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Chapter 1

Preface

1.1 The Methods

A broad definition of clustering can be given as the search for homo-

geneous groupings of objects based on some type of available data.

There are two common such tasks now discussed in (almost) all multi-

variate analysis texts and implemented in the commercially available

behavioral and social science statistical software suites: hierarchical

clustering and the K-means partitioning of some set of objects. We

begin with brief reviews of these topics using several illustrative data

sets that are carried along throughout the monograph for numer-

ical illustration. Later chapters will develop hierarchical clustering

through least-squares and the characterizing notion of an ultrametric;

K-means partitioning is generalized by rephrasing as an optimization

problem of subdividing a given proximity matrix.

The MATLAB computational environment is relied on to effect our

analyses, using the Statistical Toolbox, for example, to carry out the

common hierarchical clustering and K-means methods, and our own

open-source MATLAB M-files when the extensions go beyond what

is currently available commercially (the latter are freely available as
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a MATLAB Toolbox from

http://cda.psych.uiuc.edu/clusteranalysis_mfiles_revised

1.2 The Data

1.2.1 A Proximity Matrix for Illustrating Hierarchical Clustering:
Agreement Among Supreme Court Justices in the Rehn-
quist Court

On Saturday, July 2, 2005, the lead headline in The New York

Times read as follows: “O’Connor to Retire, Touching Off Battle

Over Court.” Opening the story attached to the headline, Richard

W. Stevenson wrote, “Justice Sandra Day O’Connor, the first woman

to serve on the United States Supreme Court and a critical swing

vote on abortion and a host of other divisive social issues, announced

Friday that she is retiring, setting up a tumultuous fight over her

successor.” Our interests are in the data set also provided by the

Times that day, quantifying the (dis)agreement among the Supreme

Court justices during the decade they had been together. We give

this in Table 1.1 in the form of the percentage of non-unanimous

cases in which the justices disagree, from the 1994/95 term through

2003/04 (known as the Rehnquist Court).1

The dissimilarity matrix (in which larger entries reflect less similar

justices) is listed in the same row and column order as the Times

data set, with the justices obviously ordered from “liberal” to “con-

servative”:

1: John Paul Stevens (St)
1For example, the value of .85 between Stevens (St) and Thomas (Th) means that these two justices

disagreed on 85% of the non-unanimous cases heard by the Rehnquist Court.
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St Br Gi So Oc Ke Re Sc Th
1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .38 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .34 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .67 .45 .53 .45 .00 .33 .29 .46 .46
6 Ke .64 .53 .51 .50 .33 .00 .23 .42 .41
7 Re .75 .57 .57 .56 .29 .23 .00 .34 .32
8 Sc .86 .75 .72 .69 .46 .42 .34 .00 .21
9 Th .85 .76 .74 .71 .46 .41 .32 .21 .00

Table 1.1: Dissimilarities Among Nine Supreme Court Justices.

2: Stephen G. Breyer (Br)

3: Ruth Bader Ginsberg (Gi)

4: David Souter (So)

5: Sandra Day O’Connor (Oc)

6: Anthony M. Kennedy (Ke)

7: William H. Rehnquist (Re)

8: Antonin Scalia (Sc)

9: Clarence Thomas (Th)

We use the Supreme Court data matrix of Table 1.1 for the various il-

lustrations of hierarchical clustering that follow. It will be loaded into

a MATLAB environment with the command load supreme_agree.dat

The supreme_agree.dat file is in simple ascii form with verbatim

contents as follows:

.00 .38 .34 .37 .67 .64 .75 .86 .85

.38 .00 .28 .29 .45 .53 .57 .75 .76

.34 .28 .00 .22 .53 .51 .57 .72 .74

.37 .29 .22 .00 .45 .50 .56 .69 .71

.67 .45 .53 .45 .00 .33 .29 .46 .46

.64 .53 .51 .50 .33 .00 .23 .42 .41

.75 .57 .57 .56 .29 .23 .00 .34 .32

.86 .75 .72 .69 .46 .42 .34 .00 .21

.85 .76 .74 .71 .46 .41 .32 .21 .00
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1.2.2 A Data Set for Illustrating K-Means Partitioning: The Fa-
mous 1976 Blind Tasting of French and California Wines

In the Bicentennial year for the United States of 1976, an Englishman, Steven
Spurrier, and his American partner, Patricia Gallagher, hosted a blind wine
tasting in Paris that compared California cabernet from Napa Valley and
French cabernet from Bordeaux. Besides Spurrier and Gallagher, nine other
judges were notable French wine connoisseurs (the raters are listed below).
The six California and four French wines are also identified below with the
ratings given in Table 1.2 (from 0 to 20 with higher scores being “better”).
The overall conclusion is that Stag’s Leap, a U.S. offering, is the winner. Our
concern later will be in clustering the wines through the K-means procedure.2

Tasters:
1: Pierre Brejoux, Institute of Appellations of Origin
2: Aubert de Villaine, Manager, Domaine de la Romanée-Conti
3: Michel Dovaz, Wine Institute of France
4: Patricia Gallagher, L’Académie du Vin
5: Odette Kahn, Director, Review of French Wines
6: Christian Millau, Le Nouveau Guide (restaurant guide)
7: Raymond Oliver, Owner, Le Grand Vefour
8: Steven Spurrier, L’Académie du Vin
9: Pierre Tart, Owner, Chateau Giscours
10: Christian Vanneque, Sommelier, La Tour D’Argent
11: Jean-Claude Vrinat, Taillevent

Cabernet Sauvignons:

A: Stag’s Leap 1973 (US)
B: Château Mouton Rothschild 1970 (F)
C: Château Montrose 1970 (F)
D: Château Haut Brion 1970 (F)
E: Ridge Monte Bello 1971 (US)
F: Château Léoville-Las-Cases 1971 (F)

2For those familiar with late 1950’s TV, one can hear Sergeant Preston of the Yukon exclaiming “sacré
bleu”, and wrapping up with, “Well King, this case is closed”.
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Taster
Wine 1 2 3 4 5 6 7 8 9 10 11
A (US) 14 15 10 14 15 16 14 14 13 16.5 14
B (F) 16 14 15 15 12 16 12 14 11 16 14
C (F) 12 16 11 14 12 17 14 14 14 11 15
D (F) 17 15 12 12 12 13.5 10 8 14 17 15
E (US) 13 9 12 16 7 7 12 14 17 15.5 11
F (F) 10 10 10 14 12 11 12 12 12 8 12
G (US) 12 7 11.5 17 2 8 10 13 15 10 9
H (US) 14 5 11 13 2 9 10 11 13 16.5 7
I (US) 5 12 8 9 13 9.5 14 9 12 3 13
J (US) 7 7 15 15 5 9 8 13 14 6 7

Table 1.2: Taster Ratings Among Ten Cabernets.

G: Heitz “Martha’s Vineyard” 1970 (US)
H: Clos du Val 1972 (US)
I: Mayacamas 1971 (US)
J: Freemark Abbey 1969 (US)
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Chapter 2

Hierarchical Clustering (Old School)

To characterize the basic problem posed by hierarchical clustering somewhat
more formally, suppose S is a set of n objects, {O1, . . . , On} (for example, in
line with the two data sets just given, the objects could be supreme court
justices, wines, or tasters (e.g., raters or judges)). Between each pair of ob-
jects, Oi and Oj, a symmetric proximity measure, pij, is given or possibly
constructed that we assume (from now on) has a dissimilarity interpretation;
these values are collected into an n× n proximity matrix P = {pij}n×n, such
as the 9 × 9 example given in Table 1.1 among the supreme court justices.
Any hierarchical clustering strategy produces a sequence or hierarchy of par-
titions of S, denoted P0,P1, . . . ,Pn−1, from the information present in P. In
particular, the (disjoint) partition P0 contains all objects in separate classes,
Pn−1 (the conjoint partition) consists of one all-inclusive object class, and
Pk+1 is defined from Pk by uniting a single pair of subsets in Pk.

Generally, the two subsets chosen to unite in defining Pk+1 from Pk are
those that are “closest”, with the characterization of this latter term speci-
fying the particular hierarchical clustering method used. We mention three
of the most common options for this notion of closeness:

(a) complete-link: the maximum proximity value attained for pairs of
objects within the union of two sets (thus, we minimize the maximum link
[or the subset “diameter”]);

(b) single-link: the minimum proximity value attained for pairs of objects,
where the two objects from the pair belong to the separate classes (thus, we
minimize the minimum link);
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(c) average-link: the average proximity over pairs of objects defined across
the separate classes (thus, we minimize the average link).

We generally suggest that the complete-link criterion be the default se-
lection for the task of hierarchical clustering when done in the traditional
agglomerative way that starts from P0 and proceeds step-by-step to Pn−1.
A reliance on single-link tends to produce “straggly” clusters that are not
very internally homogeneous nor substantively interpretable; the average-
link choice seems to produce results that are the same as or very similar
to the complete-link criterion but relies on more information from the given
proximities; complete-link depends only on the rank-order of the proximities.1

A complete-link clustering of the supreme_agree.dat data set is given
by the MATLAB recording below along with the displayed dendrogram in
Figure 2.1. (The later dendrogram is drawn directly from the MATLAB
Statistical Toolbox routines except for our added two-letter labels for the
justices [referred to as “terminal” nodes in the dendrogram], and the num-
bering of the “internal” nodes from 10 to 17 that represent the new subsets
formed in the hierarchy.) The squareform.m M-function from the Statistics
Toolbox changes a square proximity matrix with zeros along the main diag-
onal to one in vector form that can be used in the main clustering routine,
linkage.m. The results of the complete-link clustering are given by the 8×3
matrix (supreme_agree_clustering), indicating how the objects (labeled
from 1 to 9) and clusters (labeled 10 through 17) are formed and at what
level. Here, the levels are the maximum proximities (or diameters) for the
newly constructed subsets as the hierarchy is generated. These newly formed
clusters (generally, n− 1 in number) are labeled in Figure 2.1 along with the
calibration on the vertical axis as to when they are formed.

The results could also be given as a sequence of partitions:

1As we anticipate from later discussion, the average-link criterion has some connections with rephrasing
hierarchical clustering as a least-squares optimization task in which an ultrametric (to be defined) is fit to
the given proximity matrix. The average proximities between subsets characterize the fitted values.
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Partition Level Formed

{{Sc,Th,Oc,Ke,Re,St,Br,Gi,So}} .86
{{Sc,Th,Oc,Ke,Re},{St,Br,Gi,So}} .46
{{Sc,Th},{Oc,Ke,Re},{St,Br,Gi,So}} .38
{{Sc,Th},{Oc,Ke,Re},{St},{Br,Gi,So}} .33
{{Sc,Th},{Oc},{Ke,Re},{St},{Br,Gi,So}} .29
{{Sc,Th},{Oc},{Ke,Re},{St},{Br},{Gi,So}} .23
{{Sc,Th},{Oc},{Ke},{Re},{St},{Be},{Gi,So}} .22
{{Sc,Th},{Oc},{Ke},{Re},{St},{Br},{Gi},{So}} .21
{{Sc},{Th},{Oc},{Ke},{Re},{St},{Br},{Gi},{So}} —

>> load supreme_agree.dat

>> supreme_agree

supreme_agree =

0 0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500

0.3800 0 0.2800 0.2900 0.4500 0.5300 0.5700 0.7500 0.7600

0.3400 0.2800 0 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6700 0.4500 0.5300 0.4500 0 0.3300 0.2900 0.4600 0.4600

0.6400 0.5300 0.5100 0.5000 0.3300 0 0.2300 0.4200 0.4100

0.7500 0.5700 0.5700 0.5600 0.2900 0.2300 0 0.3400 0.3200

0.8600 0.7500 0.7200 0.6900 0.4600 0.4200 0.3400 0 0.2100

0.8500 0.7600 0.7400 0.7100 0.4600 0.4100 0.3200 0.2100 0

>> supreme_agree_vector = squareform(supreme_agree)

supreme_agree_vector =

Columns 1 through 9

0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500 0.2800

Columns 10 through 18

0.2900 0.4500 0.5300 0.5700 0.7500 0.7600 0.2200 0.5300 0.5100

Columns 19 through 27

0.5700 0.7200 0.7400 0.4500 0.5000 0.5600 0.6900 0.7100 0.3300

Columns 28 through 36

0.2900 0.4600 0.4600 0.2300 0.4200 0.4100 0.3400 0.3200 0.2100

>> supreme_agree_clustering = linkage(supreme_agree_vector,’complete’)

supreme_agree_clustering =

8.0000 9.0000 0.2100

3.0000 4.0000 0.2200

6.0000 7.0000 0.2300
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2.0000 11.0000 0.2900

5.0000 12.0000 0.3300

1.0000 13.0000 0.3800

10.0000 14.0000 0.4600

15.0000 16.0000 0.8600

>> dendrogram(supreme_agree_clustering)

Substantively, the interpretation of the complete-link hierarchical cluster-
ing result is very clear. There are three “tight” dyads in {Sc,Th}, {Gi,So},
and {Ke,Re}; {Oc} joins with {Ke,Re}, and {Br} with {Gi,So} to form,
respectively, the “moderate” conservative and liberal clusters. {St} then
joins with {Br,Gi,So} to form the liberal-left four-object cluster; {Oc,Ke,Re}
unites with the dyad of {Sc,Th} to form the five-object conservative-right. All
of this is not very surprising given the enormous literature on the Rehnquist
Court. What is satisfying from a data analyst’s perspective is how very clear
the interpretation is, based on the dendrogram of Figure 2.1 constructed
empirically from the data of Table 1.1.2

2.1 Ultrametrics

Given the partition hierarchies from any of the three criteria mentioned
(complete-, single-, or average-link), suppose we place the values for when the
new subsets were formed (i.e., the maximum, minimum, or average proximity
between the united subsets) into an n× n matrix U with rows and columns
relabeled to conform with the order of display for the terminal nodes in the
dendrogram. For example, Table 2.1 provides the complete-link results for U
with an overlay partitioning of the matrix to indicate the hierarchical cluster-
ing. In general, there are n− 1 distinct nonzero values that define the levels
at which the n − 1 new subsets are formed in the hierarchy; thus, there are
typically n − 1 distinct nonzero values present in a matrix U characterizing
the identical blocks of matrix entries between subsets united in forming the
hierarchy.

2We note that the terminal node order in Figure 2.1 does not conform to the Justice ordering of Table
1.1. Until recently, there was no option to impose such an order on the dendrogram function in MATLAB.
Now, however, there is an option to the dendrogram function that could impose such an order. For the
dendrogram of Figure 2.1, use
dendrogram(supreme agree clustering,’reorder’,[1 2 3 4 5 6 7 8 9])
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Sc Th Oc Ke Re St Br Gi So
8 Sc .00 .21 .46 .46 .46 .86 .86 .86 .86
9 Th .21 .00 .46 .46 .46 .86 .86 .86 .86
5 Oc .46 .46 .00 .33 .33 .86 .86 .86 .86
6 Ke .46 .46 .33 .00 .23 .86 .86 .86 .86
7 Re .46 .46 .33 .23 .00 .86 .86 .86 .86
1 St .86 .86 .86 .86 .86 .00 .38 .38 .38
2 Br .86 .86 .86 .86 .86 .38 .00 .29 .29
3 Gi .86 .86 .86 .86 .86 .38 .29 .00 .22
4 So .86 .86 .86 .86 .86 .38 .29 .22 .00

Table 2.1: Ultrametric Values (Based on Subset Diameters) Characterizing the Complete-
Link Hierarchical Clustering of Table 1.1

Given a matrix such as U, the partition hierarchy can be retrieved im-
mediately along with the levels at which the new subsets were formed. For
example, Table 2.1, incorporating subset diameters (i.e., the maximum prox-
imity within a subset) to characterize when formation takes place, can be
used to obtain the dendrogram and the explicit listing of the partitions in
the hierarchy. In fact, any (strictly) monotone (i.e., order preserving) trans-
formation of the n − 1 distinct values in such a matrix U would serve the
same retrieval purposes. Thus, as an example, we could replace the eight dis-
tinct values in Table 2.1, (.21, .22, .23, .29, .33, .38, .46, .86), by the simple
integers, (1, 2, 3, 4, 5, 6, 7, 8), and the topology (i.e., the branching pattern)
of the dendrogram and the partitions of the hierarchy could be reconstructed.
Generally, we characterize a matrix U that can be used to retrieve a partition
hierarchy in this way as an ultrametric:

A matrix U = {uij}n×n is ultrametric if for every triple of subscripts, i, j,
and k, uij ≤ max(uik, ukj); or equivalently (and much more understandably),
among the three terms, uij, uik, and ukj, the largest two values are equal.

As can be verified, Table 2.1 (or any strictly monotone transformation of its
entries) is ultrametric; it can be used to retrieve a partition hierarchy, and
the (n− 1 distinct nonzero) values in U define the levels at which the n− 1
new subsets are formed. The hierarchical clustering task will be characterized
in a later chapter as an optimization problem in which we seek to identify a
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best-fitting ultrametric matrix, say U∗, for a given proximity matrix P.
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Figure 2.1: Dendrogram Representation for the Complete-link Hierarchical Clustering of the
Supreme Court Proximity Matrix
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Chapter 3

K-Means Clustering (or Partitioning)
(Old School)

The data on which a K-means clustering is defined will be assumed in the
form of a usual n× p data matrix, X = {xij}, for n subjects over p variables.
(We will use the example of Table 1.2, where there are n = 10 wines (subjects)
and p = 11 tasters (variables). Although we will not pursue the notion here,
there is typically a duality present in all such data matrices, and attention
could be refocused on grouping tasters based on the wines now reconsidered
to be the “variables”.) If the set S = {O1, . . . , On} defines the n objects
to be clustered, we seek a collection of K mutually-exclusive and exhaustive
subsets of S, say, C1, . . . , CK , that minimizes the sum-of-squared-error (SSE):

SSE =
K∑
k=1

∑
Oi∈Ck

p∑
j=1

(xij −mkj)
2, (3.1)

for mkj = 1
nk

∑
Oi∈Ck

xij (the mean in group Ck on variable j), and nk, the

number of objects in Ck. What this represents in the context of the usual
univariate analysis-of-variance is a minimization of the within-group sum-
of-squares aggregated over the p variables in the data matrix X. We also
note that for the most inward expression in (3.1), the term

∑p
j=1(xij −mkj)

2

represents the squared Euclidean distance between the profile values over the
p variables present for object Oi and the variable means (or centroid) within
the cluster Ck containing Oi (it is these latter K centroids or mean vectors
that lend the common name of K-means).

The typical relocation algorithm would proceed as follows: an initial set
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of “seeds” (e.g., objects) is chosen and the sum-of-squared-error criterion is
defined based on the distances to these seeds. A reallocation of objects to
groups is carried out according to minimum distance, and centroids recal-
culated. The minimum distance allocation and recalculation of centroids is
performed until no change is possible — each object is closest to the group
centroid to which it is now assigned. Note that at the completion of this
stage, the solution will be locally optimal with respect to each object being
closest to its group centroid. A final check can be made to determine if any
single-object reallocations will reduce the sum-of-squared-error any further;
at the completion of this stage, the solution will be locally optimal with
respect to (3.1).

