructor of the classregtree
class to create the classification tree:

load fisheriris

t = classregtree(meas,species,...

'names',{'SL' 'SW' 'PL' 'PW'})

t =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor

7 class = virginica

8 class = versicolor

9 class = virginica

t is a classregtree object and can be operated on with any class method.

2 Use the typemethod of the classregtree class to show the type of the tree:

treetype = type(t)
treetype =
classification

classregtree creates a classification tree because species is a cell array
of strings, and the response is assumed to be categorical.

3 To view the tree, use the view method of the classregtree class:

view(t)
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The tree predicts the response values at the circular leaf nodes based on a
series of questions about the iris at the triangular branching nodes. A true
answer to any question follows the branch to the left. A false follows the
branch to the right.

4 The tree does not use sepal measurements for predicting species. These
can go unmeasured in new data, and you can enter them as NaN values for
predictions. For example, to use the tree to predict the species of an iris
with petal length 4.8 and petal width 1.6, type:

predicted = t([NaN NaN 4.8 1.6])
predicted =

'versicolor'
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The object allows for functional evaluation, of the form t(X). This is a
shorthand way of calling the eval method of the classregtree class.
The predicted species is the left leaf node at the bottom of the tree in the
previous view.

5 You can use a variety of methods of the classregtree class, such as cutvar
and cuttype to get more information about the split at node 6 that makes
the final distinction between versicolor and virginica:

var6 = cutvar(t,6) % What variable determines the split?
var6 =

'PW'

type6 = cuttype(t,6) % What type of split is it?
type6 =

'continuous'

6 Classification trees fit the original (training) data well, but can do a poor
job of classifying new values. Lower branches, especially, can be strongly
affected by outliers. A simpler tree often avoids overfitting. You can use
the prune method of the classregtree class to find the next largest tree
from an optimal pruning sequence:

pruned = prune(t,'level',1)

pruned =

Decision tree for classification

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa

2 class = setosa

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor

4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor

5 class = virginica

6 class = versicolor

7 class = virginica

view(pruned)
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To find the best classification tree, employing the techniques of resubstitution
and cross validation, use the test method of the classregtree class.

Example: Creating Regression Trees Using classregtree
This example uses the data on cars in carsmall.mat to create a regression
tree for predicting mileage using measurements of weight and the number of
cylinders as predictors. Here, one predictor (weight) is continuous and the
other (cylinders) is categorical. The response (mileage) is continuous.

1 Load the data and use the classregtree constructor of the classregtree
class to create the regression tree:
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load carsmall

t = classregtree([Weight, Cylinders],MPG,...

'cat',2,'splitmin',20,...

'names',{'W','C'})

t =

Decision tree for regression

1 if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181

2 if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931

3 if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417

4 if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741

5 if C=6 then node 10 elseif C=4 then node 11 else 25.9355

6 if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963

7 fit = 19.2778

8 fit = 33.3056

9 fit = 29.6111

10 fit = 23.25

11 if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143

12 if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696

13 fit = 11

14 fit = 27.6389

15 fit = 24.6667

16 fit = 16.6

17 fit = 14.3889

t is a classregtree object and can be operated on with any of the methods
of the class.

2 Use the typemethod of the classregtree class to show the type of the tree:

treetype = type(t)
treetype =
regression

classregtree creates a regression tree because MPG is a numerical vector,
and the response is assumed to be continuous.

3 To view the tree, use the view method of the classregtree class:
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view(t)

The tree predicts the response values at the circular leaf nodes based on a
series of questions about the car at the triangular branching nodes. A true
answer to any question follows the branch to the left; a false follows the
branch to the right.

4 Use the tree to predict the mileage for a 2000-pound car with either 4,
6, or 8 cylinders:

mileage2K = t([2000 4; 2000 6; 2000 8])
mileage2K =

33.3056
33.3056
33.3056

The object allows for functional evaluation, of the form t(X). This is a
shorthand way of calling the eval method of the classregtree class.

5 The predicted responses computed above are all the same. This is because
they follow a series of splits in the tree that depend only on weight,
terminating at the left-most leaf node in the view above. A 4000-pound
car, following the right branch from the top of the tree, leads to different
predicted responses:

mileage4K = t([4000 4; 4000 6; 4000 8])

13-48



Classification Trees and Regression Trees

mileage4K =
19.2778
19.2778
14.3889

6 You can use a variety of other methods of the classregtree class, such as
cutvar, cuttype, and cutcategories, to get more information about the
split at node 3 that distinguishes the 8-cylinder car:

var3 = cutvar(t,3) % What variable determines the split?
var3 =

'C'

type3 = cuttype(t,3) % What type of split is it?
type3 =

'categorical'

c = cutcategories(t,3) % Which classes are sent to the left
% child node, and which to the right?

c =
[8] [1x2 double]

c{1}
ans =

8
c{2}
ans =

4 6

Regression trees fit the original (training) data well, but may do a poor
job of predicting new values. Lower branches, especially, may be strongly
affected by outliers. A simpler tree often avoids over-fitting. To find the
best regression tree, employing the techniques of resubstitution and cross
validation, use the test method of the classregtree class.
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Ensemble Methods

In this section...

“Framework for Ensemble Learning” on page 13-50

“Basic Ensemble Examples” on page 13-57

“Test Ensemble Quality” on page 13-59

“Classification: Imbalanced Data or Unequal Misclassification Costs” on
page 13-64

“Example: Classification with Many Categorical Levels” on page 13-71

“Example: Surrogate Splits” on page 13-76

“Ensemble Regularization” on page 13-81

“Example: Tuning RobustBoost” on page 13-92

“TreeBagger Examples” on page 13-96

“Ensemble Algorithms” on page 13-118

Framework for Ensemble Learning
You have several methods for melding results from many weak learners into
one high-quality ensemble predictor. These methods follow, as closely as
possible, the same syntax, so you can try different methods with only minor
changes in your commands.

Create an ensemble with the fitensemble function. The syntax of
fitensemble is

ens = fitensemble(X,Y,model,numberens,learners)

• X is the matrix of data, each row containing one observation, each column
contains one predictor variable.

• Y is the responses, with the same number of observations as rows in X.

• model is a string naming the type of ensemble.

• numberens is the number of weak learners in ens from each element of
learners. So the number of elements in ens is numberens times the
number of elements in learners.

13-50



Ensemble Methods

• learners is a string naming a weak learner, is a weak learner template,
or is a cell array of such templates.

Pictorially, here is the information you need to create an ensemble:

Data matrix X

Responses Y

Ensemble Method

Number of Weak Learners in Ensemble

Weak Learner(s)

fitensemble ensemble

For all classification or nonlinear regression problems, follow these steps
to create an ensemble:

1 “Put Predictor Data in a Matrix” on page 13-51

2 “Prepare Response Data” on page 13-52

3 “Choose an Applicable Ensemble Method” on page 13-53

4 “Set the Number of Ensemble Members” on page 13-54

5 “Prepare the Weak Learners” on page 13-54

6 “Call fitensemble” on page 13-55

Put Predictor Data in a Matrix
All supervised learning methods start with a data matrix, usually called X in
this documentation. Each row of X represents one observation. Each column
of X represents one variable, or predictor.

Currently, you can use only decision trees as learners for ensembles. Decision
trees can handle NaN values in X. Such values are called “missing.” If you have
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some missing values in a row of X, a decision tree finds optimal splits using
nonmissing values only. If an entire row consists of NaN, fitensemble ignores
that row. If you have data with a large fraction of missing values in X, use
surrogate decision splits. For examples of surrogate splits, see “Example:
Unequal Classification Costs” on page 13-66 and “Example: Surrogate Splits”
on page 13-76.

Prepare Response Data
You can use a wide variety of data types for response data.

• For regression ensembles, Y must be a numeric vector with the same
number of elements as the number of rows of X.

• For classification ensembles, Y can be any of the following data types. The
table also contains the method of including missing entries.

Data Type Missing Entry

Numeric vector NaN

Categorical vector <undefined>

Character array Row of spaces

Cell array of strings ''

Logical vector (not possible to represent)

fitensemble ignores missing values in Y when creating an ensemble.

For example, suppose your response data consists of three observations in the
following order: true, false, true. You could express Y as:

• [1;0;1] (numeric vector)

• nominal({'true','false','true'}) (categorical vector)

• [true;false;true] (logical vector)

• ['true ';'false';'true '] (character array, padded with spaces so
each row has the same length)

• {'true','false','true'} (cell array of strings)
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Use whichever data type is most convenient. Since you cannot represent
missing values with logical entries, do not use logical entries when you have
missing values in Y.

Choose an Applicable Ensemble Method
fitensemble uses one of these algorithms to create an ensemble.

• For classification with two classes:

- 'AdaBoostM1'

- 'LogitBoost'

- 'GentleBoost'

- 'RobustBoost'

- 'Bag'

• For classification with three or more classes:

- 'AdaBoostM2'

- 'Bag'

• For regression:

- 'LSBoost'

- 'Bag'

Since 'Bag' applies to all methods, indicate whether you want a classifier
or regressor with the type name-value pair set to 'classification' or
'regression'.

