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INTRODUCTION 

The purpose of scaling is to quantify qualitative data. Scaling procedures 
attempt to do this by using rules that assign numbers to qualities of things or 
events. A quality of a thing or event is an attribute (characteristic) of the thing or 
event observed in circumstances assumed by the observer to be qualitative. 
Scaling replaces qualitative observations about the attribute of the thing or 
event with numeric measures of the attribute of the thing or event. 

This is my definition of scaling: Scaling is the process that uses rules to 
assign numbers to attributes of things or events observed in circumstances 
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56 YOUNG 

assumed by the observer to be qualitative. Scaling produces measurements, and 
these measurements are called scale values. 

My definition of measuring is only very slightly different: Measuring is the 
process that uses rules to assign numbers to attributes of things or events 
observed in circumstances assumed by the observer to be quantitative. Measur­
ing produces measurements. 

Note that scaling and measuring both produce measurements by applying 
rules to assign numbers to observed attributes of things or events. The differ­
ence is that scaling derives measurements from qualities, whereas measuring 
derives measurements from quantities. How do we know if the observation 
circumstances are quantitative or qualitative? We don't know. Rather, we must 
assume one or the other. In fact, the distinction does not reside in the observa­
tion circumstances. but is in the mind of the observer. 

My review concentrates on developments which fall within the definition of 
scaling just given. Specifically, the review focuses on rule-based processes to 
attach numbers to data which are at least in part qualitative. Contributions are 
reviewed which involve: (a) models (rules) used in scaling; (b) algorithms 
(rule-based processes) for applying models to qualitative data; and (c) applica­
tions of scaling to empirical situations. No attempt has been made to provide 
complete coverage. Rather, I have covered what I believe to be the most 
important developments in scaling during the review period. However, because 
of the vast application of some developments, applications have been slighted 
in this review. 

My review specifically omits certain models and algorithms: factor analysis 
and regression analysis are covered only when the developments apply to 
qualitative data. Latent trait theory, test theory, and cluster analysis are com­
pletely excluded from the review, even though these developments often apply 
to qualitative data. These topics are periodically reviewed elsewhere. 

DATA THEORY 

Scaling techniques may be structured into two very broad categories according 
to the kind of data being scaled: The data may be multivariate data or dissimi­
larity C1ata. Multivariate data have observations that are (qualitative or quantita­
tive) values on one or more variables (thus including univariate data as well). 
Dissimilarity data have observations that are (qualitative or quantitative) dis­
similarities (or similarities) between pairs of things. 

This structure may also be seen according to the model being used to scale 
the data: scaling techniques for quantifying multivariate data use linear models 
(including bilinear and multilinear). Principal components and multiple regres­
sion are examples. Scaling techniques for quantifying qualitative dissimilarity 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
4.

35
:5

5-
81

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
- 

U
rb

an
a 

C
ha

m
pa

ig
n 

on
 0

9/
03

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



SCALING 57 

data use distance models. Multidimensional scaling and unfolding are exam­
ples. 

The two-level structure just given forms the broad outline of this review. The 
next section of the review is on scaling dissimilarity data via distance models, 
and then comes a section on scaling multivariate data via linear models. The 
remainder of the present section of the review briefly introduces and defines 
some data theory terms used in the rest of the review. The terms are from a data 
theory that I first discussed in a manuscript circulated in the scaling community 
in 1975, which will appear in Young & Hamer (1984). Condensations of this 
data theory have appeared in Young & Lewyckyj (1979), Young et al (1980), 
Young (1981), Schiffman et al (1981), and Young (1983a). The theory rests on 
the following basic assumptions: 

1. Data are always categorical: Data are obtained by a classification process 
that assures we can decide whether two observations are empirically equiva­
lent. Equivalent observations form an observation category. This assump­
tion underlies the measurement aspects of the data theory. 

2. Data are always designed: Data are always obtained in an empirical 
situation that has an objective design. This assumption underlies the empir­
ical aspects of the data theory. 

3. Data are always modeled: Data are always obtained in the context of a 
specific model of the empirical situation. This assumption underlies the 
model aspects of the data theory. 

Measurement Aspects 

The categorical assumption that underlies data theory provides a very nice 
organizing principle for three important measurement concepts: measurement 
process, which concerns the relationships among all of the observations within 
a single data category; measurement level, which concerns the relationships 
among all of the observations between different data categories; and measure­
ment conditionality, which concerns the relationships within sets of observa­
tion categories. 

There are two types of measurement processes: discrete and continuous. The 
discrete process implies that we believe that all of the observations in a category 
should be represented by a single number after they have been scaled. Alterna­
tively, the continuous process implies that we believe that all observations in a 
category should be represented by a bounded interval of real numbers after they 
have been scaled. Notice that the measurement process assumption concerns 
what happens within a single observation category. 

The familiar measurement level notions correspond to assumptions about 
what happens between observation categories. Levels of measurement differ 
from each other in the ways that restrictions are imposed on the numbers that 
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58 YOUNG 

can be assigned to different observation categories. There are a variety of 
restraints which could be discussed, but only three are needed to satisfy the 
characteristics of the four familiar measurement levels. I 

For the nominal level, there are no measurement level restraints. The 
characteristics of this level are completely specified by the within-category 
restrictions implied by the chosen measurement process. For the ordinal level 
we require, in addition to the process restraints, that the real numbers assigned 
to observations in different categories reflect the order of the empirical observa­
tions. For the numeric (quantitative) levels of measurement (which include 
interval and ratio, among others) we require, in addition to the process con­
straints, that the real numbers assigned to observations in different categories 
be related to each other by some form of numeric function. 

The final type of restraints placed on the numers used to scale the observation 
categories concerns relationships among sets of categories. It may be, for a 
particular set of data, that one measurement level and process apply to all of the 
data. Such data are called unconditional. On the other hand, it may be that 
different levels and processes apply to different portions of the data. These data 
are called conditional. 

Empirical Aspects 

One important aspect of the data theory is the shape of the data: data may be 
either square or rectangular. Square data are in matrices whose rows and 
columns refer to the same set of things. Usually (perhaps always), square 
data are "relational" data: data which indicate the degree of relation between 
the rows and columns of the matrix. Such data include distances, dissimilar­
ities, similarities, etc. Square data can be symmetric or asymmetric. Rectan­
gular data are in matrices whose rows and columns refer to two different 
sets of things. Thus, the matrix is rectangular in shape. These data are usual­
ly called "multivariate" data because the (multiple) columns often refer to 
variables. 

