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S I M P L I F I E D  CALCULATION OF P R I N C I P A L  C O M P O N E N T S  

HAROLD HOTELLING 

The resolution of a set of n tests o r  other  var ia tes  into compo- 
nents  7~, each of which accounts for  the greates t  possible port ion 71, 
~,~, - - . ,  of the total variance of the tests unaccounted for  by the pre- 
vious components, has been dealt with by the author  in a previous 
paper  (2).  Such "factors ,"  on account of their  analogy with the prin- 
cipal axes of a quadric, have been called principal components. The 
present  paper  describes a modification of the i terat ive scheme of cal- 
culating principal components there presented, in a fashion tha t  ma- 
terially accelerates convergence. The application of  the i terative pro- 
cess is not  confined to statistics, bu t  may  be used to obtain the mag- 
nitudes and orientations of the principal axes of a quadric or  hyper-  
quadric in a manner  which will ordinari ly be f a r  less laborious than 
those given in books on geometry.  This is t rue  whether  the quadrics 
are  ellipsoids or hyperboloids;  the proof  o f  convergence given in an 
earl ier  paper  is applicable to all kinds of central quadrics. Fo r  hyper-  
boloids some of the roots k~ of the characteris t ic  equation would be 
negative, while for  ellipsoids all are positive. I f  in a statistical prob- 
lem some of the roots should come out negative, this would indicate 
ei ther an error  in calculation, or that,  if  correlations corrected for  
a t tenuat ion had been used, the same type of  inconsistency had crept  
in tha t  sometimes causes such correlations to exceed unity. 

Another  method of calculating principal components has been 
discovered by Professor  Truman  L. Kelley, which involves less labor 
than the original i terat ive method, a t  least in the examples to which 
he has applied it (5).  How it would compare with the present  accel- 
erated method is not clear, except  tha t  some experience at Columbia 
Univers i ty  has suggested that  the method here set for th  is the more 
efficient. I t  is possible tha t  Kelley's method is more suitable when all 
the characterist ic roots are desired, but  not the corresponding cor- 
relations of the variates  with the components. The present  method 
seems to the computers  who have tr ied both to be superior  when the 
components themselves, as well as their  contr ibutions to the total var-  
iance, are  to be specified. The advantage  of the present  method is en- 
hanced when, as will of ten be the case in dealing with numerous vari-  
ates, not all the characterist ic  roots but  only a few of the largest  
are  required. 
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Iterat ive processes of various kinds are capable of  acceleration 
by means of the matr ix-squar ing device here used. In part icular ,  the 
simultaneous determinat ion of a linear function of a set of variates,  
and of another  linear function of another  set, such tha t  the correla- 
tion of these two functions is a maximum, may  be facil i tated in this 
way. This problem of the most  predictable criterion and the best  pre~ 
dicter  has been discussed briefly by the author,  (3) and will be 
treated more fully in a for thcoming paper.  

Let r~j be the covariance of the i t h  and j t h  of a set of n var ia tes  
xl, ---. , xn; then if  units have been chosen such tha t  each s tandard  
deviation is unity, each r ,  - -  1, and the ~i s are  the correlations. I f  
we take any a rb i t r a ry  set  of numbers  al, . . . ,  an and subst i tute  in the 
formula 

n 

ai'---~ ~. ri jaj  , ( i ~  1, 2 , . - . ,  n) . (1) 
j=l 

The new set of  numbers  a~', . . . ,  a J  will be proport ional  to the old if, 
and only if, they are  also proport ional  to the correlations of one of 
the principal components with the original variates.  These correla- 
tions are  also the coefficients of the par t icular  principal component  
in the equations which gives the x's in te rms of  the 7's. If  aV ~- kay, 
for  each i, then k is the sum of the squares of  the correlations of the 
• 's wi th  the par t icular  r. 