For descriptions of the various algorithms, and aid in choosing which applies
to your data, see “Ensemble Algorithms” on page 13-118. The following table
gives characteristics of the various algorithms. In the table titles:

• Regress. — Regression

• Classif. — Classification

• Preds. — Predictors

• Estim. — Estimate
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• Gen. — Generalization

• Pred. — Prediction

• Mem. — Memory usage

Algorithm Regress. Binary
Classif.

Binary
Classif.
Multi-
Level
Preds.

Classif.
3+
Classes

Auto
Estim.
Gen.
Error

Fast
Train

Fast
Pred.

Low
Mem.

Bag × × × ×

AdaBoostM1 × × × ×

AdaBoostM2 × × × ×

LogitBoost × × × × ×

GentleBoost × × × × ×

RobustBoost × × ×

LSBoost × × × ×

Set the Number of Ensemble Members
Choosing the size of an ensemble involves balancing speed and accuracy.

• Larger ensembles take longer to train and to generate predictions.

• Some ensemble algorithms can become overtrained (inaccurate) when too
large.

To set an appropriate size, consider starting with several dozen to several
hundred members in an ensemble, training the ensemble, and then checking
the ensemble quality, as in “Example: Test Ensemble Quality” on page 13-59.
If it appears that you need more members, add them using the resumemethod
(classification) or the resume method (regression). Repeat until adding more
members does not improve ensemble quality.

Prepare the Weak Learners
Currently there is one built-in weak learner type: 'Tree'. To create an
ensemble with the default tree options, pass in 'Tree' as the weak learner.
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To set a nondefault classification tree learner, create a classification tree
template with the ClassificationTree.template method.

Similarly, to set a nondefault regression tree learner, create a regression tree
template with the RegressionTree.template method.

While you can give fitensemble a cell array of learner templates, the most
common usage is to give just one weak learner template.

For examples using a template, see “Example: Unequal Classification Costs”
on page 13-66 and “Example: Surrogate Splits” on page 13-76.

Common Settings for Weak Learners.

• The depth of the weak learner tree makes a difference for training time,
memory usage, and predictive accuracy. You control the depth with two
parameters:

- MinLeaf — Each leaf has at least MinLeaf observations. Set small
values of MinLeaf to get a deep tree.

- MinParent — Each branch node in the tree has at least MinParent
observations. Set small values of MinParent to get a deep tree.

If you supply both MinParent and MinLeaf, the learner uses the setting
that gives larger leaves:

MinParent = max(MinParent,2*MinLeaf)

• Surrogate— Grow decision trees with surrogate splits when Surrogate is
'on'. Use surrogate splits when your data has missing values.

Note Surrogate splits cause training to be slower and use more memory.

Call fitensemble
The syntax of fitensemble is

ens = fitensemble(X,Y,model,numberens,learners)
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• X is the matrix of data. Each row contains one observation, and each
column contains one predictor variable.

• Y is the responses, with the same number of observations as rows in X.

• model is a string naming the type of ensemble.

• numberens is the number of weak learners in ens from each element of
learners. So the number of elements in ens is numberens times the
number of elements in learners.

• learners is a string naming a weak learner, a weak learner template, or a
cell array of such strings and templates.

The result of fitensemble is an ensemble object, suitable for making
predictions on new data. For a basic example of creating a classification
ensemble, see “Creating a Classification Ensemble” on page 13-57. For a
basic example of creating a regression ensemble, see “Creating a Regression
Ensemble” on page 13-58.

Where to Set Name-Value Pairs. There are several name-value pairs
you can pass to fitensemble, and several that apply to the weak learners
(ClassificationTree.template and RegressionTree.template). To
determine which option (name-value pair) is appropriate, the ensemble or
the weak learner:

• Use template name-value pairs to control the characteristics of the weak
learners.

• Use fitensemble name-value pairs to control the ensemble as a whole,
either for algorithms or for structure.

For example, to have an ensemble of boosted classification trees with each tree
deeper than the default, set the ClassificationTree.template name-value
pairs (MinLeaf and MinParent) to smaller values than the defaults. This
causes the trees to be leafier (deeper).

To name the predictors in the ensemble (part of the structure of the ensemble),
use the PredictorNames name-value pair in fitensemble.
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Basic Ensemble Examples

Creating a Classification Ensemble
Create a classification ensemble for the Fisher iris data, and use it to predict
the classification of a flower with average measurements.

1 Load the data:

load fisheriris

2 The predictor data X is the meas matrix.

3 The response data Y is the species cell array.

4 The only boosted classification ensemble for three or more classes is
'AdaBoostM2'.

5 For this example, arbitrarily take an ensemble of 100 trees.

6 Use a default tree template.

7 Create the ensemble:

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree')

ens =
classreg.learning.classif.ClassificationEnsemble:

PredictorNames: {'x1' 'x2' 'x3' 'x4'}
CategoricalPredictors: []

ResponseName: 'Y'
ClassNames: {'setosa' 'versicolor' 'virginica'}

ScoreTransform: 'none'
NObservations: 150

NTrained: 100
Method: 'AdaBoostM2'

LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]

FitInfo: [100x1 double]
FitInfoDescription: [2x83 char]

8 Predict the classification of a flower with average measurements:
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flower = predict(ens,mean(meas))

flower =
'versicolor'

Creating a Regression Ensemble
Create a regression ensemble to predict mileage of cars based on their
horsepower and weight, trained on the carsmall data. Use the resulting
ensemble to predict the mileage of a car with 150 horsepower weighing 2750
lbs.

1 Load the data:

load carsmall

2 Prepare the input data.

X = [Horsepower Weight];

3 The response data Y is MPG.

4 The only boosted regression ensemble type is 'LSBoost'.

5 For this example, arbitrarily take an ensemble of 100 trees.

6 Use a default tree template.

7 Create the ensemble:

ens = fitensemble(X,MPG,'LSBoost',100,'Tree')

ens =
classreg.learning.regr.RegressionEnsemble:

PredictorNames: {'x1' 'x2'}
CategoricalPredictors: []

ResponseName: 'Y'
ResponseTransform: 'none'

NObservations: 94
NTrained: 100

Method: 'LSBoost'
LearnerNames: {'Tree'}
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ReasonForTermination: [1x77 char]
FitInfo: [100x1 double]

FitInfoDescription: [2x83 char]
Regularization: []

8 Predict the mileage of a car with 150 horsepower weighing 2750 lbs:

mileage = ens.predict([150 2750])

mileage =
22.6735

Test Ensemble Quality
Usually you cannot evaluate the predictive quality of an ensemble based on
its performance on training data. Ensembles tend to “overtrain,” meaning
they produce overly optimistic estimates of their predictive power. This
means the result of resubLoss for classification (resubLoss for regression)
usually indicates lower error than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:

• Evaluate the ensemble on an independent test set (useful when you have a
lot of training data).

• Evaluate the ensemble by cross validation (useful when you don’t have a
lot of training data).

• Evaluate the ensemble on out-of-bag data (useful when you create a bagged
ensemble with fitensemble).

Example: Test Ensemble Quality
This example uses a bagged ensemble so it can use all three methods of
evaluating ensemble quality.

1 Generate an artificial dataset with 20 predictors. Each entry is a random
number from 0 to 1. The initial classification:

Y = 1 when X(1) + X(2) + X(3) + X(4) + X(5) > 2.5
Y = 0 otherwise.
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rng(1,'twister') % for reproducibility
X = rand(2000,20);
Y = sum(X(:,1:5),2) > 2.5;

In addition, to add noise to the results, randomly switch 10% of the
classifications:

idx = randsample(2000,200);
Y(idx) = ~Y(idx);

2 Independent Test Set

Create independent training and test sets of data. Use 70% of the data for
a training set by calling cvpartition with the holdout option:

cvpart = cvpartition(Y,'holdout',0.3);
Xtrain = X(training(cvpart),:);
Ytrain = Y(training(cvpart),:);
Xtest = X(test(cvpart),:);
Ytest = Y(test(cvpart),:);

3 Create a bagged classification ensemble of 200 trees from the training data:

bag = fitensemble(Xtrain,Ytrain,'Bag',200,'Tree',...
'type','classification')

bag =

classreg.learning.classif.ClassificationBaggedEnsemble:
PredictorNames: {1x20 cell}

CategoricalPredictors: []
ResponseName: 'Y'

ClassNames: [0 1]
ScoreTransform: 'none'
NObservations: 1400

NTrained: 200
Method: 'Bag'

LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]

FitInfo: []
FitInfoDescription: 'None'
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FResample: 1
Replace: 1

UseObsForLearner: [1400x200 logical]

4 Plot the loss (misclassification) of the test data as a function of the number
of trained trees in the ensemble:

figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Test classification error');

5 Cross validation

Generate a five-fold cross-validated bagged ensemble:

cv = fitensemble(X,Y,'Bag',200,'Tree',...
'type','classification','kfold',5)
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cv =

classreg.learning.partition.ClassificationPartitionedEnsemble:
CrossValidatedModel: 'Bag'

PredictorNames: {1x20 cell}
CategoricalPredictors: []

ResponseName: 'Y'
NObservations: 2000

KFold: 5
Partition: [1x1 cvpartition]

NTrainedPerFold: [200 200 200 200 200]
ClassNames: [0 1]

ScoreTransform: 'none'

6 Examine the cross validation loss as a function of the number of trees in
the ensemble:

figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Location','NE');
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Cross validating gives comparable estimates to those of the independent
set.