The shape of a set of data can be reexpressed in terms of the number of ways 
and the number of modes of a set of data. The number of ways of any data 
matrix is always two (its. rows and columns). The shape of the matrix actually 
refers to whether the two ways are distinct. The number of distinct ways is the 
number of modes. Thus, a square matrix is one-mode and a rectangular matrix 
is two-mode. Whereas a data matrix is always two-way, data may be more than 
two-way. Multi-way data are organized into several matrices and may be called 
three-way data, four-way data, etc. 

ITo be faithful to my distinction between scaling and measuring (made in the opening para­
graphs) I should refer to nominal and ordinal as levels of "scaling," and interval and ratio as levels 
of "measuring." However, the phrase "levels of measurement," which is always used to refer to all 
four levels, is in such common use that I will use it instead of the other more precise terms. 
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SCALING 59 

My classification of recent developments in scaling involves the distinction 
between multivariate data and dissimilarity data. Multivariate data are rec­
tangular data which consist of repeatedly observed values on many variables. 
The two ways of the data are the repeated observations (oftentimes people) and 
the variables. Dissimilarity data are usually square, but may also be rectangu­
lar. When square, the two ways are usually some type of stimuli. When 
rectangular, the two ways are usually people and variables (as with multivariate 
data) . Usually, multivariate or rectangular dissimilarity data are two-way and 
row or column conditional, whereas square dissimilarity data are usually 
three-way and matrix-conditional . 

The fundamental difference between multivariate and dissimilarity data is in 
the nature of the individual datum. For multivariate data the basic datum is the 
amount of each variable for each observation. For dissimilarity data the basic 
datum is the distance (or proximity) between the row-thing and the column­
thing. [I use "dissimilarity" generically to include proximity (similarity) data as 
well as distance (or difference) data.] 

Model Aspects 

It may seem a bit strange to include the nature of models as one of the three 
major organizing principles of a data theory. After all, doesn't data theory 
concern data and not models? Actually, the answer is no; data theory concerns 
both the data and the model of the data. In particular, it is my view that data in 
themselves do not possess measurement characteristics. Rather, the measure­
ment characteristics which appear to be possessed by a particular set of data are 
actually dependent on the interaction of that data with the model chosen to 
describe the data. 

When a set of data are analyzed by some model, the analysis necessarily 
assumes that the data have certain specific measurement characteristics. As 
suggested by Takane et al (1977), empirical information about the most 
appropriate measurement assumptions can be obtained by repeatedly analyzing 
the data several times, each time changing only the measurement assumptions .  
But as  they point out, the measurement assumptions which appear to be most 
appropriate necessarily appear this way in a context created by the data analysis 
model . When a different model is used it can appear that different measurement 
assumptions are most appropriate. The apparent measurement characteristics 
of a set of data interact with the chosen data analysis model . 

Although many different models are used in data analysis, I confine my 
review to three broad model classes: the linear, bilinear, and distance models .  I 
confine my review to these three model classes because they are the ones which 
have been used in most recent developments in scaling. The next two sections 
cover these three model classes . 
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60 YOUNG 

SCALING DISSIMILARITY DATA 
VIA DISTANCE MODELS 

This section reviews recent developments in multidimensional scaling and 
unfolding: scaling methods which use distance to model dissimilarity data. The 
distinction between multidimensional scaling (MDS) and multidimensional 
unfolding (MDU) is in the data analyzed. MDS is always based on square 
dissimilarity data, whereas MDU is always based on rectangular dissimilarity 
data. However, they both share in common the use of distance models. 

For example, the simplest form of MDS involves Euclidean distances 
between all the members of one set of points: 

where the Xi and Xj (the parameters of the model) are row vectors each having r 
elements that specify the location of points i and j in an r-dimensional Eucli­
dean space. The Xi and Xj are the ith and jth rows of the stimulus coordinates 
matrix X, an n points by r dimensions matrix. Notice that the one set of points 
(X) is used to model the one mode of the square data. Similarly, the simplest 
type of MDU involves Euclidean distances from each member of one set of 
points to each member of another set: 

where Xj is the jth row of a coordinates matrix X, and Yi is the ith row of a second 
coordinates matrix Y. Notice that the two sets of points (X and Y) model the 
two modes of the rectangular data. 

There are four major streams of development in MDS during the review 
period. These are: 1. the continued generalization of MDS models; 2. the 
introduction of confirmatory (constrained) MDS models and algorithms; 3. the 
introduction of maximum likelihood MDS models and algorithms; and 4. the 
improvement of least squares MDS algorithms. Each of these developments is 
discussed in the following sections, as is multidimensional unfolding. 

Generalized Multidimensional Scaling 

One research trend during the review period was a continuation of interest in 
generalizing the very popular weighted Euclidean model discussed by Bloxom 
(1968), Horan (1969), and Carroll & Chang (1970). (The model is usually 
known as the INDSCAL model. ) Much of this work has continued the early 
(and unpublished) generalizations of the weights proposed by Harshman (1972) 

and by Carroll & Chang (1972). During the review period, no work has 
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SCALING 61 

generalized the Euclidean aspect of the model. Also, there was no work that 
continued the earlier extension of MDS to Minkowski models. 

The first work published during the review period was by Bloxom (1978), 
who proposed what he called the generalized Euclidean model (GEM): 

where the three subscripts on dijk refer to the three ways of the data, i and} for 
the one mode of the basic square matrix (usually stimuli) and k for the third 
mode (usually subjects). In Bloxom's paper, Wk is positive semidefinite, with 
the rank of W k controlled by the user just as he/she controls the dimensionality 
of X. Bloxom proposes decomposing Wk into 

where V k and V k are the upper and lower triangular gram factors of the weights 
for subject k. 

The GEM was also proposed, independently, at about the same time by 
Young & Lewyckyj (1979) but was not published until recently (Young 1984). 
The name Principal Directions Scaling (PRINDSCAL) reflected our choice to 
decompose W k into its principal components. Note that for either decomposi­
tion, Vk can then be applied to the group's stimulus space X to obtain an 
individual's space Xk by the formula 

The space Xk is a subspace of the overall space X, and its dimensions constitute 
the subject's principal dimensions. When oriented in a principal components 
orientation, as in PRINDSCAL, each successive dimension accounts for as 
much variance in the subject's data as possible. The space Xk is the subject's 
principal subspace in the maximum variance sense. 

Interesting applications of GEM appear in Bloxom (1978), Young (1984), 
Jones & MacCallum (1984), Forsyth (1984), Dunn & Harshman (1982), and 
Easterling (1984). The model is discussed by Young (1982), Ramsay (1982b), 
and by Lingoes & Borg (1978b). Several authors propose the model in the 
context of constrained MDS (see below). 

