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Without any quantitative information
about the physical properties of colors,
tones, speech sounds, or words, we can
learn something about how humans pro-
cess such stimuli from an analysis of rat-
ings of perceived similarity, frequencies
with which the stimuli are actually con-
fused with each other, latencies of dis-
criminative responses, or, in the case of
infants and other animals, magnitudes of
the "orienting reflex" when one stimulus
is substituted for the other (1, 2). This

physical dimensions are as yet poorly
characterized, and it is essential in the
case of symbolic stimuli such as words,
for which the relevant semantic dimen-
sions are not even present in the physical
stimuli.

Early History

Proposals that stimuli be modeled by
points in a space in such a way that per-

Summary. American mathematical psychologists have developed computer-based
methods for constructing representations of the psychological structure of a set of
stimuli on the basis of pairwise measures of similarity or confusability. Applications to
perceptual and semantic data illustrate how complementary aspects of the underlying
psychological structure are revealed by different types of representations, including
multidimensional spatial configurations and nondimensional tree-structures or clus-
terings.

purely psychological approach has ad-
vantages over a psychophysical one in
the case of complex, naturalistic stimuli
such as faces, for which the relevant

The author is professor of psychology at Stanford
University, Stanford, California 94305. This article
was presented as an invited lecture on 2 April 1979 at
the U.S.-U.S.S.R. symposium on "Normative and
Descriptive Models of Decision-Making," jointly
sponsored by the National Academy of Sciences of
the United States and the Soviet Academy of Sci-
ences, held at Tbilisi in the Soviet Republic of
Georgia.

ceived similarity is represented by spa-
tial proximity go back to the suggestions
of Isaac Newton (3) that spectral hues
be represented on a circle, of Helm-
holtz and Schr6dinger (4) that colors in
general be represented in a curved Rie-
mannian manifold, of Drobisch (5) that
pure tones be represented on a helix, and
of Henning (6) that odors and tastes be
represented within a prism and a tetrahe-
dron, respectively. However, little prog-

0036-8075/80(1024-0390$02.00/0 Copyright C 1980 AAAS

ress was made toward the development
of data-analytic methods for the con-
struction of such spatial representations
on the basis of psychological data until
the efforts of a group of psychome-
tricians, beginning in the late 1930's at
Chicago and subsequently moving to
Princeton, culminated in the 1952 devel-
opment by Torgerson of the first fully
workable method of metric multidi-
mensional scaling (7,8).
This method is called "metric" be-

-cause it requires psychological estimates
of metric distances between the stimuli.
Either one had to assume that the data
(for example, subjective ratings of dis-
similarity) increased linearly with such
distances (9), or one had to use some
preliminary (for example, "Thursto-
nian") scaling procedure to convert the
data into numbers that could then be as-
sumed to increase linearly with distance
(8). Even after such numbers had been
obtained, the computation required sev-
eral more stages in which one succes-
sively (i) estimated the "additive con-
stant" and thus obtained a matrix of esti-
mated distances between the points; and
then, on the basis of a theorem of Young
and Householder (10), (ii) computed a
matrix of scalar products between the
points (interpreted as vectors issuing
from their common centroid), and (iii)
factored this matrix into its eigenvalues
and vectors to obtain explicit coordi-
nates for the stimuli in a Euclidean space
of a number of dimensions correspond-
ing to the number of large eigenvalues.
Meanwhile, I had been approaching

the problem of analyzing such measures
of similarity by estimating the nonlinear
form of the monotonic function, fmon,

Sij = fmon (di3) (1)
where sij is the obtained measure of simi-
larity between stimuli i and] and where
du is a distance between corresponding
points i and j that satisfies quite general
metric conditions. The conditions that I
proposed were (i) the distance axioms of
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positivity, symmetry, and the triangle in- use I
equality, required for any metric space cons

tanct

du > dii = 0 (for i # J) (2a) ric r

dij= dji (2b) Eucl
dij < dih + dhJ (2c) The

1955
and (ii) the limiting, additivity condition for n
of the triangle inequality, Or

diJ= dih + dhj (3) tionsvised
for those triples in which there is reason rank
to believe that stimulus h falls between i their
and j on a shortest connecting path (12, only
13). In this way I established that the re- proje
lation of confusion frequency to distance axes
generally approximates a negative ex- Va
ponential function (a function that I had meth
also derived from a "diffusion" theory of cour;
the internal process). I was then able to tion I