We present a verbatim MATLAB session below in which we ask for two
to four clusters for the wines using the kmeans.m routine from the Statistical
Toolbox on the cabernet_taste.dat data matrix from Table 1.2. We choose
one-hundred random starts (‘replicates’,100) by picking two to four ob-
jects at random to serve as the initial seeds (‘start’,‘sample’). Two local
optima were found for the choice of two clusters, but only one for three. The
control phrase (‘maxiter’,1000) increases the allowable number of itera-
tions; (‘display’,‘final’) controls printing the end results for each of the
hundred replications; most of this latter output is suppressed to save space
and replaced by ... ). The results actually displayed for each number of
chosen clusters are the best obtained over the hundred replications with idx

indicating cluster membership for the n objects; c contains the cluster cen-
troids; sumd gives the within-cluster sum of object-to-centroid distances (so
when the entries are summed, the objective function in (3.1) is generated); d
includes all the distances between each object and each centroid.

>> load cabernet_taste.dat

>> cabernet_taste

cabernet_taste =

14.0000 15.0000 10.0000 14.0000 15.0000 16.0000 14.0000 14.0000 13.0000 16.5000 14.0000

16.0000 14.0000 15.0000 15.0000 12.0000 16.0000 12.0000 14.0000 11.0000 16.0000 14.0000

12.0000 16.0000 11.0000 14.0000 12.0000 17.0000 14.0000 14.0000 14.0000 11.0000 15.0000

17.0000 15.0000 12.0000 12.0000 12.0000 13.5000 10.0000 8.0000 14.0000 17.0000 15.0000

13.0000 9.0000 12.0000 16.0000 7.0000 7.0000 12.0000 14.0000 17.0000 15.5000 11.0000

10.0000 10.0000 10.0000 14.0000 12.0000 11.0000 12.0000 12.0000 12.0000 8.0000 12.0000

12.0000 7.0000 11.5000 17.0000 2.0000 8.0000 10.0000 13.0000 15.0000 10.0000 9.0000

14.0000 5.0000 11.0000 13.0000 2.0000 9.0000 10.0000 11.0000 13.0000 16.5000 7.0000
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5.0000 12.0000 8.0000 9.0000 13.0000 9.5000 14.0000 9.0000 12.0000 3.0000 13.0000

7.0000 7.0000 15.0000 15.0000 5.0000 9.0000 8.0000 13.0000 14.0000 6.0000 7.0000

>> [idx,c,sumd,d] = kmeans(cabernet_taste,2,’start’,’sample’,’replicates’,100,’maxiter’,1000,’display’,’final’)

2 iterations, total sum of distances = 633.208

3 iterations, total sum of distances = 633.063 ...

idx =

2

2

2

2

1

2

1

1

2

1

c =

11.5000 7.0000 12.3750 15.2500 4.0000 8.2500 10.0000 12.7500 14.7500 12.0000 8.5000

12.3333 13.6667 11.0000 13.0000 12.6667 13.8333 12.6667 11.8333 12.6667 11.9167 13.8333

sumd =

181.1875

451.8750

d =

329.6406 44.3125

266.1406 63.3125

286.6406 27.4792

286.8906 76.8958

46.6406 155.8125

130.3906 48.9792

12.5156 249.5625

50.3906 290.6458

346.8906 190.8958

71.6406 281.6458

_______________________________________________________________________________________________________________

>> [idx,c,sumd,d] = kmeans(cabernet_taste,3,’start’,’sample’,’replicates’,100,’maxiter’,1000,’display’,’final’)

3 iterations, total sum of distances = 348.438 ...

idx =

1

1

1

1

2

3

2

2
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3

2

c =

14.7500 15.0000 12.0000 13.7500 12.7500 15.6250 12.5000 12.5000 13.0000 15.1250 14.5000

11.5000 7.0000 12.3750 15.2500 4.0000 8.2500 10.0000 12.7500 14.7500 12.0000 8.5000

7.5000 11.0000 9.0000 11.5000 12.5000 10.2500 13.0000 10.5000 12.0000 5.5000 12.5000

sumd =

117.1250

181.1875

50.1250

d =

16.4688 329.6406 242.3125

21.3438 266.1406 289.5625

34.8438 286.6406 155.0625

44.4688 286.8906 284.0625

182.4688 46.6406 244.8125

132.0938 130.3906 25.0625

323.0938 12.5156 244.8125

328.2188 50.3906 357.8125

344.9688 346.8906 25.0625

399.5938 71.6406 188.0625

_______________________________________________________________________________________________________________

>> [idx,c,sumd,d] = kmeans(cabernet_taste,4,’start’,’sample’,’replicates’,100,’maxiter’,1000,’display’,’final’)

3 iterations, total sum of distances = 252.917

3 iterations, total sum of distances = 252.917

4 iterations, total sum of distances = 252.917

3 iterations, total sum of distances = 289.146 ...

idx =

4

4

4

4

2

3

2

2

3

1

c =

7.0000 7.0000 15.0000 15.0000 5.0000 9.0000 8.0000 13.0000 14.0000 6.0000 7.0000

13.0000 7.0000 11.5000 15.3333 3.6667 8.0000 10.6667 12.6667 15.0000 14.0000 9.0000

7.5000 11.0000 9.0000 11.5000 12.5000 10.2500 13.0000 10.5000 12.0000 5.5000 12.5000

14.7500 15.0000 12.0000 13.7500 12.7500 15.6250 12.5000 12.5000 13.0000 15.1250 14.5000
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sumd =

0

85.6667

50.1250

117.1250

d =

485.2500 309.6111 242.3125 16.4688

403.0000 252.3611 289.5625 21.3438

362.0000 293.3611 155.0625 34.8438

465.2500 259.2778 284.0625 44.4688

190.2500 30.6111 244.8125 182.4688

147.0000 156.6944 25.0625 132.0938

76.2500 23.1111 244.8125 323.0938

201.2500 31.9444 357.8125 328.2188

279.2500 401.2778 25.0625 344.9688

0 127.3611 188.0625 399.5938

The separation of the wines into three groups (having objective function
value of 348.438) results in the clusters: {A,B,C,D}, {E,G,H, J}, {F, I}.
Here, {A,B,C,D} represents the four absolute “best” wines with the sole
U.S. entry of Stag’s Leap (A) in this mix; {E,G,H, J} are four wines that are
rated at the absolute bottom (consistently) for four of the tasters (2,5,6,11)
and are all U.S. products; the last class, {F, I}, includes one French and one
U.S. label with more variable ratings over the judges. This latter group also
coalesces with the best group when only two clusters are sought. From a
nonchauvinistic perspective, the presence of the single U.S. offering of Stag’s
Leap in the “best” group of four (within the three-class solution) does not
say very strongly to us that the U.S. has somehow “won”.

3.1 K-Means and Matrix Partitioning

The most inward expression in (3.1),

∑
Oi∈Ck

p∑
j=1

(xij −mkj)
2, (3.2)

can be interpreted as the sum of the squared Euclidean distances between ev-
ery object in Ck and the centroid for this cluster. These sums are aggregated,
in turn, over k (from 1 to K) to obtain the sum-of-squared-error criterion
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that we attempt to minimize in K-means clustering by the judicious choice
of C1, . . . , CK . Alternatively, the expression in (3.2) can be re-expressed as

1

2nk

∑
Oi,Oi′∈Ck

p∑
j=1

(xij − xi′j)2, (3.3)

or a quantity equal to the sum of the squared Euclidean distances between
all object pairs in Ck divided by twice the number of objects, nk, in Ck. If
we define the proximity, pii′, between any two objects, Oi and Oi′, over the p
variables as the squared Euclidean distance, then (3.3) could be rewritten as

1

2nk

∑
Oi,Oi′∈Ck

pii′.

Or, consider the proximity matrix P = {pii′} and for any clustering, C1, . . . , CK ,
the proximity matrix can be schematically represented as

C1 · · · Ck · · · CK
C1 P11 · · · P1k · · · P1K
...

... · · · ... · · · ...
Ck Pk1 · · · Pkk · · · PkK
...

... · · · ... · · · ...
CK PK1 · · · PKk · · · PKK

where the objects in S have been reordered so each cluster Ck represents a
contiguous segment of (ordered objects) and Pkk′ is the nk×nk′ collection of
proximities between the objects in Ck and Ck′. In short, the sum-of-squared-
error criterion is merely the sum of proximities in Pkk weighted by 1

2nk
and

aggregated over k from 1 to K (i.e., the sum of the main diagonal blocks of
P). In fact, any clustering evaluated with the sum-of-squared-error criterion
could be represented by such a structure defined with a reordered proximity
matrix having its rows and columns grouped to contain the contiguous objects
in C1, . . . , CK .

To give an example of this kind of proximity matrix for our cabernet
example, the squared Euclidean distance matrix among the wines is given
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Class
Wine

C1/A C1/B C1/C C1/D C2/E C2/G C2/H C2/J C3/F C3/I
C1/A .00 48.25 48.25 86.50 220.00 400.50 394.00 485.25 160.25 374.50
C1/B 48.25 .00 77.00 77.25 195.25 327.25 320.25 403.00 176.00 453.25
C1/C 48.25 77.00 .00 131.25 229.25 326.25 410.25 362.00 107.00 253.25
C1/D 86.50 77.25 131.25 .00 202.50 355.50 305.50 465.25 202.25 416.00
C2/E 220.00 195.25 229.25 202.50 .00 75.50 102.00 190.25 145.25 394.50
C2/G 400.50 327.25 326.25 355.50 75.50 .00 79.50 76.25 160.25 379.50
C2/H 394.00 320.25 410.25 305.50 102.00 79.50 .00 201.25 250.25 515.50
C2/J 485.25 403.00 362.00 465.25 190.25 76.25 201.25 .00 147.00 279.25
C3/F 160.25 176.00 107.00 202.25 145.25 160.25 250.25 147.00 .00 100.25
C3/I 374.50 453.25 253.25 416.00 394.50 379.50 515.50 279.25 100.25 .00

Table 3.1: Squared Euclidean Distances Among Ten Cabernets.

in Table 3.1 with the row and column objects reordered to conform to the
three-group K-means clustering. The expression in (3.3) in relation to Table
3.1 would be given as

1

2n1

∑
Oi,Oi′∈C1

pii′ +
1

2n2

∑
Oi,Oi′∈C2

pii′ +
1

2n3

∑
Oi,Oi′∈C3

pii′ =

1

2(4)
(937.00) +

1

2(4)
(1449.50) +

1

2(2)
(200.50) =

117.1250 + 181.1875 + 50.1250 = 348.438

This is the same objective function value from (3.1) reported in the verbatim
MATLAB output.

25



Chapter 4

Hierarchical Clustering (New School)

A brief introduction to the two dominant tasks of hierarchical clustering and
K-means partitioning have been provided in the previous two chapters. Here,
we begin to make several extensions of these ideas to make the analysis tech-
niques generally more useful to the user. In contrast to earlier sections where
the cited MATLAB routines were already part of the Statistics Toolbox, the
M-files from this chapter on are available (open-source) from the web site:

http://cda.psych.uiuc.edu/clusteranalysis_mfiles_revised

We provide the help “header” files for all of these M-files in an Appendix to
this monograph; these should be generally helpful in explaining both syntax
and usage.

4.1 The Least-Squares Finding and Fitting of Ultra-

metrics

The hierarchical clustering task can be reformulated as locating a best-fitting
ultrametric, say U∗ = {u∗ij}, to the given proximity matrix, P, such that the
least-squares criterion ∑

i<j

(pij − u∗ij)2 ,

is minimized. The approach can either be confirmatory (in which we look
for the best-fitting ultrametric defined by some monotone transformation of
the n − 1 values making up a fixed ultrametric), or exploratory (where we
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merely look for the best-fitting ultrametric without any prior constraint as
to its form). In both cases, a convenient normalized loss measure is given by
the variance-accounted-for (VAF):

VAF = 1−
∑
i<j(pij − u∗ij)2∑
i<j(pij − p̄)2

,

where p̄ is the average off-diagonal proximity value in P. This is directly
comparable to the usual VAF measure familiar from multiple regression.

A least-squares approach to identifying good ultrametrics is governed by
two M-files, ultrafit.m (for confirmatory ultrametric fitting) and ultrafnd.m

(for exploratory ultrametric finding). The syntaxes for both are as follows:

[fit,vaf] = ultrafit(prox,targ)

[find,vaf] = ultrafnd(prox,inperm)

Here, prox refers to the input proximity matrix; targ is of the same size as
prox, with the same row and column order, and contains values conforming
to an ultrametric (e.g., the complete-link ultrametric values of Table 2.1);
inperm is an input permutation of the n objects that controls the heuristic
search process for identifying the ultrametric constraints to impose (this is
usually given by the built-in random permutation randperm(n), where n is
replaced by the actual number of objects; different random starts can be tried
in the heuristic search to investigate the distribution of possible local optima);
fit and find refer to the confirmatory or exploratory identified ultrametric
matrices, respectively, with the common meaning of variance-accounted-for
given to vaf.

A MATLAB session using these two functions is reproduced below. The
complete-link target ultrametric matrix, sc_completelink_target.dat, with
the same row and column ordering as supreme_agree.dat induces a least-
squares confirmatory fitted matrix having VAF of 73.69%. The monotonic
function, say f(·), between the values of the fitted and input target matrices
can be given as follows: f(.21) = .21; f(.22) = .22; f(.23) = .23; f(.29) =
.2850; f(.33) = .31; f(.38) = .3633; f(.46) = .4017; f(.86) = .6405. In-
terestingly, an exploratory use of ultrafnd.m produces exactly this same
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result; also, there appears to be only this one local optimum identifiable over
many random starts (these results are not explicitly reported here but can
be replicated easily by the reader. Thus, at least for this particular data
set, the complete-link method produces the optimal [least-squares] branching
structure as verified over repeated random initializations for ultrafnd.m).
>> load sc_completelink_target.dat

>> sc_completelink_target

sc_completelink_target =

0 0.3800 0.3800 0.3800 0.8600 0.8600 0.8600 0.8600 0.8600

0.3800 0 0.2900 0.2900 0.8600 0.8600 0.8600 0.8600 0.8600

0.3800 0.2900 0 0.2200 0.8600 0.8600 0.8600 0.8600 0.8600

0.3800 0.2900 0.2200 0 0.8600 0.8600 0.8600 0.8600 0.8600

0.8600 0.8600 0.8600 0.8600 0 0.3300 0.3300 0.4600 0.4600

0.8600 0.8600 0.8600 0.8600 0.3300 0 0.2300 0.4600 0.4600

0.8600 0.8600 0.8600 0.8600 0.3300 0.2300 0 0.4600 0.4600

0.8600 0.8600 0.8600 0.8600 0.4600 0.4600 0.4600 0 0.2100

0.8600 0.8600 0.8600 0.8600 0.4600 0.4600 0.4600 0.2100 0

>> load supreme_agree.dat;

>> [fit,vaf] = ultrafit(supreme_agree,sc_completelink_target)

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

>> [find,vaf] = ultrafnd(supreme_agree,randperm(9))

find =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369
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As noted in an earlier footnote, the ultrametric fitted values obtained
through least-squares are actually average proximities of a similar type used
in average-link hierarchical clustering. This should not be surprising given
that any sum-of-squared deviations of a set of observations from a common
value is minimized when that common value is the arithmetic mean. For
the monotonic function reported above, the various values are the average
proximities between the subsets united in forming the partition hierarchy:

.21 = .21; .22 = .22; .23 = .23; .2850 = (.28 + .29)/2;

.31 = (.33 + .29)/2; .3633 = (.38 + .34 + .37)/3;

.4017 = (.46 + .42 + .34 + .46 + .41 + .32)/6;

.6405 = (.67 + .64 + .75 + .86 + .85 + .45 + .53 + .57 + .75 + .76 +

.53 + .51 + .57 + .72 + .74 + .45 + .50 + .56 + .69 + .71)/20.

4.2 Order-Constrained Ultrametrics

In identifying a best-fitting ultrametric and displaying it subsequently through
a dendrogram, there is a degree of arbitrariness in how the terminal nodes
are ordered. If we treat the dendrogram as a “mobile” and allow the internal
nodes to act as universal joints with freedom of 360◦ degree rotation, there are
2n−1 equivalent orderings of the terminal nodes (in our example, 28 is 256),
and none is preferred a priori. To impose some meaning on the terminal
node ordering, we provide two routines that either impose a given ordering
or look for a “best” one that could be used for display in the exploratory
identification of a best-fitting ultrametric. These routines rely on a prelim-
inary identification of a least-squares best-fitting anti-Robinson matrix (an
anti-Robinson (AR) matrix is one in which the entries never decrease when
moving within the rows or columns away from the main diagonal entries).
Treating the fitted AR matrix as the collection of “proximities” in their own
right, the process of finding a best-fitting ultrametric is then carried out,
producing a dendrogram that is consistently displayable with respect to the
constraining order. In effect, we are combining the two (somewhat) different
tasks of hierarchical clustering and the seriation of an object set by reordering
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the rows and columns of P to display as closely as possible, a particularly
appealing AR gradient in its entries.

To identify a good-fitting (in a least-squares sense) ultrametric that could
be displayed consistently with respect to a given fixed order, we provide the
M-file, ultrafnd_confit.m, and give an application below to the supreme_agree.dat
data. The input proximity matrix (prox) is supreme_agree.dat; the permu-
tation that determines the order in which the heuristic optimization strategy
seeks the inequality constraints to define the obtained ultrametric is chosen at
random (randperm(9)); thus, the routine could be rerun to see whether local
optima are obtained in identifying the ultrametric (but still constrained by
exactly the same object order (conperm), given here as the identity (the colon
notation, 1:9, can be used generally in MATLAB to produce the sequence, 1
2 3 4 5 6 7 8 9). For output, we provide the ultrametric identified in find

with VAF of 73.69%. For completeness, the best AR matrix (least-squares)
to the input proximity matrix using the same constraining order (conperm)
is given by arobprox with a VAF of 99.55%.

As our computational mechanism for imposing the given ordering on the
obtained ultrametric, the best-fitting AR matrix is used as a point of de-
parture. Also, the ultrametric fitted values considered as averages from the
original proximity matrix could just as well be calculated directly as averages
from the best-fitting AR matrix. The results must be the same due to the
best-fitting AR matrix itself being least-squares and therefore constructed
using averages from the original proximity matrix.

>> load supreme_agree.dat

>> [find,vaf,vafarob,arobprox,vafultra] = ultrafnd_confit(supreme_agree,randperm(9),1:9)

find =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =
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0.7369

vafarob =

0.9955

arobprox =

0 0.3600 0.3600 0.3700 0.6550 0.6550 0.7500 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5300 0.5700 0.7500 0.7600

0.3600 0.2800 0 0.2200 0.4900 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.6550 0.5300 0.5100 0.5000 0.3100 0 0.2300 0.4150 0.4150

0.7500 0.5700 0.5700 0.5600 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7500 0.7200 0.6900 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0

vafultra =

0.7402

The M-file, ultrafnd_confnd.m, carries out the identification of a good
initial constraining order, and does not require one to be given a priori.
As the syntax below shows (with the three dots indicating the MATLAB
continuation command when the line is too long), the constraining order
(conperm) is provided as an output vector, and constructed by finding a
best AR fit to the original proximity input matrix. We note here that the
identity permutation would again be retrieved, not surprisingly, as the “best”
constraining order.