7 Out-of-Bag Estimates

Generate the loss curve for out-of-bag estimates, and plot it along with
the other curves:

figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
plot(oobLoss(bag,'mode','cumulative'),'k--');
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Out of bag','Location','NE');
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The out-of-bag estimates are again comparable to those of the other
methods.

Classification: Imbalanced Data or Unequal
Misclassification Costs
In many real-world applications, you might prefer to treat classes in your
data asymmetrically. For example, you might have data with many more
observations of one class than of any other. Or you might work on a problem in
which misclassifying observations of one class has more severe consequences
than misclassifying observations of another class. In such situations, you can
use two optional parameters for fitensemble: prior and cost.

By using prior, you set prior class probabilities (that is, class probabilities
used for training). Use this option if some classes are under- or
overrepresented in your training set. For example, you might obtain your
training data by simulation. Because simulating class A is more expensive
than class B, you opt to generate fewer observations of class A and more
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observations of class B. You expect, however, that class A and class B are mixed
in a different proportion in the real world. In this case, set prior probabilities
for class A and B approximately to the values you expect to observe in the real
world. fitensemble normalizes prior probabilities to make them add up to 1;
multiplying all prior probabilities by the same positive factor does not affect
the result of classification.

If classes are adequately represented in the training data but you want to
treat them asymmetrically, use the cost parameter. Suppose you want to
classify benign and malignant tumors in cancer patients. Failure to identify
a malignant tumor (false negative) has far more severe consequences than
misidentifying benign as malignant (false positive). You should assign high
cost to misidentifying malignant as benign and low cost to misidentifying
benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative
elements. Element C(i,j) of this matrix is the cost of classifying an
observation into class j if the true class is i. The diagonal elements C(i,i) of
the cost matrix must be 0. For the example above, you can choose malignant
tumor to be class 1 and benign tumor to be class 2. Then you can set the
cost matrix to

0
1 0

c









where c > 1 is the cost of misidentifying a malignant tumor as benign. Costs
are relative—multiplying all costs by the same positive factor does not affect
the result of classification.

If you have only two classes, fitensemble adjusts their prior probabilities

using P C Pi ij i for class i = 1,2 and j ≠ i. Pi are prior probabilities either
passed into fitensemble or computed from class frequencies in the training

data, and Pi are adjusted prior probabilities. Then fitensemble uses the
default cost matrix

0 1
1 0
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and these adjusted probabilities for training its weak learners. Manipulating
the cost matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, fitensemble also converts input costs
into adjusted prior probabilities. This conversion is more complex. First,
fitensemble attempts to solve a matrix equation described in Zhou and
Liu [15]. If it fails to find a solution, fitensemble applies the “average
cost” adjustment described in Breiman et al. [5]. For more information, see
.Zadrozny, Langford, and Abe [14]

Example: Unequal Classification Costs
This example uses data on patients with hepatitis to see if they
live or die as a result of the disease. The data is described at
http://archive.ics.uci.edu/ml/datasets/Hepatitis.

1 Load the data into a file named hepatitis.txt:

s = urlread(['http://archive.ics.uci.edu/ml/' ...
'machine-learning-databases/hepatitis/hepatitis.data']);

fid = fopen('hepatitis.txt','w');
fwrite(fid,s);
fclose(fid);

2 Load the data hepatitis.txt into a dataset, with variable names
describing the fields in the data:

VarNames = {'die_or_live' 'age' 'sex' 'steroid' 'antivirals' 'fatigue' ...
'malaise' 'anorexia' 'liver_big' 'liver_firm' 'spleen_palpable' ...
'spiders' 'ascites' 'varices' 'bilirubin' 'alk_phosphate' 'sgot' ...
'albumin' 'protime' 'histology'};

ds = dataset('file','hepatitis.txt','VarNames',VarNames,...
'Delimiter',',','ReadVarNames',false,'TreatAsEmpty','?',...
'Format','%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f');

ds is a dataset with 155 observations and 20 variables:

size(ds)

ans =
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155 20

3 Convert the data in the dataset to the format for ensembles: a numeric
matrix of predictors, and a cell array with outcome names: 'Die' or
'Live'. The first field in the dataset has the outcomes.

X = double(ds(:,2:end));
ClassNames = {'Die' 'Live'};
Y = ClassNames(ds.die_or_live);

4 Inspect the data for missing values:

figure;
bar(sum(isnan(X),1)/size(X,1));
xlabel('Predictor');
ylabel('Fraction of missing values');
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Most predictors have missing values, and one has nearly 45% of missing
values. Therefore, use decision trees with surrogate splits for better
accuracy. Because the dataset is small, training time with surrogate splits
should be tolerable.

5 Create a classification tree template that uses surrogate splits:

rng(0,'twister') % for reproducibility
t = ClassificationTree.template('surrogate','on');

6 Examine the data or the description of the data to see which predictors
are categorical:

X(1:5,:)

ans =

Columns 1 through 6

30.0000 2.0000 1.0000 2.0000 2.0000 2.0000
50.0000 1.0000 1.0000 2.0000 1.0000 2.0000
78.0000 1.0000 2.0000 2.0000 1.0000 2.0000
31.0000 1.0000 NaN 1.0000 2.0000 2.0000
34.0000 1.0000 2.0000 2.0000 2.0000 2.0000

Columns 7 through 12

2.0000 1.0000 2.0000 2.0000 2.0000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

Columns 13 through 18

2.0000 1.0000 85.0000 18.0000 4.0000 NaN
2.0000 0.9000 135.0000 42.0000 3.5000 NaN
2.0000 0.7000 96.0000 32.0000 4.0000 NaN
2.0000 0.7000 46.0000 52.0000 4.0000 80.0000
2.0000 1.0000 NaN 200.0000 4.0000 NaN
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Column 19

1.0000
1.0000
1.0000
1.0000
1.0000

It appears that predictors 2 through 13 are categorical, as well as predictor
19. You can confirm this inference with the dataset description at
http://archive.ics.uci.edu/ml/datasets/Hepatitis.

7 List the categorical variables:

ncat = [2:13,19];

8 Create a cross-validated ensemble using 200 learners and the GentleBoost
algorithm:

a = fitensemble(X,Y,'GentleBoost',200,t,...
'PredictorNames',VarNames(2:end),'LearnRate',0.1,...
'CategoricalPredictors',ncat,'kfold',5);

figure;
plot(kfoldLoss(a,'mode','cumulative','lossfun','exponential'));
xlabel('Number of trees');
ylabel('Cross-validated exponential loss');
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9 Inspect the confusion matrix to see which people the ensemble predicts
correctly:

[Yfit,Sfit] = kfoldPredict(a); %
confusionmat(Y,Yfit,'order',ClassNames)

ans =
16 16
10 113

Of the 123 people who live, the ensemble predicts correctly that 113 will
live. But for the 32 people who die of hepatitis, the ensemble only predicts
correctly that half will die of hepatitis.

10 There are two types of error in the predictions of the ensemble:

• Predicting that the patient lives, but the patient dies
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• Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second.
Make a new classification cost matrix that reflects this belief:

cost.ClassNames = ClassNames;
cost.ClassificationCosts = [0 5; 1 0];

11 Create a new cross-validated ensemble using cost as misclassification
cost, and inspect the resulting confusion matrix:

aC = fitensemble(X,Y,'GentleBoost',200,t,...
'PredictorNames',VarNames(2:end),'LearnRate',0.1,...
'CategoricalPredictors',ncat,'kfold',5,...
'cost',cost);

[YfitC,SfitC] = kfoldPredict(aC);
confusionmat(Y,YfitC,'order',ClassNames)

ans =
19 13
9 114

As expected, the new ensemble does a better job classifying the people
who die. Somewhat surprisingly, the new ensemble also does a better
job classifying the people who live, though the result is not statistically
significantly better. The results of the cross validation are random, so this
result is simply a statistical fluctuation. The result seems to indicate that
the classification of people who live is not very sensitive to the cost.

Example: Classification with Many Categorical Levels
Generally, you cannot use classification with more than 31 levels in any
categorical predictor. However, two boosting algorithms can classify data
with many categorical levels: LogitBoost and GentleBoost. For details, see
“LogitBoost” on page 13-125 and “GentleBoost” on page 13-126.

This example uses demographic data from the U.S. Census, available at
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/.
The objective of the researchers who posted the data is predicting whether an
individual makes more than $50,000/year, based on a set of characteristics.
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You can see details of the data, including predictor names, in the adult.names
file at the site.