Despite great interest in this model, two problems emerge: (a) all of the 
algorithms that have been proposed are still essentially experimental in nature, 
none having been fully investigated; (b) very few applications have appeared, 
and it may be that the model is too complex to be of much use to those who are 
not experts on MDS models. The ultimate usefulness of this line of develop­
ment remains to be seen. 
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62 YOUNG 

Lingoes & Borg (l978b) proposed an interesting extension of the weighted 
Euclidean model which they call the perspective model. The model posits that a 
subject has a unique perspective on the stimulus space X which translates it to a 
new origin and then dilates the space around the new origin. Algebraically, this 
is done by adding a constant vector ak (having r elements, one for each 
dimension) to X and then premultiplying the translated space by a diagonal 
weight matrix Uk (an n by n matrix having a row and column for each stimulus). 
Thus the individual's perspective on the common space is defined as: 

where 1 is an n-element column vector of Is. The Euclidean distances for the 
subject are calculated in the usual way. 

This model can be very useful in, for example, the cognitive geography 
situation in which people judge the perceived distance between geographic 
locations. It should be useful here because it is well known that people 
subjectively expand geographic space around a point with which they are 
familiar. Unfortunately, no convincing applications are presented by Lingoes 
& Borg ( 1978b), and their algorithm is very cumbersome and does not appear 
to be one that will be very useful. Thus, the final reviews are not in on this 
deVelopment either. 

Finally, two somewhat eclectic and very interesting developments should be 
mentioned. One of these (Holman 1978) is a "completely nonmetric" multi­
dimensional scaling method. By this Holman means that the method is one 
which (a) only uses the order of the dissimilarities and (b) does not posit a 

specific distance metric in which to construct a stimulus space. The first 
characteristic is common, of course. It is the second characteristic that is 
eclectic. The notion that replaces a distance metric is "betweeness": stimulus j 
should be located between stimuli i and k on every dimension if i and k are the 
farthest apart of the three stimuli. Holman presents numerous convincing 

examples of his method. 
The other somewhat eclectic development (Takane 1980a) is a novel way to 

scale a particular type of dissimilarity data called sorting data. These data are 
obtained when subjects are asked to sort a set of stimuli into as many groups as 
they wish, where the groups consist of "similar" stimuli, and "dissimilar" 
stimuli are placed in different groups. As mentioned by the author, this type of 
similarity data is particularly appealing in many common situations. The 
method is very similar to correspondence analysis, and has the advantages of 
(a) being nonmetric and (b) constructing a joint space having both stimulus 
points and group centroids for each subject. Thus, the model is an individual 
differences model. Takane presents two interesting examples which show that 
for this type of data his method is quite useful. 
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SCALING 63 

Another major trend in the MDS literature is the introduction of constraints on 
the parameters of the model. As mentioned in the previous section, the simplest 
form of MDS occurs when we have two-way, square dissimilarities from just 
one subject. The analysis invokes the Euclidean model to define distances 
between all points in a set of points. The parameters of the model are the 
coordinates Xi and Xj that give the location of points i and j in the Euclidean 
space. The points have a configuration represented by the complete matrix of 
coordinates X. 

As pointed out by de Leeuw & Heiser ( 1980) in their lucid review of the use 
of constraints in MDS, when the data are three-way the most straightforward 
generalization of the preceding analysis is to apply it to each dissimilarity 
matrix separately. When this is done we obtain completely independent con­
figuration matrices Xk for each subject k. Each configuration Xk is totally 
unconstrained by any possible relationship to other Xks. 

A much more interesting way of analyzing such data is via constraints of the 
form Xk = XW k where X is now a common stimulus configuration presumed to 
underlie every subject's judgments, and where Wk is a diagonal matrix of 
weights for each subject. This is, of course, the INDSCAL model discussed 
above but discussed from the viewpoint of constraints on Xk• Furthermore, W k 
can be generalized to other forms, introducing different constraints on the Xk• 

The form Xk=XVk, where Vk are the factors (of one type or another) of a 
positive, semidefinite, nondiagonal W k> is one of the generalizations men­
tioned in the previous section. This model has been discussed from an explicitly 
constrained MDS viewpoint by Bloxom (1978) , Young & Lewyckyj (1979), de 
Leeuw & Heiser ( 1980), Carroll et al ( 1980), and by Young, et al ( 1 983) . In 
these developments, the matrix X is assumed to be a known matrix of ex­
perimental design coefficients or other a priori information about the stimuli, 
and what is desired is to constrain the analysis of the dissimilarities according to 
the design or other information. Here V k can be looked on as the coefficients 
which constrain the Xk to be linear combinations of the information in X. 

Young, et al ( 1 983) present the linear constraints Xk==XYk as an analog of 
multiple regression in which X is the independent information on multiple 
measurements for each observation (just as in multiple regression) and the 
dependent information is dissimilarities between the observations instead of a 
single value for an observation. Two very interesting applications of this notion 
are found in Forsyth ( 1 984) and in Jones & MacCallum ( 1 984). 

Bentler & Weeks ( 1978, Weeks & Bentler 1982) develop a different class of 
constraints. In their work the coordinate Xia can be fixed to an a priori value 
(Xia = Cia) , can be proportional to the value of another coordinate (Xia==CiaXjb), or 
can be free to take on an unconstrained value. They discuss the interesting 
special cases of coordinates being set to zero or being proportional to externally 
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64 YOUNG 

provided infonnation, and the case of stimuli having unique dimensions. These 
types of constraints appear in more primitive fonn in several generally distri­
buted algorithms and in the published work of de Leeuw & Heiser (1980), 
Takane (1978a, 1981), Takane & Carroll (1981), and Bloxom (1978). Superb 
applications appear in the work of Takane, especially in 1981. Circular con­
straints are the focus of work by Lee & Bentler (1980), and ordinal constraints 
are discussed by Noma & Johnson (1977). These last two notions are also 
discussed briefly by de Leeuw & Heiser (1980). 

Maximum Likelihood Multidimensional Scaling 

A major trend during the review period is the development of maximum 
likelihood multidimensional scaling. There are two major lines of develop­
ment, one by Ramsay and collaborators (1977, 1978a,b, 1980a,b; Winsberg & 
Ramsay 1981), the other by Takane and collaborators (1978a,b, 1980b, 1981, 
1982a,b, Takane & Carroll 1981, Takane & Sergent 1983). Zinnes & MacKay 
(1983) have also worked on the topic. 