I f  the  ~ '  are  not  proport ional  to the a~, they may  be subst i tuted 
in the r ight-hand members  of (1) ,  and will then give rise to another  
se t  of values a~", . . . ,  a~", such that  

a J '  ~ -  ~. r~a~" . (2) 

I f  the new quanti t ies are  t rea ted in the same way,  and this pro- 
cess is repeated a sufficient number  of times, the ratios among the 
quanti t ies obtained will eventually become and remain arb i t ra r i ly  
close to those among the coefficients of one of  the ~,'s. This was dem- 
ons t ra t ed  in the four th  section of  the previous paper  on principal 
components. The component  thus  specified in the limit will, apar t  
f rom a set  of cases of probabi l i ty  zero, be tha t  having the grea tes t  
sum of squares of correlations with the x's. This sum will equal the 
limit k~ of  the ratio of any one of the trial  values to the correspond- 
ing one in the previous set. 

Now if we subst i tute  (1) in (2) ,  and define 

c~j ~--- ~ r~ir~j , (3) 

we shall have 
a J '  = Z c,,iai . (4) 

) 
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Consequently if we first calculate the quanti t ies cmj, we may use (4) 
instead of (1) ,  and then each iteration is precisely equivalent to two 
iterations w~th the original correlations. Thus the number  required 
for  any given degree of accuracy is cut in half. 

Let  R denote the mat r ix  of the covariances r~j. Then f rom (3) ,  
cmj is the element in the  ruth row and ]th column of the symmetr ical  
mat r ix  R ~. Subst i tut ion of a set of  trial  values in (1) is equivalent to 
mult iplying it by  the rows of R, while subst i tut ion in (4) amounts  to 
multiplication by the rows of R ~. 

But  we need not  stop with this improvement.  Having  doubled 
the speed of convergence by  squaring R, we can double it again by 
squaring R 2. I f  we square a third time we have a mat r ix  R s, by which 
a multiplication is equivalent to eight multiplications by the original 
matrix,  and so forth. We can square as many  t imes as we like; if  we 
square s t imes successively and denote 2 s by t, we obtain R t, wi th  
which one step of  the i terat ive process is equivalent to t steps of the 
process wi th  the original matrix.  The only limit to this acceleration 
is reached when the convergence is so rapid that  an additional squar-  
ing of the matr ix  is not wor th  while. 

The ul t imate rat io of consecutive values, such as a~'/al, was kl in 
the original process. In the accelerated process, using R t, this rat io 
is k~ t. Instead of extract ing the tth root  to find k~, it is be t te r  to make 
a final multiplication of the trial  values by the rows of R itself, and so 
upon division to find k~. This saves labor and also provides a final 
check upon the calculations, including the squaring of the matrices.  

An additional check upon the squaring operat ions may  be accom- 
plished by carry ing along an ext ra  column as in the method of least 
squares. Each ent ry  in this check column is the sum of  those preced- 
ing it  in the same row. The check column is multiplied by  each row 
of the mat.rix to obtain the check column for  the square of the matrix.  
This check is not so essential as  in the method of least squares,  in 
view of the final subst i tut ion ' jus t  mentioned, and since the calcula- 
tions are  so simple tha t  an experienced computer  with a good machine 
is not  likely to make a mistake. However,  for  ~an ordinary computer,  
especially if  the var ia tes  are  numerous  and the squaring is repeated 
several times, there  is likely to be an eventual saving of labor i f  this 
check is made at  each step. 

In the determinat ion of  the second and la ter  principal compo- 
nents  by  this method, the convergence may be accelerated in the same 
manner  by  the use of  the t th power  of the  mat r ix  of the reduced co- 
variances.  However  there is a fu r ther  saving of labor here if we form 
this power,  not  directly as in the  case of  R t by repeated squarings,  
bu t  with the help of the determinat ion al ready made by R t, and the 
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following results obtained with the help of the  algebra of matrices. 
(BScher, 1907, 1921). 