[find,vaf,conperm,vafarob,arobprox,vafultra] = ...

ultrafnd_confnd(prox,inperm)

Figure 4.1 illustrates the ultrametric structure graphically as a dendrogram
where the terminal nodes now conform explicitly to the “left-to-right” gra-
dient identified using ultrafnd_confnd.m, with its inherent meaning over
and above the structure implicit in the imposed ultrametric. It represents
the object order for the best AR matrix fit to the original proximities, and is
identified before we further impose an ultrametric. Generally, the object or-
der chosen for the dendrogram should place similar objects (according to the
original proximities) as close as possible. This is very apparent here where
the particular (identity) constraining order imposed has an obvious meaning.
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We note that Figure 4.1 is not drawn using the dendrogram.m routine from
MATLAB but was done “by hand” in the LATEX picture environment with
an explicit left-to-right order imposed among the justices.
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Figure 4.1: A Dendrogram (Tree) Representation for the Ordered-Constrained Ultrametric
Described in the Text (Having VAF of 73.69%)
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Chapter 5

K-Means Clustering (or Partitioning)
(New School)

In observing that the K-means criterion could be reinterpreted through a
proximity matrix defined by squared Euclidean distances, it was also noted
that the clusters could be represented as contiguous segments of ordered
objects in a reordered proximity matrix. We exploit this connection by
rephrasing the search for the better (in the sense of hopefully being more
substantively interpretable) partitions by imposing a preliminary order on
the squared Euclidean proximity matrix; then, for a given number of clus-
ters, a (globally) optimal subdivision is found based on the K-means criterion
(the M-file that carries this out is an implementation of an order-constrained
dynamic programming (DP) routine that can handle a very large number
of objects with guaranteed (order-constrained) optimality for the traditional
K-means criterion). It appears that this tandem strategy of finding an order
first and then carrying out a K-means subdivision, does well in its genera-
tion of substantively interpretable partitions. It’s as if we are simultaneously
optimizing two objective functions — one that provides a typically good ap-
proximate AR ordering for the squared Euclidean distances (an AR ordering
that, in fact, might be interpretable more-or-less “as is”), and a second that
is not prone to the local optimum problem plaguing all K-means iterative
methods because it is based on a DP strategy guaranteeing global optimality
(albeit within an order-constrained context).

To illustrate how order-constrained K-means clustering might be imple-
mented, we go back to the wine tasting data and adopt as a constraining
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order the permutation [9 10 7 8 5 6 3 2 1 4] identified through order.m dis-
cussed in Appendix D. In the verbatim analysis below, it should be noted
that an input matrix of

wineprox = sqeuclid([9 10 7 8 5 6 3 2 1 4],[9 10 7 8 5 6 3 2 1 4])

is used in partitionfnd_kmeans.m, which then induces the mandatory con-
straining identity permutation for the input matrix. This also implies a
labeling of the columns of the membership matrix of [9 10 7 8 5 6 3 2 1 4] or
[I J G H E F C B A D]. Considering alternatives to the earlier K-means anal-
ysis, it is interesting (and possibly substantively more meaningful) to note
that the two-group solution puts the best wines ({A,B,C,D}) versus the rest
({E,F,G,H,I,J}) (and is actually the second local optima identified for K = 2
with an objective function loss of 633.208). The four-group solution is very
interpretable and defined by the best ({A,B,C,D}), the worst ({E,G,H,J}),
and the two “odd-balls” in separate classes ({F} and {I}). Its loss value of
298.300 is somewhat more than the least attainable of 252.917 (found for the
less-than-pleasing subdivision, ({A,B,C,D},{E,G,H},{F,I},{J}).
>> load cabernet_taste.dat

>> [sqeuclid] = sqeuclidean(cabernet_taste)

sqeuclid =

0 48.2500 48.2500 86.5000 220.0000 160.2500 400.5000 394.0000 374.5000 485.2500

48.2500 0 77.0000 77.2500 195.2500 176.0000 327.2500 320.2500 453.2500 403.0000

48.2500 77.0000 0 131.2500 229.2500 107.0000 326.2500 410.2500 253.2500 362.0000

86.5000 77.2500 131.2500 0 202.5000 202.2500 355.5000 305.5000 416.0000 465.2500

220.0000 195.2500 229.2500 202.5000 0 145.2500 75.5000 102.0000 394.5000 190.2500

160.2500 176.0000 107.0000 202.2500 145.2500 0 160.2500 250.2500 100.2500 147.0000

400.5000 327.2500 326.2500 355.5000 75.5000 160.2500 0 79.5000 379.5000 76.2500

394.0000 320.2500 410.2500 305.5000 102.0000 250.2500 79.5000 0 515.5000 201.2500

374.5000 453.2500 253.2500 416.0000 394.5000 100.2500 379.5000 515.5000 0 279.2500

485.2500 403.0000 362.0000 465.2500 190.2500 147.0000 76.2500 201.2500 279.2500 0

>> wineprox = sqeuclid([9 10 7 8 5 6 3 2 1 4],[9 10 7 8 5 6 3 2 1 4])

wineprox =

0 279.2500 379.5000 515.5000 394.5000 100.2500 253.2500 453.2500 374.5000 416.0000

279.2500 0 76.2500 201.2500 190.2500 147.0000 362.0000 403.0000 485.2500 465.2500

379.5000 76.2500 0 79.5000 75.5000 160.2500 326.2500 327.2500 400.5000 355.5000

515.5000 201.2500 79.5000 0 102.0000 250.2500 410.2500 320.2500 394.0000 305.5000

394.5000 190.2500 75.5000 102.0000 0 145.2500 229.2500 195.2500 220.0000 202.5000

100.2500 147.0000 160.2500 250.2500 145.2500 0 107.0000 176.0000 160.2500 202.2500

253.2500 362.0000 326.2500 410.2500 229.2500 107.0000 0 77.0000 48.2500 131.2500

453.2500 403.0000 327.2500 320.2500 195.2500 176.0000 77.0000 0 48.2500 77.2500

374.5000 485.2500 400.5000 394.0000 220.0000 160.2500 48.2500 48.2500 0 86.5000

416.0000 465.2500 355.5000 305.5000 202.5000 202.2500 131.2500 77.2500 86.5000 0
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>> [membership,objectives] = partitionfnd_kmeans(wineprox)

membership =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 1 1 1 1

3 2 2 2 2 2 1 1 1 1

4 3 3 3 3 2 1 1 1 1

5 4 3 3 3 2 1 1 1 1

6 5 4 4 4 3 2 2 2 1

7 6 6 5 4 3 2 2 2 1

8 7 6 5 4 3 2 2 2 1

9 8 7 6 5 4 3 2 2 1

10 9 8 7 6 5 4 3 2 1

objectives =

1.0e+003 *

1.1110

0.6332

0.4026

0.2983

0.2028

0.1435

0.0960

0.0578

0.0241

0
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Chapter 6

Generalizing Ultrametrics Based on
Ordered Partitions

6.1 An Alternative and Generalizable View of Ultra-

metric Matrix Decomposition

A general mechanism exists for decomposing any ultrametric matrix U into
a (nonnegatively) weighted sum of dichotomous (0/1) matrices, each repre-
senting one of the partitions of the hierarchy, P0, . . . ,Pn−2, induced by U
(note that the conjoint partition is explicitly excluded in these expressions

for the numerical reason we allude to below). Specifically, if Pt = {p(t)
ij }, for

0 ≤ t ≤ n−2, is an n×n symmetric (0/1) dissimilarity matrix corresponding

to Pt in which an entry p
(t)
ij is 0 if Oi and Oj belong to the same class in Pt and

otherwise equal to 1, then for some collection of suitably chosen nonnegative
weights, α0, α1, . . . , αn−2,

U =
n−2∑
t=0

αtPt .

Generally, the nonnegative weights, α0, α1, . . . , αn−2, are given by the (dif-
ferences in) partition increments that calibrate the vertical axis of the den-
drogram. Moreover, because the ultrametric represented by Figure 4.1 was
generated by optimizing a least-squares loss function in relation to a given
proximity matrix P, an alternative interpretation for the obtained weights is
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that they solve the nonnegative least-squares task of

min
{αt≥0, 0≤t≤n−2}

∑
i<j

(pij −
n−2∑
t=0

αtp
(t)
ij )2, (6.1)

for the fixed collection of dichotomous matrices P0,P1, . . . ,Pn−2. Although
the solution to (6.1) is generated indirectly in this case from the least-squares
optimal ultrametric directly fitted to P, in general, for any fixed proximity
matrix P and collection of dichotomous matrices, P0, . . . ,Pn−2, however ob-
tained, the nonnegative weights αt, 0 ≤ t ≤ n − 2, solving (6.1) can be
obtained with any nonnegative least-squares optimization method. We will
routinely use in particular (and without further comment) the code rewrit-
ten in MATLAB for a subroutine originally provided by Wollan and Dykstra
(1987) based on a strategy for solving linear inequality constrained least-
squares tasks called iterative projection.

In the verbatim script below, the M-file, partitionfit.m, is used to re-
construct the order-constrained ultrametric for the supreme_agree.dat data
set. The crucial component is in constructing the m×n matrix (member) that
defines class membership for the m = 8 nontrivial partitions generating the
ultrametric. Note in particular that the unnecessary conjoint partition involv-
ing a single class is not included (in fact, its inclusion would produce a numeri-
cal error in the least-squares subcode integral to partitionfit.m; thus, there
would be a nonzero value for end_condition). The M-file partitionfit.m

will be relied upon again when we further generalize the type of structural
representations possible for a proximity matrix in the next section.

>> member = [1 1 1 1 2 2 2 2 2;1 1 1 1 2 2 2 3 3;1 2 2 2 3 3 3 4 4;1 2 2 2 3 4 4 5 5;

1 2 3 3 4 5 5 6 6;1 2 3 3 4 5 6 7 7;1 2 3 4 5 6 7 8 8;1 2 3 4 5 6 7

8 9]

member =

1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 3 3

1 2 2 2 3 3 3 4 4

1 2 2 2 3 4 4 5 5

1 2 3 3 4 5 5 6 6

1 2 3 3 4 5 6 7 7

1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member)

fitted =
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0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

weights =

0.2388

0.0383

0.0533

0.0250

0.0550

0.0100

0.0100

0.2100

end_condition =

0

6.2 Order-Constrained Partitioning and Ultrametric Gen-

eralizations

The idea of providing an optimal mechanism for subdividing an order-constrained
proximity matrix (and not one just based on squared Euclidean distances),
gives a natural means for generalizing the usual (agglomerative) hierarchi-
cal clustering methods, such as complete- or average-link. Defining a good
preliminary constraining order for the proximity matrix, an optimization rou-
tine (based on dynamic programming) is implemented that will give optimal
partitions into 2 to n − 1 classes respecting the preliminary order (having
classes containing objects contiguous with respect to it), and minimizing the
maximum such measure obtained over the classes making up the partitions
(the maximum proximity [or diameter] within a class for the complete-link
criterion; the average of the proximities within a class for the average-link
criterion). The “minimum of the maximum” is used because otherwise a
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tendency will exist to produce just one large class for each optimal partition;
also, this seems a closer analogue to agglomerative hierarchical clustering
when we try to minimize a maximum as each partition is constructed from
the proceeding one. Stated alternatively, the best single partition optimiza-
tion analogue to hierarchical clustering, with the latter’s myopic process and
greedy “best it can do” at each next level, would be the optimization goal of
minimizing the maximum subset measure over the classes of a partition.1

Given the broad characterization of the properties of an ultrametric de-
scribed earlier, the generalization to be mentioned within this subsection rests
on merely altering the type of partition allowed in the sequence, P0,P1, . . . ,Pn−1.
Specifically, we will use an object order assumed without loss of generality
to be the identity permutation, O1 ≺ · · · ≺ On, and a collection of partitions
with fewer and fewer classes consistent with this order by requiring the classes
within each partition to contain contiguous objects. When necessary, and if
an input constraining order is given by, say, inperm, that is not the identity,
we merely use the input matrix, prox_input = prox(inperm,inperm); the
identity permutation then constrains the analysis automatically, although in
effect the constraint is given by inperm which also labels the columns of
membership.

The M-files introduced below remove the requirement that the new classes
in Pt are formed by uniting only existing classes in Pt−1. Although class
contiguity is maintained with respect to the same object order in the par-
titions identified, the requirement that the classes be nested is relaxed so
that if a class is present in Pt−1, it will no longer need to appear either as a
class by itself or be properly contained within some class in Pt. The M-files
for constructing the collection of partitions respecting the given object or-
der are called partitionfnd_averages.m and partitionfnd_diameters.m,
and use dynamic programming to construct a set of partitions with from 1
to n ordered classes. The criteria minimized is the maximum over clusters
of the average or of the maximum proximity within subsets, respectively.
In the verbatim listing below, we note that the collection of partitions con-

1In the case of our K-means interpretation, a simple sum over the classes can be optimized that does not
generally lead to the “one big class” triviality, apparently because of the divisions by twice the number of
objects within each class in the specific loss function used in the optimization.
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structed using partitionfnd_averages.m is actually hierarchical and pro-
duces the same order-constrained classification we have been working with
all along; partitionfnd_diameters.m produces a “slightly non-hierarchical”
set of partitions, and gives a larger vaf value of .7425 (compared to .7369 for
the exact ultrametric).

>> load supreme_agree.dat

>> [membership,objectives] = partitionfnd_averages(supreme_agree)

membership =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 4 4 3 2 2 1 1

7 6 5 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

objectives =

0.5044

0.3470

0.3133

0.2833

0.2633

0.2300

0.2200

0.2100

0

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,membership(2:end,:))

fitted =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

weights =

0.2388

0.0383

0.0533

0.0250
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0.0550

0.0100

0.0100

0.2100

end_condition =

0

>> [membership,objectives] = partitionfnd_diameters(supreme_agree)

membership =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 1 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 4 4 3 2 2 1 1

7 6 5 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

objectives =

0.8600

0.4600

0.3800

0.3300

0.2900

0.2300

0.2200

0.2100

0

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,membership(2:end,:))

fitted =

0 0.3648 0.3648 0.3648 0.6405 0.6405 0.6405 0.6405 0.6405

0.3648 0 0.2840 0.2840 0.6405 0.6405 0.6405 0.6405 0.6405

0.3648 0.2840 0 0.2020 0.6405 0.6405 0.6405 0.6405 0.6405

0.3648 0.2840 0.2020 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.2840 0.3381 0.4190 0.4190

0.6405 0.6405 0.6405 0.6405 0.2840 0 0.2561 0.4190 0.4190

0.6405 0.6405 0.6405 0.6405 0.3381 0.2561 0 0.3648 0.3648

0.6405 0.6405 0.6405 0.6405 0.4190 0.4190 0.3648 0 0.2020

0.6405 0.6405 0.6405 0.6405 0.4190 0.4190 0.3648 0.2020 0

vaf =

0.7425

weights =

0.2215

0.0541

0.0809

0

0.0820
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0

0

0.2020

end_condition =

0
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Chapter 7

Extending Ultrametrics to Additive
Trees

A currently popular alternative to the use of a simple ultrametric in classifica-
tion, and what might be considered an extension, is that of an additive tree.
Generalizing the earlier characterization of an ultrametric, an n× n matrix,
D = {dij}, can be called an additive tree metric (matrix) if the ultrametric
inequality condition is replaced by

dij + dkl ≤ max{dik + djl, dil + djk} for 1 ≤ i, j, k, l ≤ n (the additive tree
metric inequality). Or equivalently (and again, much more understandable),
for any object quadruple Oi, Oj, Ok, and Ol, the largest two values among
the sums dij + dkl, dik + djl, and dil + djk are equal.

Any additive tree metric matrix D can be represented (in many ways) as a
sum of two matrices, say U = {uij} and C = {cij}, where U is an ultrametric
matrix, and cij = gi+gj for 1 ≤ i 6= j ≤ n and cii = 0 for 1 ≤ i ≤ n, based on
some set of values g1, . . . , gn. The multiplicity of such possible decompositions
results from the choice of where to place the root in the type of graphical
representation we give in Figure 7.2.

To eventually construct the type of graphical additive tree representation
of Figure 7.2, the process followed is to first graph the dendrogram induced
by U, where (as for any ultrametric) the chosen root is equidistant from
all terminal nodes. The branches connecting the terminal nodes are then
lengthened or shortened depending on the signs and absolute magnitudes
of g1, . . . , gn. If one were willing to consider the (arbitrary) inclusion of a
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sufficiently large additive constant to the entries in D, the values of g1, . . . , gn
could be assumed nonnegative. In this case, the matrix C would represent
what is called a centroid metric, and although a nicety, such a restriction is
not absolutely necessary for the extensions we pursue.

The number of “weights” an additive tree metric requires could be equated
to the maximum number of “branch lengths” that a representation such as
Figure 7.2 might necessitate, i.e., n branches attached to the terminal nodes,
and n− 3 to the internal nodes only, for a total of 2n− 3. For an ultramet-
ric, the number of such “weights” could be identified with the n − 1 levels
at which the new subsets get formed in the partition hierarchy, and would
represent about half of that necessary for an additive tree. What this implies
is that the VAF measures obtained for ultrametrics and additive trees are
not directly comparable because a very differing number of “free weights”
must be specified for each. We are reluctant to use the word “parameter”
due to the absence of any explicit statistical model and because the topology
(e.g., the branching pattern) of the structures that ultimately get reified by
imposing numerical values for the “weights”, must first be identified by some
type of combinatorial optimization search process. In short, there doesn’t
seem to be an unambiguous way to specify, for example, the number of es-
timated “parameters”, the number of “degrees-of-freedom” left over, or how
to “adjust” the VAF value as we can do in multiple regression so it has an
expected value of zero when there is “nothing going on”.

One of the difficulties in working with additive trees and displaying them
graphically is to find some sensible spot to site a root for the tree. Depending
on where the root is placed, a differing decomposition of D into an ultramet-
ric and a centroid metric is implied. The ultrametric components induced
by the choice of root can differ widely with major substantive differences
in the branching patterns of the hierarchical clustering. The two M-files
discussed below, cent_ultrafnd_confit.m and cent_ultrafnd_confnd.m,
both identify best-fitting additive trees to a given proximity matrix but
where the terminal nodes of (an) ultrametric portion of the fitted matrix
are then ordered according to a constraining order (conperm) that is either
input (in cent_ultrafnd_confit.m), or is identified as a good one to use
(in cent_ultrafnd_confnd.m) and then given as an output vector. In both
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cases, a centroid metric is first fit to the input proximity matrix; the resid-
ual matrix is carried over to the order-constrained ultrametric constructions
routines (ultrafnd_confit.m or ultrafnd_confnd.m), and thus, the root is
chosen naturally for the ultrametric component. The whole process then iter-
ates with a new centroid metric estimation, an order-constrained ultrametric
re-estimation, and so on until convergence is achieved for the VAF values.

