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Multidimensional scaling (MDS) is a multivariate
statistical technique that can be used to define sub-
systems of functionally connected brain regions based
on the analysis of functional magnetic resonance im-
aging (fMRI) data. Here we introduce three-way mul-
tidimensional scaling as a method for the analysis of a
group of fMRI data, which yields both a generic inter-
regional configuration in low-dimensional space and a
measure of each individual’s deviation from the ge-
neric configuration. The distance between two generic
interregional configurations obtained by MDS of two
groups of data can be minimized by generalized Pro-
crustes analysis, and the probability under the null
hypothesis (that the two groups are sampled from the
same population) of any residual group difference in
interregional configurations can be assessed by a per-
mutation test. These methods are developed and ap-
plied to activated fMRI time series acquired from 19
patients with schizophrenia and 20 normal compari-
son subjects during the performance of a semantic
categorization and subvocal rehearsal task. The first
three scaling dimensions are interpretable in terms of
the major anatomical or functional subsystems of the
activated system: “left–right,” “input processing–
other,” and “subvocal output–other”. We found no sig-
nificant global or local differences between groups in
interregional configurations in this 3D space. How-
ever, there was significantly greater variability of
interregional configurations within the group of
patients with schizophrenia. The implications for
schizophrenia as a disconnexion disorder are
discussed. © 2002 Elsevier Science (USA)
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) has
been widely used to elucidate the understanding of
segregated or regionally specialized brain function. To
do this, fMRI time series data are usually modeled and
tested in a univariate mode of analysis, treating each
voxel as a discrete observation. Functional MRI can
also be used to understand integrated or regionally
distributed brain functions; in which case multivariate
modes of data analysis are required to characterize
associations or dependencies between multiple voxels
or regions-of-interest. In the simplest (bivariate) case,
the observation of correlation between the time series
for two regions can be used to infer that the regions are
functionally connected (Friston, 1994), i.e., they may
have functional effects on each other and/or share a
common input. More sophisticated multivariate meth-
ods previously applied to fMRI data analysis include
primarily graphic or exploratory techniques, such as
principal components analysis (PCA), which can be
useful for summarizing a complex set of interregional
relationships in terms of a few principal components or
major dimensions of variance (Bullmore et al., 1996).
The first few principal components define the (mu-
tually orthogonal) temporal patterns of activity that
account for the largest proportions of total variance–
covariance in the system. A plot of regions in the space
of the first few PCs can then be used to define func-
tional subsystems or groups of regions in close proxim-
ity in functional space which share important temporal
patterns of activity. It may be possible post hoc to
relate the configuration of regions in the space of the
first few PCs to prior knowledge of their anatomical or
physiological properties.

Other exploratory techniques include minimum
spanning trees (Baumgartner et al., 2001) and cluster
analysis. In a more inferential vein, canonical discrimi-
nant analysis (Bullmore et al., 1996; Worsley et al.,
1997) has been used to identify functions that opti-
mally discriminate the regions comprising a functional
Received Dec

ac.uk/bmu.
ber 14, 2001

connectivity or correlation matrix, and partial least
em
1053-8119/02 $35.00
© 2002 Elsevier Science (USA)

All rights reserved.



squares has been combined with a permutation test to
assign a probability under the null hypothesis to an
observed association between distributed brain activa-
tion and experimental or other exogenous variables
(McIntosh et al., 1996). Path analysis or structural
equation modeling has also been used to fit causal or
directional models of interregional association to cor-
relation or covariance matrices and to test the null
hypothesis that the path models fitted to two correla-
tion matrices acquired from different groups or under
different experimental conditions are the same (McIn-
tosh et al., 1994; Bullmore et al., 2000).

Here we consider some multivariate techniques for
the analysis of integrated brain function that are based
on classical multidimensional scaling (MDS), as origi-
nally developed by Torgerson (1952). In its simplest
form, classical MDS is equivalent to principal compo-
nents analysis, hence its alternative name of principal
coordinates analysis (Friston et al., 1996).