Putting C1 for the matrix in which the element in the i t h  row 
and jth column is a~lajl (i, j, -~ 1, 2, ---, n),  the matrix of the reduced 
covariances used in finding the second principal component is 

R1 ~ R - -  C1 . 

From relations established in the former memoir (2) (p. 424, equa- 
tion (16), and p. 425) we have that 

h 

and 
Z a h ? - -  kl • 
h 

These lead to the matrix relations 

RC~ ~ C~R - ~  k~C1 , 

and 
C ?  ~ klC1 . 

From these it is easy to show for any integer n that  

Hence we readily obtain 

R1 ~ ~ R ~ ~ 2RCI  ~ CI ~ ~ R ~ ~ k~C~ , 
and in general 

R~t _~_ R ~ ~ k~t-'C~ . ( t ~ 2 ~) 

The partial cancellation of the middle by the last term in the squar- 
ing is strikingly reminiscent of some of the formulae in the method 
of least squares, with which the method of principal components pre- 
sents many analogies. 

From the last matrix equation we derive the following simplified 
method of obtaining numerical values of the desired power of the 
reduced matrix: 

H a v i n g  d e t e r m i n e d  k~ t as the rat io  o f  consecu t i ve  tr ial  va lues  
w i t h  the  m a t r i x  R ~, and  k~ as  the rat io  o f  consecu t ive  t r ia l  va lues  
w i t h  R,  f ind kl  t-~ by  div is ion.  M u l t i p l y  th is  by  each o f  the  quan t i t i e s  
a~aj~ (i, ] -~- 1, . . . ,  n)  and s u b t r a c t  the p r o d u c t s  f r o m  thv  correspond-  
ing  e l emen t s  of  R t to ob ta in  the e lements  of  R~ t. 

The elements of R~ themselves are found as in the former paper, 
i. e., by subtracting a~an from the corresponding elements of R. The 
second principal component is found from R~ and R~ t in exactly the 
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same manner  as the first component  f rom R and R e. To obtain the 
matr ices  R~ and R~ t f rom which the third principal component is to 
be found, the elements of R1 and R1 t are  diminished respectively by 
k~a~2~2 and by  k~t-la~j~; and similarly for  the la ter  components, if  
enough is left  of the aggregate  variance to make these wor th  com- 
puting. 

I f  we subtract  k f rom each element of  the principal diagonal of 
R the result ing de terminant  may be called f ( k ) .  Now mult iply f ( k )  
by f ( - - k ) ,  rows by  rows. The result ing de terminant  is identical with 
that  obtained f rom the mat r ix  R ~ by subt rac t ing  k s f rom each element 
of the principal diagonal. But  if, in the equation f ( k )  f ( - - k )  ~-- 0, 
we subst i tute  k s ~-  x, we obtain an equation of degree n in x whose 
roots are  the squares  of those of f ( k )  ~ O. This fac t  shows tha t  not  
only the greates t  root  bu t  all the roots of the characteris t ic  equation 
of R 2 are the squares of  the roots of the character is t ic  equation of R. 
Our  new method is thus brought  into colligation with the classical 
root-squaring method of solving algebraic equations whose fundamen-  
tal principle is to increase the separat ion be tween roots. (6) .  The 
i terat ive process will in general converge rapidly only when the roots 
are  well separated.  