We illustrate below what occurs for our supreme_agree.dat data and the
imposition of the identity permutation (1:9) for the terminal nodes of the
ultrametric. The relevant outputs are the ultrametric component in targtwo

and the lengths for the centroid metric in lengthsone. To graph the additive
tree, we first add .60 to the entries in targtwo to make them all positive and
graph this ultrametric as in Figure 7.1. Then, (1/2)(.60) = .30 is subtracted
from each term in lengthsone; the branches attached to the terminal nodes
of the ultrametric are then stretched or shrunk accordingly to produce Figure
7.2. (These stretching/shrinking factors are as follows: St: (.07); Br: (−.05);
Gi: (−.06); So: (−.09); Oc: (−.18); Ke: (−.14); Re: (−.10); Sc: (.06);
Th: (.06).) We note that if cent_ultrafnd_confnd.m were invoked to find
a good constraining order for the ultrametric component, the VAF could be
increased slightly (to 98.56% from 98.41% for Figure 7.2) using the conperm

of [3 1 4 2 5 6 7 9 8]. No real substantive interpretative difference, however,
is apparent from the structure given for a constraining identity permutation.

>> [find,vaf,outperm,targone,targtwo,lengthsone] = cent_ultrafnd_confit(supreme_agree,randperm(9),1:9)

find =

0 0.3800 0.3707 0.3793 0.6307 0.6643 0.7067 0.8634 0.8649

0.3800 0 0.2493 0.2579 0.5093 0.5429 0.5852 0.7420 0.7434

0.3707 0.2493 0 0.2428 0.4941 0.5278 0.5701 0.7269 0.7283

0.3793 0.2579 0.2428 0 0.4667 0.5003 0.5427 0.6994 0.7009

0.6307 0.5093 0.4941 0.4667 0 0.2745 0.3168 0.4736 0.4750

0.6643 0.5429 0.5278 0.5003 0.2745 0 0.2483 0.4051 0.4065

0.7067 0.5852 0.5701 0.5427 0.3168 0.2483 0 0.3293 0.3307

0.8634 0.7420 0.7269 0.6994 0.4736 0.4051 0.3293 0 0.2100

0.8649 0.7434 0.7283 0.7009 0.4750 0.4065 0.3307 0.2100 0

vaf =

0.9841

outperm =

1 2 3 4 5 6 7 8 9
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targone =

0 0.6246 0.6094 0.5820 0.4977 0.5313 0.5737 0.7304 0.7319

0.6246 0 0.4880 0.4606 0.3763 0.4099 0.4522 0.6090 0.6104

0.6094 0.4880 0 0.4454 0.3611 0.3948 0.4371 0.5939 0.5953

0.5820 0.4606 0.4454 0 0.3337 0.3673 0.4097 0.5664 0.5679

0.4977 0.3763 0.3611 0.3337 0 0.2830 0.3253 0.4821 0.4836

0.5313 0.4099 0.3948 0.3673 0.2830 0 0.3590 0.5158 0.5172

0.5737 0.4522 0.4371 0.4097 0.3253 0.3590 0 0.5581 0.5595

0.7304 0.6090 0.5939 0.5664 0.4821 0.5158 0.5581 0 0.7163

0.7319 0.6104 0.5953 0.5679 0.4836 0.5172 0.5595 0.7163 0

targtwo =

0 -0.2446 -0.2387 -0.2027 0.1330 0.1330 0.1330 0.1330 0.1330

-0.2446 0 -0.2387 -0.2027 0.1330 0.1330 0.1330 0.1330 0.1330

-0.2387 -0.2387 0 -0.2027 0.1330 0.1330 0.1330 0.1330 0.1330

-0.2027 -0.2027 -0.2027 0 0.1330 0.1330 0.1330 0.1330 0.1330

0.1330 0.1330 0.1330 0.1330 0 -0.0085 -0.0085 -0.0085 -0.0085

0.1330 0.1330 0.1330 0.1330 -0.0085 0 -0.1107 -0.1107 -0.1107

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 0 -0.2288 -0.2288

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 -0.2288 0 -0.5063

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 -0.2288 -0.5063 0

lengthsone =

0.3730 0.2516 0.2364 0.2090 0.1247 0.1583 0.2007 0.3574 0.3589

>> [find,vaf,outperm,targone,targtwo,lengthsone] = cent_ultrafnd_confnd(supreme_agree,randperm(9))

find =

0 0.3400 0.2271 0.2794 0.4974 0.5310 0.5734 0.7316 0.7301

0.3400 0 0.3629 0.4151 0.6331 0.6667 0.7091 0.8673 0.8659

0.2271 0.3629 0 0.2556 0.4736 0.5072 0.5495 0.7078 0.7063

0.2794 0.4151 0.2556 0 0.4967 0.5303 0.5727 0.7309 0.7294

0.4974 0.6331 0.4736 0.4967 0 0.2745 0.3168 0.4750 0.4736

0.5310 0.6667 0.5072 0.5303 0.2745 0 0.2483 0.4065 0.4051

0.5734 0.7091 0.5495 0.5727 0.3168 0.2483 0 0.3307 0.3293

0.7316 0.8673 0.7078 0.7309 0.4750 0.4065 0.3307 0 0.2100

0.7301 0.8659 0.7063 0.7294 0.4736 0.4051 0.3293 0.2100 0

vaf =

0.9856

outperm =

3 1 4 2 5 6 7 9 8

targone =

0 0.6151 0.4556 0.4787 0.3644 0.3980 0.4404 0.5986 0.5971

0.6151 0 0.5913 0.6144 0.5001 0.5337 0.5761 0.7343 0.7329

0.4556 0.5913 0 0.4549 0.3406 0.3742 0.4165 0.5748 0.5733

0.4787 0.6144 0.4549 0 0.3637 0.3973 0.4397 0.5979 0.5964
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0.3644 0.5001 0.3406 0.3637 0 0.2830 0.3253 0.4836 0.4821

0.3980 0.5337 0.3742 0.3973 0.2830 0 0.3590 0.5172 0.5158

0.4404 0.5761 0.4165 0.4397 0.3253 0.3590 0 0.5595 0.5581

0.5986 0.7343 0.5748 0.5979 0.4836 0.5172 0.5595 0 0.7163

0.5971 0.7329 0.5733 0.5964 0.4821 0.5158 0.5581 0.7163 0

targtwo =

0 -0.2751 -0.2284 -0.1993 0.1330 0.1330 0.1330 0.1330 0.1330

-0.2751 0 -0.2284 -0.1993 0.1330 0.1330 0.1330 0.1330 0.1330

-0.2284 -0.2284 0 -0.1993 0.1330 0.1330 0.1330 0.1330 0.1330

-0.1993 -0.1993 -0.1993 0 0.1330 0.1330 0.1330 0.1330 0.1330

0.1330 0.1330 0.1330 0.1330 0 -0.0085 -0.0085 -0.0085 -0.0085

0.1330 0.1330 0.1330 0.1330 -0.0085 0 -0.1107 -0.1107 -0.1107

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 0 -0.2288 -0.2288

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 -0.2288 0 -0.5063

0.1330 0.1330 0.1330 0.1330 -0.0085 -0.1107 -0.2288 -0.5063 0

lengthsone =

0.2397 0.3754 0.2159 0.2390 0.1247 0.1583 0.2007 0.3589 0.3574

In addition to the additive tree identification routines just described, there
are two more illustrated below, called atreefit.m and atreefnd.m; these two
M-files are direct analogues of ultrafit.m and ultrafnd.m introduced in an
earlier chapter. Again, the complete-link target, sc_completelink_target.dat,
can be used in atreefit.m (producing a structure with VAF of 94.89%);
atreefnd.m generates the same additive tree as cent_ultrafnd_confnd.m

with a VAF of 98.56%. The M-file, atreedec.m, provides a mechanism for
decomposing any given additive tree matrix into an ultrametric and a cen-
troid metric matrix (where the root is situated halfway along the longest
path). The form of the usage is

[ulmetric,ctmetric] = atreedec(prox,constant)

where prox is the input (additive tree) proximity matrix (still with a zero
main diagonal and a dissimilarity interpretation); constant is a nonnegative
number (less than or equal to the maximum proximity value) that controls the
positivity of the constructed ultrametric values; ulmetric is the ultrametric
component of the decomposition; ctmetric is the centroid metric component
(given by values, g1, . . . , gn, assigned to each of the objects, some of which
may be negative depending on the input proximity matrix and constant used).

There are two additional utility files, ultraorder.m and ultraplot.m,
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Figure 7.1: A Dendrogram (Tree) Representation for the Ordered-Constrained Ultrametric
Component of the Additive Tree Represented in Figure 7.2
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Figure 7.2: An Graph-Theoretic Representation for the Ordered-Constrained Additive Tree
Described in the Text (Having VAF of 98.41%)
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that may prove useful in explaining the ultrametric components identified
from an application of atreedec.m. In the explicit usage

[orderprox,orderperm] = ultraorder(prox)

the matrix prox is assumed to be ultrametric; orderperm is a permutation
used to display an AR form in orderprox, where

orderprox = prox(orderperm,orderperm)

The second utility’s usage of ultraplot(ultra), where ultra is a matrix
presumed to satisfy the ultrametric inequality, first adds a constant to all
values in ultra to make the entries positive; the MATLAB Statistics Tool-
box routine, dendrogram.m, is then invoked to plot the resulting ultrametric
matrix.

>> load supreme_agree.dat

>> load sc_completelink_target.dat

>> [fit,vaf] = atreefit(supreme_agree,sc_completelink_target)

fit =

0 0.3972 0.3850 0.3678 0.6748 0.6670 0.6756 0.8456 0.8470

0.3972 0 0.2635 0.2464 0.5533 0.5456 0.5542 0.7242 0.7256

0.3850 0.2635 0 0.2200 0.5411 0.5333 0.5419 0.7119 0.7133

0.3678 0.2464 0.2200 0 0.5239 0.5162 0.5247 0.6947 0.6962

0.6748 0.5533 0.5411 0.5239 0 0.2449 0.2535 0.4235 0.4249

0.6670 0.5456 0.5333 0.5162 0.2449 0 0.2300 0.4158 0.4172

0.6756 0.5542 0.5419 0.5247 0.2535 0.2300 0 0.4243 0.4258

0.8456 0.7242 0.7119 0.6947 0.4235 0.4158 0.4243 0 0.2100

0.8470 0.7256 0.7133 0.6962 0.4249 0.4172 0.4258 0.2100 0

vaf =

0.9489

>> [find,vaf] = atreefnd(supreme_agree,randperm(9))

find =

0 0.4151 0.3400 0.3629 0.6329 0.6668 0.7091 0.8659 0.8673

0.4151 0 0.2794 0.2556 0.4965 0.5304 0.5727 0.7295 0.7309

0.3400 0.2794 0 0.2271 0.4972 0.5311 0.5734 0.7302 0.7316

0.3629 0.2556 0.2271 0 0.4734 0.5073 0.5496 0.7064 0.7078

0.6329 0.4965 0.4972 0.4734 0 0.2745 0.3168 0.4736 0.4750

0.6668 0.5304 0.5311 0.5073 0.2745 0 0.2483 0.4051 0.4065

0.7091 0.5727 0.5734 0.5496 0.3168 0.2483 0 0.3293 0.3307

0.8659 0.7295 0.7302 0.7064 0.4736 0.4051 0.3293 0 0.2100

0.8673 0.7309 0.7316 0.7078 0.4750 0.4065 0.3307 0.2100 0

vaf =
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0.9856

>> [ulmetric,ctmetric] = atreedec(find,1.0)

ulmetric =

0 0.8168 0.7410 0.7877 1.1327 1.1327 1.1327 1.1327 1.1327

0.8168 0 0.8168 0.8168 1.1327 1.1327 1.1327 1.1327 1.1327

0.7410 0.8168 0 0.7877 1.1327 1.1327 1.1327 1.1327 1.1327

0.7877 0.8168 0.7877 0 1.1327 1.1327 1.1327 1.1327 1.1327

1.1327 1.1327 1.1327 1.1327 0 0.9748 0.9748 0.9748 0.9748

1.1327 1.1327 1.1327 1.1327 0.9748 0 0.8724 0.8724 0.8724

1.1327 1.1327 1.1327 1.1327 0.9748 0.8724 0 0.7543 0.7543

1.1327 1.1327 1.1327 1.1327 0.9748 0.8724 0.7543 0 0.4768

1.1327 1.1327 1.1327 1.1327 0.9748 0.8724 0.7543 0.4768 0

ctmetric =

-0.1327

-0.2691

-0.2684

-0.2922

-0.3671

-0.3332

-0.2909

-0.1341

-0.1327

>> [orderprox,orderperm] = ultraorder(ulmetric)

orderprox =

0 0.7877 0.7877 0.8168 1.1327 1.1327 1.1327 1.1327 1.1327

0.7877 0 0.7410 0.8168 1.1327 1.1327 1.1327 1.1327 1.1327

0.7877 0.7410 0 0.8168 1.1327 1.1327 1.1327 1.1327 1.1327

0.8168 0.8168 0.8168 0 1.1327 1.1327 1.1327 1.1327 1.1327

1.1327 1.1327 1.1327 1.1327 0 0.7543 0.7543 0.8724 0.9748

1.1327 1.1327 1.1327 1.1327 0.7543 0 0.4768 0.8724 0.9748

1.1327 1.1327 1.1327 1.1327 0.7543 0.4768 0 0.8724 0.9748

1.1327 1.1327 1.1327 1.1327 0.8724 0.8724 0.8724 0 0.9748

1.1327 1.1327 1.1327 1.1327 0.9748 0.9748 0.9748 0.9748 0

orderperm =

4 3 1 2 7 8 9 6 5

7.1 Visualization of Ultrametrics and Additive Trees

Using the Bioinformatics Toolbox

An alternative mechanism for visualizing ultrametrics and additive trees is
through the plot function of the Bioinformatics Toolbox used on phylogenetic
classes constructed with seqlinkage.m (on our fitted ultrametric matrices) or
with seqneighjoin.m (on our fitted additive tree matrices). The script below
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produces the representations of Figures 7.3 and 7.4 for our best ultrametric
and best additive tree found for the supreme_agree.dat.

load supreme_agree.dat

>> [find,vaf] = ultrafnd(supreme_agree,randperm(9))

find =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

>> find_vector = squareform(find)

find_vector =

Columns 1 through 12

0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405 0.2850 0.2850 0.6405 0.6405

Columns 13 through 24

0.6405 0.6405 0.6405 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405 0.6405 0.6405 0.6405

Columns 25 through 36

0.6405 0.6405 0.3100 0.3100 0.4017 0.4017 0.2300 0.4017 0.4017 0.4017 0.4017 0.2100

>> names{1} = ’St’;

>> names{2} = ’Br’;

>> names{3} = ’Gi’;

>> names{4} = ’So’;

>> names{5} = ’Oc’;

>> names{6} = ’Ke’;

>> names{7} = ’Re’;

>> names{8} = ’Sc’;

>> names{9} = ’Th’;

>> names

names =

’St’ ’Br’ ’Gi’ ’So’ ’Oc’ ’Ke’ ’Re’ ’Sc’ ’Th’

>> phylotree_ultrametric = seqlinkage(find_vector,’complete’,names)

Phylogenetic tree object with 9 leaves (8 branches)

>> plot(phylotree_ultrametric,’Type’,’angular’,’Orientation’,’top’)

>> [find,vaf] = atreefnd(supreme_agree,randperm(9))

find =

0 0.4151 0.3400 0.3629 0.6329 0.6668 0.7091 0.8659 0.8673

0.4151 0 0.2794 0.2556 0.4965 0.5304 0.5727 0.7295 0.7309
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0.3400 0.2794 0 0.2271 0.4972 0.5311 0.5734 0.7302 0.7316

0.3629 0.2556 0.2271 0 0.4734 0.5073 0.5496 0.7064 0.7078

0.6329 0.4965 0.4972 0.4734 0 0.2745 0.3168 0.4736 0.4750

0.6668 0.5304 0.5311 0.5073 0.2745 0 0.2483 0.4051 0.4065

0.7091 0.5727 0.5734 0.5496 0.3168 0.2483 0 0.3293 0.3307

0.8659 0.7295 0.7302 0.7064 0.4736 0.4051 0.3293 0 0.2100

0.8673 0.7309 0.7316 0.7078 0.4750 0.4065 0.3307 0.2100 0

vaf =

0.9856

>> find_vector = squareform(find)

find_vector =

Columns 1 through 12

0.4151 0.3400 0.3629 0.6329 0.6668 0.7091 0.8659 0.8673 0.2794 0.2556 0.4965 0.5304

Columns 13 through 24

0.5727 0.7295 0.7309 0.2271 0.4972 0.5311 0.5734 0.7302 0.7316 0.4734 0.5073 0.5496

Columns 25 through 36

0.7064 0.7078 0.2745 0.3168 0.4736 0.4750 0.2483 0.4051 0.4065 0.3293 0.3307 0.2100

>> phylotree_additivetree = seqneighjoin(find_vector,’equivar’,names)

Phylogenetic tree object with 9 leaves (8 branches)

>> plot(phylotree_additivetree,’Type’,’angular’,’Orientation’,’top’)
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Figure 7.3: Tree Representation Using the Bioinformatics Toolbox for the Best-fitting Ul-
trametric for the Supreme Court Proximity Data (VAF of 73.69%)
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Figure 7.4: Tree Representation Using the Bioinformatics Toolbox for the Best-fitting Ad-
ditive Tree for the Supreme Court Proximity Data (VAF of 98.56%)
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Appendix A

Ultrametrics and Additive Trees for
Two-Mode (Rectangular) Proximity
Data

The proximity data considered thus far for obtaining some type of structure,
such as an ultrametric or an additive tree, have been assumed to be on
one intact set of objects, S = {O1, . . . , On}, and complete in the sense that
proximity values are present between all object pairs. Suppose now that
the available proximity data are two-mode, and between two distinct object
sets, SA = {O1A, . . . , OnaA} and SB = {O1B, . . . , OnbB}, containing na and
nb objects, respectively, given by an na × nb proximity matrix Q = {qrs}.
Again, we assume that the entries in Q are keyed as dissimilarities, and
a joint structural representation is desired for the combined set SA ∪ SB.
We might caution at the outset of the need to have legitimate proximities
to make the analyses to follow very worthwhile or interpretable. There are
many numerical elicitation schemes where subjects (e.g., raters) are asked
to respond to some set of objects (e.g., items). If the elicitation is for, say,
preference, then proximity may be a good interpretation for the numerical
values. If, on the other hand, the numerical value is merely a rating given on
some more-or-less objective criterion where only errors of observation induce
the variability from rater to rater, then probably not.

Conditions have been proposed in the literature for when the entries in a
matrix fitted to Q characterize an ultrametric or an additive tree represen-
tation. In particular, suppose an na × nb matrix, F = {frs}, is fitted to Q
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through least squares subject to the constraints that follow:

Ultrametric (Furnas, 1980):

for all distinct object quadruples, OrA, OsA, OrB, OsB, where OrA, OsA ∈ SA
and OrB, OsB, ∈ SB, and considering the entries in F corresponding to the
pairs, (OrA, OrB), (OrA, OsB), (OsA OrB), and (OsA, OsB), say frArB , frAsB ,
fsArB , fsAsB , respectively, the largest two must be equal.

