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I might begin with a little story. I was at a

conference recently and was listening to a very

opaque and rather confused paper presenta-

tion by one of my quantitative colleagues. Af-

ter the paper was finished, an obviously more

substantively-oriented listener sitting next to

me, commented that he and his colleagues

generally had the ability to share their research

interests in presentations. He wondered why

quantitative people often appeared only able

to inflict theirs on others.

Well, hopefully I’ll share more than I inflict to-

day — but if you like, we could take a vote

when I’m done.
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To begin, it seems that for quite a long time

now, most of my research interests have cen-

tered around data analysis strategies for what

we might generically call proximity data or prox-

imity information. Proximity merely refers to

a collection of numerical information we have

about the relationship between whatever ob-

jects or things we are interested in.

Also, I have pursued a path of making MATLAB

M-files (open-source and freely available) to

implement everything being developed. So, all

the analyses we will discuss here are repeatable

easily by the listener (with access to MATLAB

or to a free clone like OCTAVE; plus in one

case, the MATLAB Statistics Toolbox). The

place to get all these M-files was noted on the

title slide.
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OUTLINE

A) A very brief review of what proximities are
and where they may come from —

B) The general problem of attempting to rep-
resent (at least in an approximate manner)
the information contained in proximity data by
some formal structure intended to help explain
the patterning of the original data —

C) Review five such formal structures in the
context of a specific example (that deals with
proximities between facial expressions of emo-
tion):

1) Multidimensional scaling (representation by
distances from placements in both Euclidean
and city-block spaces)

2) Hierarchical clustering (representation through
a sequence of nested partitions)
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3) Additive-tree analysis (representation by dis-

tances from a placement in a specific tree-like

graphical structure)

4) Unidimensional scaling, both Linear (repre-

sentation by distances from a placement along

a line) and Circular (representation by distances

from a placement around a closed continuum)

5) Imposition of an anti-Robinson pattern (rep-

resentation by fitting a certain gradient struc-

ture to the data matrix)

D) Possible extensions (and for which analysis

routines are presently available in the way of

M-files; for the present, however, we will not

review these extensions):



1) The use of multiple (additive) structures for

representation

2) Alternative formal representation structures,

including those that incorporate a double-centering

operation (through a centroid component)

3) Proximity data defined between two distinct

sets of objects (two-mode as opposed to one-

mode)

4) The inclusion of proximity data transforma-

tions (e.g., monotonic, or more constrained

forms, such as convex, concave, or some of

both)
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Given some set of objects of interest — peo-
ple, stimuli, variables, situations, and the like
— the phrase “proximity data” merely refers
to numerically specified information about the
relation between each pair of objects.

Usually organized as an n× n matrix, say, P =
{pij}, where pij denotes the relationship be-
tween objects i and j (which is symmetric, so,
pij = pji).

Where do proximities come from?

A) Direct measures (or judgements) of prox-
imity —

pair comparisons: subjects judge the similarity
of object pairs (stimuli), possibly according to
some specific type of similarity

same/different judgements: percentage of “same”
judgements for pairs of stimuli, or latencies for
“same” judgements
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sorting: subjects partition objects into groups
according to similarity, with proximity then de-
fined by object-pair co-occurrence frequencies

joint occurrence frequencies: proportion of times
that object pairs co-occur together (over sites,
conditions, and so on)

interaction measures: degrees of communica-
tion or flow between objects

confusion measures: frequencies with which
objects are confused with one another

B) Indirect (or derived) measures —

Given initial object by variable (attribute) data:

profile dissimilarity (distance measures) between
objects

correlation or other measures of association
between variables
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GENERAL REPRESENTATION TASK

Given a proximity matrix P, find some matrix,

say P∗, that is:

(a) “close” to P (captures [a major amount

of] the information present in P

(b) the entries in P∗ have some particularly

convenient structure that can be represented

formally by some (graphical) mechanism

Thus, to explain what is going on in P, we use

P∗, and the graphical mechanism it induces.
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The criterion of “closeness” we use is consis-

tently least-squares; thus we seek to minimize
∑

i,j

(pij − p∗ij)2 ,

by the choice of P∗. Also, as a measure of

“fit” adequacy we use the variance-accounted-

for (vaf) criterion of

vaf = 1−
∑

i,j(pij − p∗ij)2∑
i,j(pij − p̄)2

,

where p̄ is the mean of the off-diagonal entries

in P.

Analogies abound — e.g., to explain some sin-

gle dependent measure, choose a multiple re-

gression equation based on a collection of in-

dependent variables; interpret what is “going

on” from the weights on the independent vari-

ables. “Closeness” here is also least-squares.
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An Example for Illustration:

To make all of this a little more concrete, it
might be useful if I introduce an example at
this point, that I can carry through during the
rest of the talk.

Some very early research dating back to the
1930s on the psychology of expression was oc-
cupied with the question of whether subjects
could correctly identify an intended emotional
message from a person’s facial expression. It
was found that the errors in the rather ex-
tensive number of misinterpretations were not
random, and the emotion perceived was usu-
ally “psychologically similar” to the emotion
expressed by the sender. A number of indi-
viduals, particularly Schlosberg, attempted to
develop a theory of the differentiability of fa-
cial expressions, concluded that three percep-
tual “dimensions” were needed for a meaning-
ful classification: pleasant/unpleasant, atten-
tion/rejection, tension/sleep.
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Over a variety of different studies, subjects

could fairly reliably classify facial expressions

within this system. Although subjects may be

able to classify facial expressions according to

the Schlosberg scales when made explicit, it

is still uncertain whether judges that are unin-

structed use these particular “dimensions” in

making judgements about facial expression —

or possibly would use others.
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Scene (Lightfoot series) PU AR TS