These lines of development are similar but not the same. The work of 
Ramsay and his collaborators is fundamentally metric since they assume that 
the error process introduces erroneous dissimilarity values. The work of Zinnes 
and MacKay is similar in this regard. On the other hand, the work of Takane 
and his collaborators is fundamentally nonmetric since they assume that the 
error process introduces violations of monotonicity. 

Ramsay discusses a variety of transfonnations of the data, especially power 
transfonnations and monotone splines. The splines pennit monotonic trans­
fonnations of the dissimilarities, but the data are still fundamentally at the 
interval or ratio levels of measurement. The data must be matrix conditional 
and may be asymmetric. Takane discusses optional constraints on the data 
transfonnations which allow him to deal with data at the ordinal, interval, or 
ratio levels of measurement. He also discusses asymmetry and a wide variety of 
conditionality situations. It does not appear that Zinnes and MacKay permit any 
transfonnation of the data in their work; thus they apparently assume that the 
data are ratio (and perhaps interval). Their data may be unconditional or matrix 
conditional and may be asymmetric. 

Ramsay extends his developments to a very wide range of distance models, 
including GEM. He explicitly discusses (1982b) the simple and replicated 
Euclidean models, the INDSCAL-type model, and the full and reduced rank 
GEM models. The developments provided by Takane and by Zinnes and 
MacKay are restricted to the simple and replicated Euclidean models. 

The motivation for developing maximum likelihood MDS is clearly pre­
sented by Ramsay in his first paper (1977). It is his view that in almost all data 
analysis there is some curiosity about the way the observed data vary around the 
fitted values. He asserts that "a maturing of a data analysis technology usually 
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brings a desire for . . .  an explication of the error model involved in the fitting 
process ." 

Maximum likelihood satisfies this desire in a way which many feel has one 
major advantage: the approach changes multidimensional scaling from a de­
scriptive tool into an inferential tool. Associated with this change is the 
introduction of significance tests. In particular, if we feel comfortable adopting 
certain assumptions, then maximum likelihood multidimensional scaling 
allows significance tests to determine the appropriate dimenSionality, the 
appropriate MDS model, and the appropriate error model. Also, this approach 
provides confidence regions for the stimuli and, with weighted models, for 
SUbjects. 

The crucial assumption that we must accept in order to believe the conclu­
sions suggested by the significance test is the specific nature of the error model 
posited by the chosen maximum likelihood MDS method. If the model is an 
appropriate mirror of the actual error processes active in the empirical situation, 
then the significance tests may be meaningful . If it is not, then they are not . 
This aspect is particularly important since the three teams of researchers 
working on MLMDS have proposed five error models, Ramsay and Takane 
two each and Zinnes and MacKay another. 

Throughout their work, Ramsay and Takane actually posit the same pair of 
error models, but they differ in their assumptions about how these models 
influence the data. They both argue that error is normally distributed and is 
either added to or multiplied times the true distance. Thus, their procedures are 
alike in providing the user with the choice of assuming that the dissimilarity 
judgments are normally (additive model) or log-normally (multiplicative mod­
el) distributed about the true distance .  However, the two procedures differ in 
the implied effect of the two assumptions: Ramsay's implies that the data are 
erroneous dissimilarity values. Takane's implies that the data are erroneous 
dissimilarity orders. 

In contrast, Zinnes and MacKay make the fundamentally different assump­
tion that the stimuli (not their distances) are normally perturbed during the' 
subject's judgment process. This implies that the dissimilarities have noncen­
tral chi-square distribution around the true distance. Like Ramsay, Zinnes and 
MacKay then proceed to assume that the data are erroneous dissimilarity values 
(not orders). 

Although the mathematical virtuosity of the preceding developments is truly 
impressive, I question just what has been gained. From the viewpoint of the 
user, what seems to have been gained is that the user no longer has to decide on 
the "proper" distance model (dimensionality and weighting scheme) because 
the Significance tests automate the decision. Furthermore, with two of the 
algorithms the program even indicates which error model is best. But this state 
of affairs may lead the unsophisticated user into a false state of confidence. 
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Of particular concern are those users who do not know that selecting a 
specific computer program implies selecting a specific choice of error models. 
What such a user knows is that the chosen program provides guidelines, via a 
series of significance tests, to choose the "proper" error and distance models. 
But what this user does not know is that what appears to be the "proper" error 
and distance models depends on the program doing the analysis. This occurs 
because (a) no two programs incorporate the same error models, and (b) the 
results of the significance tests for selecting the distance and error models will 
differ between programs because of the different error models. Unfortunately, 
there is no way to use internal consistency as a guideline because none of the 
approaches provide such a test. Consequently, these methods and their associ­
ated significance tests and confidence regions may induce a false sense of 
confidence in the results. 

Furthermore, there are several technical problems with the significance tests. 
One technical problem is the assumption made by Ramsay and by Zinnes and 
MacKay that the dissimilarity judgments are independent. Their likelihood 
functions are critically dependent on this assumption. If this assumption is 
violated, then the significance levels are wrong. This problem has been ad­
dressed directly by Takane (1978a). He has proposed several different likeli­
hood functions, each one specifically designed for the dependencies induced 
into the dissimilarity judgments by a specific experimental design, so his work 
is not subject to this criticism. 

There is also the question, in the work of all three researchers, of whether the 
samples are large enough to justify the inferential claims. The question arises 
from the fact that hypothesis testing is only justified for very large sample sizes 
because the tests are based on asymptotic characteristics of maximum likeli­
hood estimation. In many cases the sample size (number of subjects usually) is 
small, thus suggesting that the tests are not asymptotic. 

As pointed out by Ramsay ( l980b), the sample size problem is exacerbated 
for those models which have parameters for subjects, as in the very popular 
INDSCAL model. Clearly, for these models a large sample size can never 
imply asymptotic estimates of the parameters because the number of para­
meters increases without bound as the number of subjects increases. For these 
models the inferential aspects will never be completely appropriate. The 
importance of this problem is unknown, although Ramsay (1 980b ) suggests it 
is minor. Note that this is not a problem for the simplest model discussed by 
Ramsay, nor for any of the work of Takane and of Zinnes and MacKay, because 
in these cases there are no parameters for subjects. 

Finally, it is unclear to me just exactly what the confidence regions mean. Do 
they mean that for other samples of subjects the recovered stimulus locations 
will be in the region 95% of the time? I am not sure. Furthennore, there are 
several complicated technical issues which affect the presentation of these 
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regions .  By comparing the various papers discussed in this section, you will see 
that the developers of these techniques do not agree on the presentation method. 