In  the use of the  original i terat ive method by several workers  i t  
was observed tha t  i t  was often impossible to determine the last  digit 
accurately wi thout  car ry ing  the i terat ion considerably fu r ther  than 
at  first seemed necessary, and of course using more  decimal places 
than were  finally to be retained. This difficulty largely disappears  
with the use of the method of the present  note, since it is so easy to 
make the equivalent of 8, 16 and 32 i terat ions in a single operation. 
However  it suggests  the theoretical problem of  finding limits of er ror  
in the  determinat ion of the coefficients and :the k's, in terms of  the 
differences between consecutive trial  values. This problem is very  
intr iguing;  but  a solution valid wi th  certainty under  all c ircumstances 
appears  upon consideration to be impossible. Indeed, as was pointed 
out  in the  earlier paper,  if  the tr ial  values first taken happen to be 
the coefficients of the tes ts  in a l inear function of those whose corre- 
lation wi th  ~,1 is exactly zero, we shall never get  71, no mat te r  how 
many  t imes we iterate.  I f  the  correlation with 71 is almost bu t  not 
quite zero we shall usually seem to have convergence for  a t ime to an- 
other  set  of values, the coefficients of ~,~, bu t  eventually the discrep- 
ancies between consecutive tr ial  values will increase, and in the end 
the coefficients of ~1 will be approached. But  although an exact limit 
of  e r ror  is thus seen to be impossible i f  we insist on certainty,  we 
shall a t ta in  to a very  high probabil i ty  of  having the r ight  limit if we 
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carry the iteration far  enough to reach stability in three or four deci- 
mals; and this is easy when, as in the example below, an additional 
decimal place is obtained accurately at each trial. 

An additional safeguard against spurious convergence to the 
wrong principal component possibly useful in some cases would be 
to use two or more different sets of trial values. If all converged to 
the same result, it would be incredible that  this was anything other 
than the greatest component. But of course the calculation of the 
later components, if carried out, would in any case reveal such an 
error. 

The symmetry of the matrices makes it unnecessary to write the 
elements below and to the left of the principal diagonal. The ith row 
is to be read by beginning with the ith element of the first row, read- 
ing down to the diagonal, and then across to the right. 

Each set of trial values is divided by an arbi trary one of them, 
which may well be taken to be the greatest. This division :may well 
be performed with a slide rule for  the first few sets, which do not 
require great accuracy. 

EXAMPLE 

The correlations in the matrix R below were obtained by Truman 
L. Kelley from 140 seventh-grade school children, and have been cor- 
rected for attenuation. (4). The variates, in order, are: memory for 
words; memory for numbers; memory for meaningful symbols; mem- 
ory for  meaningless symbols. At the right of each matrix (which are 
supposed to have the vacant spaces filled out so as to be symmetrical) 
is a check column consisting of the sums of the entries made and un- 
derstood in the several rows. 

.7686 .5427 

.8647 .7005 
1. .8230 

1. 

MATRIX OF CORRELATIONS 

1. .9596 
1. 

R ~  

Check 
column 

3.2709 
3.5248 
3.4563 
3.0662 

SQUARE OF MATRIX OF 
CORRELATIONS 

2.8061 2.9640 
3.1592 

R ~  

2.8136 2.3902 
3.0435 2.6334 
3.0158 2.6688 

2.4626 

10.9738 
11.8001 
11.5417 
10.1550 
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R 4 _____ 

30.289 32.538 31.780 27.908 
34.964 34.161 30.012 

33.397 29.361 
25.835 

122.515 
131.678 
128.699 
113.115 

/3765 4046 3955 3476 15242 
Rs = 4349 4251 3736 16382 

4154 3651 16011 
3209 14072 

Multiplying the rows of  R 8 by  an initial set  of  trial values all 
equal to I we obtain the sums of  the rows of this matrix,  namely, 

15 242, 16 382, 16 011, 14 072 . 

The last  three digits of these numbers  are unimportant .  We can di- 
vide each of these values by the second, since this is the greatest ,  re- 
ta ining only a single decimal place, and multiply the  values thus  ob- 
tained by the rows of Rs: in dividing this t ime we retain two decimal 
places. With the next  i terat ion we retain two decimal places; with  
the next, three;  with the next, four ;  and with all later  iterations, five. 
The seventh and eighth sets of  tr ial  values thus obtained are exactly 
identical in all five decimal places; they are 

.93042, 1.00000, .97739, .85903 . (1) 

The products of  this set  by  the rows of  R s are 
14 402, 15 479, 15 129, 13 297 . (2) 

Their  products  by the rows of R itself, divided by  the second of them, 
are  

.93045, 1.00000, .97738, .85901 . (3) 

These remain exactly s ta t ionary  under  fu r the r  i teration with R;  their  
products  by  the rows of R are 

3.10744, 3.33972, 3.26418, 2.86884 . 

