Psychology 594 Multivariate Analysis

Solve all the problems first by hand, and then redo the analyses with MATLAB to check your results.

Homework I

Problem 1:

Let
$$\mathbf{x}' = [6, 2, 1]$$
 and $\mathbf{y}' = [-1, 3, 1]$.

- (a) Graph the two vectors.
- (b) Find (i) the length of \mathbf{x} , (ii) the angle between \mathbf{x} and \mathbf{y} , and (iii) the projection of \mathbf{y} on \mathbf{x} .
- (c) Because $\bar{x}=3$ and $\bar{y}=1$, graph the mean centered vectors, [6-3,2-3,1-3]=[3,-1,-2] and [-1-1,3-1,1-1]=[-2,2,0]. Calculate the correlation between the three observation pairs. Find the cosine of the angle between the two mean-corrected vectors, and comment on the relation to the correlation.

Problem 2:

Given the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 2 & 6 \\ 3 & 8 \end{bmatrix} , \qquad \mathbf{B} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} , \qquad \mathbf{C} = \begin{bmatrix} 5 \\ -4 \\ 2 \end{bmatrix}$$

perform the indicated multiplications:

- (a) 5**A**
- (b) **AB**
- (c) $\mathbf{A}'\mathbf{B}'$
- (d) $\mathbf{C}'\mathbf{A}'$
- (e) Is **BA** defined? If so, calculate it.

Problem 3:

Verify the following properties of the transpose and inverse when

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} , \qquad \mathbf{B} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$

- (a) $(\mathbf{A}')' = \mathbf{A}$
- (b) $(\mathbf{B}')^{-1} = (\mathbf{B}^{-1})'$
- (c) $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
- (d) $(AB)^{-1} = B^{-1}A^{-1}$

Problem 4:

Verify that

$$\mathbf{Q} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{bmatrix}$$

is an orthogonal matrix; calculate $\mathbf{Q}\mathbf{Q}',\,\mathbf{Q}'\mathbf{Q},\,$ and $\mathbf{Q}^{-1}.$

Homework II

Problem 1:

Let

$$\mathbf{A} = \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$

- (a) Is A symmetric?
- (b) Is A positive definite?

Problem 2:

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$

- a) Determine the eigenvalues and associated eigenvectors of A. Find the spectral decomposition of A.
 - b) Find \mathbf{A}^{-1} .
- c) Compute the eigenvalues and eigenvectors of \mathbf{A}^{-1} , and write out the spectral decomposition of \mathbf{A}^{-1} . Compare this spectral decomposition with that for \mathbf{A} .

Problem 3:

A quadratic form $\mathbf{x}'\mathbf{A}\mathbf{x}$ is said to be positive definite if the matrix \mathbf{A} is positive definite. Is the quadratic form, $4x_1^2 + 4x_2^2 - 6x_1x_2$, positive definite?

Problem 4:

Determine the square root matrix $\mathbf{A}^{1/2}$ using the matrix \mathbf{A} from the previous problem 3. Also, determine $\mathbf{A}^{-1/2}$, and show that $\mathbf{A}^{1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1/2}\mathbf{A}^{1/2} = \mathbf{I}$.

Problem 5:

- (a) Consider an arbitrary $n \times p$ matrix \mathbf{A} . Then $\mathbf{A}'\mathbf{A}$ is a symmetric $p \times p$ matrix. Show that $\mathbf{A}'\mathbf{A}$ is necessarily positive semi-definite. (Hint: set $\mathbf{y} = \mathbf{A}\mathbf{x}$ so that $\mathbf{y}'\mathbf{y} = \mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x}$)
- (b) Using the matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & 8 & 8 \\ 3 & 6 & -9 \end{array} \right]$$

- (1) Calculate $\mathbf{A}\mathbf{A}'$ and obtain its eigenvalues and eigenvectors.
- (2) Calculate $\mathbf{A}'\mathbf{A}$ and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in (1).
 - (3) Obtain the singular-value decomposition of **A**.

Homework III

Problem 1:

Let X have covariance matrix

$$\Sigma = \begin{bmatrix} 25 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 9 \end{bmatrix}$$

- (a) Determine ρ (the correlation matrix) and $\mathbf{V}^{1/2}$ (a diagonal matrix containing the standard deviations along the main diagonal).
- (b) Multiply your matrices to check the relation $\mathbf{V}^{1/2} \boldsymbol{\rho} \mathbf{V}^{1/2} = \boldsymbol{\Sigma}$.
 - (c) Find ρ_{13} .
 - (d) Find the correlation between X_1 and $\frac{1}{4}X_2 + \frac{1}{2}X_3$.

Problem 2:

- (a) Derive expressions for the mean and variances of the following linear combinations in terms of the means and covariances of the random variable X_1 , X_2 , and X_3 .
 - 1) $X_1 2X_2$
 - 2) $-X_1 + 3X_2$
 - 3) $X_1 + X_2 + X_3$
 - 4) $X_1 + 2X_2 X_3$
- 5) $3X_1 4X_2$, when X_1 and X_2 are independent random variables.
- (b) The random vector $\mathbf{X}' = [X_1, X_2, X_3, X_4]$ has mean vector [4, 3, 2, 1] and variance-covariance matrix

$$\begin{bmatrix}
3 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 \\
2 & 1 & 9 & -2 \\
2 & 0 & -2 & 4
\end{bmatrix}$$

Let $\mathbf{X}^{(1)}=[X_1,X_2]'$ and $\mathbf{X}^{(2)}=[X_3,X_4]',$ and let $\mathbf{A}=[1\ 2]$ and

$$\mathbf{B} = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$

Find: $E(\mathbf{X}^{(1)}); E(\mathbf{A}\mathbf{X}^{(1)}); E(\mathbf{X}^{(2)}); E(\mathbf{B}\mathbf{X}^{(2)}); Cov(\mathbf{X}^{(1)}); Cov(\mathbf{A}\mathbf{X}^{(1)}); Cov(\mathbf{X}^{(2)}); Cov(\mathbf{B}\mathbf{X}^{(2)}); Cov(X_1, X_2); Cov(AX_1, BX_2).$

For

$$\mathbf{A} = \left[\begin{array}{cc} 9 & -2 \\ -2 & 6 \end{array} \right]$$

find the maximum value of $\mathbf{x}'\mathbf{A}\mathbf{x}$ for $\mathbf{x}'\mathbf{x} = 1$.

Problem 3:

Give your own numerically specified 4×3 matrix, say, \mathbf{A} , and do the MATLAB operations of rank, corrcoef, cov, mean, median, std, and sum on \mathbf{A} , and inv, trace, det, eig, svd, poly, and sqrtm on $\mathbf{A}'\mathbf{A}$.