Additive trees (Brossier, 1987):

for all distinct object sextuples, OrA, OsA, OtA, OrB, OsB, OtB, where OrA,
OsA, OtA ∈ SA and OrB, OsB, OtB, ∈ SB, and considering the entries in F
corresponding to the pairs (OrA, OrB), (OrA, OsB), (OrA, OtB), (OsA, OrB),
(OsA, OsB), (OsA, OtB), (OtA, OrB), (OtA, OsB), and (OtA, OtB), say frArB ,
frAsB , frAtB , fsArB , fsAsB , fsAtB , ftArB , ftAsB , ftAtB , respectively, the largest two
of the following sums must be equal:

frArB + fsAsB + ftAtB ;
frArB + fsAtB + ftAsB ;
frAsB + fsArB + ftAtB ;
frAsB + fsAtB + ftArB ;
frAtB + fsArB + ftAsB ;
frAtB + fsAsB + ftArB .

A.1 Two-Mode Ultrametrics

To illustrate the fitting of a given two-mode ultrametric, a two-mode target
is generated by extracting a 5× 4 portion from the 9× 9 ultrametric target
matrix, sc_completelink_target.dat, used earlier. This file has contents
as follows (sc_completelink_target5x4.dat):

0.3800 0.3800 0.8600 0.8600

0.2900 0.2200 0.8600 0.8600

0.8600 0.8600 0.3300 0.4600

0.8600 0.8600 0.2300 0.4600

0.8600 0.8600 0.4600 0.2100

The five rows correspond to the judges, St, Gi, Oc, Re, Th; the four columns
to Br, So, Ke, Sc. As the two-mode 5 × 4 proximity matrix, the appropri-
ate portion of the supreme_agree.dat proximity matrix will be used in the
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fitting process; the corresponding file is called supreme_agree5x4.dat, with
contents:

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

Because of the way the joint set of row and columns objects is numbered, the
five rows are labeled from 1 to 5 and the four columns from 6 to 9. Thus, the
correspondence between the justices and the numbers obviously differs from
earlier applications:

1:St; 2:Gi; 3:Oc; 4:Re; 5:Th; 6:Br; 7:So; 8:Ke; 9:Sc

The M-file, ultrafittm.m, fits a given ultrametric to a two-mode proxim-
ity matrix, and has usage

[fit,vaf] = ultrafittm(proxtm,targ)

where proxtm is the two-mode (rectangular) input proximity matrix (with a
dissimilarity interpretation); targ is an ultrametric matrix of the same size as
proxtm; fit is the least-squares optimal matrix (with variance-accounted-for
of vaf) to proxtm satisfying the two-mode ultrametric constraints implicit in
targ. An example follows using sc_completelink_target5x4.dat for targ
and supreme_agree5x4.dat as proxtm:

>> load supreme_agree5x4.dat

>> load sc_completelink_target5x4.dat

>> supreme_agree5x4

supreme_agree5x4 =

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

>> sc_completelink_target5x4

sc_completelink_target5x4 =

0.3800 0.3800 0.8600 0.8600

0.2900 0.2200 0.8600 0.8600

0.8600 0.8600 0.3300 0.4600

0.8600 0.8600 0.2300 0.4600

0.8600 0.8600 0.4600 0.2100
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>> [fit,vaf] = ultrafittm(supreme_agree5x4,sc_completelink_target5x4)

fit =

0.3350 0.3350 0.6230 0.6230

0.2800 0.2200 0.6230 0.6230

0.6230 0.6230 0.3300 0.4033

0.6230 0.6230 0.2300 0.4033

0.6230 0.6230 0.4033 0.2100

vaf =

0.7441

A VAF of 74.41% was obtained for the fitted ultrametric; the easily inter-
pretable hierarchy is given below with indications of when the partitions were
formed using both the number and letter schemes to label the justices:

Partition Level
{{4:Re,8:Ke,3:Oc,5:Th,9:Sc,1:St,2:Gi,7:So,6:Br} .6230
{{4:Re,8:Ke,3:Oc,5:Th,9:Sc},{1:St,2:Gi,7:So,6:Br}} .4033
{{4:Re,8:Ke,3:Oc},{5:Th,9:Sc},{1:St,2:Gi,7:So,6:Br} .3350
{{4:Re,8:Ke,3:Oc},{5:Th,9:Sc},{1:St},{2:Gi,7:So,6:Br}} .3300
{{4:Re,8:Ke},{3:Oc},{5:Th,9:Sc},{1:St},{2:Gi,7:So,6:Br}} .2800
{{4:Re,8:Ke},{3:Oc},{5:Th,9:Sc},{1:St},{2:Gi,7:So},{6:Br}} .2300
{{4:Re},{8:Ke},{3:Oc},{5:Th,9:Sc},{1:St},{2:Gi,7:So},{6:Br}} .2200
{{4:Re},{8:Ke},{3:Oc},{5:Th,9:Sc},{1:St},{2:Gi},{7:So},{6:Br}} .2100
{{4:Re},{8:Ke},{3:Oc},{5:Th},{9:Sc},{1:St},{2:Gi},{7:So},{6:Br}} —

The M-file, ultrafndtm.m locates a best-fitting two-mode ultrametric with
usage

[find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

where proxtm is the two-mode input proximity matrix (with a dissimilar-
ity interpretation); inpermrow and inpermcol are permutations for the row
and column objects that determine the order in which the inequality con-
straints are considered; find is the found least-squares matrix (with variance-
accounted-for of vaf) to proxtm satisfying the ultrametric constraints. The
example below for supreme_agree5x4.dat (using random permutations for
both inpermrow and inpermcol), finds exactly the same ultrametric as above
with vaf of .7441.

>> [find,vaf] = ultrafndtm(supreme_agree5x4,randperm(5),randperm(4))
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find =

0.3350 0.3350 0.6230 0.6230

0.2800 0.2200 0.6230 0.6230

0.6230 0.6230 0.3300 0.4033

0.6230 0.6230 0.2300 0.4033

0.6230 0.6230 0.4033 0.2100

vaf =

0.7441

A.2 Two-Mode Additive Trees

The identification of a best-fitting two-mode additive tree will be done some-
what differently than for a two-mode ultrametric representation, largely be-
cause of future storage considerations when huge matrices might be consid-
ered. Specifically, a (two-mode) centroid metric and a (two-mode) ultrametric
matrix will be identified so that their sum is a good-fitting two-mode addi-
tive tree. Because a centroid metric can be obtained in closed-form, we first
illustrate the fitting of just a centroid metric to a two-mode proximity matrix
with the M-file, centfittm.m. Its usage is of the form

[fit,vaf,lengths] = centfittm(proxtm)

giving the least-squares fitted two-mode centroid metric (fit) to proxtm, the
two-mode rectangular input proximity matrix (with a dissimilarity interpreta-
tion). The n values (where n = number of rows(na) + number of columns(nb))
serve to define the approximating sums, ur + vs, where the ur are for the na
rows and the vs for the nb columns; these ur and vs values are given in the
vector lengths of size n × 1, with row values first followed by the column
values. The closed-form formula used for ur (or vs) can be given simply as
the rth row (or sth column) mean of proxtm minus one-half the grand mean.
In the example below using the two-mode matrix, supreme_agree5x4.dat,
a two-mode centroid metric by itself has a (paltry) vaf of .1090.

>> [fit,vaf,lengths] = centfittm(supreme_agree5x4)

fit =

0.5455 0.5355 0.4975 0.5915

0.4355 0.4255 0.3875 0.4815
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0.4255 0.4155 0.3775 0.4715

0.4280 0.4180 0.3800 0.4740

0.5255 0.5155 0.4775 0.5715

vaf =

0.1090

lengths =

0.3080

0.1980

0.1880

0.1905

0.2880

0.2375

0.2275

0.1895

0.2835

The identification of a two-mode additive tree with the M-file, atreefndtm.m,
proceeds iteratively. A two-mode centroid metric is first found and the origi-
nal two-mode proximity matrix residualized; a two-mode ultrametric is then
identified for the residual matrix. The process repeats with the centroid and
ultrametric components alternatingly being refit until a small change in the
overall VAF occurs. The M-file has the explicit usage

[find,vaf,ultra,lengths] = atreefndtm(proxtm,inpermrow,inpermcol)

Here, proxtm is the rectangular input proximity matrix (with a dissimilar-
ity interpretation); inpermrow and inpermcol are permutations for the row
and column objects that determine the order in which the inequality con-
straints are considered; find is the found least-squares matrix (with variance-
accounted-for of vaf) to proxtm satisfying the two-mode additive tree con-
straints. The vector lengths contains the row followed by column values for
the two-mode centroid metric component; ultra is the ultrametric compo-
nent. In the example given below, the identified two-mode additive-tree for
supreme_agree5x4.dat has vaf of .9953. The actual partition hierarchy is
given in the next section along with an indication of when the various parti-
tions are formed using a utility M-file that completes a two-mode ultrametric
so it is defined over the entire joint set.

>> [find,vaf,ultra,lengths] = atreefndtm(supreme_agree5x4,randperm(5),randperm(4))

find =
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0.3000 0.3768 0.6533 0.8399

0.2732 0.2200 0.5251 0.7117

0.4625 0.4379 0.3017 0.4883

0.5755 0.5510 0.2333 0.3400

0.7488 0.7243 0.4067 0.2100

vaf =

0.9953

ultra =

-0.2658 -0.1644 0.1576 0.1576

-0.1644 -0.1931 0.1576 0.1576

0.1576 0.1576 0.0668 0.0668

0.1576 0.1576 -0.1145 -0.1945

0.1576 0.1576 -0.1145 -0.4978

lengths =

0.3368

0.2086

0.0759

0.1889

0.3623

0.2290

0.2045

0.1589

0.3456

A.3 Completing a Two-Mode Ultrametric to One De-

fined on the Combined Object Set

Instead of relying only on our general intuition (and problem-solving skills) to
transform a fitted two-mode ultrametric to one we could interpret directly as
a sequence of partitions for the joint set SA∪SB, the M-file, ultracomptm.m,
provides the explicit completion of a given two-mode ultrametric matrix to
a symmetric proximity matrix (defined on SA ∪ SB and satisfying the usual
ultrametric constraints). Thus, this completion, in effect, estimates the (miss-
ing) ultrametric values that must be present between objects from the same
cluster and from the same mode. The general syntax has the form

[ultracomp] = ultracomptm(ultraproxtm)

where ultraproxtm is the na×nb fitted two-mode ultrametric matrix; ultracomp
is the completed n×n proximity matrix having the usual ultrametric pattern
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for the complete object set of size n = na + nb. As seen in the example
below, the use of ultrafndtm.m on supreme_agree5x4.dat, and the sub-
sequent application of ultracomptm.m (plus ultraorder.m on ultracomp),
leads directly to the partition hierarchy given following the verbatim output.

>> [ultracomp] = ultracomptm(ultra)

ultracomp =

0 -0.1644 0.1576 0.1576 0.1576 -0.2658 -0.1644 0.1576 0.1576

-0.1644 0 0.1576 0.1576 0.1576 -0.1644 -0.1931 0.1576 0.1576

0.1576 0.1576 0 0.0668 0.0668 0.1576 0.1576 0.0668 0.0668

0.1576 0.1576 0.0668 0 -0.1945 0.1576 0.1576 -0.1145 -0.1945

0.1576 0.1576 0.0668 -0.1945 0 0.1576 0.1576 -0.1145 -0.4978

-0.2658 -0.1644 0.1576 0.1576 0.1576 0 -0.1644 0.1576 0.1576

-0.1644 -0.1931 0.1576 0.1576 0.1576 -0.1644 0 0.1576 0.1576

0.1576 0.1576 0.0668 -0.1145 -0.1145 0.1576 0.1576 0 -0.1145

0.1576 0.1576 0.0668 -0.1945 -0.4978 0.1576 0.1576 -0.1145 0

>> [orderprox,orderperm] = ultraorder(ultracomp)

orderprox =

0 -0.2658 -0.1644 -0.1644 0.1576 0.1576 0.1576 0.1576 0.1576

-0.2658 0 -0.1644 -0.1644 0.1576 0.1576 0.1576 0.1576 0.1576

-0.1644 -0.1644 0 -0.1931 0.1576 0.1576 0.1576 0.1576 0.1576

-0.1644 -0.1644 -0.1931 0 0.1576 0.1576 0.1576 0.1576 0.1576

0.1576 0.1576 0.1576 0.1576 0 -0.4978 -0.1945 -0.1145 0.0668

0.1576 0.1576 0.1576 0.1576 -0.4978 0 -0.1945 -0.1145 0.0668

0.1576 0.1576 0.1576 0.1576 -0.1945 -0.1945 0 -0.1145 0.0668

0.1576 0.1576 0.1576 0.1576 -0.1145 -0.1145 -0.1145 0 0.0668

0.1576 0.1576 0.1576 0.1576 0.0668 0.0668 0.0668 0.0668 0

orderperm =

6 1 7 2 9 5 4 8 3

Partition Level
{{6:Br,1:St,7:So,2:Gi,9:Sc,5:Th,4:Re,8:Ke,3:Oc}} .1576
{{6:Br,1:St,7:So,2:Gi},{9:Sc,5:Th,4:Re,8:Ke,3:Oc}} .0668
{{6:Br,1:St,7:So,2:Gi},{9:Sc,5:Th,4:Re,8:Ke},{3:Oc}} −.1145
{{6:Br,1:St,7:So,2:Gi},{9:Sc,5:Th,4:Re},{8:Ke},{3:Oc}} −.1644
{{6:Br,1:St},{7:So,2:Gi},{9:Sc,5:Th,4:Re},{8:Ke},{3:Oc}} −.1931
{{6:Br,1:St},{7:So},{2:Gi},{9:Sc,5:Th,4:Re},{8:Ke},{3:Oc}} −.1945
{{6:Br,1:St},{7:So},{2:Gi},{9:Sc,5:Th},{4:Re},{8:Ke},{3:Oc}} −.2658
{{6:Br},{1:St},{7:So},{2:Gi},{9:Sc,5:Th},{4:Re},{8:Ke},{3:Oc}} −.4978
{{6:Br},{1:St},{7:So},{2:Gi},{9:Sc},{5:Th},{4:Re},{8:Ke},{3:Oc}} —
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Appendix B

Generalizations of Ultrametrics and
Additive Trees

B.1 Multiple Tree Structures

The use of multiple structures to represent additively a given proximity ma-
trix, whether they be ultrametrics or additive trees, proceeds directly through
successive residualization and iteration. We restrict ourselves to the fitting
of two such structures but the same process would apply for any such num-
ber. Initially, a first matrix is fitted to a given proximity matrix and a first
residual matrix obtained; a second structure is then fitted to these first resid-
uals, producing a second residual matrix. Iterating, the second fitted matrix
is now subtracted from the original proximity matrix and a first (re)fitted
matrix obtained; this first (re)fitted matrix in turn is subtracted from the
original proximity matrix and a new second matrix (re)fitted. This process
continues until the vaf for the sum of both fitted matrices no longer changes
substantially.

The M-files, biultrafnd.m and biatreefnd.m fit (additively) two ultra-
metric or additive tree matrices in the least-squares sense. The explicit usages
are

[find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

[find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

where prox is the given input proximity matrix (with a zero main diagonal
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and a dissimilarity interpretation); inperm is a permutation that determines
the order in which the inequality constraints are considered (and thus can be
made random to search for different locally optimal representations); find
is the obtained least-squares matrix (with variance-accounted-for of vaf) to
prox, and is the sum of the two ultrametric or additive tree matrices targone
and targtwo.

We will not given an explicit illustration of using two fitted structures to
represent a proximity matrix. The data set we have been using, supreme_agree.dat,
is not a good example for multiple structures because only one such device
is really needed to explain everything present in the data. More suitable
proximity matrices would probably themselves be obtained by a mixture or
aggregation of other proximity matrices, reflecting somewhat different under-
lying structures; hopefully, these could be “teased apart” in an analysis using
multiple additive structures.

B.2 Individual Differences

One aspect of the given M-files introduced in earlier sections but not empha-
sized, is their possible use in the confirmatory context of fitting individual dif-
ferences. Explicitly, we begin with a collection of, say, N proximity matrices,
P1, . . . ,PN , obtained from N separate sources, and through some weighting
and averaging process, construct a single aggregate proximity matrix, PA.
On the basis of PA, suppose an ultrametric or additive tree is constructed;
we label the latter the “common space” consistent with what is usually done
in the (weighted) Euclidean model in multidimensional scaling. Each of the
N proximity matrices then can be used in a confirmatory fitting of an ultra-
metric (with, say, ultrafit.m) or an additive tree (with, say, atreefit.m).
A very general “subject/private space” is generated for each source and where
the branch lengths are unique to that source, subject only to the topology
(branching) constraints of the group space. In effect, we would be carrying
out an individual differences analysis by using a “deviation from the mean”
philosophy. A group structure is first identified in an exploratory manner
from an aggregate proximity matrix; the separate matrices that went into
the aggregate are then fit in a confirmatory way, one-by-one. There does not
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seem to be any particular a priori advantage in trying to carry out this process
“all at once”; to the contrary, the simplicity of the deviation approach and its
immediate generalizability to a variety of possible structural representations,
holds out the hope of greater substantive interpretability.

B.3 Transformations on Proximities

In the use of either a one- or two-mode proximity matrix, the data were as-
sumed “as is”, and without any preliminary transformation. It was noted
that some analyses leading to negative values might be more pleasingly inter-
pretable if they were positive, and thus, a sufficiently large additive constant
was imposed on the original proximities (without any real loss of generality).
In other words, the structures fit to proximity matrices have an invariance
with respect to linear transformations of the proximities. A second type
of transformation is implicit in the use of additive trees where a centroid
(metric), fit as part of the whole representational structure, has the effect of
double-centering (i.e., for the input proximity matrix deviated from the cen-
troid, zero sums are present within rows or columns). In effect, the analysis
methods iterate between fitting an ultrametric and a centroid, attempting
to squeeze out every last bit of VAF. Maybe a more direct strategy (and
one that would most likely not affect the substantive interpretations materi-
ally) would be to initially double-center (either a one- or two-mode matrix),
and then treat the later to the analyses we wish to carry out, without again
revisiting the double-centering operation during the iterative process.

A more serious consideration of proximity transformation would involve
monotonic functions of the type familiar in nonmetric multidimensional scal-
ing. We provide two utilities, proxmon.m and proxmontm.m, that will allow
the user a chance to experiment with these more general transformations for
both one- and two-mode proximity matrices. The usage is similar for both
M-files in providing a monotonically transformed proximity matrix that is
closest in a least-squares sense to a given (usually the structurally fitted)
matrix:

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)
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[monproxpermuttm,vaf,diff] = proxmontm(proxpermuttm,fittedtm)

Here, proxpermut (proxpermuttm) is the input proximity matrix (which may
have been subjected to an initial row/column permutation, hence the suffix
permut), and fitted (fittedtm) is a given target matrix (typically the rep-
resentational matrix such as the identified ultrametric); the output matrix,
monproxpermut (monproxpermuttm), is closest to fitted (fittedtm) in a
least-squares sense and obeys the order constraints obtained from each pair
of entries in (the upper-triangular portion of) proxpermut or proxpermuttm.
As usual, vaf denotes “variance-accounted-for” but here indicates how much
variance in monproxpermut (monproxpermuttm) can be accounted for by
fitted (fittedtm); finally, diff is the value of the least-squares loss func-
tion and is one-half the squared differences between the entries in fitted

(fittedtm) and monproxpermut (monproxpermuttm).