434 \ A
445 .86

45 .42 .50 Judged similarities
wi472 .42 .44 .31 \ between colors

4 .18 ." .47 .54 m
E

VA .06 .09 .17 .25.610

co 537 .07 .07 .10 .10 .31 .62c
i 555 .04 .07 .B .09 .26 .45 .73

c 564 .02 .02 .02 .02 .07 .14 .22 .33

60 .07 .04 .01 .01 .02 .06 .14 .19 .56

6610 .09 .07 .02 .00 .02 .02 .05 .06 .37 .74

626 .12 .11 .01 .01 .01 .02 .02 .03 .27 .50 .76
651 .13 .13 .05 .02 .02 .02 .02 02 .20 .41 .62 .

674 .16 .14 .02 .04 .00 .01 .00 .02 .23 .2 5

434 45 4 472 4" 5 537 5 56 600 610 6" 651 674

Wavelength (nanometers)

the inverse, logarithmic function to
vert confusion frequencies into dis-
e-like numbers and, by means of met-
nultidimensional scaling, to obtain a
tidean spatial representation (13).
photograph on the cover shows a
solution that I obtained in this way
iine colors (14).
n the basis of still weaker assump-
s, Coombs and Hays [see (15)] de-
d procedures that required only the
order of the similarity data. But
method correspondingly yielded

the "nonmetric" rank orders of the
ections of the points on orthogonal
of the space.
arious limitations of these early
ods of multidimensional scaling dis-
aged their wide adoption. In addi-
to its strong assumption of linearity,

B

Torgerson's original metric method was
not readily extendable to other cases in
which, for example, the underlying met-
ric is non-Euclidean, or the matrix of
data is incomplete. My own early meth-
od of dealing with nonlinearities was
cumbersome and did not handle error
variability in an optimum way. And the
method of Coombs and Hays was im-
practical except for small matrices of
data, and its nonmetric solutions failed
to preserve what I subsequently found to
be the essentially metric constraints of
the ordinal data.

Modern "Nonmetric" Approach

At the Bell Telephone Laboratories, I
began in 1%0 to explore a new approach
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Fig. 1. Illustrations of nonmetric multidimensional scaling. (A) Judged similarities between 14 spectral colors. [From Ekman (22)] (B) Two-
dimensional configuration obtained by my analysis of Ekman's data. (C) Obtained relation, for all pairs of the 14 colors, between judged similar-
ities and corresponding Euclidean distances between points in my obtained configuration. [From Shepard (16)] (D) Percentage of "same"
responses for all pairs of successively presented aural signals of the intemational Morse code. Entries in the principal diagonal correspond to
correct responses. [From Rothkopf (23, 24)] (E) Two-dimensional configuration obtained by analysis ofthe Morse code data. The actual dot-and-
dash patterns are indicated beside the points. [From Shepard (24)]
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to multidimensional scaling, called
"analysis of proximities," that proved
capable of overcoming the limitations of
the earlier approaches. I used a one-

stage iterative method (i) to adjust the
positions of points in a space until the
rank order of the interpoint distances
was as nearly as possible the inverse of
the rank order of the corresponding simi-
larities, and (ii) to find the space of the
smallest number of dimensions for which
the residual departure from a perfect in-
verse ranking was acceptably small (16).
Following a few adjustments, on 17

March 1961 the iterative process with
which I had been expenmenting finally
converged to its first stationary configu-
ration (at just 2:33 p.m. EST, according
to the computer log). From then on, re-

sults of surprising precision were regu-
larly obtained. Provided that the number
of points was not too small relative to the
number of dimensions, the merely quali-
tative, ordinal relations in the similarity
data generally turned out to be sufficient
to determine the quantitative, metric
structure of the spatial representation. In
two dimensions, a test configuration of
as many as 15 random points could be
essentially reconstructed on the basis
merely of the rank order of the interpoint
distances (16); and with as many as 45

random points, I later found that prod-
uct-moment correlations between true
and recovered distances averaged over
0.9999997 (17).
Such nonmetric multidimensional

scaling soon reached essentially its pres-

ent state of development when my asso-

ciate J. B. Kruskal employed standard
gradient methods to minimize an explic-
itly defined sum-of-squares measure of
departure from the monotonic relation
that I had posited between similarity and
distance; namely, the "stress" measure