1 Load the 'adult.data' file from the UCI Machine Learning Repository:

s = urlread(['http://archive.ics.uci.edu/ml/' ...
'machine-learning-databases/adult/adult.data']);

2 'adult.data' represents missing data as '?'. Replace instances of
missing data with the blank string '':

s = strrep(s,'?','');

3 Put the data into a MATLAB dataset array:

fid = fopen('adult.txt','w');
fwrite(fid,s);
fclose(fid);
clear s;
VarNames = {'age' 'workclass' 'fnlwgt' 'education' 'education_num' ...

'marital_status' 'occupation' 'relationship' 'race' ...
'sex' 'capital_gain' 'capital_loss' ...
'hours_per_week' 'native_country' 'income'};

ds = dataset('file','adult.txt','VarNames',VarNames,...
'Delimiter',',','ReadVarNames',false,'Format',...

'%u%s%u%s%u%s%s%s%s%s%u%u%u%s%s');
cat = ~datasetfun(@isnumeric,ds(:,1:end-1)); % Logical indices
% of categorical variables
catcol = find(cat); % indices of categorical variables

4 Many predictors in the data are categorical. Convert those fields in the
dataset array to nominal:

ds.workclass = nominal(ds.workclass);
ds.education = nominal(ds.education);
ds.marital_status = nominal(ds.marital_status);
ds.occupation = nominal(ds.occupation);
ds.relationship = nominal(ds.relationship);
ds.race = nominal(ds.race);
ds.sex = nominal(ds.sex);
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ds.native_country = nominal(ds.native_country);
ds.income = nominal(ds.income);

5 Convert the dataset array into numerical variables for fitensemble:

X = double(ds(:,1:end-1));
Y = ds.income;

6 Some variables have many levels. Plot the number of levels of each
predictor:

ncat = zeros(1,numel(catcol));
for c=1:numel(catcol)

[~,gn] = grp2idx(X(:,catcol(c)));
ncat(c) = numel(gn);

end
figure;
bar(catcol,ncat);
xlabel('Predictor');
ylabel('Number of categories');

Predictor 14 ('native_country') has more than 40 categorical levels. This
is too many levels for any method except LogitBoost and GentleBoost.
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7 Create classification ensembles using both LogitBoost and GentleBoost:

lb = fitensemble(X,Y,'LogitBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');

gb = fitensemble(X,Y,'GentleBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');

8 Examine the resubstitution error for the two ensembles:

figure;
plot(resubLoss(lb,'mode','cumulative'));
hold on
plot(resubLoss(gb,'mode','cumulative'),'r--');
hold off
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('LogitBoost','GentleBoost','Location','NE');
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The algorithms have similar resubstitution error.

9 Estimate the generalization error for the two algorithms by cross validation.

lbcv = crossval(lb,'kfold',5);
gbcv = crossval(gb,'kfold',5);
figure;
plot(kfoldLoss(lbcv,'mode','cumulative'));
hold on
plot(kfoldLoss(gbcv,'mode','cumulative'),'r--');
hold off
xlabel('Number of trees');
ylabel('Cross-validated error');
legend('LogitBoost','GentleBoost','Location','NE');

13-75



13 Supervised Learning

The cross-validated loss is nearly the same as the resubstitution error.

Example: Surrogate Splits
When you have missing data, trees and ensembles of trees give better
predictions when they include surrogate splits. Furthermore, estimates of
predictor importance are often different with surrogate splits. Eliminating
unimportant predictors can save time and memory for predictions, and can
make predictions easier to understand.

This example shows the effects of surrogate splits for predictions for data
containing missing entries in both training and test sets. There is a redundant
predictor in the data, which the surrogate split uses to infer missing values.
While the example is artificial, it shows the value of surrogate splits with
missing data.
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1 Generate and plot two different normally-distributed populations, one with
5000 members, one with 10,000 members:

rng(1,'twister') % for reproducibility
N = 5000;
N1 = 2*N; % number in population 1
N2 = N; % number in population 2
mu1 = [-1 -1]/2; % mean of population 1
mu2 = [1 1]/2; % mean of population 2
S1 = [3 -2.5;...

-2.5 3]; % variance of population 1
S2 = [3 2.5;...

2.5 3]; % variance of population 2
X1 = mvnrnd(mu1,S1,N1); % population 1
X2 = mvnrnd(mu2,S2,N2); % population 2
X = [X1; X2]; % total population
Y = ones(N1+N2,1); % label population 1
Y(N1+1:end) = 2; % label population 2

figure
plot(X1(:,1),X1(:,2),'k.','MarkerSize',2)
hold on
plot(X2(:,1),X2(:,2),'rx','MarkerSize',3);
hold off
axis square
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There is a good deal of overlap between the data points. You cannot expect
perfect classification of this data.

2 Make a third predictor that is the same as the first component of X:

X = [X X(:,1)];

3 Remove half the values of predictor 1 at random:

X(rand(size(X(:,1))) < 0.5,1) = NaN;

4 Partition the data into a training set and a test set:

cv = cvpartition(Y,'holdout',0.3); % 30% test data
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Xtrain = X(training(cv),:);
Ytrain = Y(training(cv));
Xtest = X(test(cv),:);
Ytest = Y(test(cv));

5 Create two Bag ensembles: one with surrogate splits, one without. First
create the template for surrogate splits, then train both ensembles:

templS = ClassificationTree.template('surrogate','on');
bag = fitensemble(Xtrain,Ytrain,'Bag',50,'Tree',...

'type','class','nprint',10);

Training Bag...
Grown weak learners: 10
Grown weak learners: 20
Grown weak learners: 30
Grown weak learners: 40
Grown weak learners: 50

bagS = fitensemble(Xtrain,Ytrain,'Bag',50,templS,...
'type','class','nprint',10);

Training Bag...
Grown weak learners: 10
Grown weak learners: 20
Grown weak learners: 30
Grown weak learners: 40
Grown weak learners: 50

6 Examine the accuracy of the two ensembles for predicting the test data:

figure
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold on
plot(loss(bagS,Xtest,Ytest,'mode','cumulative'),'r--');
hold off;
legend('Without surrogate splits','With surrogate splits');
xlabel('Number of trees');
ylabel('Test classification error');
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The ensemble with surrogate splits is obviously more accurate than the
ensemble without surrogate splits.

7 Check the statistical significance of the difference in results with the
McNemar test:

Yfit = predict(bag,Xtest);
YfitS = predict(bagS,Xtest);
N10 = sum(Yfit==Ytest & YfitS~=Ytest);
N01 = sum(Yfit~=Ytest & YfitS==Ytest);
mcnemar = (abs(N10-N01) - 1)^2/(N10+N01);
pval = 1 - chi2cdf(mcnemar,1)

pval =
0

The extremely low p-value indicates that the ensemble with surrogate
splits is better in a statistically significant manner.
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Ensemble Regularization
Regularization is a process of choosing fewer weak learners for an ensemble
in a way that does not diminish predictive performance. Currently you can
regularize regression ensembles.

The regularize method finds an optimal set of learner weights αt that
minimize
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Here

• λ ≥ 0 is a parameter you provide, called the lasso parameter.

• ht is a weak learner in the ensemble trained on N observations with
predictors xn, responses yn, and weights wn.

• g(f,y) = (f – y)2 is the squared error.

The ensemble is regularized on the same (xn,yn,wn) data used for training, so
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is the ensemble resubstitution error (MSE).

If you use λ = 0, regularize finds the weak learner weights by minimizing
the resubstitution MSE. Ensembles tend to overtrain. In other words, the
resubstitution error is typically smaller than the true generalization error.
By making the resubstitution error even smaller, you are likely to make
the ensemble accuracy worse instead of improving it. On the other hand,
positive values of λ push the magnitude of the αt coefficients to 0. This often
improves the generalization error. Of course, if you choose λ too large, all the
optimal coefficients are 0, and the ensemble does not have any accuracy.
Usually you can find an optimal range for λ in which the accuracy of the
regularized ensemble is better or comparable to that of the full ensemble
without regularization.
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A nice feature of lasso regularization is its ability to drive the optimized
coefficients precisely to zero. If a learner’s weight αt is 0, this learner can be
excluded from the regularized ensemble. In the end, you get an ensemble with
improved accuracy and fewer learners.

Example: Regularizing a Regression Ensemble
This example uses data for predicting the insurance risk of a car based on
its many attributes.

1 Load the imports-85 data into the MATLAB workspace:

load imports-85;

2 Look at a description of the data to find the categorical variables and
predictor names:

Description

Description =

1985 Auto Imports Database from the UCI repository

http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names

Variables have been reordered to place variables with numeric values (referred

to as "continuous" on the UCI site) to the left and categorical values to the

right. Specifically, variables 1:16 are: symboling, normalized-losses,

wheel-base, length, width, height, curb-weight, engine-size, bore, stroke,

compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price.

Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style,

drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system.

The objective of this process is to predict the “symboling,” the first variable
in the data, from the other predictors. “symboling” is an integer from
-3 (good insurance risk) to 3 (poor insurance risk). You could use a
classification ensemble to predict this risk instead of a regression ensemble.
As stated in “Steps in Supervised Learning (Machine Learning)” on page
13-2, when you have a choice between regression and classification,
you should try regression first. Furthermore, this example is to show
regularization, which currently works only for regression.