In this paper, we are mainly concerned with two
extensions of this basic technique. First, we introduce
the method of three-way multidimensional scaling for
analysis of integrated brain function based on a group
of functional magnetic resonance (MR) images. In
three-way MDS, a set of m interregional distance ma-
trices, each estimated for an individual fMRI dataset,
may be analyzed simultaneously to yield both a generic
MDS solution and a measure of each individual’s devi-
ation from the interregional configuration characteris-
tic of the group. Second, we develop and apply a per-
mutation test based on Procrustes analysis to assign a
probability to observations on two groups of interre-
gional distance matrices under the null hypothesis
that the two groups in question were sampled from the
same population. Generalized Procrustes analysis
(GPA) is a technique by which two configurations of n
equivalent points in p dimensions are translated, ro-
tated, and scaled to minimize the sum of squared dis-
tances between them [see Bookstein (1998) for prior
applications of Procrustes analysis to the morphomet-
ric characterization of anatomical images]. This is par-
ticularly appropriate for the configurations obtained by
MDS of two different groups of data, as these results
may share an underlying structure that is arbitrarily
different in terms of its scaling and axial rotation.
Procrustes analysis minimizes these spurious differ-
ences between two generic configurations and allows
the residual difference between them to be estimated.
A permutation test, randomly reassigning each indi-
vidual to one of two groups prior to three-way MDS and
GPA, is designed to test the probability of the observed
interconfigurational difference under the null hypoth-
esis.

We suggest that these techniques may be of partic-
ular relevance to the investigation of patterns of func-
tional connectivity in patients with psychiatric or
cognitive disorders. For example, in patients with

schizophrenia there is some evidence both for generi-
cally abnormal patterns of structural and functional
interregional connectivity and for abnormal variability
of time series activity at a univariate level (Holt et al.,
1999). The possibility of increased variability or heter-
ogeneity of interregional correlations in patients with
schizophrenia has not previously been investigated di-
rectly but seems likely a priori. We have therefore
illustrated the methodological issues by the analysis of
two groups of functional MRI data acquired from 19
patients with schizophrenia and 20 comparison sub-
jects.

METHODS

Sample

Nineteen right-handed male patients (mean age �
36.8 years, standard deviation (SD) � 9 years) with an
operationalized diagnosis of chronic schizophrenia
(DSM-IV, 1987) were recruited from the Bethlem Royal
and Maudsley NHS Trust, London, UK. The patients
were chronically medicated with typical antipsychotic
drugs (mean duration of illness � 13.9 years, SD � 8.6
years) and had well-controlled psychotic symptoms at
the time of scanning (mean score on the positive sub-
scale of the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987) � 11.2, SD � 6.0; mean
negative subscale score � 14.5, SD � 6.8; mean general
psychopathology subscale score � 25.8, SD � 10.1).
Twenty right-handed, psychiatrically and neurologi-
cally normal volunteers (10 male, 10 female; mean
age � 44.4 years, SD � 14.7) were also recruited from
within the local community by advertisement. There
was no significant age difference between the groups.

All subjects gave informed consent in writing. The
study was approved by the local research ethics com-
mittee.

Experimental Design

We used a blocked periodic AB design to activate
brain systems for semantic decision and subvocal ar-
ticulation, as previously described (Bullmore et al,
2000). During the activation condition, the subject was
cued every 2.5 s by the visual presentation of a word,
e.g., “goat,” and was required to decide whether the
word represented a living or nonliving entity and to
internally rehearse or subvocally articulate that deci-
sion. All words were in the high-frequency range and
between three and seven letters in length. During the
baseline (B) condition, the subject was asked simply to
fixate on an isoluminant screen. Five cycles of alterna-
tion between 30 s epochs were presented in the course
of each 5-min experiment; the B condition was always
presented first.
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fMRI Data Acquisition

Gradient-echo echo-planar T2*-weighted images de-
picting blood oxygen level-dependent contrast were ac-
quired using a 1.5T GE Signa system (General Electric,
Milwaukee, WI) with the following parameters: num-
ber of slices, 14; slice thickness, 7 mm; interslice gap,
0.7 mm; inplane resolution, 3 mm; TE, 40 ms; TR, 3000
ms; flip angle, 90°; number of signal averages, 1.