(S) given by

I (dij - dj)2 11/2
s = ij

~~~~J (4)

Here, the dij are the distances between
the points at any particular iteration giv-
en, in terms of the N x K coordinates Xik
of the N points in the K-dimensional Eu-
clidean space, by the usual distance for-
mula

di (Xik Xik)jf

k= 1 (5)
and the d j are numbers that (i) are mono-
tonic with the similarity data si,j and
(ii) minimize stress relative to the spa-

ma
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Fig. 2. Sound spectrograms for 16 syllables differing in the initial consonant, centered on the
corresponding points of the two-dimensional solution obtained by applying Shepard and
Chang's scaling program to the average confusion matrix for all of Miller and Nicely's condi-
tions that imposed no differential filtering of high or low audio frequencies. In the spectrograms
[rearranged from Carroll and Wish (30)] the distribution of audio energy is shown as a function
of frequency (from 0 to 6 kHz) on the vertical axes, and time, on the horizontal axes.
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tial distances du at each iteration (18).
In some trial number of dimensions, a

starting configuration of points is first
constructed, either at random or by a
metric method (19). On each ensuing it-
eration, then, (i) the best-fitting mono-
tonic sequence du is determined anew by
an algorithm for least-squares monotone
regression; (ii) the N x K partial deriva-
tives of stress with respect to the coordi-
nates, Xik, are evaluated; and (iii) the
coordinates are adjusted in the direction
of the negative gradient or steepest de-
scent by X'ik = Xik - a *OSaXik, where
a includes an adaptively modified step-
size factor (18). The process is termi-
nated when the components of the gradi-
ent have become small enough to in-
dicate a close approach to a stationary
configuration. (In order to exclude en-
trapment in a merely local minimum, dif-
ferent starting configurations should be
tried.) The entire process can be repeat-
ed in spaces of higher or lower dimen-
sionality, with the final solution chosen
to achieve the best balance between par-
simony, goodness of fit and, especially,
substantive interpretability (20, 21).

Applications to Perception

Figure lA displays the first significant
set of empirical data to which I applied
my original program for "analysis of
proximities" (16); namely, Ekman's data
on the perceived similarities between 14
spectral colors (22). The stationary two-
dimensional configuration to which the
iterative process converged is shown in
Fig. iB, together with a smooth curve
subsequently drawn through the 14
points. Figure IC shows the nonlinear
relation between Ekman's similarity data
and Euclidean distances in the obtained
configuration. In addition to its good fit
to the data, the two-dimensional solution
is both more similar to Newton's (3) col-
or circle and more parsimonious than the
five-dimensional representation that Ek-
man (22) himself obtained by applying
factor analysis to the data.

Figure ID displays the frequencies
with which unskilled listeners in an ex-
periment by Rothkopf (23) judged suc-
cessive aural signals of the international
Morse code to be the same. Figure IE
shows the two-dimensional solution that
I obtained by applying Kruskal's im-
proved program, MDSCAL, to these
data, after averaging each entry s;0 with
its symmetrical counterpart sMi (24). The
two-dimensional solution seems more in-
formative than the original 36 x 36 ma-
trix of data. As is indicated by the added
lines, perceptions of these aural signals

SCIENCE, VOL. 210
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differed primarily with respect to the
number of components (dots or dashes)
in each signal, and the relative pre-
ponderance of dots versus dashes among
those components. Information about
the sequential structure within each sig-
nal was largely lost on these unskilled lis-
teners.

Figure 2 presents the solution that I
obtained from an analysis of data collect-
ed by Miller and Nicely (25) on errors of
identification of 16 consonant phonemes
(all followed by the vowel lal, "ah") in
the presence of noise (26, 27). Centered
over each of the 16 obtained points is a
representative sound spectrogram for
that syllable and, just below, its charac-
teristic English spelling. The positions of
the points are shown more precisely in
Fig. 3A, by the phonetic symbols for the
consonants. The added interpretive lines
indicate how the speech sounds are orga-
nized on the basis of such phonetic fea-
tures as voicing, nasality, affrication,
and place of articulation. As can be seen