Fundamentally, what the user usually needs from MDS is not inferences but 
a picture. Most often the probabilistic (statistical) notion is irrelevant to the 
application, and what is needed is an exploratory (descriptive) graphical 
technique. In these cases MDS does just fine without the excess baggage 
introduced by inferential notions based on questionable and potentially mis­
leading error models. True, in some cases the theoretical understanding of the 
phenomenon being studied is sufficiently advanced (perhaps through previous 
use of descriptive MDS) that the error processes are well understood. Here the 
maximum likelihood MDS may prove particularly useful as a confirmatory 
analysis following earlier exploratory MDS analyses. However, during the 
earlier stages of scientific development the significance tests of these new 
procedures should be used with care. 

Multidimensional Scaling Algorithms 

During the review period there was much effort focused on developing new 
multidimensional scaling algorithms. This effort has resulted in "third­
generation" algorithms which are faster, easier to use, more general, and more 
accessible than previous algorithms. Because of this , the application of multi­
dimensional scaling techniques has increased markedly . 

ALSCAL is the program which is certainly the most widely distributed and is 
among the most general and easiest to use (Takane et al 1977, Young & 
Lewyckyj 1979, 1983, Verhelst 1981, Young 1982). It is incorporated into 
SAS, a major statistical system (SAS Institute 1982), further increasing its 
availability and usefulness. It performs metric or nonmetric analyses of two- or 
three-way square or rectangular data with unweighted, diagonal, or general 
Euclidean models. The algorithm is convergent, optimizing the fit of squared 
(weighted) Euclidean distances to transformations of the data. This is currently 
the program of choice because of its availability and generality. However, 
more efficient algorithms exist, and ALSCAL fits squared Euclidean distances, 
which is not as desirable as fitting the distances themselves. 

SMACOF is another very general program. It is based on a very simple, fast 
and elegant algorithm (de Leeuw & Heiser 1980, Stoop & de Leeuw 1982). 
While not widely distributed, this algorithm is certainly the most efficient 
general algorithm currently available. It performs metric and non metric analy­
ses of two- or three-way data, but is currently limited to the unweighted 
Euclidean model. It is a convergent least squares program, optimizing the fit of 
the Euclidean distances to transformations of the data. If this algorithm, which 
is still under development, is extended to a wider selection of models and is 
made available in a major statistical system, it will be the program of choice, at 
least among the least squares programs. 
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MUL TISCALE is another very general and easy to use program (Ramsay 
1977, 1 978a,b, 1 982a). It performs metric analyses of two- or three-way 
square data with unweighted, diagonal, or general Euclidean models. Arrange­
ments are being made to incorporate this program into a major statistical 
system. There are two MUL TISCALE algorithms, both of which are maximum 
likelihood algorithms that maximize the fit of log (weighted) Euclidean dis­
tances to tranformations of the data. Generally, maximum likelihood estima­
tion takes more computer resources (time and memory) than least squares 
estimation, and that seems to be true for both MUL TISCALE algorithms when 
compared to ALSCAL or SMACOF. MULTISCALE-I suffers from certain 
convergence problems and inefficiencies and has been replaced with MULTI­
SCALE-II. This newer algorithm is certainly the most completely developed 
and tested general maximum likelihood algorithm. However, it is still a fairly 
new algorithm and should be used with some caution until it has received 
further study . Also, please note the recommendations given at the end of the 
previous section. 

A number of other algorithms have been proposed, but the programs based 
on them are either not as easily available or not yet fully mature . The most 
important of these are the many algorithms proposed by Takane (see references 
above, plus Takane 1981,  1984); however, they still seem to be maturing. The 
PROS CAL program by MacKay & Zinnes ( 1 982) is another promising max­
imum likelihood algorithm, but only very recently proposed. Saito ( 1 978, 
1982) is developing a new approach to constructing least squares procedures, 
as are Null & Sarle ( 1 982). The SUMSCAL algorithm (de Leeuw & Pruzansky 
1978), a very efficient way of optimizing the function used by the INDSCAL 
program, has not received the attention it deserves . The DISTREG procedure 
(Young et al 1 983) is an interesting new development in constrained multi­
dimensional scaling. The books by Schiffman, Reynolds & Young ( 1981) and 
by Coxon ( 1 982) evaluate a number of the older algorithms and some of the 
newer ones . 

There has been some work during the period to investigate the robustness of 
various multidimensional scaling procedures. The main work has been that of 
Sibson ( 1 978, 1 979), Sibs on et al ( 198 1), and MacCallum ( 1 978, 1 98 1) .  
Weeks & Bentler ( 1979) have compared nonmetric and metric approaches. 
Mardia ( 1 978) and Takane ( 1 977) have investigated the mathematical charac­
teristics of several algorithms. Best et al ( 1 979) defined an index of the 
potential robustness of a stimulus space. 

Multidimensional Unfolding 

There continues to be some work attempting to resolve the algorithmic pro­
blems associated with multidimensional unfolding (MDU) , still with only 
mixed results .  The most advanced and encouraging work is that of Heiser, who 
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proposed and evaluated many improved unfolding algorithms appropriate to 
rectangular preference data (Heiser 198 1 ,  Heiser & Meulman 1983) and 
pairwise preferences (Heiser & de Leeuw 198 1 ). He and his co-workers, 
investigate the relationship of unfolding to MDS, Principal Components, and 
Correspondence Analysis, and have proposed algorithms based on notions in 
those areas. Other work on unfolding appears in papers by Winsberg & Ramsay 
( 198 1 ), DeSarbo & Carroll ( 1980), Ramsay ( 1980a), Young ( 1 982), and 
Rodgers & Young ( 198 1) .  

Books and Reviews 

The last article on scaling (Carroll & Arabie 1980) in the Annual Review of 

Psychology provided extensive coverage of the developments in multi­
dimensional scaling up to 1978. Since that review appeared there have been 
many review articles. Certainly the one to reach the widest general scientific 
audience was the review of models and applications of multidimensional 
scaling and cluster analysis published in Science by Shepard (1980). 

There have been a number of reviews tailored for various kinds of specific 
scientific audiences. Reviews of the models and algorithmic methods used in 
multidimensional scaling have been written for statisticians (Wish & Carroll 
198 1 ), computer scientists (Kruskal 1977), psychologists (Carroll 1980), e­
thologists (Spence 1978), and in numerous other fields. At least three encyclo­
pedia entries have been written (Carroll & Kruskal 1978, Jones 1983, Young 
1983a). Two extensive mongraphs have beeri written, one on unidimensional 
scaling (McIver & Carmines 198 1 )  and the other on multidimensional scaling 
(Kruskal & Wish 1978) . 