3 Prepare the data for ensemble fitting:
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Y = X(:,1);
X(:,1) = [];
VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...

'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...
'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...
'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...
'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};

catidx = 16:25; % indices of categorical predictors

4 Create a regression ensemble from the data using 300 default trees:

ls = fitensemble(X,Y,'LSBoost',300,'Tree','LearnRate',0.1,...
'PredictorNames',VarNames,'ResponseName','symboling',...
'CategoricalPredictors',catidx)

ls =

classreg.learning.regr.RegressionEnsemble:
PredictorNames: {1x25 cell}

CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
ResponseName: 'symboling'

ResponseTransform: 'none'
NObservations: 205

NTrained: 300
Method: 'LSBoost'

LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]

FitInfo: [300x1 double]
FitInfoDescription: [2x83 char]

Regularization: []

The final line, Regularization, is empty ([]). To regularize the ensemble,
you have to use the regularize method.

5 Cross validate the ensemble, and inspect its loss curve.

cv = crossval(ls,'kfold',5);
figure;
plot(kfoldLoss(cv,'mode','cumulative'));
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xlabel('Number of trees');
ylabel('Cross-validated MSE');

It appears you might obtain satisfactory performance from a smaller
ensemble, perhaps one containing from 50 to 100 trees.

6 Call the regularize method to try to find trees that you can remove from
the ensemble. By default, regularize examines 10 values of the lasso
(Lambda) parameter spaced exponentially.

ls = regularize(ls)

ls =

classreg.learning.regr.RegressionEnsemble:
PredictorNames: {1x25 cell}

CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]

13-84



Ensemble Methods

ResponseName: 'symboling'
ResponseTransform: 'none'

NObservations: 205
NTrained: 300

Method: 'LSBoost'
LearnerNames: {'Tree'}

ReasonForTermination: [1x77 char]
FitInfo: [300x1 double]

FitInfoDescription: [2x83 char]
Regularization: [1x1 struct]

The Regularization property is no longer empty.

7 Plot the resubstitution mean-squared error (MSE) and number of learners
with nonzero weights against the lasso parameter. Separately plot the
value at Lambda=0. Use a logarithmic scale since the values of Lambda are
exponentially spaced.

figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...

ls.Regularization.ResubstitutionMSE(1)],...
'marker','x','markersize',12,'color','b');

r0 = resubLoss(ls);
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...

[r0 r0],'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Resubstitution MSE');
annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble',...

'color','r','FontSize',14,'LineStyle','none');

figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
line([1e-3 1e-3],...

[sum(ls.Regularization.TrainedWeights(:,1)>0) ...
sum(ls.Regularization.TrainedWeights(:,1)>0)],...
'marker','x','markersize',12,'color','b');

line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
[ls.NTrained ls.NTrained],...
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'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Number of learners');
annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...

'color','r','FontSize',14,'LineStyle','none');
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8 The resubstitution MSE values are likely to be overly optimistic. To obtain
more reliable estimates of the error associated with various values of
Lambda, cross validate the ensemble using cvshrink. Plot the resulting
cross validation loss (MSE) and number of learners against Lambda.

rng(0,'Twister') % for reproducibility
[mse,nlearn] = cvshrink(ls,'lambda',ls.Regularization.Lambda,'kfold',5);

figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
hold;
semilogx(ls.Regularization.Lambda,mse,'r--');
hold off;
xlabel('Lambda');
ylabel('Mean squared error');
legend('resubstitution','cross-validation','Location','NW');

13-87



13 Supervised Learning

line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
ls.Regularization.ResubstitutionMSE(1)],...

'marker','x','markersize',12,'color','b');
line([1e-3 1e-3],[mse(1) mse(1)],'marker','o',...

'markersize',12,'color','r','LineStyle','--');

figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
hold;
loglog(ls.Regularization.Lambda,nlearn,'r--');
hold off;
xlabel('Lambda');
ylabel('Number of learners');
legend('resubstitution','cross-validation','Location','NE');
line([1e-3 1e-3],...

[sum(ls.Regularization.TrainedWeights(:,1)>0) ...
sum(ls.Regularization.TrainedWeights(:,1)>0)],...
'marker','x','markersize',12,'color','b');

line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...
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'markersize',12,'color','r','LineStyle','--');
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Examining the cross-validated error shows that the cross-validation MSE
is almost flat for Lambda up to a bit over 1e-2.

9 Examine ls.Regularization.Lambda to find the highest value that gives
MSE in the flat region (up to a bit over 1e-2):

jj = 1:length(ls.Regularization.Lambda);
[jj;ls.Regularization.Lambda]

ans =

Columns 1 through 6

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
0 0.0014 0.0033 0.0077 0.0183 0.0435

Columns 7 through 10
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7.0000 8.0000 9.0000 10.0000
0.1031 0.2446 0.5800 1.3754

Element 5 of ls.Regularization.Lambda has value 0.0183, the largest
in the flat range.

10 Reduce the ensemble size using the shrink method. shrink returns a
compact ensemble with no training data. The generalization error for the
new compact ensemble was already estimated by cross validation in mse(5).

cmp = shrink(ls,'weightcolumn',5)

cmp =

classreg.learning.regr.CompactRegressionEnsemble:
PredictorNames: {1x25 cell}

CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
ResponseName: 'symboling'

ResponseTransform: 'none'
NTrained: 18

There are only 18 trees in the new ensemble, notably reduced from the
300 in ls.

11 Compare the sizes of the ensembles:

sz(1) = whos('cmp'); sz(2) = whos('ls');
[sz(1).bytes sz(2).bytes]

ans =
162270 2791024

The reduced ensemble is about 6% the size of the original.

12 Compare the MSE of the reduced ensemble to that of the original ensemble:

figure;
plot(kfoldLoss(cv,'mode','cumulative'));
hold on
plot(cmp.NTrained,mse(5),'ro','MarkerSize',12);
xlabel('Number of trees');
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ylabel('Cross-validated MSE');
legend('unregularized ensemble','regularized ensemble',...

'Location','NE');
hold off

The reduced ensemble gives low loss while using many fewer trees.

Example: Tuning RobustBoost
The RobustBoost algorithm can make good classification predictions even
when the training data has noise. However, the default RobustBoost
parameters can produce an ensemble that does not predict well. This example
shows one way of tuning the parameters for better predictive accuracy.

1 Generate data with label noise. This example has twenty uniform random
numbers per observation, and classifies the observation as 1 if the sum
of the first five numbers exceeds 2.5 (so is larger than average), and 0
otherwise:
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rng(0,'twister') % for reproducibility
Xtrain = rand(2000,20);
Ytrain = sum(Xtrain(:,1:5),2) > 2.5;

2 To add noise, randomly switch 10% of the classifications:

idx = randsample(2000,200);
Ytrain(idx) = ~Ytrain(idx);

3 Create an ensemble with AdaBoostM1 for comparison purposes:

ada = fitensemble(Xtrain,Ytrain,'AdaBoostM1',...
300,'Tree','LearnRate',0.1);

4 Create an ensemble with RobustBoost. Since the data has 10% incorrect
classification, perhaps an error goal of 15% is reasonable.

rb1 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.15,'RobustMaxMargin',1);

5 Try setting a high value of the error goal, 0.6. You get an error:

rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,'Tree','RobustErrorGoal',0.6)

??? Error using ==> RobustBoost>RobustBoost.RobustBoost at 33
For the chosen values of 'RobustMaxMargin' and 'RobustMarginSigma', you must set
'RobustErrorGoal' to a value between 0 and 0.5.

6 Create an ensemble with an error goal in the allowed range, 0.4:

rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.4);

7 Create an ensemble with very optimistic error goal, 0.01:

rb3 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.01);

8 Compare the resubstitution error of the four ensembles:

figure
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plot(resubLoss(rb1,'mode','cumulative'));
hold on
plot(resubLoss(rb2,'mode','cumulative'),'r--');
plot(resubLoss(rb3,'mode','cumulative'),'k-.');
plot(resubLoss(ada,'mode','cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('ErrorGoal=0.15','ErrorGoal=0.4','ErrorGoal=0.01',...

'AdaBoostM1','Location','NE');

All the RobustBoost curves show lower resubstitution error than the
AdaBoostM1 curve. The error goal of 0.15 curve shows the lowest
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resubstitution error over most of the range. However, its error is rising in
the latter half of the plot, while the other curves are still descending.

9 Generate test data to see the predictive power of the ensembles. Test the
four ensembles:

Xtest = rand(2000,20);
Ytest = sum(Xtest(:,1:5),2) > 2.5;
idx = randsample(2000,200);
Ytest(idx) = ~Ytest(idx);
figure;
plot(loss(rb1,Xtest,Ytest,'mode','cumulative'));
hold on
plot(loss(rb2,Xtest,Ytest,'mode','cumulative'),'r--');
plot(loss(rb3,Xtest,Ytest,'mode','cumulative'),'k-.');
plot(loss(ada,Xtest,Ytest,'mode','cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Test error');
legend('ErrorGoal=0.15','ErrorGoal=0.4','ErrorGoal=0.01',...