Activation Mapping and Regional fMRI Time Series
Extraction

After the correction of temporal offsets due to mul-
tislice acquisition and head movement-related effects
in the fMRI time series at each voxel (Bullmore et al.,
1999), a linear regression model was fitted by least
squares to estimate experimentally induced signal
changes in the context of residual autocorrelation with
fractal or long-memory structure (Bullmore et al.,
2001a). This yielded maps of the amplitude of response
to the activation condition at each voxel, which were
coregistered by an affine transformation in standard
space (Talairach and Tournoux, 1988). In a random
effects analysis robust to modest group size, the me-
dian amplitude of activation over all subjects in each
group was tested against its null distribution by a
permutation test (Brammer et al., 1997) to construct a
generic brain activation map for each group of subjects.
The motion-corrected fMRI time series volume for each
subject was also registered in standard space and a set
of 11 regional time series was recovered in each subject
(see Fig. 1). Each regional time series was the average
of the time series at the voxel indexed by regional
coordinates in standard space and its eight nearest
neighbors in 2D (total regional volume � 0.57 cm3) and
was translated to give a mean signal of zero.

Two-Way Multidimensional Scaling

A single proximity matrix is used for two-way MDS.
To construct a single matrix based on a group of fMRI

data, one can simply concatenate the individual time
series for each region and then estimate the interre-
gional distances between concatenated series. We did
this using all the data from both groups to produce the
single distance matrix shown in Table 1 and also using
all the data from each group separately to produce a
single proximity matrix for each group. In all cases, we
used the Euclidean distance between N timepoints
measured at two regions i and j as our measure of
interregional distance:

di, j � ��
t�1

N

�it � jt�
2 . (1)

From a set of N timepoints measured at p regions, a
symmetrical (p � p) distance matrix D is estimated
which summarizes the distance di, j between each pair
of regions i and j. Multidimensional scaling of this
matrix locates the variables in an r-dimensional sub-
space such that the distances between variables in the
reduced space �i, j is as close as possible to their original
distances, i.e., the stress measure

V � �
i
�

j
�d i, j

2 � � i, j
2 � (2)

is a minimum (Krzanowski, 1988; Everitt and Rabe-
Hesketh, 1997).

Iterative minimization of V is constrained by the
choice of the number of dimensions r in the reduced
space. The maximum number of possible dimensions
for MDS is dictated by the number of regions p in-
cluded in the analysis; in this study p � 11 and there-
fore the maximum r � 5. This is because we have only
(p2 � p)/2 unique interregional distances on the basis of
which to estimate pr weightings of each of p regions on
each of r dimensions. With p � 11, the number of

TABLE 1

Euclidean Distance Matrix across All 39 Subjects

Euclidean distance

LVEC LSTG LPFC LSMA LIFG LIPL RVEC RSTG RPFC RSMA RIPL

LVEC 350.41 417.37 407.10 478.14 407.20 420.74 399.72 422.74 438.03 436.57
LSTG 350.41 351.39 361.88 445.96 380.84 403.64 347.93 389.01 399.48 394.37
LPFC 417.37 351.39 355.70 437.18 394.52 414.55 370.56 389.27 416.81 415.11
LSMA 407.10 361.88 355.70 427.57 378.20 407.60 361.19 390.31 353.73 404.98
LIFG 478.14 445.96 437.18 427.57 436.13 475.18 439.40 474.69 463.79 483.12
LIPL 407.20 380.84 394.52 378.20 436.13 389.83 368.36 410.47 412.66 398.39
RVEC 420.74 403.64 414.55 407.60 475.18 389.83 354.43 423.91 436.85 417.95
RSTG 399.72 347.93 370.56 361.19 439.40 368.36 354.43 364.45 405.20 368.86
RPFC 422.74 389.01 389.27 390.31 474.69 410.47 423.91 364.45 383.85 402.91
RSMA 438.03 399.48 416.81 353.73 463.79 412.66 436.85 405.20 383.85 425.48
RIPL 436.57 394.37 415.11 404.98 483.12 398.39 417.95 368.86 402.91 425.48
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interregional distances available for MDS is 55; there-
fore, the maximum number of dimensions is 5. Given
this constraint, the choice of r is guided by the inspec-
tion of curves describing the monotonic reduction in
stress V (Eq.2) with increasing r (see Fig. 2). Higher
dimensional solutions inevitably reduce the stress but
are also more difficult to represent and perhaps to
interpret. If the stress curve is nonlinear (as in Fig. 2),
this may suggest that the best trade-off between stress
reduction and parsimony of the solution is obtained by
including only those first few dimensions which are
associated with disproportionately large decrements in
stress.