The first introductory textbook on the theory, application, and methods of 
multidimensional scaling was written during the review period and has received 
uniformly very positive reviews (Schiffman et a1 1981 ) .  Books have also been 
written on multidimensional scaling in German (Borg 198 1 b) and in Japanese 
(Takane 1 980c). Collections of previously published papers have been edited 
by Lingoes et al ( 1979), Lingoes ( 1977), and by Davies & Coxon ( 1 982) . 
Collections of new papers written by invited contributors appear in Young & 
Hamer ( 1984) and in Law et al ( 1984). Conference proceedings have been 
edited by Golledge·& Raynor ( 1 982) and by Lantermann & Feger ( 1 980). A 
system of unified scaling programs is documented in Coxon ( 1982), and an 
interesting treatise on multidimensional scaling was written by Borg ( 198 1a). 

SCALING MUL TIV ARIATE DATA VIA LINEAR 
AND BILINEAR MODELS 

This section reviews recent developments in scaling methods which use either a 
linear or bilinear model of qualitative multivariate data. The distinction be­
tween the two types of models can be understood from the following equation: 
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Y=XA+E , 

where Y is an (n by r) matrix; X is (n by p); A is (p by r); and E is (n by r). This 
one equation can be either a linear or a bilinear equation, depending on the 
specific nature of its matrices. 

1 .  Linear model: 
1 .  Y is observations from n sources (subjects) on r variables. 
2. X is observations from the same n sources on p different variables. 
3 .  A contains r coefficients of p linear equations that are the parameters of 

the linear model. These are estimated to optimize some fit criterion. 
4. E is a matrix of residual error from perfect fit. 

2. Bilinear model: 
1 .  Y is still observations from n sources (subjects) on r variables. 
2. X is now no longer observed, but represents estimates of scores of the n 

sources on p latent (unobserved, hypothetical) variables. 
3 .  A is still r coefficients of p linear equations that are the parameters of the 

bilinear model. These are estimated to optimize fit, as before. 
4 .  E is still a matrix of residual error from perfect fit. 

Note that the crucial difference in these models is that X is observed in the 
linear model but is unobserved in the bilinear model. Both models have 
observed multivariate data in Y, and both models posit a set of linear equations 
to model this multivariate data. Since both models use linearity as the basic 
idea, they both have the word "linear" in their name. The "bi" aspect of the 
bilinear model refers to the fact that it requires the estimation of two matrices (X 
and A). 

There are four major streams of development in scaling with linear and 
bilinear models during the review period. The first two of these, conjoint 
analysis and multiple (or canonical) regression, use the linear model. The 
second two, principal components and correspondence analysis, use the 
bilinear model. 

Conjoint Analysis 

Conjoint analysis, in its simple form, is nothing more than main effects 
ANOV A perfonned on ordinal data. Stated in the usual ANOV A fashion, the 
simplest conjoint model is 

where Y* ij is the model's prediction of Yij' the ordinal level observation in the 
experimental condition produced when level i of factor A is empirically 
combined with levelj of factor B. The prediction represents the simple additive 
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combination of ai, the effect of the ith level of factor A and bj, the effect of the 
jth level of factor B. 

Naturally, the simple additive model underlying conjoint analysis is a special 
case of the general linear model formula given in matrix form above. The 
matrix X is a design matrix specifying a main effects ANOVA design (one 
column for each experimental variable), and where Y is univariate (has only 
one column) and is at the ordinal level of measurement. (Some researchers refer 
to ANOV A on interval level data as conjoint analysis, but this only confuses the 
discussion because such an analysis is simply ANOVA. Since these develop­
ments do not fall into my definition of scaling I do not review them.) 

During the review period, de Leeuw et al ( 1976) proposed ADDALS, an 
efficient least squares algorithm for conjoint analysis. Their approach is notable 
for its great flexibility with regards to the measurement characteristics of the 
data (Y). These data may be at the binary, nominal , ordinal, or interval levels of 
measurement (or may be mixtures of each); may be generated by a discrete or 
continuous process; may have known degrees of imprecision; may be balanced 
or unbalanced; and may have any arbitrary type of conditionality . (The last 
characterisitc permits the data to be partitioned into any number of arbitrary 
subsets , each with its own separately stated measurement characteristics. ) 

In addition to the flexibility in the observed data, the experimental variables 
(i . e. X) may have order or linear constraints placed on them, thus also permit­
ting them to be measured at the binary, nominal, ordinal, or interval levels of 
measurement. The main limitation of ADDALS is in the model: it must be the 
univariate main effects model specified above. That is , there can only be one Y 
variable, and X can represent only main effects. Perreault & Young ( 1980) 
present an overview of this approach to conjoint analysis. 

As you would expect, more complicated ANOV A models have been discus­
sed in the context of conjoint analysis. The W ADDALS algorithm (Takane et al 
1980) extends ADDALS to the weighted additive model: 

where ai and bj are the same as before, and where the subscript k on Y*ijk 
indicates that the prediction is for the kth individual. Note that the weights Wka 
and Wkb are specific to indivdual k, and that there is one weight for each way of 
the experimental design .  The general linear model matrix formula has a column 
in the observed data Y for each subject k. Thus, Y is now multivariate . The 
model posits that each subject (column in Y) has a weight for each way of the 
experimental design (column in X). This is the nonmetric main effects multi­
variate analysis of variance model. 

The %CONJOINT algorithm, a SAS macro written in the MATRIX lan­
guage by me and my students (Young 1983b), extends ADDALS in a different 
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direction. It pennits generalized (optional interaction tenns) univariate conjoint 
analysis. This is a full-fledged nonmetric ANOY A program. MANOY ALS , a 
program developed by de Leeuw (personal communication), is a complete 
nonmetric MANOY A program that incorporates both the multivariate and 
generalized (interaction tenn) notions . 

A very promising new direction has been taken by Takane ( 1982a) in his 
work on MAXADD, a maximum likelihood program for conjoint analysis .  
This work covers the univariate, main-effects, weighted or unweighted addi­
tive model. MAXADD can analyze nominal data or certain types of ordinal 
data. Takane ( 1 984) compares MAX ADD to ADDALS and WADDALS. 
Falmagne ( 1978) has developed a procedure similar to MAXADD, though it is 
more limited. 

Takane (1982a) assumes that nominal and ordinal data represent incomplete 
infonnation about interval data. In particular, a metric (interval) process is 
assumed to underlie the nonmetric (nominal or ordinal) data, with the metric 
infonnation getting lost in the observation process, leaving only nonmetric 
infonnation. Takane then proposes specific models linking the unobserved 
metric process with the observed nonmetric data. A different model is proposed 
for categorical data, paired comparison data, and directional rankings data. In 
each case the model is Thurstonian, but with the nonnal error model replaced 
with a (univariate or multivariate) logistic error model. In the case of paired 
comparison data the model is equivalent to the BTL model discussed by 
Bradley & Terry ( 1 952) and by Luce (1959) . 