in Fig. 3B, the resulting fit was very
close, accounting for about 98 percent of
the variance of the data. As before (13,
20, 24, 28), I found the confusion data to
be well approximated by a negative ex-
ponential (the fitted curve).

Analysis of Multiple Matrices

We could also analyze separately the
matrix of data for each subject, amount
of training, or condition of stimulus pre-
sentation. But a more powerful analysis
is achievable by simultaneously taking
account of the entire set of matrices in
each case. A metric method of individual
difference scaling, INDSCAL, origi-
nated by another of my associates, J. D.
Carroll, has proved particularly effective
for this purpose (29). Carroll assumed
that the same spatial configuration is ap-
propriate for each individual subject or
condition, but that the individuals differ
with respect to the effective weights of
the different dimensions. Accordingly,
Carroll replaced the usual Euclidean dis-
tance formula (Eq. 5) by

IK 1/2

dij(m)= E W.k(Xik Xjk)'
k= I (6)

where Wik is the weight of dimension k
for individual m, and dijim' is the resulting
effective distance between stimuli i and j
for that individual. Carroll and Chang
adapted nonlinear interative least
squares to the canonical decomposition
of the three-way N x N x M matrix of
stimuli by stimuli by individuals to ob-
tain a metric configuration of the N stim-
uli in an orthogonal coordinate space and
24 OCTOBER 1980

also the unknown weights of the orthog-
onal dimensions of this space for each
of the M individual subjects or condi-
tions (29, 30). The larger, three-way ma-
trix of data can support the extraction of
a larger number of dimensions than is
usually possible in the analysis of two-
way matrices. Moreover, because the re-
sults are not, as in the Euclidean two-
way case, arbitrary with respect to rota-
tion, the unrotated axes of the solution
should be immediately interpretable.

Carroll and Chang (31) applied IND-
SCAL to the judged similarities of colors
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collected by Helm (32) from subjects
with various degrees of color blindness.
Over 90 percent of the total variance was
accounted for by a two-dimensional so-
lution in which the ten spectral hues
formed a circular configuration very
much like the one (Fig. 1B) that I had
previously obtained. Now, however, the
two orthogonal axes immediately corre-
sponded to a red-green and to a blue-yel-
low dimension, in agreement with cur-
rently accepted "opponent-process"
theories of color vision (33). Moreover,
subjects were found to differ primarily

Obtained Euclidean distance
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sibilants
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Fig. 3. Various multidimensional scalings of 16 English consonants based on the confusion data
of Miller and Nicely (25). (A) the two-dimensional configuration of Fig. 2 with interpretive lines
added. (B) Obtained (exponential) relation, for all pairs of the 16 consonants, between the con-
fusion data and corresponding Eucidean distances in the obtained configuration in (A). [From
Shepard (26)] (C and D) Four-dimensional INDSCAL solution obtained by a simultaneous anal-
ysis of the individual matrices for all 17 of Miller and Nicely's conditions, projected onto the
planes of dimensions 1 and 2 and dimensions 3 and 4. (E and F) The estimated weights of the
various conditions of filtering and noise, projected onto these same two planes. [From Soli and
Arabie (25)]
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with respect to their weights for the red-
green dimension, in agreement with the
relatively greater prevalence of defi-
ciency in the red-green system.
Taking advantage of my demonstra-

tion that the generally exponential rela-
tion of confusion frequency to distance
holds, in particular, for Miller and Nice-
ly's data on confusions between con-
sonants (Fig. 3B), Arabie and Soli (34,
35) logarithmically transformed Miller
and Nicely's data into distance-like num-
bers. They then applied Carroll and
Chang's INDSCAL to the entire set of 17
resulting matrices-one matrix for each
of the 17 different conditions of stimulus
presentation; namely, six (Nl to N6) for
increasingly added masking noise, six
(L2 to L7) for increasingly restrictive
low-pass filtering, and five (H2 to H6) for
increasingly restrictive high-pass filter-
ing. Panels C and D of Fig. 3 display
the resulting four-dimensional solution,
which accounts for 69 percent of the var-
iance in the total set of 17 transformed
matrices (as opposed to 61 percent with-
out the prior log transformation).