Three-Way Multidimensional Scaling and Weirdness

A set of m proximity matrices is used for three-way
MDS, one for each individual in each group. A low-
dimensional solution is found iteratively to minimize
“S-Stress,” a modification of the stress measure de-
fined in Eq. 2 to use squared distances [this modifi-
cation was introduced by Takane et al. (1977) to
allow both metric and nonmetric data to be analyzed
with this technique]. As in two-way MDS, the num-
ber of dimensions for the reduced space is decided by
the examination of cumulative reductions in stress
with increasing dimensionality. The outputs of the
analysis include both a generic interregional config-
uration and the deviation of each individual from the

FIG. 1. Generic brain activation maps for 39 subjects performing a semantic categorization and subvocal rehearsal task. Colored voxels are activated
with one-tailed voxelwise P � 0.0001; at this size of test we expect less than one false-positive test over the whole map. The cross hairs locate the origin
of the x and y coordinates of the Talairach space in the plane of each slice; the z coordinate in millimeters above or below the intercommissural line
is shown for each slice. Functional MRI time series were recovered from each individual dataset in the regions indicated by the green squares: left and
right ventral extrastriate cortex (L/RVEC; Talairach {x, y, z} coordinates (mm) �40 and �40, �65, �5; left inferior frontal gyrus (LIFG; �48 and �48,
�7, �10); left and right dorsal prefrontal cortex (L/RPFC; �40 and �40, �5, �35); left and right inferior parietal lobule (L/RIPL; �33 and �33,
�50, �43); left and right superior temporal gyrus (L/RSTG �56 and �56, �36, 10) and medial premotor cortex (SMA; �3 and �3, �5, �54).

FIG. 2. Stress curves for the two groups; patients, solid line, circular
points; comparison subjects, broken line, square points. The curvilinear
graphs demonstrate a monotonic decrease in the stress of scaling solutions
as the dimensionality is increased from 1 through 5. By inspection, a
reasonable choice for dimensionality of MDS is r � 2 or 3; incorporation
of higher dimensions is associated only with linear decrements in stress.
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generic configuration. Specifically, each contributing
matrix is given a weight for each dimension in the
generic solution, representing the transformation

(stretching) of the generic solution that produces the
best fit to that individual matrix. The distribution of
these weights reflects the variability of individual

FIG. 3. Multidimensional scaling solution for all subjects (N �
39) in two dimensions. The coordinates of 11 brain regions are
plotted in the space of two dimensions which have been labelled
left/right and frontal/posterior on the grounds that the regions are
clearly cosegregated in the four quadrants of the plot according to
these anatomical characteristics.

FIG. 4. Multidimensional scaling solution for all subjects (N � 39)
in three dimensions. Each panel shows a scatterplot of the 11 brain
regions in the space of two of the dimensions. Top left, dimension 1
(input processing/other) versus dimension 2 (left/right); top right, di-
mension 1 (Input processing/other) versus dimension 3 (subvocal out-
put/other); bottom right, dimension 2 versus dimension 3. The regional
abbreviations are left/right prefrontal cortex (L/RPFC), left/right supe-
rior temporal gyrus (L/RSTG), left/right ventral extrastriate cortex
(L/RVEC), left/right inferior parietal lobule (L/RIPL), left/right supple-
mentary motor area (L/RSMA), and left inferior frontal gyrus (LIFG).

FIG. 5. Multidimensional scaling solutions separately estimated in
three dimensions for (a) the comparison subjects (N � 20) and (b) the
patients with schizophrenia (N � 19). As in Fig. 3, each panel shows a
scatterplot of the 11 brain regions in the space of two of the three dimen-
sions: top left, dimensions 1 versus 2; top right, dimensions 1 versus 3;
bottom right, dimensions 2 versus 3. The same three dimensions are
identified in both groups separately as in the combined data—left/right,
input processing/other, and subvocal output/other—although the rank
order of these dimensions differs between groups. The arrows are used
simply to distinguish regions lying in close proximity to each other.
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proximity matrices within the group and can be sum-
marized in terms of the “weirdness” wk of the kth
subject (Takane et al., 1977):

