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Notes on Discrimination and
Classification

The term “discrimination” (in a nonpejorative statistical sense)

refers to the task of discrimination among groups through linear com-

binations of variables that maximize some criterion, usually F -ratios.

The term “classification” refers to the task of allocating observations

to existing groups, typically to minimize the cost and/or probability

of misclassification. These two topics are intertwined, but it is most

convenient to start with the topic of classification.

In the picture to follow, we have two populations, called π1 and

π2; π1 is characterized by a normal distribution with mean µ1, and

variance σ2X (the density is denoted by f1(x)); π2 is characterized by

a normal distribution with mean µ2, and (common) variance σ2X (the

density is denoted by f2(x)). I have an observation, say x0, and wish

to decide where it should go, either to π1 or π2. Assuming implicitly

that µ1 ≤ µ2, we choose a criterion point, c, and allocate to π1 if

x0 ≤ c, and to π2 if > c. The probabilities of misclassification can

be given in the following chart (and in the figure):

True State

π1 π2
π1 1− α β

Decision

π2 α 1− β
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If I want to choose c so that α + β is smallest, I would select the

point at which the densities are equal. A more complicated way of

saying this decision rule is to allocate to π1 if f1(x0)/f2(x0) ≥ 1; if

< 1, then allocate to π2. Suppose now that the prior probabilities

of being drawn from π1 and π2 are p1 and p2, where p1 + p2 = 1. I

wish to choose c so the Total Probability of Misclassification (TPM)

is minimized, i.e., p1α + p2β. The rule would be to allocate to π1 if

f1(x0)/f2(x0) ≥ p2/p1; if < p2/p1, then allocate to π2. Finally, if we

include costs of misclassification, c(1|2) (for assigning to π1 when ac-

tually coming from π2), and c(2|1) (for assigning to π2 when actually

coming from π1), we can choose c to minimize the Expected Cost of

Misclassification (ECM), c(2|1)p1α + c(1|2)p1β, with the associated

rule of allocating to π1 if f1(x0)/f2(x0) ≥ (c(1|2)/c(2|1))(p2/p1); if

< (c(1|2)/c(2|1))(p2/p1), then allocate to π2.

Using logs, the last rule can be restated: allocate to π1 if log(f1(x0)/f2(x0)) ≥
log((c(1|2)/c(2|1))(p2/p1)). The left-hand-side is equal to (µ1 −
µ2)(σ

2
X)−1x0 − (1/2)(µ1 − µ2)(σ

2
X)−1(µ1 + µ2), so the rule can be

restated further: allocate to π1 if

x0 ≤ {(1/2)(µ1 − µ2)(σ2X)−1(µ1 + µ2)

− log((c(1|2)/c(2|1))(p2/p1))}{
σ2X

−(µ1 − µ2)
}

or

x0 ≤ {(1/2)(µ1+µ2)− log((c(1|2)/c(2|1))(p2/p1))}{
σ2X

(µ2 − µ1)
} = c .

If the costs of misclassification are equal (i.e., c(1|2) = c(2|1)),

then the allocation rule is based on classification functions: allocate
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to π1 if

[
µ1
σ2X

x0 − (1/2)
µ21
σ2X

+ log(p1)]− [
µ2
σ2X

x0 − (1/2)
µ22
σ2X

+ log(p2)] ≥ 0 .

Moving toward the multivariate framework, suppose population

π1 is characterized by a p × 1 vector of random variables, X ∼
MVN(µ1,Σ); population π2 is characterized by a p × 1 vector of

random variables, X ∼ MVN(µ2,Σ). We have a similar allocation

rule as in the univariate case: allocate to π1 if ax0−a[(µ1+µ2)/2] ≥
(c(1|2)/c(2|1))(p2/p1), where

a = (µ1 − µ2)′Σ−1 .

Or, if the misclassification costs are equal, allocate to π1 if ax0 −
a[(µ1 + µ2)/2] ≥ [log(p2) − log(p1)]. In effect, we define regions of

classification, say R1 and R2; if an observation falls into region Ri,

it is allocated to group i, for i = 1, 2 There are a number of ways

of restating this last rule (assuming equal misclassification costs, this

is choosing to minimize the Total Probability of Misclassification

(TPM)):

A) Evaluate the classification functions for both groups and assign

according to which is higher: allocate to π1 if

[µ′1Σ
−1x0 − (1/2)µ1Σ

−1µ1) + log(p1)]−

[µ′2Σ
−1x0 − (1/2)µ2Σ

−1µ2) + log(p2)] ≥ 0 .

B) Define the posterior probability of being in group i, for i = 1, 2,

P (πi|x0) as (fipi)/(f1p1 + f2p2). We allocate to the group with the

largest posterior probability.
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C) We can restate our allocation rule according to Mahalanobis

distances: define the squared Mahalanobis distance of x0 to µi, i =

1, 2, as

(x0 − µi)
′Σ−1(x0 − µi) .

Allocate to πi for the largest quantity of the form:

−(1/2)[(x0 − µi)
′Σ−1(x0 − µi)] + log(pi) .