The main advantage of MAXADD is that it allows various statistical infer­
ences not possible with the least squares procedures discussed above. The 
assumptions underlying the significance tests are essentially the same as in 
Takane's maximum likelihood MDS developments, and the comments made 
above about those developments apply here. In particular, the lack of empirical 
independence seems to be very well handled by his developments. However, 
small samples violate an assumption required by the asymptotic significance 
tests and may adversely affect the significance levels they generate. 

Nonmetric Regression Analysis 

Nonmetric regression refers to a very general class of situations in which 
multiple or canonical regression is applied to multivariate data having at least 
one ordinal variable. The work of Young et al ( 1976) is a simple extension of 
their conjoint analysis work. They propose CORALS, a least squares algorithm 
that extends canonical regression so that the variables may be measured at the 
binary, nominal, ordinal, or interval levels of measurement; may be discrete or 
continuous; and may have any type of conditionality. There is no restriction on 
the mixture of measurement characteristics. Of greatest importance is the fact 
that each variable has its own separately defined measurement characteristics. 
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Since the canonical regression model includes all other linear models as special 
cases , all of the least squares conjoint analysis developments discussed in the 
previous section are subsumed under CORALS . 

The article by Young and co-workers on CORALS proposes an algorithm 
limited to obtaining the first pair of canonical variates. This limitation was 
eliminated by de Leeuw (personal communication) in later developments . My 
students and I (Young 1983b) have written %CORALS (a SAS macro in the 
MATRIX language) which also removes this limitation as well as providing 
nonmetric maximum redundancy analysis for the first time. Tenenhaus ( 1979) 
presents an interesting mathematical comparison of ADDALS , MORALS (the 
multiple regression version of CORALS),  and Kruskal' s  MONANOVA 
( 198 1 ) .  Cunningham ( 1 982) has discussed four monotone multiple regression 
models, two of which are special cases of MORALS and two of which are not 
cases of the general linear model. 

Breiman & Friedman ( 1982) have independently developed a nonmetric 
multiple regression procedure named ACE that is also very flexible with regard 
to the measurement characteristics of the variables. Like MORALS, ACE 
extends multiple regression to ordinal variables. However, the two approaches 
differ in the way these variables are transformed. Whereas the MORALS 
approach transforms ordinal variables according to Kruskal's least square 
monotonic transformation, the ACE approach transforms ordinal variables 
according to Tukey's smoothing transformations. This implies that the overall 
behavior of the ACE algorithm is not quite as "nice" as MORALS (since 
smoothing is not least squares), but that ACE obtains "nicer" transformations 
of the ordinal variables (since least squares monotonic transformations are step 
functions which are not smooth). 

CORALS extends the descriptive (but not the inferential) power of the 
canonical model to data that include ordered variables. This is an important 
development because for many decades canonical analysis has been possible on 
data with categorical (nominal) and continuous (interval) variables but not on 
data with ordinal variables. There is some work that also extends the inferential 
power of the canonical model to ordered variables. This work is by Winsberg & 
Ramsay ( 1980), who propose a maximum likelihood procedure for nonmetric 
multiple regression with nominal, ordinal, or interval level variables. The 
proposal uses B-splines to transform ordinal variables monotonically so that the 
likelihood function is maximized. This follows on previous work by Ramsay 
( 1977) which permitted a limited class of monotonic transformations of the 
dependent variable. 

As an apporach to defining monotonic transformations, B-splines are attrac­
tive alternatives to either least squares monotonic transformations or Tukey­
type smoother transformations. B-splines provide flexibly shaped but smooth 
monotonic transformations, and they have relatively small number of easily 
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identified parameters . So from this viewpoint, B-splines are a valuable tool for 
constructing monotone transformations . 

While this approach extends the inferential power of multiple regression to 
ordinal variables, I question the robustness of the inferential process to viola­
tions of the assumptions about independence and sample size. Furthermore, it 
is the monotonically transformed variables that must have a known (and 
tractable) probability density function, implying that the residuals of the 
transformed variables from the model are, for example, normally distributed. I 
would feel more comfortable with the statistical inferences if the framework 
taken by Takane in MAXADD were extended to the canonical situation, since 
Takane's inferential framework seems to be more in keeping with the basic 
nature of ordinal data. 

Nonmetric Principal Components Analysis 

Principal components analysis is a well-known data analysis technique that 
uses the bilinear model to analyze multivariate data whose variables are all 
quantitative (at the interval level of measurement). There are several develop­
ments during the review period concerning nonmetric PCA, also called non­
linear PCA. These developments apply the same bilinear model to multivariate 
data that have at least one variable which is qualitative (ordinal or nominal) . 

The paper by Young et al ( 1978) proposed PRINCIPALS,  a nonmetric PCA 
algorithm (each variable can be binary, nominal, ordinal, or interval, and can 
be discrete or continous) . The algorithm is in the tradition of metric PCA 
because it maximizes the variance accounted for by the first several compo­
nents. It transforms the variables to maximize the variance accounted for by a 
stated number of components, with the added proviso that each variable's 
transformation must strictly satisfy the restrictions implied by the variable's 
stated measurement characteristics. Unlike metric peA, the user must specify 
the desired number of components as well as the measurement characteristics 
of each variable. 

Tenenhaus ( 1 977) independently and simultaneously proposed PRIN­
QUAL, an algorithm that is identical to PRINCIPALS with two exceptions. 
The two differences are (a) PRINQUAL has a superior initialization approach 
for nominal variables, and (b) it does not handle ordinal variables at all. A SAS 
macro named %PRINQUAL has been written by me and my students (Young 
1983b) in the MATRIX language. %PRINQUAL adds the superior Tenehaus 
initialization to the PRINCIPALS algorithm. Tenenhaus ( 1982) has thoroughly 
studied the mathematical properties of the resulting algorithm, and he and I 
(Tenenhaus & Young 1 983) have compared it to Correspondence Analysis. 
The PRINCIPALS notion has been extended to three-way, three-mode data 
(i .e.  many matrices of multivariate data) by Sands & Young ( 1980) and 
Kroonenberg & de Leeuw ( 1980) in independent but closely related develop-
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ments . An algorithm that fits the common-factor model to mixed measurement 
level data was proposed by Takane et al ( 1979) . 