�k �

cos �1 � �
d�1

r wd,k

Td

��
d�1

r �wd,k

Td
� 2

� r�
cos �1

1

�r

. (3)

Here, wd,k denotes the weighting of the kth of m sub-
jects on the dth of r dimensions and Td � ¥ k � 1

m wd,k is
the sum of weights on the dth dimension over all m
subjects in the group. The possible values of weird-
ness range from zero (when a subject has weights in
proportion to the group mean weights) to one (if a
subject has nonzero weights on only a single dimen-
sion). Within each group of subjects, a high mean
weirdness therefore indicates a high degree of vari-
ability of individual interregional configurations rel-
ative to the generic configuration, or a high degree of
within-group heterogeneity in terms of integrated
neurocognitive function.

Three-way MDS solutions were estimated for sub-
jects in both groups based on the estimated common
space for all subjects. The null hypothesis of zero be-
tween-group differences in mean weirdness was tested
against the t distribution.

Generalized Procrustes Analysis

To compare the generic configurations obtained for
each group, whether by two-way or three-way MDS,
generalized Procrustes analysis was used to transform
one solution onto the other. GPA takes two configura-
tions of the same set of points in an r-dimensional
space and finds the translation, rotation, and scaling
necessary to minimize the sum of squared distances
between corresponding points in each dimension. This
allows the comparison of generic MDS solutions even if
two dimensions are reversed, if one is a reflection of
another, or if they have different scales—features that
have negligible effect on the interpretation as long as
the dimensions themselves are similar.

More formally, Procrustes analysis takes two matri-
ces representing configurations of the same object
points, X(N, rx) and Y(N, ry), such that n is the number
of points and rx and ry are the dimensionalities of each
configuration; without loss of generality, we assume rx

� ry � r (if rx � ry, the smaller matrix can be padded
with columns of zeroes until rx � ry). The [i, d]th
element of each matrix denotes the coordinates of the
ith point (region) on the dth dimension. Each matrix is

first translated so that its centroid is at the origin by
subtraction of group mean coordinates on each dimen-
sion from the coordinates on corresponding dimensions
of each point. Each mean-centred matrix is then stan-
dardized so that it has unit total squared distance from
its centroid, ensuring that the rotation of Y onto X is
equivalent to the rotation of X onto Y. Then one matrix
is rotated and dilated such that the residual discrep-
ancy between the two matrices is minimized: we will
assume that X is the “base” matrix and Y is the
“match” matrix which is to be rotated and dilated to
correspond to it as closely as possible. We then wish to
find the orthogonal matrix Q which rotates Y so as to
minimize the sum of the squared distances between
the corresponding points in X and Y:

M 2 � �
i�1

n

	�
j�1

p

�xi, j � yi, j�
2


� trace	�X � Y��X � Y�T


� trace�XX T � YY T � 2XY T � .

(4)

If we denote the rotation of Y by YQ and substitute this
into Eq. 4, it is clear that the orthogonal matrix Q
which minimizes M2 will maximize trace(2XQTYT). It
can be shown (Krzanowski, 1988) that this matrix is
defined by Q � VUT, where V and U are products of the
singular value decomposition (SVD) of XYT � ULVT.
The last step is to dilate the configuration of points in
the rotated match matrix YQ such that its points are
on the same scale as X. We can denote this dilation
cYQ, where c is a scalar the optimum value of which is
defined by trace(L)/trace(YYT). The minimum value of
M2, denoted m2, can therefore be written down in terms
of X, Y and the products of the SVD of XYT as

m 2 � c 2trace�YY T� � 2c � trace�XQ TY T�

� trace�XX T� ;
(5)

i.e., this statistic summarizes any difference remaining
between configurations X and Y after translation, ro-
tation, and dilation.