Dimensions 1 and 2 are determined by

low-frequency energy associated with
voicing and nasality (compare Fig. 3A)
or, in terms of acoustic events identi-
fiable in the sound spectrograms (35), as-
sociated with the temporal relations be-
tween initial noise burst and onset of pe-
riodic pulsing (dimension 1) and with
transition in the lowest resonance or

"first formant" (dimension 2). Dimen-
sions 3 and 4, by contrast, are deter-
mined by higher frequency energy asso-
ciated with transition in the middle reso-
nance or second formant (dimension 3)
and extent of high-frequency "sh" noise
characteristic of the sibilants If,.3/and to
a lesser extent Is,zI (dimension 4). The
weights of the 17 conditions, plotted in
the planes of the same pairs of dimen-
sions (Fig. 3, E and F) corroborate this
interpretation: The low-pass conditions
are more heavily weighted on the first
two dimensions, while the high-pass con-
ditions are more heavily weighted on the
last dimension (34).

Non-Eucidean Representations

The Shepard-Kruskal approach to
multidimensional scaling (16, 18) made
feasible, for the first time, the search for
solutions in non-Euclidean spaces. In his
improved program MDSCAL, for ex-
ample, Kruskal (18) replaced the Eu-
clidean distance formula with the more
general Minkowski r-metric formula

dij = { i IXik - xJkl (7)

The family of r-metrics had been of inter-
est to students of perception because of
indications that whereas perceived simi-
larities conform to the locally Euclidean

metric (r = 2) for perceptually "uni-
tary" stimuli such as homogeneous col-
ors, perceived similarities tend to con'
form to something closer to the "city-
block" metric (r = 1) for "analyzable"
stimuli such as geometrical shapes dif-
fering in perceptually distinct dimensions
of size, orientation, and brightness (8,
36). For Ekman's color data, Kruskal in
fact obtained lowest values of stress
when r was close to 2 (18), while for
more analyzable stimuli better fits tend
to be obtained with r close to 1 (37). (An
example of an r = 1 solution for the se-
mantic domain will be given later in this
article.)

Spaces that are non-Euclidean in the
sense of being globally curved though lo-
cally Euclidean also have been pro-
posed-particularly for perceived colors
(4), positions of luminous points (38),
and orientations in three-dimensional
space (39). One step in the extension of
multidimensional scaling to such situa-
tions has been based on an assumption
of constant curvature (40). Another ap-
proach has sought to simplify the prob-
lem of interpreting globally curved struc-
tures by mapping them down into a flat
Euclidean space of the same "intrinsic
dimensionality" (20, 39, 41). Figure 4
shows results that Carroll, Chang, and I
obtained in tests with artificial similarity
data derived from distances between
points on the surface of a sphere. We ob-
tained the flat two-dimensional solutions

A C

._

I._
._cE

B

I I.I

Sij = fmon(dij)
* Observed value
. Best-fitting

monotone function
- One-parameter

exponential curve

4 8 12 16 20

Distance

Fig. 4. Non-Eucidean analyses. (A and B) Parametric mapping of a curved configuration down into a flat space of the same intrinsic dimensional-
ity by optimizing an index of "continuity" (A) and by "conformal reduction" (B). [From Shepard (20, 39), and Shepard and Carroll (41)] (C)
Obtained relation for pairs of Morse code signals, between Rothkopf's similarity data (Fig. ID) and corresponding distances in a general,
nondimensional metric space. [From Cunningham and Shepard (43)]
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by iterative procedures that (in Fig. 4A)
minimized Carroll's index of departure
from smoothness or continuity of the
mapping, and (in Fig. 4B) minimized the
Shepard-Chang measure of departure
from local monotonicity. Both proce-
dures yield a parametric representation
in an appropriately reduced space, and
the second tends to be conformal.

Nondimensional Scaling

In some applications our primary in-
terest is in determining the functional
form of the relation between similarity
and distance; for example, whether that
form is exponential for confusion data
(13) and hyperbolic for discrimination
times (42). Accordingly, Cunningham
and I developed a method of nondimen-
sional scaling, which used a gradient-
projection method to find distances, dj,
in a completely general, coordinate-free
metric space, that are as nearly as pos-
sible monotonically related to the given
similarity data, su. In order to obtain so-
lutions that achieved an acceptable fit
but that were, at the same time, as far as
possible from the trivial and degenerate