'AdaBoostM1','Location','NE');
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The error curve for error goal 0.15 is lowest (best) in the plotted range. The
curve for error goal 0.4 seems to be converging to a similar value for a large
number of trees, but more slowly. AdaBoostM1 has higher error than the
curve for error goal 0.15. The curve for the too-optimistic error goal 0.01
remains substantially higher (worse) than the other algorithms for most
of the plotted range.

TreeBagger Examples
TreeBagger ensembles have more functionality than those constructed with
fitensemble; see TreeBagger Features Not in fitensemble on page 13-120.
Also, some property and method names differ from their fitensemble
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counterparts. This section contains examples of workflow for regression and
classification that use this extra TreeBagger functionality.

Workflow Example: Regression of Insurance Risk Rating for
Car Imports with TreeBagger
In this example, use a database of 1985 car imports with 205 observations,
25 input variables, and one response variable, insurance risk rating, or
“symboling.” The first 15 variables are numeric and the last 10 are categorical.
The symboling index takes integer values from –3 to 3.

1 Load the dataset and split it into predictor and response arrays:

load imports-85;
Y = X(:,1);
X = X(:,2:end);

2 Because bagging uses randomized data drawings, its exact outcome
depends on the initial random seed. To reproduce the exact results in this
example, use the random stream settings:

rng(1945,'twister')

Finding the Optimal Leaf Size. For regression, the general rule is to
set leaf size to 5 and select one third of input features for decision splits at
random. In the following step, verify the optimal leaf size by comparing
mean-squared errors obtained by regression for various leaf sizes. oobError
computes MSE versus the number of grown trees. You must set oobpred to
'on' to obtain out-of-bag predictions later.

leaf = [1 5 10 20 50 100];
col = 'rgbcmy';
figure(1);
for i=1:length(leaf)

b = TreeBagger(50,X,Y,'method','r','oobpred','on',...
'cat',16:25,'minleaf',leaf(i));
plot(oobError(b),col(i));
hold on;

end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error');
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legend({'1' '5' '10' '20' '50' '100'},'Location','NorthEast');
hold off;

The red (leaf size 1) curve gives the lowest MSE values.

Estimating Feature Importance.

1 In practical applications, you typically grow ensembles with hundreds of
trees. Only 50 trees were used in “Finding the Optimal Leaf Size” on page
13-97 for faster processing. Now that you have estimated the optimal leaf
size, grow a larger ensemble with 100 trees and use it for estimation of
feature importance:

b = TreeBagger(100,X,Y,'method','r','oobvarimp','on',...
'cat',16:25,'minleaf',1);

2 Inspect the error curve again to make sure nothing went wrong during
training:

figure(2);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
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Prediction ability should depend more on important features and less on
unimportant features. You can use this idea to measure feature importance.

For each feature, you can permute the values of this feature across all of the
observations in the data set and measure how much worse the mean-squared
error (MSE) becomes after the permutation. You can repeat this for each
feature.

1 Using the following code, plot the increase in MSE due to
permuting out-of-bag observations across each input variable. The
OOBPermutedVarDeltaError array stores the increase in MSE averaged
over all trees in the ensemble and divided by the standard deviation taken
over the trees, for each variable. The larger this value, the more important
the variable. Imposing an arbitrary cutoff at 0.65, you can select the five
most important features.

figure(3);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Number');
ylabel('Out-Of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.65)

idxvar =
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1 2 4 16 19

2 The OOBIndices property of TreeBagger tracks which observations are out
of bag for what trees. Using this property, you can monitor the fraction of
observations in the training data that are in bag for all trees. The curve
starts at approximately 2/3, the fraction of unique observations selected by
one bootstrap replica, and goes down to 0 at approximately 10 trees.

finbag = zeros(1,b.NTrees);
for t=1:b.NTrees

finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
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finbag = finbag / size(X,1);
figure(4);
plot(finbag);
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');

Growing Trees on a Reduced Set of Features. Using just the five most
powerful features selected in “Estimating Feature Importance” on page 13-98,
determine if it is possible to obtain a similar predictive power. To begin, grow
100 trees on these features only. The first three of the five selected features
are numeric and the last two are categorical.

b5v = TreeBagger(100,X(:,idxvar),Y,'method','r',...

13-101



13 Supervised Learning

'oobvarimp','on','cat',4:5,'minleaf',1);
figure(5);
plot(oobError(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
figure(6);
bar(b5v.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
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These five most powerful features give the same MSE as the full set, and
the ensemble trained on the reduced set ranks these features similarly to
each other. Features 1 and 2 from the reduced set perhaps could be removed
without a significant loss in the predictive power.

Finding Outliers. To find outliers in the training data, compute the
proximity matrix using fillProximities:

b5v = fillProximities(b5v);

The method normalizes this measure by subtracting the mean outlier measure
for the entire sample, taking the magnitude of this difference and dividing the
result by the median absolute deviation for the entire sample:

figure(7);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
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Discovering Clusters in the Data. By applying multidimensional scaling
to the computed matrix of proximities, you can inspect the structure of the
input data and look for possible clusters of observations. The mdsProx method
returns scaled coordinates and eigenvalues for the computed proximity
matrix. If run with the colors option, this method makes a scatter plot of
two scaled coordinates, first and second by default.

figure(8);
[~,e] = mdsProx(b5v,'colors','k');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');
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Assess the relative importance of the scaled axes by plotting the first 20
eigenvalues:

figure(9);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
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Saving the Ensemble Configuration for Future Use. To use the trained
ensemble for predicting the response on unseen data, store the ensemble
to disk and retrieve it later. If you do not want to compute predictions for
out-of-bag data or reuse training data in any other way, there is no need to
store the ensemble object itself. Saving the compact version of the ensemble
would be enough in this case. Extract the compact object from the ensemble:

c = compact(b5v)

c =

Ensemble with 100 decision trees:
Method: regression
Nvars: 5

This object can be now saved in a *.mat file as usual.

Workflow Example: Classifying Radar Returns for Ionosphere
Data with TreeBagger
You can also use ensembles of decision trees for classification. For this
example, use ionosphere data with 351 observations and 34 real-valued
predictors. The response variable is categorical with two levels:

• 'g' for good radar returns

• 'b' for bad radar returns

The goal is to predict good or bad returns using a set of 34 measurements. The
workflow resembles that for “Workflow Example: Regression of Insurance
Risk Rating for Car Imports with TreeBagger” on page 13-97.

1 Fix the initial random seed, grow 50 trees, inspect how the ensemble error
changes with accumulation of trees, and estimate feature importance. For
classification, it is best to set the minimal leaf size to 1 and select the square
root of the total number of features for each decision split at random. These
are the default settings for a TreeBagger used for classification.

load ionosphere;
rng(1945,'twister')
b = TreeBagger(50,X,Y,'oobvarimp','on');
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figure(10);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');

2 The method trains ensembles with few trees on observations that are in
bag for all trees. For such observations, it is impossible to compute the true
out-of-bag prediction, and TreeBagger returns the most probable class
for classification and the sample mean for regression. You can change
the default value returned for in-bag observations using the DefaultYfit
property. If you set the default value to an empty string for classification,
the method excludes in-bag observations from computation of the out-of-bag
error. In this case, the curve is more variable when the number of trees
is small, either because some observations are never out of bag (and are
therefore excluded) or because their predictions are based on few trees.

b.DefaultYfit = '';
figure(11);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Excluding in-Bag Observations');
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3 The OOBIndices property of TreeBagger tracks which observations are out
of bag for what trees. Using this property, you can monitor the fraction of
observations in the training data that are in bag for all trees. The curve
starts at approximately 2/3, the fraction of unique observations selected by
one bootstrap replica, and goes down to 0 at approximately 10 trees.

finbag = zeros(1,b.NTrees);
for t=1:b.NTrees

finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure(12);
plot(finbag);
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');
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4 Estimate feature importance:

figure(13);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.8)

idxvar =

3 4 5 7 8
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5 Having selected the five most important features, grow a larger ensemble
on the reduced feature set. Save time by not permuting out-of-bag
observations to obtain new estimates of feature importance for the reduced
feature set (set oobvarimp to 'off'). You would still be interested in
obtaining out-of-bag estimates of classification error (set oobpred to 'on').

b5v = TreeBagger(100,X(:,idxvar),Y,'oobpred','on');
figure(14);
plot(oobError(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
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6 For classification ensembles, in addition to classification error (fraction of
misclassified observations), you can also monitor the average classification
margin. For each observation, the margin is defined as the difference
between the score for the true class and the maximal score for other classes
predicted by this tree. The cumulative classification margin uses the scores
averaged over all trees and the mean cumulative classification margin is
the cumulative margin averaged over all observations. The oobMeanMargin
method with the 'mode' argument set to 'cumulative' (default) shows how
the mean cumulative margin changes as the ensemble grows: every new
element in the returned array represents the cumulative margin obtained
by including a new tree in the ensemble. If training is successful, you would
expect to see a gradual increase in the mean classification margin.