Permutation Testing of between-Group Difference in
Interregional Configuration

Permutation tests are particularly useful when one
wishes to assess the probability under the null hypoth-
esis of some test statistic for which a distributional
approximation by asymptotic theory may not be appro-
priate or available (Edgington, 1995; Good, 1994; Bull-
more et al., 2001b; Nicholls and Holmes, 2002). Here
we wished to test the null hypothesis that the (mini-
mal) difference remaining (after GPA) between two
generic interregional MDS solutions was no more than
might be expected under the null hypothesis that the
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two groups of data were sampled from the same popu-
lation. We could find no well-established theoretical
approximation to the null distribution of m2, so we
designed a permutation test. This involved randomly
reassigning the observed data matrices on all 39 sub-
jects to one of two groups of the same size as that of the
observed groups. MDS was then separately applied to
the resampled data in each group and GPA was used to
minimize the discrepancy between generic interre-
gional configurations, yielding an estimate of m2 under
the null hypothesis after each permutation. This pro-
cess was repeated 1499 times to generate a permuta-
tion distribution comprising 1500 elements (including
the estimate of m2 in the observed data). The one-tailed
probability P of the observed difference under the null
hypothesis is then simply the number of elements in
the permutation distribution which are larger than the
observed value of m2 divided by the total size of the
permutation distribution (1500).

A comparable procedure was used to assess between-
group differences in integrated functional anatomy at a
regional level. The between-group distance after GPA
was separately estimated for each region in the ob-
served data and after each permutation. This allowed
us to test the set of null hypotheses that there was no
between-group difference in the functional configura-
tion of each brain region separately considered.

All permutation tests were conducted using a three-
dimensional solution in both two-way and three-way
MDS. The results were very similar for both two-way
and three-way MDS and therefore only the two-way
MDS results will be discussed in detail.

Computational Aspects

The INDSCAL algorithms implemented in ALSCAL,
within Statistical Package for the Social Sciences
(SPSS v.10.0.7; SPSS Inc., Chicago, IL), were used for
two-and three-way MDS. For metric scaling, the iter-
ative minimization routine in ALSCAL converges
monotonically to a unique solution; there is no real risk
of local minima. ALSCAL was called by scripts written
in SPSS syntax. This allowed much easier batch ma-
nipulation of the resulting configurations. Iteration
was terminated when the S-stress improvement was
less than 10�5, the stress reached 0.0001 or better, or
after 500 iterations. Generalized Procrustes analysis
was done using ProTest (D. A. Jackson, University of
Toronto, Toronto, Ontario, Canada). Weirdness was
estimated by a C program written by D.E.W. based on
the relevant routine within the ALSCAL package
(Young, 1982). All operations were run on a �86 per-
sonal computer under both Windows 2000 Professional
and Debian Linux. Processing time was approximately
30 min per 1000 permutations, allowing large distri-
butions to be generated for a relatively small compu-
tational overhead.

RESULTS

Generic Activation Mapping

Slices from a generic brain activation map estimated
on the basis of all 39 fMRI datasets are shown in Fig.
1. There is clearly distributed activation throughout a
network including right (R) and left (L) ventral extra-
striate cortex [VEC; approximate Brodmann areas
(BA) 18 and 19], bilateral dorsal prefrontal cortex
(PFC; BA 9), predominantly left-sided inferior frontal
gyrus (IFG; BA 44), left-sided superior temporal gyrus
(STG; BA 22), medial premotor cortex (BA 6) corre-
sponding to supplementary motor area (SMA), and bi-
lateral inferior parietal lobule (IPL; BA 7).

Two-Way MDS

The form of the stress curve is nearly identical in the
two groups, suggesting that the same choice of r will be
equally appropriate for both (Fig. 2). There are rela-
tively major decremental reductions in stress as r is
increased from 1 through 3; thereafter the curve is
approximately linear. This suggests that a reasonable
trade-off between stress reduction and parsimony
would be achieved by choosing r � 2 or r � 3.

The two-dimensional solution for all 39 subjects is
summarized in Fig. 3. The axes and points are labeled
in accordance with the following interpretation of the
first two dimensions: dimension 1 is designated “left/
right” on the grounds that all left-sided regions have
positive coordinates and all right-sided regions have
negative coordinates; dimension 2 is designated “fron-
tal/posterior” on the grounds that the occipital, tempo-
ral, and parietal regions tend to have negative coordi-
nates, whereas the medial and lateral frontal regions
have positive coordinates. Thus when r � 2 both di-
mensions can be interpreted simply in terms of the
anatomical relations between regions.