A script M-file is listed in the verbatim output below that gives an ap-
plication of proxmon.m using the best-fitting ultrametric structure found for
supreme_agree.dat. First, ultrafnd.m is invoked to obtain a fitted ma-
trix (fit) with vaf of .7369; proxmon.m then generates the monotonically
transformed proximity matrix (monproxpermut) with vaf of .9264 and diff

of .0622. The strategy is repeated one-hundred times (i.e., finding a fitted
matrix based on the monotonically transformed proximity matrix, finding
a new monotonically transformed matrix, and so on). To avoid degeneracy
(where all matrices would just converge to zeros), the sum of squares of the
fitted matrix is normalized (and held constant). Here, a perfect vaf of 1.0 is
achieved (and a diff of 0.0); the structure of the proximities is now pretty
flattened with only four new clusters explicitly identified in the partition hi-
erarchy (the levels at which these are formed are given next to the clusters):
(Sc,Th):.2149; (Gi,So):.2251; (Ke,Re):.2353; (Br,Gi,So):.2916. Another way
of stating this is to observe that the monotonically transformed proximity
matrix has only five distinct values, and over 86% are at a common value of
.5588, the level at which the single all-inclusive subset is formed.

>> type ultra_monotone_test

load supreme_agree.dat [fit,vaf] = ultrafnd(supreme_agree,randperm(9))
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[monprox,vaf,diff] = proxmon(supreme_agree,fit)

sumfitsq = sum(sum(fit.^2));

for i = 1:100

[fit,vaf] = ultrafit(monprox,fit);

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sumnewfitsq);

[monprox,vaf,diff] = proxmon(supreme_agree,fit);

end

fit

vaf

diff

monprox

supreme_agree

>> ultra_monotone_test

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

monprox =

0 0.3761 0.3633 0.3761 0.6405 0.6405 0.6405 0.6405 0.6405

0.3761 0 0.2850 0.2850 0.5211 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3761 0.2850 0.2200 0 0.5211 0.6405 0.6405 0.6405 0.6405

0.6405 0.5211 0.6405 0.5211 0 0.3558 0.3100 0.5211 0.5211

0.6405 0.6405 0.6405 0.6405 0.3558 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.3761 0.3558

0.6405 0.6405 0.6405 0.6405 0.5211 0.4017 0.3761 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.5211 0.4017 0.3558 0.2100 0

vaf =

0.9264
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diff =

0.0622

fit =

0 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0 0.2916 0.2916 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.2916 0 0.2251 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.2916 0.2251 0 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0 0.5588 0.5588 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0 0.2353 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0.2353 0 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0 0.2149

0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.2149 0

vaf =

1

diff =

0

monprox =

0 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0 0.2916 0.2916 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.2916 0 0.2251 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.2916 0.2251 0 0.5588 0.5588 0.5588 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0 0.5588 0.5588 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0 0.2353 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0.2353 0 0.5588 0.5588

0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0 0.2149

0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.5588 0.2149 0

supreme_agree =

0 0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500

0.3800 0 0.2800 0.2900 0.4500 0.5300 0.5700 0.7500 0.7600

0.3400 0.2800 0 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6700 0.4500 0.5300 0.4500 0 0.3300 0.2900 0.4600 0.4600

0.6400 0.5300 0.5100 0.5000 0.3300 0 0.2300 0.4200 0.4100

0.7500 0.5700 0.5700 0.5600 0.2900 0.2300 0 0.3400 0.3200

0.8600 0.7500 0.7200 0.6900 0.4600 0.4200 0.3400 0 0.2100

0.8500 0.7600 0.7400 0.7100 0.4600 0.4100 0.3200 0.2100 0
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B.4 Finding and Fitting Best Ultrametrics in the Pres-

ence of Missing Proximities

The various M-files discussed thus far have required proximity matrices to
be complete in the sense of having all entries present. This was true even
for the two-mode case where the between-set proximities are assumed avail-
able although all within-set proximities were not. Three different M-files are
mentioned here (analogues of order.m (see Appendix D), ultrafit.m, and
ultrafnd.m) allowing some of the proximities in a symmetric matrix to be
absent. The missing proximities are identified in an input matrix, proxmiss,
having the same size as the input proximity matrix, prox, but otherwise the
syntaxes are the same as earlier:

[outperm,rawindex,allperms,index] = ...

order_missing(prox,targ,inperm,kblock,proxmiss)

[fit,vaf] = ultrafit_missing(prox,targ,proxmiss)

[find,vaf] = ultrafnd_missing(prox,inperm,proxmiss)

The proxmiss matrix guides the search and fitting process so the missing data
are ignored whenever they should be considered in some kind of comparison.
Typically, there will be enough other data available that this really doesn’t
pose any difficulty.

As an illustration of the M-files just introduced, Table B.1 provides data on
the ten supreme court justices present at some point during the 2005/6 term,
and the percentage of times justices disagreed in non-unanimous decisions
during the year. (These data were in the New York Times on July 2, 2006,
as part of a “first-page, above-the-fold” article bylined by Linda Greenhouse
entitled “Roberts Is at Court’s Helm, But He Isn’t Yet in Control”.) There
is a single missing value in the table between O’Connor (Oc) and Alito (Al)
because they shared a common seat for the term until Alito’s confirmation
by Congress. Roberts (Ro) served the full year as Chief Justice so no missing
data entries involve him. As can be seen in the verbatim output to follow,
an empirically obtained ordering (presumably from “left” to “right”) using
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St So Br Gi Oc Ke Ro Sc Al Th
1 St .00 .28 .32 .31 .43 .62 .74 .70 .87 .76
2 So .28 .00 .17 .36 .14 .50 .61 .64 .64 .75
3 Br .32 .17 .00 .36 .29 .57 .56 .59 .65 .70
4 Gi .31 .36 .36 .00 .43 .47 .52 .61 .59 .72
5 Oc .43 .14 .29 .43 .00 .43 .33 .29 * .43
6 Ke .62 .50 .57 .47 .43 .00 .29 .35 .13 .41
7 Ro .74 .61 .56 .52 .33 .29 .00 .12 .09 .18
8 Sc .70 .64 .59 .61 .29 .35 .12 .00 .22 .16
9 Al .87 .64 .65 .59 * .13 .09 .22 .00 .17

10 Th .76 .75 .70 .72 .43 .41 .18 .16 .17 .00

Table B.1: Dissimilarities Among Ten Supreme Court Justices for the 2005/6 Term. The
Missing Entry Between O’Connor and Alito is Represented With an Asterisk.

order_missing.m is

1:St � 4:Gi � 3:Br � 2:So � 5:Oc � 6:Ke � 7:Ro � 8:Sc � 9:Al � 10:Th

suggesting rather strongly that Kennedy will most likely now occupy the mid-
dle position (although possibly shifted somewhat to the right) once O’Connor
is removed from the court’s deliberations. The best-fitting ultrametric ob-
tained with ultrafnd_missing.m has VAF of 72.75%, and is given below in
partition hierarchy form using the justice ordering from order_missing.m,
except for the slight interchange of Sc and Al (this allows the fitted ultra-
metric to display its perfect AR form, as the verbatim output shows).

>> load supreme_agree_2005_6.dat

>> load supreme_agree_2005_6_missing.dat

>> supreme_agree_2005_6

supreme_agree_2005_6 =

0 0.2800 0.3200 0.3100 0.4300 0.6200 0.7400 0.7000 0.8700 0.7600

0.2800 0 0.1700 0.3600 0.1400 0.5000 0.6100 0.6400 0.6400 0.7500

0.3200 0.1700 0 0.3600 0.2900 0.5700 0.5600 0.5900 0.6500 0.7000

0.3100 0.3600 0.3600 0 0.4300 0.4700 0.5200 0.6100 0.5900 0.7200

0.4300 0.1400 0.2900 0.4300 0 0.4300 0.3300 0.2900 0 0.4300

0.6200 0.5000 0.5700 0.4700 0.4300 0 0.2900 0.3500 0.1300 0.4100

0.7400 0.6100 0.5600 0.5200 0.3300 0.2900 0 0.1200 0.0900 0.1800

0.7000 0.6400 0.5900 0.6100 0.2900 0.3500 0.1200 0 0.2200 0.1600

0.8700 0.6400 0.6500 0.5900 0 0.1300 0.0900 0.2200 0 0.1700

0.7600 0.7500 0.7000 0.7200 0.4300 0.4100 0.1800 0.1600 0.1700 0

>> supreme_agree_2005_6_missing

supreme_agree_2005_6_missing =
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0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0

>> [outperm,rawindex,allperms,index] = ...

order_missing(supreme_agree_2005_6,targlin(10),randperm(10),3,supreme_agree_2005_6_missing);

>> outperm

outperm =

10 9 8 7 6 5 2 3 4 1

>> [find,vaf] = ultrafnd_missing(supreme_agree_2005_6,randperm(10),supreme_agree_2005_6_missing)

find =

0 0.3633 0.3633 0.3100 0.3633 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0 0.2300 0.3633 0.1400 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0.2300 0 0.3633 0.2300 0.5954 0.5954 0.5954 0.5954 0.5954

0.3100 0.3633 0.3633 0 0.3633 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0.1400 0.2300 0.3633 0 0.5954 0.5954 0.5954 0 0.5954

0.5954 0.5954 0.5954 0.5954 0.5954 0 0.2950 0.2950 0.2950 0.2950

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0 0.1725 0.0900 0.1725

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0.1725 0 0.1725 0.1600

0.5954 0.5954 0.5954 0.5954 0 0.2950 0.0900 0.1725 0 0.1725

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0.1725 0.1600 0.1725 0

vaf =

0.7275

>> find([1 4 3 2 5 6 7 9 8 10],[1 4 3 2 5 6 7 9 8 10])

ans =

0 0.3100 0.3633 0.3633 0.3633 0.5954 0.5954 0.5954 0.5954 0.5954

0.3100 0 0.3633 0.3633 0.3633 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0.3633 0 0.2300 0.2300 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0.3633 0.2300 0 0.1400 0.5954 0.5954 0.5954 0.5954 0.5954

0.3633 0.3633 0.2300 0.1400 0 0.5954 0.5954 0 0.5954 0.5954

0.5954 0.5954 0.5954 0.5954 0.5954 0 0.2950 0.2950 0.2950 0.2950

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0 0.0900 0.1725 0.1725

0.5954 0.5954 0.5954 0.5954 0 0.2950 0.0900 0 0.1725 0.1725

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0.1725 0.1725 0 0.1600

0.5954 0.5954 0.5954 0.5954 0.5954 0.2950 0.1725 0.1725 0.1600 0
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Partition Level
{{1:St,4:Gi,3:Br,2:So,5:Oc,6:Ke,7:Ro,9:Al,8:Sc,10:Th}} .5954
{{1:St,4:Gi,3:Br,2:So,5:Oc},{6:Ke,7:Ro,9:Al,8:Sc,10:Th}} .3633
{{1:St,4:Gi},{3:Br,2:So,5:Oc},{6:Ke,7:Ro,9:Al,8:Sc,10:Th}} .3100
{{1:St},{4:Gi},{3:Br,2:So,5:Oc},{6:Ke,7:Ro,9:Al,8:Sc,10:Th}} .2950
{{1:St},{4:Gi},{3:Br,2:So,5:Oc},{6:Ke},{7:Ro,9:Al,8:Sc,10:Th}} .2300
{{1:St},{4:Gi},{3:Br},{2:So,5:Oc},{6:Ke},{7:Ro,9:Al,8:Sc,10:Th}} .1725
{{1:St},{4:Gi},{3:Br},{2:So,5:Oc},{6:Ke},{7:Ro,9:Al},{8:Sc,10:Th}} .1600
{{1:St},{4:Gi},{3:Br},{2:So,5:Oc},{6:Ke},{7:Ro,9:Al},{8:Sc},{10:Th}} .1400
{{1:St},{4:Gi},{3:Br},{2:So},{5:Oc},{6:Ke},{7:Ro,9:Al},{8:Sc},{10:Th}} .0900
{{1:St},{4:Gi},{3:Br},{2:So},{5:Oc},{6:Ke},{7:Ro},{9:Al},{8:Sc},{10:Th}} —
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Appendix C

Ultrametric Extensions By Fitting
Partitions Containing Contiguous
Subsets

The M-file, partitionfit.m, is a very general routine giving a least-squares
approximation to a proximity matrix based on a given collection of parti-
tions. Thus, no matter how the set of candidate partitions might be chosen,
a least-squares fitted matrix to the given proximity matrix is achieved. For
example, if we simply use the nested partitions constructed from an ultramet-
ric, the ultrametric would be retrieved when the latter is used as the input
proximity matrix. In this section, we show how partitionfit.m can also
be used to select partitions from a predefined set (this selection is done by
those partitions assigned strictly positive weights) that might serve to recon-
struct the proximity matrix well. The M-file, consec_subsetfit.m, defines
(n(n−1)/2)−1 candidate partitions each characterized by a single contiguous
cluster of objects, with all objects before and after this contiguous set forming
individual clusters of the partition (the minus 1 appears in the count due to
the (conjoint) partition defined by a single contiguous set being excluded).
The M-file, consec_subsetfit_alter.m, varies the specific definition of the
partitions by including all objects before and all objects after the contiguous
set (when nonempty) as separate individual clusters of the partitions.

As can be seen from the verbatim output provided below, the nonnegative
weighted partitions from consec_subsetfit.m, producing a fitted matrix
with VAF of 92.61%, are as follows:
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Partition Partition Increment

{{St,Br,Gi,So},{Oc},{Ke},{Re},{Sc},{Th}} .1939
{{St,Br,Gi,So,Oc},{Ke},{Re},{Sc},{Th}} .0300
{{St,Br,Gi,So,Oc,Ke},{Re},{Sc},{Th}} .0389
{{St,Br,Gi,So,Oc,Ke,Re},{Sc},{Th}} .1315
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1152

{{St},{Br},{Gi,So,Oc,Ke,Re,Sc,Th}} .0052
{{St},{Br},{Gi},{So,Oc,Ke,Re,Sc,Th}} .0153

{{St},{Br},{Gi},{So},{Oc,Ke,Re,Sc,Th}} .2220
{{St},{Br},{Gi},{So},{Oc},{Ke,Re,Sc,Th}} .0633

{{St},{Br},{Gi},{So},{Oc},{Ke},{Re,Sc,Th}} .0030

Similarly, we have a very high VAF of 98.12% based on the more numerous
partitions generated from consec_subsetfit_alter.m:

Partition Partition Increment

{{St,Br},{Gi,So,Oc,Ke,Re,Sc,Th}} .0021
{{St,Br,Gi},{So,Oc,Ke,Re,Sc,Th}} .0001
{{St,Br,Gi,So},{Oc,Ke,Re,Sc,Th}} .0001
{{St,Br,Gi,So,Oc,Ke},{Re,Sc,Th}} .0100
{{St,Br,Gi,So,Oc,Ke,Re},{Sc,Th}} .1218

{{St},{Br,Gi},{So,Oc,Ke,Re,Sc,Th}} .0034
{{St},{Br,Gi,So,Oc},{Ke,Re,Sc,Th}} .0056
{{St},{Br,Gi,So,Oc,Ke,Re},{Sc,Th}} .0113
{{St},{Br,Gi,So,Oc,Ke,Re,Sc},{Th}} .0038
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1170

{{St,Br},{Gi,So},{Oc,Ke,Re,Sc,Th}} .0165
{{St,Br},{Gi,So,Oc,Ke,Re,Sc,Th}} .0095

{{St,Br,Gi},{So,Oc},{Ke,Re,Sc,Th}} .0197
{{St,Br,Gi},{So,Oc,Ke,Re,Sc,Th}} .0115
{{St,Br,Gi,So},{Oc,Ke,Re,Sc,Th}} .2294
{{St,Br,Gi,So,Oc},{Ke,Re,Sc,Th}} .0353
{{St,Br,Gi,So,Oc,Ke},{Re,Sc,Th}} .0400
{{St,Br,Gi,So,Oc,Ke,Re},{Sc,Th}} .0132

{{St},{Br},{Gi},{So},{Oc},{Ke},{Re},{Sc},{Th}} .2050

>> load supreme_agree.dat

>> [fitted,vaf,weights,end_condition,member] = consec_subsetfit(supreme_agree);

>> fitted

fitted =

0 0.4239 0.4239 0.4239 0.6178 0.6478 0.6866 0.8181 0.8181

0.4239 0 0.3087 0.3087 0.5026 0.5326 0.5715 0.7029 0.7029

0.4239 0.3087 0 0.3035 0.4974 0.5274 0.5663 0.6977 0.6977

0.4239 0.3087 0.3035 0 0.4821 0.5121 0.5510 0.6824 0.6824

0.6178 0.5026 0.4974 0.4821 0 0.2901 0.3290 0.4604 0.4604

0.6478 0.5326 0.5274 0.5121 0.2901 0 0.2657 0.3972 0.3972

0.6866 0.5715 0.5663 0.5510 0.3290 0.2657 0 0.3942 0.3942

0.8181 0.7029 0.6977 0.6824 0.4604 0.3972 0.3942 0 0.3942

0.8181 0.7029 0.6977 0.6824 0.4604 0.3972 0.3942 0.3942 0

>> vaf

vaf =

0.9261

>> weights
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weights =

0

0

0.1939

0.0300

0.0389

0.1315

0

0

0

0

0

0

0

0.1152

0

0

0

0

0

0.0052

0

0

0

0

0.0153

0

0

0

0.2220

0

0

0.0633

0

0.0030

0

0

>> end_condition

end_condition =

0

>> member

member =

1 1 3 4 5 6 7 8 9

1 1 1 4 5 6 7 8 9

1 1 1 1 5 6 7 8 9

1 1 1 1 1 6 7 8 9

1 1 1 1 1 1 7 8 9

1 1 1 1 1 1 1 8 9

1 1 1 1 1 1 1 1 9

1 2 2 4 5 6 7 8 9

1 2 2 2 5 6 7 8 9

1 2 2 2 2 6 7 8 9

1 2 2 2 2 2 7 8 9

1 2 2 2 2 2 2 8 9

1 2 2 2 2 2 2 2 9

1 2 2 2 2 2 2 2 2

1 2 3 3 5 6 7 8 9
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1 2 3 3 3 6 7 8 9