When the covariance matrices are not equal in the two populations

(i.e., Σ1 6= Σ2), the allocation rules get a little more complicated.

The classification rules are now called “quadratic”, and may produce

regions of allocation that may not be contiguous. This is a little

strange, but it can be done, and we can still split the allocation rule

into two classification functions (assuming, as usual, equal costs of

misclassification):

Assign to π1 if

−(1/2)x′0(Σ
−1
1 −Σ−12 )x0 + (µ1

′Σ−11 − µ2
′Σ−11 )x0 − k ≥

log((c(1|2)/c(2|1))(p2/p1)) ,

where

k = (1/2) log(
|Σ1|
|Σ2|

) + (1/2)(µ1
′Σ−11 µ1 − µ2

′Σ−12 µ2) .

Moving to the sample, we could just use estimated quantities and

hope our rule does well — we use Spooled, assuming equal covariance

matrices in the two populations, and sample means, µ̂1 and µ̂2. In

fact, we can come up with the misclassification table based on the

5



given sample and how they allocate the given n observations to the

two groups:

Group

π1 π2
π1 a b

Decision

π2 c d

n1 n2

The apparent error rate (APR) is (b + c)/n, which is overly op-

timistic because it is optimized with respect to this sample. To

cross-validate, we could use a “hold out one-at-a-time” strategy (i.e.,

a sample reuse procedure commonly referred to as the “jackknife”):

Group

π1 π2
π1 a∗ b∗

Decision

π2 c∗ d∗

n1 n2

To estimate the actual error rate (AER), we would use (b∗ + c∗)/n.

Suppose we have g groups; pi is the a priori probability of group i,

1 ≤ i ≤ g; c(k|i) is the cost of classifying an i as a k. The decision

rule that minimizes the expected cost of misclassification (ECM) is:

allocate x0 to population πk, 1 ≤ k ≤ g, if

g∑
i=1;i 6=k

pifi(x0)c(k|i)
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is smallest.

There are, again, alternative ways of stating this allocation rule;

we will assume for convenience that the costs of misclassification are

equal:

Allocate to group k if the posterior probability,

P (πk|x0) =
pkfk(x0)∑g
i=1 pifi(x0)

,

is largest.

If in population k, X ∼ MVN(µk,Σk), we allocate to group k if

log(pkfk(x0)) =

−(1/2) log(|Σk|)−(1/2)(x0−µk)
′Σ−1k (x0−µk)+log(pi)+constant ,

is largest.

If all the Σk = Σ for all k, then we allocate to πk if

µ′kΣ
−1
k x0 − (1/2)µ′kΣ

−1
k µk + log(pk) ,

is largest.

It is interesting that we can do this in a pairwise way as well:

allocate to πk if

(µk − µi)
′Σ−1k x0 − (1/2)(µk − µi)

′Σ−1k (µk + µi) ≥ log(pi/pk) ,

for all i = 1, . . . , g.
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0.0.1 Discriminant Analysis

Suppose we have a one-way analysis-of-variance (ANOVA) layout

with J groups (nj subjects in group j, 1 ≤ j ≤ J), and p measure-

ments on each subject. If xijk denotes person i, in group j, and the

observation of variable k (1 ≤ i ≤ nj; 1 ≤ j ≤ J ; 1 ≤ k ≤ p), then

define the Between-Sum-of-Squares matrix

Bp×p = {
J∑
j=1

nj(x̄·jk − x̄··k)(x̄·jk′ − x̄··k′)}p×p

and the Within-Sum-of-Squares matrix

Wp×p = {
J∑
j=1

nj∑
i=1

(xijk − x̄·jk)(xijk′ − x̄·jk′)}p×p

For the matrix product W−1B, let λ1, . . . , λT ≥ 0 be the eigen-

vectors (T = min(p, J − 1), and p1, . . . ,pT the corresponding nor-

malized eigenvectors. Then, the linear combination

p′k


X1
...

Xp


is called the kth discriminant function. It has the valuable property

of maximizing the univariate F -ratio subject to being uncorrelated

with the earlier linear combinations.

There are a number of points to make about (Fisher’s) Linear

Discriminant Functions:

A) Typically, we define a sample pooled variance-covariance ma-

trix, Spooled, as ( 1
n−J )W. And generally, the eigenvalues are scaled

so that p′kSpooledpk = 1.
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B) When J = 2, the eigenvector, p′1, is equal to (µ̂1− µ̂2)′Spooled.

This set of weights maximized the square of the t ratio in a two-group

separation problem (i.e., discriminating between the two groups). We

also maximize the square of the effect size for this linear combination;

the maximum for such an effect size is

(x̄1 − x̄2)
′S−1pooled(x̄1 − x̄2)

′ ,

where x̄1 and x̄2 are the sample centroids in groups 1 and 2 for the

p variables. Finally, if we define Y = 1 if an observation falls into

group 1, and = 0 if in group 2, the set of weights in p′1 is proportional

to the regression coefficient in predicting Y from X1, . . . , Xp.

C) The classification rule based on Mahalanobis distance (and as-

suming equal prior probabilities and equal misclassification values),

could be restated equivalently using plain Euclidean distances in dis-

criminate function space.
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