For decision trees, a classification score is the probability of observing an
instance of this class in this tree leaf. For example, if the leaf of a grown
decision tree has five 'good' and three 'bad' training observations in
it, the scores returned by this decision tree for any observation fallen on
this leaf are 5/8 for the 'good' class and 3/8 for the 'bad' class. These
probabilities are called 'scores' for consistency with other classifiers that
might not have an obvious interpretation for numeric values of returned
predictions.

figure(15);
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plot(oobMeanMargin(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Classification Margin');

7 Compute the matrix of proximities and look at the distribution of outlier
measures. Unlike regression, outlier measures for classification ensembles
are computed within each class separately.

b5v = fillProximities(b5v);
figure(16);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
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8 All extreme outliers for this dataset come from the 'good' class:

b5v.Y(b5v.OutlierMeasure>40)

ans =

'g'
'g'
'g'
'g'
'g''

9 As for regression, you can plot scaled coordinates, displaying the two classes
in different colors using the colors argument of mdsProx. This argument
takes a string in which every character represents a color. To find the order
of classes used by the ensemble, look at the ClassNames property:

b5v.ClassNames

ans =

'g'
'b'
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The 'good' class is first and the 'bad' class is second. Display scaled
coordinates using red for 'good' and blue for 'bad' observations:

figure(17);
[s,e] = mdsProx(b5v,'colors','rb');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');

10 Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue
in this case clearly dominates and the first scaled coordinate is most
important.

figure(18);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
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Plotting a Classification Performance Curve. Another way of exploring
the performance of a classification ensemble is to plot its Receiver Operating
Characteristic (ROC) curve or another performance curve suitable for the
current problem. First, obtain predictions for out-of-bag observations. For
a classification ensemble, the oobPredict method returns a cell array of
classification labels ('g' or 'b' for ionosphere data) as the first output
argument and a numeric array of scores as the second output argument.
The returned array of scores has two columns, one for each class. In this
case, the first column is for the 'good' class and the second column is for the
'bad' class. One column in the score matrix is redundant because the scores
represent class probabilities in tree leaves and by definition add up to 1.

[Yfit,Sfit] = oobPredict(b5v);

Use the perfcurve utility (see “Performance Curves” on page 12-9) to
compute a performance curve. By default, perfcurve returns the standard
ROC curve, which is the true positive rate versus the false positive rate.
perfcurve requires true class labels, scores, and the positive class label for
input. In this case, choose the 'good' class as positive. The scores for this
class are in the first column of Sfit.

[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,1),'g');
figure(19);
plot(fpr,tpr);
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xlabel('False Positive Rate');
ylabel('True Positive Rate');

Instead of the standard ROC curve, you might want to plot, for example,
ensemble accuracy versus threshold on the score for the 'good' class. The
ycrit input argument of perfcurve lets you specify the criterion for the
y-axis, and the third output argument of perfcurve returns an array of
thresholds for the positive class score. Accuracy is the fraction of correctly
classified observations, or equivalently, 1 minus the classification error.

[fpr,accu,thre] = perfcurve(b5v.Y,Sfit(:,1),'g','ycrit','accu');
figure(20);
plot(thre,accu);
xlabel('Threshold for ''good'' Returns');
ylabel('Classification Accuracy');
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The curve shows a flat region indicating that any threshold from 0.2 to 0.6
is a reasonable choice. By default, the function assigns classification labels
using 0.5 as the boundary between the two classes. You can find exactly
what accuracy this corresponds to:

i50 = find(accu>=0.50,1,'first')
accu(abs(thre-0.5)<eps)

returns

i50 =
2

ans =
0.9430

The maximal accuracy is a little higher than the default one:

[maxaccu,iaccu] = max(accu)

returns

maxaccu =
0.9459
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iaccu =
91

The optimal threshold is therefore:

thre(iaccu)

ans =
0.5056

Ensemble Algorithms

• “Bagging” on page 13-118

• “AdaBoostM1” on page 13-122

• “AdaBoostM2” on page 13-124

• “LogitBoost” on page 13-125

• “GentleBoost” on page 13-126

• “RobustBoost” on page 13-127

• “LSBoost” on page 13-128

Bagging
Bagging, which stands for “bootstrap aggregation”, is a type of ensemble
learning. To bag a weak learner such as a decision tree on a dataset, generate
many bootstrap replicas of this dataset and grow decision trees on these
replicas. Obtain each bootstrap replica by randomly selecting N observations
out of N with replacement, where N is the dataset size. To find the predicted
response of a trained ensemble, take an average over predictions from
individual trees.

Bagged decision trees were introduced in MATLAB R2009a as TreeBagger.
The fitensemble function lets you bag in a manner consistent with boosting.
An ensemble of bagged trees, either ClassificationBaggedEnsemble or
RegressionBaggedEnsemble, returned by fitensemble offers almost the
same functionally as TreeBagger. Discrepancies between TreeBagger and
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the new framework are described in detail in TreeBagger Features Not in
fitensemble on page 13-120.

Bagging works by training learners on resampled versions of the data. This
resampling is usually done by bootstrapping observations, that is, selecting N
out of N observations with replacement for every new learner. In addition,
every tree in the ensemble can randomly select predictors for decision
splits—a technique known to improve the accuracy of bagged trees.

By default, the minimal leaf sizes for bagged trees are set to 1 for classification
and 5 for regression. Trees grown with the default leaf size are usually
very deep. These settings are close to optimal for the predictive power of
an ensemble. Often you can grow trees with larger leaves without losing
predictive power. Doing so reduces training and prediction time, as well as
memory usage for the trained ensemble.

Another important parameter is the number of predictors selected at random
for every decision split. This random selection is made for every split, and
every deep tree involves many splits. By default, this parameter is set to
a square root of the number of predictors for classification, and one third
of predictors for regression.

Several features of bagged decision trees make them a unique algorithm.
Drawing N out of N observations with replacement omits on average 37% of
observations for each decision tree. These are “out-of-bag” observations. You
can use them to estimate the predictive power and feature importance. For
each observation, you can estimate the out-of-bag prediction by averaging
over predictions from all trees in the ensemble for which this observation
is out of bag. You can then compare the computed prediction against the
observed response for this observation. By comparing the out-of-bag predicted
responses against the observed responses for all observations used for
training, you can estimate the average out-of-bag error. This out-of-bag
average is an unbiased estimator of the true ensemble error. You can also
obtain out-of-bag estimates of feature importance by randomly permuting
out-of-bag data across one variable or column at a time and estimating the
increase in the out-of-bag error due to this permutation. The larger the
increase, the more important the feature. Thus, you need not supply test
data for bagged ensembles because you obtain reliable estimates of the
predictive power and feature importance in the process of training, which
is an attractive feature of bagging.
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Another attractive feature of bagged decision trees is the proximity matrix.
Every time two observations land on the same leaf of a tree, their proximity
increases by 1. For normalization, sum these proximities over all trees in
the ensemble and divide by the number of trees. The resulting matrix is
symmetric with diagonal elements equal to 1 and off-diagonal elements
ranging from 0 to 1. You can use this matrix for finding outlier observations
and discovering clusters in the data through multidimensional scaling.

For examples using bagging, see:

• “Example: Test Ensemble Quality” on page 13-59

• “Example: Surrogate Splits” on page 13-76

• “Workflow Example: Regression of Insurance Risk Rating for Car Imports
with TreeBagger” on page 13-97

• “Workflow Example: Classifying Radar Returns for Ionosphere Data with
TreeBagger” on page 13-106

For references related to bagging, see Breiman [2], [3], and [4].

Comparison of TreeBagger and Bagged Ensembles. fitensemble
produces bagged ensembles that have most, but not all, of the functionality of
TreeBagger objects. Additionally, some functionality has different names in
the new bagged ensembles.

TreeBagger Features Not in fitensemble

Feature TreeBagger Property TreeBagger Method

Computation of proximity
matrix

Proximity fillProximities, mdsProx

Computation of outliers OutlierMeasure

Out-of-bag estimates of
predictor importance

OOBPermutedVarDeltaError,
OOBPermutedVarDeltaMeanMargin,
OOBPermutedVarCountRaiseMargin
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TreeBagger Features Not in fitensemble (Continued)

Feature TreeBagger Property TreeBagger Method

Merging two ensembles
trained separately

append

Parallel computation for
creating ensemble

Set the UseParallel name-value
pair to 'always'; see Chapter 17,
“Parallel Statistics”

Differing Names Between TreeBagger and Bagged Ensembles

Feature TreeBagger Bagged Ensembles

Split criterion contributions
for each predictor

DeltaCritDecisionSplit
property

First output of
predictorImportance
(classification) or
predictorImportance
(regression)

Predictor associations VarAssoc property Second output of
predictorImportance
(classification) or
predictorImportance
(regression)

Error (misclassification
probability or mean-squared
error)

error and oobError methods loss and oobLoss methods
(classification); loss and
oobLoss methods (regression)

Train additional trees and add
to ensemble

growTrees method resumemethod (classification);
resume method (regression)

Mean classification margin
per tree

meanMargin and
oobMeanMargin methods

edge and oobEdge methods
(classification);

In addition, two important changes were made to training and prediction
for bagged classification ensembles:

• If you pass a misclassification cost matrix to TreeBagger, it passes this
matrix along to the trees. If you pass a misclassification cost matrix to
fitensemble, it uses this matrix to adjust the class prior probabilities.
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fitensemble then passes the adjusted prior probabilities and the default
cost matrix to the trees. The default cost matrix is ones(K)-eye(K) for K
classes.