1 2 3 3 3 3 7 8 9

1 2 3 3 3 3 3 8 9

1 2 3 3 3 3 3 3 9

1 2 3 3 3 3 3 3 3

1 2 3 4 4 6 7 8 9

1 2 3 4 4 4 7 8 9

1 2 3 4 4 4 4 8 9

1 2 3 4 4 4 4 4 9

1 2 3 4 4 4 4 4 4

1 2 3 4 5 5 7 8 9

1 2 3 4 5 5 5 8 9

1 2 3 4 5 5 5 5 9

1 2 3 4 5 5 5 5 5

1 2 3 4 5 6 6 8 9

1 2 3 4 5 6 6 6 9

1 2 3 4 5 6 6 6 6

1 2 3 4 5 6 7 7 9

1 2 3 4 5 6 7 7 7

1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition,member] = consec_subsetfit_alter(supreme_agree)

fitted =

0 0.3460 0.3740 0.4053 0.6347 0.6700 0.7200 0.8550 0.8550

0.3460 0 0.2330 0.2677 0.4971 0.5380 0.5880 0.7342 0.7380

0.3740 0.2330 0 0.2396 0.4855 0.5264 0.5764 0.7227 0.7264

0.4053 0.2677 0.2396 0 0.4509 0.5114 0.5614 0.7076 0.7114

0.6347 0.4971 0.4855 0.4509 0 0.2655 0.3155 0.4617 0.4655

0.6700 0.5380 0.5264 0.5114 0.2655 0 0.2550 0.4012 0.4050

0.7200 0.5880 0.5764 0.5614 0.3155 0.2550 0 0.3512 0.3550

0.8550 0.7342 0.7227 0.7076 0.4617 0.4012 0.3512 0 0.2087

0.8550 0.7380 0.7264 0.7114 0.4655 0.4050 0.3550 0.2087 0

vaf =

0.9812

weights =

0.0021

0.0001

0.0001

0

0.0100

0.1218

0

0.0034

0

0.0056

0

0.0113

0.0038

0.1170

0.0165

0

0

0

0
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0.0095

0.0197

0

0

0

0.0115

0

0

0

0.2294

0

0

0.0353

0

0.0400

0.0132

0.2050

end_condition =

0

member =

1 1 9 9 9 9 9 9 9

1 1 1 9 9 9 9 9 9

1 1 1 1 9 9 9 9 9

1 1 1 1 1 9 9 9 9

1 1 1 1 1 1 9 9 9

1 1 1 1 1 1 1 9 9

1 1 1 1 1 1 1 1 9

1 2 2 9 9 9 9 9 9

1 2 2 2 9 9 9 9 9

1 2 2 2 2 9 9 9 9

1 2 2 2 2 2 9 9 9

1 2 2 2 2 2 2 9 9

1 2 2 2 2 2 2 2 9

1 2 2 2 2 2 2 2 2

1 1 3 3 9 9 9 9 9

1 1 3 3 3 9 9 9 9

1 1 3 3 3 3 9 9 9

1 1 3 3 3 3 3 9 9

1 1 3 3 3 3 3 3 9

1 1 3 3 3 3 3 3 3

1 1 1 4 4 9 9 9 9

1 1 1 4 4 4 9 9 9

1 1 1 4 4 4 4 9 9

1 1 1 4 4 4 4 4 9

1 1 1 4 4 4 4 4 4

1 1 1 1 5 5 9 9 9

1 1 1 1 5 5 5 9 9

1 1 1 1 5 5 5 5 9

1 1 1 1 5 5 5 5 5

1 1 1 1 1 6 6 9 9

1 1 1 1 1 6 6 6 9

1 1 1 1 1 6 6 6 6

1 1 1 1 1 1 7 7 9

1 1 1 1 1 1 7 7 7

1 1 1 1 1 1 1 8 8

1 2 3 4 5 6 7 8 9
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To see how well one might do by choosing only eight partitions (i.e., the
same number needed to define the order-constrained best-fitting ultramet-
ric), the single (disjoint) partition defined by nine separate classes is cho-
sen in both instances, plus the seven partitions having the highest assigned
positive weights. For those picked from the partition pool identified by
consec_subsetfit.m, the VAF drops slightly from 92.61% to 92.51% based
on the partitions:

Partition Partition Increment

{{St,Br,Gi,So},{Oc},{Ke},{Re},{Sc},{Th}} .1923
{{St,Br,Gi,So,Oc},{Ke},{Re},{Sc},{Th}} .0301
{{St,Br,Gi,So,Oc,Ke},{Re},{Sc},{Th}} .0396
{{St,Br,Gi,So,Oc,Ke,Re},{Sc},{Th}} .1316
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1224

{{St},{Br},{Gi},{So},{Oc,Ke,Re,Sc,Th}} .2250
{{St},{Br},{Gi},{So},{Oc},{Ke,Re,Sc,Th}} .0671

{{St},{Br},{Gi},{So},{Oc},{Ke},{Re},{Sc},{Th}} .0000

For those selected from the set generated by consec_subsetfit_alter.m,
the VAF again drops slightly from 98.12% to 97.97%. But in some absolute
sense given the size of the VAF, the eight partitions listed below seem to be
about all that can be extracted from this particular justice data set.

Partition Partition Increment

{{St,Br,Gi,So,Oc,Ke,Re},{Sc,Th}} .1466
{{St},{Br,Gi,So,Oc,Ke,Re,Sc,Th}} .1399

{{St,Br},{Gi,So},{Oc,Ke,Re,Sc,Th}} .0287
{{St,Br,Gi},{So,Oc},{Ke,Re,Sc,Th}} .0326
{{St,Br,Gi,So},{Oc,Ke,Re,Sc,Th}} .2269
{{St,Br,Gi,So,Oc},{Ke,Re,Sc,Th}} .0316
{{St,Br,Gi,So,Oc,Ke},{Re,Sc,Th}} .0500

{{St},{Br},{Gi},{So},{Oc},{Ke},{Re},{Sc},{Th}} .2051

The three highest weighted partitions have very clear interpretations:

{Sc,Th} versus the rest; {St} versus the rest; {St,Br,Gi,So} as the left ver-
sus {Oc,Ke,Re,Sc,Th} as the right. The few remaining partitions revolve
around several other less salient (adjacent) object pairings that are also very
interpretable in relation to the object ordering from liberal to conservative.

>> member = [1 1 1 1 5 6 7 8 9;1 1 1 1 1 6 7 8 9;1 1 1 1 1 1 7 8 9;1 1 1 1 1 1 1 8 9;

1 2 2 2 2 2 2 2 2;1 2 3 4 5 5 5 5 5;1 2 3 4 5 6 6 6 6;1 2 3 4 5 6 7

8 9]

member =
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1 1 1 1 5 6 7 8 9

1 1 1 1 1 6 7 8 9

1 1 1 1 1 1 7 8 9

1 1 1 1 1 1 1 8 9

1 2 2 2 2 2 2 2 2

1 2 3 4 5 5 5 5 5

1 2 3 4 5 6 6 6 6

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member)

fitted =

0 0.4245 0.4245 0.4245 0.6168 0.6469 0.6865 0.8181 0.8181

0.4245 0 0.3021 0.3021 0.4944 0.5245 0.5641 0.6957 0.6957

0.4245 0.3021 0 0.3021 0.4944 0.5245 0.5641 0.6957 0.6957

0.4245 0.3021 0.3021 0 0.4944 0.5245 0.5641 0.6957 0.6957

0.6168 0.4944 0.4944 0.4944 0 0.2895 0.3291 0.4607 0.4607

0.6469 0.5245 0.5245 0.5245 0.2895 0 0.2620 0.3936 0.3936

0.6865 0.5641 0.5641 0.5641 0.3291 0.2620 0 0.3936 0.3936

0.8181 0.6957 0.6957 0.6957 0.4607 0.3936 0.3936 0 0.3936

0.8181 0.6957 0.6957 0.6957 0.4607 0.3936 0.3936 0.3936 0

vaf =

0.9251

weights =

0.1923

0.0301

0.0396

0.1316

0.1224

0.2350

0.0671

0

end_condition =

0

>> member = [1 1 1 1 1 1 1 9 9;1 2 2 2 2 2 2 2 2;1 1 3 3 9 9 9 9 9;1 1 1 4 4 9 9 9 9;

1 1 1 1 5 5 5 5 5;1 1 1 1 1 6 6 6 6;1 1 1 1 1 1 7 7 7;1 2 3 4 5 6 7

8 9]

member =

1 1 1 1 1 1 1 9 9

1 2 2 2 2 2 2 2 2

1 1 3 3 9 9 9 9 9

1 1 1 4 4 9 9 9 9

1 1 1 1 5 5 5 5 5

1 1 1 1 1 6 6 6 6

1 1 1 1 1 1 7 7 7

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member)

fitted =
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0 0.3450 0.3736 0.4062 0.6331 0.6647 0.7147 0.8613 0.8613

0.3450 0 0.2337 0.2664 0.4933 0.5248 0.5748 0.7215 0.7215

0.3736 0.2337 0 0.2377 0.4933 0.5248 0.5748 0.7215 0.7215

0.4062 0.2664 0.2377 0 0.4606 0.5248 0.5748 0.7215 0.7215

0.6331 0.4933 0.4933 0.4606 0 0.2693 0.3193 0.4659 0.4659

0.6647 0.5248 0.5248 0.5248 0.2693 0 0.2551 0.4017 0.4017

0.7147 0.5748 0.5748 0.5748 0.3193 0.2551 0 0.3517 0.3517

0.8613 0.7215 0.7215 0.7215 0.4659 0.4017 0.3517 0 0.2051

0.8613 0.7215 0.7215 0.7215 0.4659 0.4017 0.3517 0.2051 0

vaf =

0.9797

weights =

0.1466

0.1399

0.0287

0.0326

0.2269

0.0316

0.0500

0.2051

end_condition =

0
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Appendix D

A Useful Utility: Obtaining a
Constraining Order

In implementing an order-constrained K-means clustering strategy, an ap-
propriate initial ordering must be generated to constrain the clustering in
the first place. Although many strategies might be considered, a particularly
powerful one appears definable through what is called the quadratic assign-
ment (QA) task and a collection of local-improvement optimization heuristics.
As typically defined, a QA problem involves two n × n matrices, A = {aij}
and T = {tij}, and we seek a permutation to maximize the cross-product
statistic

Γ(ρ) =
∑
i6=j
aρ(i)ρ(j)tij . (D.1)

The notation {aρ(i)ρ(j)} implies a reordering (by the permutation ρ(·)) of the
rows and simultaneously the columns of A so that the rows (and columns)
now appear in the order ρ(1) � ρ(2) � · · · � ρ(n). For our purposes, the
first matrix A could be identified with the proximity matrix P containing
squared Euclidean distances between the subject profiles over the p variables;
the second matrix contains a target defined by a set of locations equally-
spaced along a line, i.e., T = {|j − i|} for 1 ≤ i, j ≤ n. (More generally,
P could be any proximity matrix having a dissimilarity interpretation; use
of the resulting identified permutation, for example, would be one way of
implementing an order-constrained DP proximity matrix subdivision.)

In attempting to find ρ to maximize Γ(ρ), we try to reorganize the prox-
imity matrix as Pρ = {pρ(i)ρ(j)}, to show the same pattern, more or less, as
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the fixed target T; equivalently, we maximize the usual Pearson product-
moment correlation between the off-diagonal entries in T and Pρ. Another
way of rephrasing this search is to say that we seek a permutation ρ that pro-
vides a structure as “close” as possible to an AR form for Pρ, i.e., the degree
to which the entries in Pρ, moving away from the main diagonal in either
direction never decrease (and usually increase); this is exactly the pattern
exhibited by the equally-spaced target matrix T. In our order-constrained
K-means application, once the proximity matrix is so reordered by ρ, we
look for a K-means clustering result that respects the order generating the
“as close as we can get to an AR” patterning for the row/column permuted
matrix.

The type of heuristic optimization strategy we use for the QA task imple-
ments simple object interchange/rearrangement operations. Based on given
matrices A and T, and beginning with some permutation (possibly chosen
at random), local interchanges and rearrangements of a particular type are
implemented until no improvement in the index can be made. By repeat-
edly initializing such a process randomly, a distribution over a set of local
optima can be achieved. Three different classes of local operations are used
in the M-file, order.m: (i) the pairwise interchanges of objects in the current
permutation defining the row and column order of the data matrix A. All
possible such interchanges are generated and considered in turn, and when-
ever an increase in the cross-product index would result from a particular
interchange, it is made immediately. The process continues until the current
permutation cannot be improved upon by any such pairwise object inter-
change. The procedure then proceeds to (ii): the local operations considered
are all reinsertions of from 1 to kblock (which is less than n and set by the
user) consecutive objects somewhere in the permutation defining the current
row and column order of the data matrix. When no further improvement
can be made, we move to (iii): the local operations are now all possible rota-
tions (or inversions) of from 2 to kblock consecutive objects in the current
row/column order of the data matrix. (We suggest a use of kblock equal to 3
as a reasonable compromise between the extensiveness of local search, speed
of execution, and quality of solution.) The three collections of local changes
are revisited (in order) until no alteration is possible in the final permutation
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obtained.

The use of order.m is illustrated in the verbatim recording below, first on
the squared Euclidean distance matrix among the ten cabernets (see Table
3.1) to produce the constraining order used in the order-constrained K-means
clustering. Among the two local optima found, we will choose the one with
the higher rawindex in (D.1) of 100458, and corresponding to the order in
outperm of [9 10 7 8 5 6 3 2 1 4]. There are index permutations stored in
the MATLAB cell-array allperms, from the first randomly generated one in
allperms{1}, to the found local optimum in allperms{index}. (These have
been suppressed in the output.) Notice, that retrieving entries in a cell-array
requires the use of curly braces, {,}. The M-file, targlin.m, provides the
equally-spaced target matrix as an input. We also show that starting with a
random permutation and the supreme_agree.dat data matrix, the identity
permutation is retrieved (in fact, it would be the sole local optimum found
upon repeated starts using random permutations). It might be noted that
an empirically constructed constraining order for an ultrametric (which leads
in turn to a best-fitting AR matrix) is carried out with exactly this same
type of QA routine (and used internally in the M-file, ultrafnd_confnd.m,
discussed in an earlier chapter).

>> load cabernet_taste.dat

>> [sqeuclid] = sqeuclidean(cabernet_taste)

sqeuclid =

0 48.2500 48.2500 86.5000 220.0000 160.2500 400.5000 394.0000 374.5000 485.2500

48.2500 0 77.0000 77.2500 195.2500 176.0000 327.2500 320.2500 453.2500 403.0000

48.2500 77.0000 0 131.2500 229.2500 107.0000 326.2500 410.2500 253.2500 362.0000

86.5000 77.2500 131.2500 0 202.5000 202.2500 355.5000 305.5000 416.0000 465.2500

220.0000 195.2500 229.2500 202.5000 0 145.2500 75.5000 102.0000 394.5000 190.2500

160.2500 176.0000 107.0000 202.2500 145.2500 0 160.2500 250.2500 100.2500 147.0000

400.5000 327.2500 326.2500 355.5000 75.5000 160.2500 0 79.5000 379.5000 76.2500

394.0000 320.2500 410.2500 305.5000 102.0000 250.2500 79.5000 0 515.5000 201.2500

374.5000 453.2500 253.2500 416.0000 394.5000 100.2500 379.5000 515.5000 0 279.2500

485.2500 403.0000 362.0000 465.2500 190.2500 147.0000 76.2500 201.2500 279.2500 0

>> [outperm,rawindex,allperms,index] = order(sqeuclid,targlin(10),randperm(10),3)

outperm =

10 8 7 5 6 2 4 3 1 9

rawindex =

100333
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index =

11

>> [outperm,rawindex,allperms,index] = order(sqeuclid,targlin(10),randperm(10),3)

outperm =

9 10 7 8 5 6 3 2 1 4

rawindex =

100458

index =

18

>> load supreme_agree.dat

>> [outperm,rawindex,allperms,index] = order(supreme_agree,targlin(9),randperm(9),3)

outperm =

1 2 3 4 5 6 7 8 9

rawindex =

145.1200

index =

19
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Appendix E

Some Bibliographic Comments

There are a number of book-length presentations of cluster analysis methods
available (encompassing differing collections of subtopics within the field).
We list several of the better ones to consult in the reference section to fol-
low, and note these here in chronological order: Anderberg (1973); Hartigan
(1975); Späth (1980); Barthélemy and Guénoche (1991); Mirkin (1996); Ara-
bie, Hubert, and DeSoete (1996); Everitt and Rabe-Hesketh (1997); Gordon
(1999). The items that would be closest to the approaches taken here with
MATLAB and the emphasis on least-squares, would be the monograph by
Hubert, Arabie, and Meulman (2006), and the review articles by Hubert,
Köhn, and Steinley (2009, 2010); and Steinley and Hubert (2008).
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[11] Hubert, L., Köhn, H.-F., & Steinley, D. (2010). Order-constrained prox-
imity matrix representations: Ultrametric generalizations and construc-
tions with MATLAB. In S. Kolenikov, D. Steinley, & L. Thombs (Eds.),
Current methodological developments of statistics in the social sciences
(pp. 81–112). New York: Wiley.

[12] Mirkin, B. (1996). Mathematical classification and clustering. Dordrecht:
Kluwer.
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Appendix F

Header Comments for the M-files
Mentioned in the Text or Used
Internally by Other M-files; Given in
Alphabetical Order

arobfit.m

function [fit, vaf] = arobfit(prox, inperm)

% AROBFIT fits an anti-Robinson matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit, vaf] = arobfit(prox, inperm)

%

% PROX is the input proximity matrix ($n \times n$ with a zero main

% diagonal and a dissimilarity interpretation);

% INPERM is a given permutation of the first $n$ integers;

% FIT is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX having an anti-Robinson form for

% the row and column object ordering given by INPERM.

arobfnd.m

function [find, vaf, outperm] = arobfnd(prox, inperm, kblock)

% AROBFND finds and fits an anti-Robinson

% matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative quadratic
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% assignment.

%

% syntax: [find, vaf, outperm] = arobfnd(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero main

% diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX having an anti-Robinson

% form for the row and column object ordering given by the ending

% permutation OUTPERM. KBLOCK defines the block size in the use of the

% iterative quadratic assignment routine.

atreedec.m

function [ulmetric,ctmetric] = atreedec(prox,constant)

% ATREEDEC decomposes a given additive tree matrix into an

% ultrametric and a centroid metric matrix (where the root is

% halfway along the longest path).

%

% syntax: [ulmetric,ctmetric] = atreedec(prox,constant)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% CONSTANT is a nonnegative number (less than or equal to the

% maximum proximity value) that controls the

% positivity of the constructed ultrametric values;

% ULMETRIC is the ultrametric component of the decomposition;

% CTMETRIC is the centroid metric component of the decomposition

% (given by values $g_{1},...,g_{n}$ for each of the objects,

% some of which may actually be negative depending on the input

% proximity matrix used).

atreefit.m

function [fit,vaf] = atreefit(prox,targ)

% ATREEFIT fits a given additive tree using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit,vaf] = atreefit(prox,targ)

%

% PROX is the input proximity matrix (with a zero main diagonal
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% and a dissimilarity interpretation);

% TARG is a matrix of the same size as PROX with entries

% satisfying the four-point additive tree constraints;

% FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX satisfying the

% additive tree constraints implicit in TARG.

atreefnd.m

function [find,vaf] = atreefnd(prox,inperm)

% ATREEFND finds and fits an additive tree using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf] = atreefnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the additive tree constraints.

atreefndtm.m

function [find,vaf,ultra,lengths] = ...

atreefndtm(proxtm,inpermrow,inpermcol)

% ATREEFNDTM finds and fits a two-mode additive tree;

% iterative projection is used

% heuristically to find a two-mode ultrametric component that

% is added to a two-mode centroid metric to

% produce the two-mode additive tree.