The three-dimensional solution for all 39 subjects is
summarized in Fig. 4. The left–right dimension iden-
tified by the 2D solution is persistent in 3D, though it
is now the second dimension rather than the first.
However, the anatomical distinction between the fron-
tal and posterior regions identified by the second di-
mension of the 2D solution has been replaced by two
dimensions in which some frontal and posterior regions
are cosegregated from other regions. We propose func-
tional, rather than anatomical, interpretations for
these dimensions. The first dimension is now desig-
nated “input processing/other” on the grounds that the
left ventral occipital, superior temporal, and frontal
regions implicated in word reading and semantic anal-
ysis have positive coordinates, whereas all other re-
gions have negative coordinates. The third dimension
is now designated “subvocal output/other” on the
grounds that the medial premotor, left prefrontal, and
inferior parietal regions implicated in subvocal re-
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hearsal have negative coordinates, whereas other
brain regions have positive coordinates. Interpretation
of these dimensions in terms of the putative function of
segregated subsystems is clearly less automatic than
interpretation in terms of anatomical properties such
as lateralization. However, as discussed in greater de-
tail below, there is convergent evidence from prior mul-
tivariate analyses of other datasets acquired during
the performance of this task for a major functional

subdivision of the activated system into subsystems
specifically responsible for input processing and subvo-
cal output generation and monitoring (Bullmore et al.,
1996, 2000).

The three-dimensional MDS solutions computed sep-
arately for each group are shown in Fig. 5. It is clear
that the anatomical and functional subdivisions of the
system identified by analysis of the combined data are

FIG. 6. Illustrations of Procrustes analysis. The top panel (a) shows
scaling and translation of all 11 regions in the generic MDS solution for
the patient group. The bottom panel (b) shows the rotation of regions in
the patient configuration (red squares) to coincide as closely as possible
with the position of corresponding regions in the control group config-
uration (black circles). Green circles denote the regional configuration of
the patient group after Procrustean deformation and dashed lines be-
tween green circles and black circles indicate the distances remaining
between the two configurations after deformation. Note that for reasons
of graphic clarity only the rotation of a subset of regions is shown here
and also that these results are represented in 2D, but generalized
Procrustes analysis was actually applied to match two 3D configura-
tions as closely as possible.

FIG. 7. Permutation distribution for residual distance metric m2

summarizing the difference between two generic 3D MDS solutions
after generalized Procrustes analysis. The observed distance be-
tween control and patient group configurations was 0.183, which is
ranked 331 of a total of 1500 values of m2 obtained by random
resampling of the data. The probability of the observed distance by a
permutation test is therefore simply 1-(331/1500) � 0.744.

FIG. 8. Permutation distributions for residual distances between
each brain region in the two generic configurations after generalized
Procrustes analysis. The observed distances are shown as black
circles; the regional abbreviations are as listed in the legend to Fig.
3. The key point is that the observed interregional distance consis-
tently lies within the 95% confidence interval of the mean interre-
gional distance under the null hypothesis.
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reproduced within each group analyzed separately, al-
though the relative ordering is somewhat different. In
controls, the first dimension represents subvocal out-
put/other, the second dimension represents input pro-
cessing/other, and the third dimension represents left/
right. In patients, the first dimension represents input
processing/other, the second dimension represents left/
right, and the third dimension represents subvocal out-
put/other. Bearing in mind that the within-group anal-
yses are necessarily based on numbers of subjects
smaller than those of the combined-group analysis, it is
possible that this apparent difference in rank order of
the dimensions may simply reflect sampling variation
under the null hypothesis. The hypothesis of zero be-
tween-group differences in interregional configura-
tions following 3D MDS is tested more formally below.

Three-Way MDS

The dimensional structure of the generic solutions
for each group separately, and for both groups com-
bined, were estimated by three-way MDS very similar
to the results already described by two-way MDS (data
not shown). The subject weights for each individual on
each dimension were estimated in relation to the ge-
neric configuration estimated using all data, and
weirdness was estimated for each subject by Eq. 3.
Mean weirdness in the group of comparison subjects
was 0.184 (SD � 0.103) and 0.271 in the patient group
(SD � 0.125); for the two-sample t test, � 2.38, df � 37,
two-tailed P � 0.02. There was a modest but significant
positive correlation between age and weirdness over all
subjects: r � 0.105, two-tailed P � 0.04. There were no
significant correlations within the patient group be-
tween weirdness and positive or negative symptom
scores on the PANSS or between weirdness and the
duration of antipsychotic drug treatment. There was
also no difference in weirdness between male and fe-
male comparison subjects.