one with all points equally distant from
each other, which in multidimensional
scaling is ruled out by minimizing the
number of dimensions, we had to maxi-
mize the variance of the distances. The
only other condition on the distances (a
condition that we imposed by a "penalty
function") was that they satisfy the three
distance axioms (Eqs. 2a, 2b, and 2c)
[see (43)].
We found that we could accurately re-

cover the nonlinear shape of the function
used to generate artificial similarity data
even though the program was provided
no information about either the type of
metric or the form of the function. By
contrast, an MDSCAL solution failed to
recover the form of the function when
the data were derived from very non-Eu-
clidean sum-over-path distances in a
tree. Figure 4C shows the results ob-
tained when we applied this program to
the Morse code data of Fig. ID. Without
assuming anything about the nature of
the underlying. metric, we recovered a
function essentially like the one I origi-
nally obtained on the assumption of a
Euclidean metric (24). And, again, the
relation is in rough agreement with a
simple negative exponential function
(the one-parameter fitted curve).

This method is nondimensional rather
than multidimensional, because it does
not furnish coordinates for a visualizable
configuration of the stimuli. However,
maximization of the variance of the dis-
24 OCTOBER 1980

Fig. 5. Additive tree N
obtained by analysis Bear(B
of Henley's data on
the conceptual simi-
larities between 30
species of animal, em-
bedded in a two-di-
mensional space. [Re- Elephant
arranged from Sattath
and Tversky (47)]

Giraffe G Zebra
Camel (9

Hof

tances tends to drive the distances in
every triangle toward the limiting addi-
tive case of the triangle inequality.
(That is, Eq. 2c tends toward Eq. 3.)
Hence, it is tempting to take the addi-
tional step of representing the distances
as additive paths through a visualizable
tree or graph (44).

Fitting Additive Trees

Procedures for fitting additives or
path-length trees to similarity data were
soon devised by Cunningham (45), Car-
roll and Chang (46), and Sattath and
Tversky (47). An additive tree is a graph
without any closed loops, in which the
distance between any two nodes is given
by the sum of the lengths of the links in
the unique path between those nodes.
The procedures for fitting such trees
were based on the replacement of the tri-
angle inequality by the stronger, four-
point additivity condition

dhi + d.k - max {(dhj + dik),
(dhk + dif (8)

The resulting tree has N external nodes
for the N stimuli, and the lengths of all
connecting links are then estimated to
minimize a least-squares measure of de-
parture from good fit. Basically these
methods are metric in that they treat the
data as linearly related to underlying
path-length distances. However, such
distance-like data, if not initially avail-
able, could be obtained from similarity
data by first applying Cunningham-Shep-
ard maximum variance nondimensional
scaling.

Figure 5 shows the additive tree that
Sattath and Tversky (47) obtained by ap-
plying their program ADDTREE to Hen-
ley's (48) judged semantic dissimilarities

between 30 animal terms. I have ar-
ranged the branches in Fig. 5 so that the
terminal nodes approximate the posi-
tions of the corresponding points in a
multidimensional scaling solution for
these same data. The major branches of
the tree roughly correspond to apes, ro-
dents, carnivores (both canines and fe-
lines), and large herbivores (hoofed ani-
mals and elephant). Perhaps trees or
graphs are particularly well suited to the
representation of semantic structures.
Sattath and Tversky reported that the
original dissimilarity data were more
closely fitted by path-length distances in
the tree (stress = .07, r = .91) than by
distances in a two-dimensional Euclid-
ean representation requiring about the
same number of parameters (stress=
.17, r = .86).

Hierarchical Clustering

The designation of one internal node
as the "highest" node in an additive tree
confers on every other node a derivative
height by virtue of its distance from the
designated node. The tree thereby be-
comes a hierarchical clustering. If all ter-
minal nodes are equally distant from the
highest node, the distance between ter-
minal nodes is then given simply by the
height of the highest node on the con-
necting path. Hence the hierarchical tree
metric is a special case of the additive
tree metric. In fact, as was indepen-
dently shown by several workers in 1%7
(49-51), the hierarchipal tree metric
is governed by the "ultrametric" in-
equality

di ' max (dih, dhj) (9)

