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Notes on Factor Analysis

The first question we need to address is why go to the trouble of

developing a specific factor analysis model when principal compo-

nents and “Little Jiffy” seem to get at this same problem of defining

factors:

(1) In a principal component approach, the emphasis is completely

on linear combinations of the observable random variables. There is

no underlying (latent) structure of the variables that I try to estimate.

Statisticians generally love models and find principal components to

be somewhat inelegant and nonstatistical.

(2) The issue of how many components should be extracted is al-

ways an open question. With explicit models having differing num-

bers of “factors”, we might be able to see which of the models fits

“best” through some formal statistical mechanism.

(3) Depending upon the scale of the variables used (i.e., the vari-

ances), principal components may vary and there is no direct way of

relating the components obtained on the correlation matrix and the

original variance-covariance matrix. With some forms of factor anal-

ysis, such as maximum likelihood (ML), it is possible to go between

the results obtained from the covariance matrix and the correlations

by dividing or multiplying by the standard deviations of the variables.

In other words, we can have a certain type of “scale invariance” if we

choose, for example, the maximum likelihood approach.

1



(4) If one wishes to work with a correlation matrix and have a

means of testing whether a particular model is adequate or to develop

confidence intervals and the like, it is probably preferable to use the

ML approach. In PCA on a correlation matrix, the results that are

usable for statistical inference are limited and very strained generally

(and somewhat suspect).

To develop the factor analysis model, assume the p observable

random variables, X′ = [X1, . . . , Xp], are MVN(µ, Σ). Without

loss of generality, we can assume that µ is the zero vector. Also,

suppose that each Xi can be represented by a linear combination of

somem unobservable or latent random variables, Y′ = [Y1, . . . , Ym],

plus an error term, ei:

Xi = λi1Y1 + · · · + λimYm + ei, for 1 ≤ i ≤ p .

Here, Y1, . . . , Ym are the common factor variables; e1, . . . , ep are the

specific factor variables; λij is the loading (i.e., the covariance) of

the ith response variable, Xi, on the jth common factor variable.

If e′ = [e1, . . . , ep], then X = ΛY + e, where

Λ =


λ11 · · · λ1m

... ...

λp1 · · · λpm

 .

For notation, we let the variance of ei be ψi, 1 ≤ i ≤ p, and

refer to ψi as the specific variance of the ith response variable; ei ∼
N(0,ψ) and all the eis are independent of each other; Yi ∼ N(0,1)

and all the Yis are independent of each other and of the eis. Also,
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we define the diagonal matrix containing the specific variances to be

Ψ =


ψ1 · · · 0
... ...

0 · · · ψp

 .

Var(Xi) = Var(λi1Y1 + · · ·λimYm + ei) =

Var(λi1Y1) + · · · + Var(λimYm) + Var(ei) =

λ2i1 + · · · + λ2im + ψi .

The expression,
∑m
j=1 λ

2
ij, is called the communality of the ith variable,

Xi.

Because terms involving different unobservable and specific vari-

ables are zero because of independence, we have

Cov(Xi, Xj) = Cov(λi1Y1+· · ·λimYm+ei, λj1Y1+· · ·λjmYm+ej) =

λi1λj1 + · · · + λimλjm .

As a way of summarizing the results just given for the variances

and covariances of the observable variables in terms of the loadings

and specific variances, the factor analytic model is typically written

as

Σp×p = Λp×mΛ′m×p + Ψp×p .

There is a degree of indeterminacy in how this model is phrased,

because for any m×m orthogonal matrix T, we have the same type

of decomposition of Σ as

Σp×p = (ΛT)p×m(ΛT)′m×p + Ψp×p .