1) [7] Grief at death of mother 3.8 4.2 4.1
2) [13] Savoring a coke 5.9 5.4 4.8
3) [15] Very pleasant surprise 8.8 7.8 7.1
4) [16] Maternal love — 7.0 5.9 4.0
baby in arms
5)[20] Physical exhaustion 3.3 2.5 3.1
6) [28] Something wrong 3.5 6.1 6.8
with plane
7) [29] Anger seeing dog beaten 2.1 8.0 8.2
8) [30] Pulling hard on seat 6.7 4.2 6.6
of chair
9) [32] Unexpectedly meets 7.4 6.8 5.9
old boyfriend
10)[36] Revulsion 2.9 3.0 5.1
11) [37] Extreme pain 2.2 2.2 6.4
12) [51] Knows plane will crash 1.1 8.6 8.9
13) [56] Light sleep 4.1 1.3 1.0

Note: the entries in brackets, [ ], indicate the

original scene number in the Lightfoot series.
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PU: pleasant/unpleasant;

AR: attention/rejection;

TS: tension/sleep

(Schlosberg Scale Values are from Engen, Levy,

& Schlosberg, 1958, JEP, 454–458 — empir-

ical averages on a 9-point scale over a group

of subjects)

Correlations:

PU vs. AR: .18

PU vs. TS: −.15

AR vs. TS: .75
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MULTIDIMENSIONAL SCALING

Given the proximity matrix P, find a new ma-

trix P∗ that is “close” to P and the entries in

P∗ are (a linear transformation of) Euclidean

or city-block distances (between the objects

[faces] placed in some K-dimensional space).

For now, we use the MATLAB Statistical Tool-

box routine, mdscale.m, with Criterion set to

metricstress for the Euclidean scaling; for the

city-block alternative, we use my routine, biscalqa.m.

Formally, if x1, . . . , xn and y1, . . . , yn denote the

coordinates in two dimensions, then the dis-

tances between objects i and j are

city-block: dij = |xj − xi|+ |yj − yi|

euclidean: dij =
√

(xj − xi)
2 + (yj − yi)

2
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HIERARCHICAL CLUSTERING

Given the proximity matrix P, find a new ma-

trix P∗ that is “close” to P (in a least squares

sense), and the entries in P∗ satisfy the ultra-

metric property: for any three objects [faces]

i, j, and k, among the three corresponding en-

tries in P∗, p∗ij, p∗ik, and p∗jk, the largest two

must be equal.

Or less intuitively, we have the trio inequality:

pij ≤ max{pik, pjk}.

The MATLAB routine used is called ultrafnd.m
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ADDITIVE TREE ANALYSIS

Given the proximity matrix P, find a new ma-

trix P∗ that is “close” to P and the entries in

P∗ satisfy the additive-tree property: for any

four objects [faces], i, j, k, and h, among the

three sums, p∗ij + p∗kh, p∗ik + p∗jh, and p∗ih + p∗jk,
the two largest must be equal.

Or, to keep the musical motif going, we have

the less intuitive quartet inequality: p∗ij +p∗kh ≤
max{p∗ij + p∗kh, p∗ij + p∗kh}.

Generally, in representing an additive tree graph-

ically, each branch represents the common fea-

ture of those “below” (the progeny); the branch

length indicates the importance of this group

of common features (all within a Tverskian no-

tion of common and distinctive features).

The MATLAB routine used is called atreefnd.m
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An alternative view of additive trees represents

them (very non-uniquely) as an ultrametric plus

a centroid “metric” matrix. A (symmetric )

centroid matrix, say, C = {cij}, has main-diagonal

entries, cii = 0, for 1 ≤ i ≤ n, and off-diagonal

entries (i 6= j), cij = gi + gj, for some set of

values, g1, . . . , gn. Because some g1, . . . , gn may

be negative (and lead to negative entries in C),

we put the word “metric” in quotes.

A (closed-form) least-squares approximation to

P by a centroid “metric”, in effect double-

centers the residual matrix (so row and column

sums are zero).
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UNIDIMENSIONAL SCALING

Linear (LUS):

Find a set of coordinates, x1, . . . , xn, to mini-

mize
∑

i<j

(pij − {|xj − xi| − c})2 ,

where c is an additional additive constant to be

estimated; here c could be considered part of

the model bing fitted, as we suggest above; or

alternatively, we could interpret the proximities

as being translated, i.e., pij+c is fit by |xj−xi|.

Once an appropriate order is obtained, the co-

ordinate estimation is immediate. (The MAT-

LAB routines we use are called order.m (to gen-

erate an appropriate object order), and linfitac.m

(to estimate c and the coordinates based on

the found order.)
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Circular (CUS):

Find a set of coordinates, x1, . . . , xn, and an

(n+1)st value, x0 (the circumference of a cir-

cular structure), x0 ≥ |xj − xi| for all 1 ≤ i 6=
j ≤ n, minimizing

∑

i<j

(pij − [min{|xj − xi|, x0 − |xj − xi|} − c])2 ,

where c is again an additive constant to be

estimated. (The MATLAB routine we use is

called unicirac.m.)
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SCALING A MATRIX TO BE IN ANTI-ROBINSON

FORM

Given the proximity matrix P, find a new ma-

trix P∗ that is “close” to P and the entries in

P∗ satisfy the anti-Robinson property: there is

some reordering of the rows and columns of P∗
so that the entries within each row and within

each column never decrease in moving away

from the main diagonal.

In other words, we have a regular gradient

present both within the rows and within the

columns.

The n(n − 1)/2 subsets defined by the choice

of endpoints for an interval in the given order

used to demonstrate the anti-Robinson form,

along with their subset diameters (as measures

of salience), can be used to “explain” the gra-

dient (at least hopefully).
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