%

% syntax: [find,vaf,ultra,lengths] = ...

% atreefndtm(proxtm,inpermrow,inpermcol)

%

% PROXTM is the input proximity matrix

% (with a dissimilarity interpretation);

% INPERMROW and INPERMCOL are permutations for the row and column

% objects that determine the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROXTM satisfying the additive tree constraints;
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% the vector LENGTHS contains the row followed by column values for

% the two-mode centroid metric component;

% ULTRA is the ultrametric component.

biatreefnd.m

function [find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

% BIATREEFND finds and fits the sum

% of two additive trees using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX and is the sum of

% the two additive tree matrices TARGONE and TARGTWO.

biultrafnd.m

function [find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

% BIULTRAFND finds and fits the sum

% of two ultrametrics using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX and is the sum

% of the two ultrametric matrices TARGONE and TARGTWO.

cent ultrafnd confit.m

function [find,vaf,outperm,targone,targtwo,lengthsone] = ...
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cent_ultrafnd_confit(prox,inperm,conperm)

% CENT_ULTRAFND_CONFIT finds and fits an additive tree by first fitting

% a centroid metric and secondly an ultrametric to the residual

% matrix where the latter is constrained by a given object order.

%

% syntax: [find,vaf,outperm,targone,targtwo,lengthsone] = ...

% cent_ultrafnd_confit(prox,inperm,conperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); CONPERM is the given

% input constraining order (permutation) which is also given

% as the output vector OUTPERM;

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered in identifying the ultrametric;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the additive tree constraints. TARGTWO is

% the ultrametric component of the decomposition; TARGONE is the centroid

% metric component defined by the lengths in LENGTHSONE.

cent ultrafnd confnd.m

function [find,vaf,outperm,targone,targtwo,lengthsone] = ...

cent_ultrafnd_confnd(prox,inperm)

% CENT_ULTRAFND_CONFND finds and fits an additive tree by first fitting

% a centroid metric and secondly an ultrametric to the residual

% matrix where the latter is displayed by a constraining object order that

% is also identified in the process.

%

% syntax: [find,vaf,outperm,targone,targtwo,lengthsone] = ...

% cent_ultrafnd_confnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered in identifying the ultrametric;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the additive tree constraints. TARGTWO is

% the ultrametric component of the decomposition; TARGONE is the centroid

% metric component defined by the lengths in LENGTHSONE; OUTPERM is the

% identified constraining object order used to display the ultrametric

% component.
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centfit.m

function [fit,vaf,lengths] = centfit(prox)

% CENTFIT finds the least-squares fitted centroid metric (FIT) to

% PROX, the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation).

%

% syntax: [fit,vaf,lengths] = centfit(prox)

%

% The $n$ values that serve to define the approximating sums,

% $g_{i} + g_{j}$, are given in the vector LENGTHS of size $n \times 1$.

centfittm.m

function [fit,vaf,lengths] = centfittm(proxtm)

% CENTFITTM finds the least-squares fitted two-mode centroid metric

% (FIT) to PROXTM, the two-mode rectangular input proximity matrix

% (with a dissimilarity interpretation).

%

% syntax: [fit,vaf,lengths] = centfittm(proxtm)

%

% The $n$ values (where $n$ = number of rows + number of columns)

% serve to define the approximating sums,

% $u_{i} + v_{j}$, where the $u_{i}$ are for the rows and the $v_{j}$

% are for the columns; these are given in the vector LENGTHS of size

% $n \times 1$, with row values first followed by the column values.

consec subsetfit.m

function [fitted,vaf,weights,end_condition,member] =

consec_subsetfit(prox)

% CONSEC_SUBSETFIT defines a collection of partitions involving

% consecutive subsets for the object set and then calls partitionfit.m

% to fit a least-squares approximation to the input proximity matrix based

% on these identified partitions.

%

% syntax [fitted,vaf,weights,end_condition,member] = consec_subsetfit(prox)

%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n matrix

% indicating cluster membership, where each row corresponds to a specific
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% partition (there are m partitions in general); the columns of MEMBER

% are in the same input order used for PROX. The partitions are defined

% by a single contiguous cluster of objects, with all objects before and

% after this contiguous set forming individual clusters of the partitions.

% The value of m is (n*(n-1)/2) - 1; the partition defined by a single

% contiguous partition is excluded.

% FITTED is an n x n matrix fitted to PROX (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process.

consec subsetfit alter.m

function [fitted,vaf,weights,end_condition,member] =

consec_subsetfit_alter(prox)

% CONSEC_SUBSETFIT_ALTER defines a collection of partitions involving

% consecutive subsets for the object set and then calls partitionfit.m

% to fit a least-squares approximation to the input proximity matrix based

% on these identified partitions.

%

% syntax [fitted,vaf,weights,end_condition,member] = ...

% consec_subsetfit_alter(prox)

%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same input order used for PROX. The partitions are defined

% by a single contiguous cluster of objects, with all objects before and

% all objects after this contiguous set (when nonempty) forming

% separate individual clusters of the partitions.

% (These possible three-class partitions when before and after subsets are

% both nonempty) distinguish consec_subsetfit_alter.m from consec_subsetfit.m).

% The value of m is (n*(n-1)/2) - 1; the partition defined by a single

% contiguous partition is excluded.

% FITTED is an n x n matrix fitted to PROX (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process.
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dykstra.m

code only; no help file

function [solution, kuhn_tucker, iterations, end_condition] = ...

dykstra(data,covariance,constraint_array,constraint_constant,equality_flag)

insertqa.m

function [outperm, rawindex, allperms, index] = ...

insertqa(prox, targ, inperm, kblock)

% INSERTQA carries out an iterative

% Quadratic Assignment maximization task using the

% insertion of from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix.

%

% syntax: [outperm, rawindex, allperms, index] = ...

% insertqa(prox, targ, inperm, kblock)

%

% INPERM is the input beginning permutation

% (a permutation of the first $n$ integers).

% PROX is the $n \times n$ input proximity matrix.

% TARG is the $n \times n$ input target matrix.

% OUTPERM is the final permutation of PROX with the cross-product

% index RAWINDEX with respect to TARG.

% ALLPERMS is a cell array containing INDEX entries corresponding

% to all the permutations identified in the optimization from

% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

order.m

function [outperm,rawindex,allperms,index] =

order(prox,targ,inperm,kblock)

% ORDER carries out an iterative Quadratic Assignment maximization

% task using a given square ($n x n$) proximity matrix PROX (with

% a zero main diagonal and a dissimilarity interpretation).

%

% syntax: [outperm,rawindex,allperms,index] = ...

% order(prox,targ,inperm,kblock)

%
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% Three separate local operations are used to permute

% the rows and columns of the proximity matrix to maximize the

% cross-product index with respect to a given square target matrix

% TARG: pairwise interchanges of objects in the permutation defining

% the row and column order of the square proximity matrix;

% the insertion of from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix; the rotation of from 2 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix. INPERM is the input beginning permutation (a permutation

% of the first $n$ integers).

% OUTPERM is the final permutation of PROX with the

% cross-product index RAWINDEX

% with respect to TARG. ALLPERMS is a cell array containing INDEX

% entries corresponding to all the

% permutations identified in the optimization from ALLPERMS{1} =

% INPERM to ALLPERMS{INDEX} = OUTPERM.

order missing.m

function [outperm,rawindex,allperms,index] = ...

order_missing(prox,targ,inperm,kblock,proxmiss)

% ORDER_MISSING carries out an iterative Quadratic Assignment maximization

% task using a given square ($n x n$) proximity matrix PROX (with

% a zero main diagonal and a dissimilarity interpretation; missing entries

% PROX are given values of zero).

%

% syntax: [outperm,rawindex,allperms,index] = ...

% order_missing(prox,targ,inperm,kblock,proxmiss)

%

% Three separate local operations are used to permute

% the rows and columns of the proximity matrix to maximize the

% cross-product index with respect to a given square target matrix

% TARG: pairwise interchanges of objects in the permutation defining

% the row and column order of the square proximity matrix;

% the insertion of from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix; the rotation of from 2 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data
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% matrix. INPERM is the input beginning permutation (a permutation

% of the first $n$ integers). PROXMISS is the same size as PROX (with

% main diagonal entries all zero); an off-diagonal entry of 1.0 denotes an

% entry in PROX that is present and 0.0 if it is absent.

% OUTPERM is the final permutation of PROX with the

% cross-product index RAWINDEX

% with respect to TARG. ALLPERMS is a cell array containing INDEX

% entries corresponding to all the

% permutations identified in the optimization from ALLPERMS{1} =

% INPERM to ALLPERMS{INDEX} = OUTPERM.

pairwiseqa.m

function [outperm, rawindex, allperms, index] = ...

pairwiseqa(prox, targ, inperm)

% PAIRWISEQA carries out an iterative

% Quadratic Assignment maximization task using the

% pairwise interchanges of objects in the

% permutation defining the row and column

% order of the data matrix.

%

% syntax: [outperm, rawindex, allperms, index] = ...

% pairwiseqa(prox, targ, inperm)

%

% INPERM is the input beginning permutation

% (a permutation of the first $n$ integers).

% PROX is the $n \times n$ input proximity matrix.

% TARG is the $n \times n$ input target matrix.

% OUTPERM is the final permutation of

% PROX with the cross-product index RAWINDEX

% with respect to TARG.

% ALLPERMS is a cell array containing INDEX entries corresponding

% to all the permutations identified in the optimization from

% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

partitionfit.m

function [fitted,vaf,weights,end_condition] =

partitionfit(prox,member)

% PARTITIONFIT provides a least-squares approximation to a proximity

% matrix based on a given collection of partitions.

%
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% syntax: [fitted,vaf,weights,end_condition] = partitionfit(prox,member)

%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same input order used for PROX.

% FITTED is an n x n matrix fitted to PROX (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process.

partitionfnd averages.m

function [membership,objectives] = partitionfnd_averages(prox)

% PARTITIONFND_AVERAGES uses dynamic programming to

% construct a linearly constrained cluster analysis that

% consists of a collection of partitions with from 1 to

% n ordered classes.

%

% syntax: [membership,objectives] = partitionfnd_averages(prox)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% MEMBERSHIP is the n x n matrix indicating cluster membership,

% where rows correspond to the number of ordered clusters,

% and the columns are in the identity permutation input order

% used for PROX.

% OBJECTIVES is the vector of merit values minimized in the

% construction of the ordered partitions, each defined by the

% maximum over clusters of the average proximities within subsets.

partitionfnd diameters.m

function [membership,objectives] = partitionfnd_diameters(prox)

% PARTITIONFND_DIAMETERS uses dynamic programming to

% construct a linearly constrained cluster analysis that

% consists of a collection of partitions with from 1 to

% n ordered classes.

%
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% syntax: [membership,objectives] = partitionfnd_diameters(prox)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% MEMBERSHIP is the n x n matrix indicating cluster membership,

% where rows correspond to the number of ordered clusters,

% and the columns are in the identity permutation input order

% used for PROX.

% OBJECTIVES is the vector of merit values minimized in the

% construction of the ordered partitions, each defined by the

% maximum over clusters of the maximum proximities within subsets.

partitionfnd kmeans.m

function [membership,objectives] = partitionfnd_kmeans(prox)

% PARTITIONFND_KMEANS uses dynamic programming to

% construct a linearly constrained cluster analysis that

% consists of a collection of partitions with from 1 to

% n ordered classes.

%

% syntax: [membership,objectives] = partitionfnd_kmeans(prox)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% MEMBERSHIP is the n x n matrix indicating cluster membership,

% where rows correspond to the number of ordered clusters,

% and the columns are in the identity permutation input order

% used for PROX.

% OBJECTIVES is the vector of merit values minimized in the

% construction of the ordered partitions, each defined by the

% sum over clusters of the average (using a division by twice the

% number of objects in the class) of the proximities within subsets.

proxmon.m

function [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

% PROXMON produces a monotonically transformed proximity matrix

% (MONPROXPERMUT) from the order constraints obtained from each

% pair of entries in the input proximity matrix PROXPERMUT

% (symmetric with a zero main diagonal and a dissimilarity

% interpretation).

%
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% syntax: [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

%

% MONPROXPERMUT is close to the

% $n \times n$ matrix FITTED in the least-squares sense;

% the variance accounted for (VAF) is how

% much variance in MONPROXPERMUT can be accounted for by

% FITTED; DIFF is the value of the least-squares criterion.

proxmontm.m

function [monproxpermuttm, vaf, diff] = ...

proxmontm(proxpermuttm, fittedtm)

% PROXMONTM produces a monotonically transformed

% two-mode proximity matrix (MONPROXPERMUTTM)

% from the order constraints obtained

% from each pair of entries in the input two-mode

% proximity matrix PROXPERMUTTM (with a dissimilarity

% interpretation).

%

% syntax: [monproxpermuttm, vaf, diff] = ...

% proxmontm(proxpermuttm, fittedtm)

%

% MONPROXPERMUTTM is close to the $nrow \times ncol$

% matrix FITTEDTM in the least-squares sense;

% The variance accounted for (VAF) is how much variance

% in MONPROXPERMUTTM can be accounted for by FITTEDTM;

% DIFF is the value of the least-squares criterion.

sqeuclidean.m

code only; no help file

function [sqeuclid] = sqeuclidean(data)

targlin.m

function [targlinear] = targlin(n)

% TARGLIN produces a symmetric proximity matrix of size

% $n \times n$, containing distances

% between equally and unit-spaced positions

% along a line: targlinear(i,j) = abs(i-j).
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%

% syntax: [targlinear] = targlin(n)

ultracomptm.m

function [ultracomp] = ultracomptm(ultraproxtm)

% ULTRACOMPTM provides a completion of a given two-mode ultrametric

% matrix to a symmetric proximity matrix satisfying the

% usual ultrametric constraints.

%

% syntax: [ultracomp] = ultracomptm(ultraproxtm)

%

% ULTRAPROXTM is the $nrow \times ncol$ two-mode ultrametric matrix;

% ULTRACOMP is the completed symmetric

% $n \times n$ proximity matrix having the usual

% ultrametric pattern for $n = nrow + ncol$.

ultrafit.m

function [fit,vaf] = ultrafit(prox,targ)

% ULTRAFIT fits a given ultrametric using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit,vaf] = ultrafit(prox,targ)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% TARG is an ultrametric matrix of the same size as PROX;

% FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX satisfying the ultrametric

% constraints implicit in TARG.

ultrafit missing.m

function [fit,vaf] = ultrafit_missing(prox,targ,proxmiss)

% ULTRAFIT_MISSING fits a given ultrametric using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit,vaf] = ultrafit_missing(prox,targ,proxmiss)

%
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% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); also, missing entries in the input

% proximity matrix PROX are given values of zero.

% TARG is an ultrametric matrix of the same size as PROX;

% FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX satisfying the ultrametric

% constraints implicit in TARG. PROXMISS is the same size as PROX (with main

% diagonal entries all zero); an off-diagonal entry of 1.0 denotes an

% entry in PROX that is present and 0.0 if it is absent.

ultrafittm.m

function [fit,vaf] = ultrafittm(proxtm,targ)

% ULTRAFITTM fits a given (two-mode) ultrametric using iterative

% projection to a two-mode (rectangular) proximity matrix in the

% $L_{2}$-norm.

%

% syntax: [fit,vaf] = ultrafittm(proxtm,targ)

%

% PROXTM is the input proximity matrix (with a dissimilarity

% interpretation); TARG is an ultrametric matrix of the same size

% as PROXTM; FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROXTM satisfying the

% ultrametric constraints implicit in TARG.

ultrafnd.m

function [find,vaf] = ultrafnd(prox,inperm)

% ULTRAFND finds and fits an ultrametric using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf] = ultrafnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the ultrametric constraints.
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ultrafnd confit.m

function [find,vaf,vafarob,arobprox,vafultra] = ...

ultrafnd_confit(prox,inperm,conperm)

% ULTRAFND_CONFIT finds and fits an ultrametric using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm,

% constrained by a given object order.

%

% syntax: [find,vaf,vafarob,arobprox,vafultra] = ...

% ultrafnd_confit(prox,inperm,conperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered in obtaining the ultrametric;

% CONPERM is the given constraining object order;

% VAFAROB is the VAF of the anti-Robinson matrix fit, AROBPROX, to PROX;

% VAFULTRA is the VAF of the ultrametric fit to AROBPROX;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the ultrametric constraints, and given

% in CONPERM order.

ultrafnd confnd.m

function [find,vaf,conperm,vafarob,arobprox,vafultra] = ...

ultrafnd_confnd(prox,inperm)

% ULTRAFND_CONFND finds and fits an ultrametric using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm, and

% also locates a initial constraining object order.

%

% syntax: [find,vaf,conperm,vafarob,arobprox,vafultra] = ...

% ultrafnd_confnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered in obtaining the ultrametric;

% CONPERM is the identified constraining object order;

% VAFAROB is the VAF of the anti-Robinson matrix fit, AROBPROX, to PROX;

% VAFULTRA is the VAF of the ultrametric fit to AROBPROX;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the ultrametric constraints, and given
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% in CONPERM order.

ultrafnd missing.m

function [find,vaf] = ultrafnd_missing(prox,inperm,proxmiss)

% ULTRAFND_MISSING finds and fits an ultrametric using iterative projection

% heuristically on a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf] = ultrafnd_missing(prox,inperm,proxmiss)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); also, missing entries in the input

% proximity matrix PROX are given values of zero.

% INPERM is a permutation that determines the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX satisfying the ultrametric constraints. PROXMISS is

% the same size as PROX (with main

% diagonal entries all zero); an off-diagonal entry of 1.0 denotes an

% entry in PROX that is present and 0.0 if it is absent.

ultrafndtm.m

function [find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

% ULTRAFNDTM finds and fits a two-mode ultrametric using

% iterative projection heuristically on a rectangular proximity

% matrix in the $L_{2}$-norm.

%

% syntax: [find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

%

% PROXTM is the input proximity matrix (with a

% dissimilarity interpretation);

% INPERMROW and INPERMCOL are permutations for the row and column

% objects that determine the order in which the

% inequality constraints are considered;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROXTM satisfying the ultrametric constraints.

ultraorder.m

function [orderprox,orderperm] = ultraorder(prox)
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% ULTRAORDER finds for the input proximity matrix PROX

% (assumed to be ultrametric with a zero main diagonal)

% a permutation ORDERPERM that displays the anti-

% Robinson form in the reordered proximity matrix

% ORDERPROX; thus, prox(orderperm,orderperm) = orderprox.

%

% syntax: [orderprox,orderperm] = ultraorder(prox)

ultraplot.m

function [] = ultraplot(ultra)

% ULTRAPLOT gives a dendrogram plot for the input ultrametric

% dissimilarity matrix ULTRA.

%

% syntax: [] = ultraplot(ultra)
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