Thus, we have a rotation done by T to generate a new loading matrix,

ΛT.
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0.1 Iterated Principal (Axis) Factor Analysis

Suppose I assume the factor analytic model to hold for the popula-

tion correlation matrix, P = ΛΛ′ + Ψ, and am given the sample

correlation matrix, R. The Guttman lower bound to the communal-

ity of a variable is the squared multiple correlation of that variable

with the others, and can be used to give an initial estimate, Ψ̂, of

the matrix of specific variances by subtracting these lower bounds

from 1.0 (the main diagonal entries in R). A component analysis

(with m components) is carried out on R− Ψ̂ and then normalized

to produce a factoring, say, BB′. We estimate Ψ by using the diag-

onal of R −BB′, and iterate the process until convergence. (Little

Jiffy (the principal component solution to the factor analysis model)

could be viewed as a “one shot” process, with specific variances set

at 0.0.)

0.2 Maximum Likelihood Factor Analysis (MLFA)

The method of MLFA holds out the hope of being a scale-invariant

method, implying that the results from a correlation or the covariance

matrix can be transformed into each other though simple multiplica-

tions by the variable standard deviations. So if λij is a loading from

a (population) correlation matrix, then λijσi is the corresponding

loading from the (population) covariance matrix.

MLFA begins with the assumption that Xp×1 ∼ MVN(0,Σp×p =

Λp×mΛ′m×p + Ψp×p). If there is a unique diagonal matrix, Ψ, with

positive elements such that the m largest roots (eigenvalues) of Σ∗ =

Ψ−1/2ΣΨ−1/2 are distinct and greater than unity, and the p − m
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remaining roots are each unity (this is true if the model holds), then

Λ = Ψ1/2Ω∆1/2, where Σ∗ − I = Ωp×m∆m×mΩ′m×p. In other

words, once you get Ψ, you are “home free” because Λ comes along

by a formula.

So, we start with some Ψ (and generating Λ automatically), and

improve upon this initial value by maximizing the log-likelihood

`(Λ,Ψ) = −n
2

(ln |Σ| + Tr(SΣ−1)) + constant .

Equivalently, we can minimize

F(Λ,Ψ) = ln |Σ| + Tr(SΣ−1))− ln |S| − p .

The particular iterative optimization procedure used to obtain bet-

ter and better values for Ψ is typically the Davidon-Fletcher-Powell

method.

In practice, one has a large sample likelihood ratio test available

of

H0 : Σ = ΛΛ′ + Ψ ,

using a test statistic of (n− (2p+ 5)/6− 2m/3)F(Λ̂, Ψ̂), compared

to a chi-squared random variable with 1
2[(p−m)2− (p+m)] degrees

of freedom. Generally, the residuals one gets from an MLFA tend to

be smaller than from a PCA, even though the cumulative variance

explained in a PCA is usually larger; these are somewhat different

criteria of fit.

In MLFA, one typically needs a rotation (oblique or orthogonal) to

make the originally generated factors intelligible. Also, we now have

various forms of confirmatory factor analysis (CFA) where some of
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the loadings might be fixed and others free to vary. CFA seems

to be all the rage in scale development, but I would still like to

see what a PCA tells you in an exploratory and optimized context.

Finally, and although we talked about using and plotting component

scores on our subjects in PCA, the comparable factor scores here

should not be used. There has been an enormous controversy about

their indeterminacy; among people who are thinking straight (e.g.,

SYSTAT and Leland Wilkinson), factor scores are just not given.

When one allows correlated factors (e.g., using an oblique rota-

tion), the factor analytic model is generalized to

Σ = ΛΦΛ′ + Ψ

where Φ is the m ×m covariance matrix among the m factors. In

terms of terminology, the matrix, Λ, is called the factor pattern

matrix; ΛΦ is called the factor structure matrix and contains the

covariances between the observed variables and the m common fac-

tors.

There is one property of MLFA that sometimes (in fact, often)

rears its ugly head, involving what are called Heywood cases (or im-

proper solutions) in which the optimization procedure wants to make

some of the ψis go negative. When this appears to be happening, the

standard strategy is to remove the set of variables for which the ψis

want to go negative, set them equal to zero exactly; the removed set

is then subjected to a principal component analysis, and a “kluge”

made of the principal components and the results from an MLFA on

a covariance matrix residualized from the removed set. Obviously,

the nice scale invariance of a true MLFA approach disappears when
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these improper solutions are encountered. You can tell immediately

that you have this kind of hybrid solution when some of the specific

variances are exactly zero.
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