which requires that all "triangles" be
isosceles. Both nonmetric methods (49,
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50) and least-squares metric methods
(46, 51) have been devised for fitting
such hierarchical tree structures to simi-
larity data.

Figure 6A shows the hierarchical tree
that I obtained by reanalyzing the aver-

age of Miller and Nicely's confusion ma-
trices for unfiltered consonants, using
the "diameter" (or "complete-link")
variant of the nonmetric method of hier-
archical clustering developed by my co-
worker S. C. Johnson (26, 50). In Fig.

6B, I have embedded the clusters corre-
sponding to cuts through this tree at rep-
resentative levels as closed curves in the
earlier spatial solution (Fig. 3A). The
compatibility of the spatial and heir-
archical representations is manifested in

Consonants

CB

Voiced nasals
Nasals

<g3

.C X XC aU S (U S4 E (
4 Y.* . . "IR N N~cm

'~-~ '~'~~*"~-~~' '~ ~ '~'~ Voiceless stops
Stops Front Back fric. Stops Front Nasals and fricatives

fric. (sibilants) fric.

Voiceless.--pVoiced
Front

10I® ® ~~~~~~~~~~~~~~~~~~~~~~~~II

StopI
UII

Voiced stops
and f ricatives

Fricatives

Voiceless Voiced

Fig. 6. Alternative clustering analyses of Miller and Nicely's (25) data on confusions of 16 consonants. (A) Hierarchical tree obtained by using
Johnson's (50) nonmetric "diameter" (or "complete-link") method. (B) The same hierarchical clustering displayed as embedded in the two-
dimensional scaling solution of Fig. 3A. [From Shepard (26)] (C) Nonhierarchical clustering obtained by ADCLUS analysis of the same data,
embedded in the same two-dimensional scaling solution. The Arabic numerals indicate the ranks of the clusters by estimated weights. [From
Shepard and Arabie (52)]

III

A s472 B theeka 7
Fac out
Head

.- Neck

230.7 7.,00
~~ / ~~ 8
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Fig. 7. Alternative clustering analyses of Miller's data on the semantic relationships between 20 names of parts of the body. (A) Hierarchical tree
with stimuli assigned to internal as well as terminal nodes. The numbers attached to the internal nodes indicate their estimated heights in the
hierarchy. [Rearranged from Carroll (46)] (B) Additive clustering obtained by ADCLUS analysis of the same data, embedded in a two-dimension-
al projection of the three-dimensional "city-block" solution (r = 1). The Arabic numerals indicate the ranks of the clusters by estimated weights.
The "trunk" words, enclosed in dashed curves, fall in the back (-, -, -) orthant of the three-dimensional space. [From Shepard and Arabie (52)]
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the compact and convex forms of the
nested curves. However, each of the two
types of representation brings out dif-
ferent aspects of the underlying struc-
ture. Only the continuous, spatial repre-
sentation preserves the parallel order-
ings of the voiceless and the voiced frica-
tives /f,o,s,f/ and iv,**,z,3/ with respect
to place of articulation and, hence, rep-
resents such facts as that the middle
fricatives (for example, /6/ and Isl) are
more often confused than the extreme
fricatives (for example, If/ and flf). But
only the discrete, clustering representa-
tion, separately obtained for each of
Miller and Nicely's 17 conditions, re-
veals that whereas the front voiceless
stop /pI clusters with the other voiceless
stops Ik,t/, the corresponding front
voiced stop /bi uniformly groups with the
front voiced fricatives lv,a/ rather than
with the other voiced stops /d,g/. Evi-
dently, place of articulation was more
salient than presence or absence of af-
frication for voiced consonants, while for
the voiceless consonants absence of af-
frication became more salient owing to
the correlated presence of an initial
burst, which appears at the left in the
spectrograms for /p,t,k/ in Fig. 2.

In semantic studies, superordinate
words might reasonably be represented
by internal nodes n the tree. Carroll and
Chang developed a combinatorial opti-
mization procedure for least-squares fit-
ting of such a hierarchical model (46).
Figure 7A snows the solution that they
obtained from an analysis of semantic
similarities that Miller had obtained for
20 names of body parts (46). This repre-
sentation accounted for 92.7 percent of
the variance with only five continuous
parameters; namely, the height values
for each of the five internal nodes of the
tree. The semantic hierarchy seems to be
well recovered, with "body" dominating
"leg," "arm," "head," and "trunk,"
and with each of these dominating, in
turn, the appropriate set of more subor-
dinate terms.

Additive Clustering