• Unlike the loss and edge methods in the new framework, the TreeBagger
error and meanMargin methods do not normalize input observation
weights of the prior probabilities in the respective class.

AdaBoostM1
AdaBoostM1 is a very popular boosting algorithm for binary classification.
The algorithm trains learners sequentially. For every learner with index t,
AdaBoostM1 computes the weighted classification error

t
n

N

n
t

n t nd y h x    


 
1



• xn is a vector of predictor values for observation n.

• yn is the true class label.

• ht is the prediction of learner (hypothesis) with index t.

•  is the indicator function.

• dn
t  is the weight of observation n at step t.

AdaBoostM1 then increases weights for observations misclassified by learner
t and reduces weights for observations correctly classified by learner t. The

next learner t + 1 is then trained on the data with updated weights dn
t 1 .

After training finishes, AdaBoostM1 computes prediction for new data using

f x h x
t

T

t t    



1

 ,

where
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t
t

t


1
2

1
log

are weights of the weak hypotheses in the ensemble.

Training by AdaBoostM1 can be viewed as stagewise minimization of the
exponential loss:

n

N

n n nw y f x

    

1

exp

where

• yn {–1,+1} is the true class label.

• wn are observation weights normalized to add up to 1.

• f(xn) (–∞,+∞) is the predicted classification score.

The observation weights wn are the original observation weights you passed
to fitensemble.

The second output from the predict method of an AdaBoostM1 classification
ensemble is an N-by-2 matrix of classification scores for the two classes and
N observations. The second column in this matrix is always equal to minus
the first column. predict returns two scores to be consistent with multiclass
models, though this is redundant since the second column is always the
negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow
trees. If boosted stumps give poor performance, try setting the minimal
parent node size to one quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the
learning rate to a lower number, the ensemble learns at a slower rate, but can
converge to a better solution. 0.1 is a popular choice for the learning rate.
Learning at a rate less than 1 is often called “shrinkage”.
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For examples using AdaBoostM1, see “Example: Tuning RobustBoost” on
page 13-92.

For references related to AdaBoostM1, see Freund and Schapire [8], Schapire
et al. [13], Friedman, Hastie, and Tibshirani [10], and Friedman [9].

AdaBoostM2
AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of
weighted classification error, AdaBoostM2 uses weighted pseudo-loss for N
observations and K classes:

t
n

N

k y
n k
t

t n n t n
n

d h x y h x k       
 

  1
2

1
1

, , ,

where

• ht(xn,k) is the confidence of prediction by learner at step t into class k
ranging from 0 (not at all confident) to 1 (highly confident).

• dn k
t
,
  are observation weights at step t for class k.

• yn is the true class label taking one of the K values.

• The second sum is over all classes other than the true class yn.

Interpreting the pseudo-loss is harder than classification error, but the idea is
the same. Pseudo-loss can be used as a measure of the classification accuracy
from any learner in an ensemble. Pseudo-loss typically exhibits the same
behavior as a weighted classification error for AdaBoostM1: the first few
learners in a boosted ensemble give low pseudo-loss values. After the first
few training steps, the ensemble begins to learn at a slower pace, and the
pseudo-loss value approaches 0.5 from below.

For examples using AdaBoostM2, see “Creating a Classification Ensemble” on
page 13-57.

For references related to AdaBoostM2, see Freund and Schapire [8].
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LogitBoost
LogitBoost is another popular algorithm for binary classification.
LogitBoost works similarly to AdaBoostM1, except it minimizes binomial
deviance

n

N

n n nw y f x

      

1

1 2log exp ,

where

• yn {–1,+1} is the true class label.

• wn are observation weights normalized to add up to 1.

• f(xn) (–∞,+∞) is the predicted classification score.

Binomial deviance assigns less weight to badly misclassified observations
(observations with large negative values of ynf(xn)). LogitBoost can give
better average accuracy than AdaBoostM1 for data with poorly separable
classes.

Learner t in a LogitBoost ensemble fits a regression model to response values

y
y p x

p x p xn
n t n

t n t n


  
     

*

1

where

• y*n {0,+1} are relabeled classes (0 instead of –1).

• pt(xn) is the current ensemble estimate of the probability for observation xn
to be of class 1.

Fitting a regression model at each boosting step turns into a great
computational advantage for data with multilevel categorical predictors.
Take a categorical predictor with L levels. To find the optimal decision split
on such a predictor, classification tree needs to consider 2L–1 – 1 splits. A
regression tree needs to consider only L – 1 splits, so the processing time
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can be much shorter. LogitBoost is recommended for categorical predictors
with many levels.

fitensemble computes and stores the mean-squared error

n

N

n
t

n t nd y h x


     
1

2

in the FitInfo property of the ensemble object. Here

• dn
t  are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values yn .

Values yn can range from –∞ to +∞, so the mean-squared error does not have
well-defined bounds.

For examples using LogitBoost, see “Example: Classification with Many
Categorical Levels” on page 13-71.

For references related to LogitBoost, see Friedman, Hastie, and Tibshirani
[10].

GentleBoost
GentleBoost (also known as Gentle AdaBoost) combines features of
AdaBoostM1 and LogitBoost. Like AdaBoostM1, GentleBoost minimizes the
exponential loss. But its numeric optimization is set up differently. Like
LogitBoost, every weak learner fits a regression model to response values
yn {–1,+1}. This makes GentleBoost another good candidate for binary
classification of data with multilevel categorical predictors.

fitensemble computes and stores the mean-squared error

n

N

n
t

n t nd y h x


     
1

2
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in the FitInfo property of the ensemble object, where

• dn
t  are observation weights at step t (the weights add up to 1).

• ht(xn) are predictions of the regression model ht fitted to response values yn.

As the strength of individual learners weakens, the weighted mean-squared
error approaches 1.

For examples using GentleBoost, see “Example: Unequal Classification
Costs” on page 13-66, “Example: Classification with Many Categorical Levels”
on page 13-71.

For references related to GentleBoost, see Friedman, Hastie, and Tibshirani
[10].

RobustBoost
Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for
misclassified observations at every boosting step. These weights can become
very large. If this happens, the boosting algorithm sometimes concentrates on
a few misclassified observations and neglects the majority of training data.
Consequently the average classification accuracy suffers.

In this situation, you can try using RobustBoost. This algorithm does not
assign almost the entire data weight to badly misclassified observations. It
can produce better average classification accuracy.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a
specific loss function. Instead, it maximizes the number of observations with
the classification margin above a certain threshold.

RobustBoost trains based on time evolution. The algorithm starts at t = 0.
At every step, RobustBoost solves an optimization problem to find a positive
step in time Δt and a corresponding positive change in the average margin
for training data Δm. RobustBoost stops training and exits if at least one of
these three conditions is true:

• Time t reaches 1.
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• RobustBoost cannot find a solution to the optimization problem with
positive updates Δt and Δm.

• RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition.
Estimate the classification accuracy by cross validation or by using an
independent test set.

To get better classification accuracy from RobustBoost, you can adjust three
parameters in fitensemble: RobustErrorGoal, RobustMaxMargin, and
RobustMarginSigma. Start by varying values for RobustErrorGoal from 0 to
1. The maximal allowed value for RobustErrorGoal depends on the two other
parameters. If you pass a value that is too high, fitensemble produces an
error message showing the allowed range for RobustErrorGoal.

For examples using RobustBoost, see “Example: Tuning RobustBoost” on
page 13-92

For references related to RobustBoost, see Freund [7].

LSBoost
You can use least squares boosting (LSBoost) to fit regression ensembles.
At every step, the ensemble fits a new learner to the difference between
the observed response and the aggregated prediction of all learners grown
previously. The ensemble fits to minimize mean-squared error.

You can use LSBoost with shrinkage by passing in LearnRate parameter. By
default this parameter is set to 1, and the ensemble learns at the maximal
speed. If you set LearnRate to a value from 0 to 1, the ensemble fits every
new learner to yn – ηf(xn), where

• yn is the observed response.

• f(xn) is the aggregated prediction from all weak learners grown so far for
observation xn.

• η is the learning rate.

For examples using LSBoost, see “Creating a Regression Ensemble” on page
13-58, “Example: Regularizing a Regression Ensemble” on page 13-82
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For references related to LSBoost, see Hastie, Tibshirani, and Friedman [11],
Chapters 7 (Model Assessment and Selection) and 15 (Random Forests).
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