While the %PRINQUAL approach has the desirable feature of maximizing 
the variance accounted for by an algorithm that is very stable and is convergent, 
it has the undesirable feature of obtaining transformations of qualitative vari­
ables which are discontinuous step functions. Two similar but separate de­
velopments have appeared that use splines to obtain transformations of the 
qualitative variables which are smooth but which do not strictly maximize the 
variance accounted for by the stated number of components. 

de Leeuw and co-workers ( 1982) use the least squares framework and linear 
combinations of B-splines to transform the variables . Such transformations are 
not necessarily monotone, implying that the variables are nominal. They 
investigate the mathematical relationship of their approach to the 
%PRINQUAL approach and to Correspondence Analysis .  

Ramsay & Wins berg ( 1984) employ maximum likelihood estimation and use 
non-negative. combinations of monotone splines (M-splines) to obtain the 
transformations of the variables. Since the resulting transformations are mono­
tonic, the implication is that all variables are thought of as being ordinal. They 
proceed to develop significance tests on the foundation of their maximum 
likelihood algorithm. While I have reservations about significance tests in this 
context, I do think that M-splines are a very nice way of obtaining smooth 
monotonic transformations .  Perhaps it would be desirable to develop an algor­
ithm which permits B-splines for nominal variables and M-splines for ordinal 
variables. 

Correspondence Analysis 

As pointed out by Nishisato ( 1980a, 1982), the basic idea underlying corre­
spondence analysis has existed for at least 50 years. However, the technique 
has suffered from being independently invented and named by a large number 
of people during those years. Some common names for this type of analysis are: 
method of reciprocal averages, appropriate scoring, additive scoring, 
Hayashi's theory of quantification, principal components of qualitative data, 
Guttman scaling, optimal scaling, dual scaling, biplot, and nonlinear multivari­
ate analysis. 

As can be imagined, there are nearly as many ways to describe the analysis as 
there are inventors and names. Yet they all have in common the fact that the 
data are fundamentally categorical (nominal or binary), although such data can 
be presented easily as frequencies or as contingencies. The analysis can be 
described alternatively as submitting such data to (a) a singular-value decom­
position; (b) a principal components analysis; (c) a simple additive (conjoint) 
analysis; or (d) a canonical analysis. To add to the confusion, the method has 
been studied extensively in several countries, including the USA, Canada, 
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Britain, Austrialia, South Africa, France,  Japan, and the Netherlands . Natural­
ly, papers have been written in ' several languages (English, French,  and 
Japanese, predominately). 

During the review period, work has continued on the topic , with emphasis on 
a synthesis of the many different developments. I do not presume to review all , 
or even most, of the literature, but simply to make reference to those whose 
work I know the best. Nishisato has published extensively on "Dual Scaling" 
both in English ( 1 979a,b, 1980a,b) and in Japanese ( 1 982). Some portions of 
this work appear to represent new directions, while other portions are histories 
or syntheses . Tenenhaus ( 1981 )  and Tenenhaus & Young ( 1 983) present 
syntheses covering the French and English literature (in English) . Gifi ( 1 98 1 )  
and Meulman ( 1982) are representative of the work in The Netherlands (in 
English) . Heiser ( 198 1 )  relates unfolding to correspondence analysis. All of 
these workers have developed computer programs that perform correspondence 
analysis of one type or another. 

Books and Reviews 

There are not very many books and reviews focusing on linear scaling methods 
for multivariate data . This is an accurate reflection of the state of the art: linear 
scaling methods have not yet matured to the level where such books and 
reviews would be appropriate. The main exception to this is the area of 
correspondence analysis, where most work seems to be synthesizing informa­
tion from various sources . Here there is one introductory book and at least two 
advanced reviews. 

Nishisato ( 1980a) has written a very readable , current, and accurate intro­
ductory book on correspondence analysis that is appropriate for courses taught 
at the graduate level. Gifi ( 1 98 1 )  (a pseudonym for de Leeuw and his co­
workers) presents a very comprehensive treatment of non-linear multivariate 
analysis, including major chapters on correspondence analysis, multi­
dimensional scaling, and many innovative scaling methods based on the linear 
and bilinear (and multilinear) models. Tenenhaus ( 1 982) presents a very 
advanced and general mathematical treatment of scaling based on the linear and 
bilinear models (in French). The last two books are excellent for the researcher 
interested in detailed information. 

POSTSCRIPT 

Comparing this review with the two previous ones on scaling in the Annual 
Review of Psychology (Cliff 1973, Carroll & Arabie 1980) reveals that the 
predominate trend during the last decade is an explosive growth in MDS 
methods that peaked somewhere around 1980 and has begun to subside. In fact, 
this trend is reflected in the titles of these three reviews ("Scaling ," "Multi-
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dimensional Scaling," and "Scaling," respectively) . While the major portion of 
the present review has been on MDS developments , I see the developments as 
ones which consolidate earlier gains (improved algorithms, generalized mod­
els) or strengthen earlier foundations (constrained and maximum likelihood 
MDS). 

I do not mean to belittle these developments. They are critical developmental 
stages of a maturing methodology, but they may also be the final significant 
methodological developments . Kruskal, who wrote his foreword to the Schiff­
man, Reynolds & Young book on MDS in 1980, stated that "at the age of 
20-odd, multidimensional scaling should be in the full vigor of youth-and I 
am happy to report that it is just graduating from college and doing very well." 

In the 4 or 5 years since that was written, MDS has become a vigorous 
30-year-old. It has, as Kruskal hoped, begun to develop further the "self­
critical tools of assesment and diagnosis ," as can be seen in the development of 
maximum likelihood methods , certainly the single most important trend during 
tpe review period (no matter how harshly I criticized them) . And I expect that 
MDS will continue a healthy adulthood for the next several decades in essen­
tially its current form. 

As an individual in the family of scaling methods, MDS appears to be 
reaching full maturity, while the family continues .to expand and grow. Perhaps 
Conjoint Analysis is now the budding teenager, soon to reach maturity. And 
many new linear scaling models have been born recently, with their futures yet 
to unfold. I expect that we will hear much more from Conjoint Analysis in the 
near future, and from its younger sisters and brothers after that. 

If I were to venture a guess as to the identity of the next member of the 
family, I would say that it will be methods for graphically displaying the results 
of scaling analyses rather than new scaling methods as such. I can see that 
taking full advantage of the current revolution in high-resolution color graphics 
technology will greatly enhance the appeal of scaling methods. Three­
dimensional color graphics displays that can be interacted with in real time, that 
are based on quantitative analyses of qualitative data (scaling) , and that are 
based on sound psychological and perceptual principles , should be very useful 
and attractive to a wide audience, Thus, I think they will become the next 
member of the scaling family. 
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