F rom the second of these values, which corresponds to the value uni ty  
in the preceding set, we have kl = 3.33972. F rom the second of (2) 
kl s = 15 479. Hence, by  division, kl 7 = 4635.1.  

Multiplying each of the quanti t ies (3) by the square root  of the 
rat io  of kl to the sum of the squares of these quantities, we obtain the 
correlat ions of the first principal component  ~,1 with the several tes ts ;  
these are  

a~l ~--.9013, a21 = . 9 6 8 7 ,  a31 ~---.9468, a41 = . 8 3 2 1  . (4) 

These are also the coefficients of ~,1 in the expressions for  the tests in 
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terms of the four  principal components 71, 75, 7~, and 74 • 
The products of the four  quantities (4) by themselves and each 

other are the elements o f t h e m a t r i x  

.812 .8732 .8534 
.9384 .9172 

C1~--- .8964 

.7500 3.2890 

.8061 3.5349 

.7879 3.4549 

.6925 3.0365 

The column at  the r ight  consists of the products of (4) by their  sum, 
3.6490, and since it gives also the sums of the rows of  C1 provides a 
check. We next calculate, as a basis for  the determinat ion of 75, 

.1876 .0864 --.0848 --.2073 --.0181 
R1 -~- R - -  C1 ~-- .0616 --.0525 --.1056 --.0101 

.1036 .0351 .0014 
.3075 .0297 

Upon multiplying each element of C1 by the value previously 
found for  kl ~, and then subtract ing f rom the corresponding element 
of R 8 without  the necessity of fu r the r  mat r ix  squaring. In this par- 
t icular example, no element of R 8, so f a r  as this  mat r ix  was calcu- 
lated, differs by any significant amount  f rom the corresponding ele- 
ment  of k17C1. Hence we cannot use R18 to determine 72. This condi- 
tion, however, points to rapid convergence with the matr ix  R ,  In- 
deed, s tar t ing with the trial  values 

m2, --1,  0, 3, 

which are approximately proportional to the elements of the check 
column of R1, we find a f te r  only six i terations tha t  

ks----.5252, al~ ~-~--.4187, a~ ~ - - . 2 1 5 9 ,  a32 ~ .1551, a4~ = .5284 , 

correct to four  decimal places. This labor could have been slightly 
diminished by first calculating the matr ix  R I  2 ~ R ~ - -  k l C ~  . 

The third principal component, found f rom R~ and R2 ~ with a 
total of seven iterations, is specified by k3 ~ .1168, eh3 ~ --.0735, 
a~ ~--- --.0637, a33 ~ .2818, a48 ~ -- .1670 . 

In summary,  it appears tha t  the first principal component, which 
accounts for 83.5 per cent of the sum of the variances of the tests, 
and has high positive correlations with all of them, represents gene- 
ral ability to remember;  the second, accounting for  13 per cent of the 
total variance, is correlated with memory both for  words and for  
numbers in a sense opposite to tha t  of its correlations with symbols 
of both kinds;  and the third principal component, with 3 per cent of 
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the total variance ascribable to it, is most highly correlated with mem- 
ory for meaningful symbols. 

The foregoing calculations are carried to the maximum numbers 
of decimal places possible with the four-place correlations given. Not 
all these places are significant in the sense of random sampling. I f  
only the small number  (one or two) of places significant in the prob- 
ability sense, relative to the sampling errors of these 140 cases, had 
been retained at each stage, the number  of iterations would have been 
reduced even further .  
Columbia University, 
New York. 
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