Sometimes we would not want the
psychologically significant subsets of the
stimuli to be nested in a strictly hierarch-
ical fashion. While the kin terms "fa-
ther" and "mother" should be classified
together in contrast to "son" and
"daughter" on the basis of generation,
the terms "mother" and "daughter"
should be classified together in contrast
to "father" and "son" on the basis of
sex. But these two cross-cutting classifi-
cations cannot be simultaneously accom-
24 OCTOBER 1980

modated within any one hierarchical rep-
resentation. To deal with such cases,
I developed with Arabie a nonhierarchi-
cal method of additive clustering AD-
CLUS, which differs from all of the more
or less spatial representations in that it is
not based on any notion of distance (20,
52, 53).
The basic idea behind additive cluster-

ing is that the perceived similarity be-
tween any two stimuli is simply the sum
of positive psychological weights, Wk, of
the discrete properties that both stimuli
have in common. Formally,

K

Sjj = : WkPJikPJjkk-l (lOa)

where

fik 1 if object i has property k,
P:k = to otherwise. (lOb)
If it were not for the restriction that the
Pik be binary valued, the model would be
essentially identical to that of factor
analysis, which Ekman (22) had assumed
to be suitable for the representation of
continuous structures in similarity data.
However, the imposition of this binary
restriction converts the problem of com-
puting the eigenvalues and vectors of the
similarity matrix into a more difficult
combinatorial problem of finding the
smallest set of weighted subsets that will
provide a satisfactory additive fit to the
data (52).

Figure 6C displays the subsets ob-
tained when we applied ADCLUS to the
Miller-Nicely data (25) on confusions be-
tween 16 consonants, embedded in the
previous two-dimensional scaling solu-
tion (see Figs. 3A and 6B). With these 16
subsets and the entire subset of all 16
consonants, the additive model was able
to account for 94.5 percent of the vari-
ance. The Arabic number in each subset
indicates the rank of that subset accord-
ing to its estimated weight (ranging from
.730 to .009). The subsets in the additive
clustering are not nested as they were in
the hierarchical clustering (Fig. 6B). For
example, in accordance with the places
of articulation, the sequence of voiceless
fricatives /f,o,s,f/ now forms a chain of
overlapping clusters, as does the parallel
sequence of voiced fricatives /v,f,z,.3/.
And, for both the voiced and voiceless
consonants, the front fricatives group
with the front stops as well as with the
relatively back fricatives.

Finally, Fig. 7B shows the ADCLUS
solution that Arabie and I obtained (52)
from a reanalysis of Miller's data on the
relations among 20 names of body parts.
Here, the ten obtained clusters are em-
bedded in a two-dimensional projection

of the three-dimensional city-block solu-
tion that Arabie obtained for these same
data using MDSCAL. (For these data,
the residual stress was .019 for r = 1, as
opposed to .046 for the Euclidean r = 2.)
An advantage to be expected for such a
non-Euclidean solution is that the or-
thogonal axes I, II, and III correspond,
without rotation, to the immediately in-
terpretable "leg," "arm," and "head"
clusters. As before, the Arabic number
within each subset indicates its rank with
respect to weight (ranging from .820 to
.119). When the entire set is included
(with a weight of .048), 95.6 percent of
the variance is accounted for by these
subsets. In comparison with the hier-
archical representation obtained by Car-
roll and Chang (Fig. 7A), the ADCLUS
representation fails to represent the su-
perordinate status of some of the terms
explicity. It does, however, provide an
explicit representation of the nonhierar-
chical overlap of certain of the subsets.
Most significant among the overlapping
subsets are subset 10, which connects
the functionally analogous "elbow" and
"knee" parts of the "arm" and "leg"
subsets, and subset 5, which, in the
words of the Negro spiritual, confirms
that, indeed, "the head bone is con-
nected to the neck bone."

Concluding Remark

It would be a mistake to ask which of
these various scaling, tree-fitting, or
clustering methods is based on the cor-
rect model. As even my small sample of
illustrative applications indicates, dif-
ferent models may be more appropriate
for different sets of stimuli or types of
data. Even for the same set of data,
moreover, different methods of analysis
may be better suited to bringing out dif-
ferent, but equally informative aspects of
the underlying structure (54).
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