Procrustes Analysis and Permutation Tests

The steps of mean-centring, standardization, rota-
tion, and dilation that are implicit in Procrustes an-
alysis are illustrated in Fig. 6, which shows the Pro-
crustean deformation of the generic interregional
configuration of the patients to conform as closely as
possible with the generic interregional configuration of
the comparison subjects.

The long-tailed permutation distribution for m2, the
test statistic for an overall difference in two generic
configurations, is shown in Fig. 7. It is clear that the
residual sum of distances between corresponding re-
gions in the two configurations derived from the ob-
served data is of the same order as that expected under
the null hypothesis: one-tailed P � 0.74. Although our
choice of r � 3 was guided by inspection of the stress
curves (Fig. 2), one might wonder if significant be-

tween-group differences in interregional configuration
could be demonstrated in the context of higher dimen-
sional solutions. To test this, we repeated the permu-
tation test with r � 5, but the observed difference
between groups remained highly probable under the
null hypothesis.

The corresponding distributions for each region con-
sidered separately are summarized in Fig. 8. It is clear
that the residual distance between each region in the
two observed configurations is probable under the null
hypothesis: all two-tailed P values were �0.005 (the
threshold value after Bonferroni correction for multi-
ple comparisons).

Another way of visualizing the results of data resa-
mpling in this context is to plot the clouds or swarms of
regional coordinates on each of the first two (or three)
dimensions generated by repeated permutation of the
data after their Procrustean deformation to correspond
as closely as possible to the generic configuration of the
comparison subjects. A 2D example of this plot is
shown in Fig. 9. This indicates that the regional coor-
dinates observed for each of the generic configurations
are generally separated by small residual distances
after Procrustean deformation and that the observed
regional coordinates for both groups generally lie
within the swarm of corresponding regional coordi-
nates generated under the null hypothesis by data
resampling. We have confirmed these results by in-
spection of a 3D version of this plot, but it is difficult to
represent intelligibly in the two dimensions of a
printed page, so these results are not shown here.

FIG. 9. Repeated random resampling of the data, followed by 3D
MDS and generalized Procrustes analysis, generates clouds or
swarms of regional points in low-dimensional space (for graphic
clarity only two dimensions are shown here). The observed regional
coordinates for the control group (black circles) and the patient group
(black squares) after Procrustean matching are also shown in the
same space. It is clear that the residual distances between regions in
the two observed configurations (indicated by black arrows) are not
great and that the observed regional coordinates for both groups
typically lie within the swarm of corresponding regional coordinates
generated by resampling.
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DISCUSSION

There are two main methodological aspects to this
work. First, we have applied the well-established tech-
nique of three-way multidimensional scaling (also
known as individual differences scaling) to the analysis
of groups of functional MRI data. This has allowed us
to define a generic interregional configuration in a low-
dimensional space, with quite readily interpretable di-
mensions in this example, and to quantify the devia-
tion of each individual proximity matrix from the
generic configuration. This may be of general interest
as a way of quantifying the variability of integrated
cognitive function (weirdness) within a group of data,
and here we have shown that the variability of config-
uration is significantly greater in a group of patients
with schizophrenia (than in an age-matched group of
normal comparison subjects) and tends to become
greater with age over all subjects. These observations
suggest that changes in variability of integrated neu-
rocognitive function may be associated with normal
aging as well as the occurrence of neuropsychiatric
disorders.

The other main contribution has been to develop and
apply a permutation test based on generalized Pro-
crustes analysis and MDS that allows an inferential
approach to the question of group differences in func-
tional connectivity between brain regions. This comple-
ments the use of entirely exploratory techniques such
as PCA or cluster analysis and the use of more confir-
matory, model-driven techniques such as path analy-
sis, allowing some probabilistic assessment of between-
group differences in connectivity that is not conditional
on prior specification of a structural model for the
system. Among previously published methods, this
technique is closest to the conjunction of partial least
squares (PLS) and permutation testing proposed by
McIntosh et al. (1996), although an important point of
difference is that PLS can be explicitly informed by the
experimental design whereas MDS is not. This means
that if we wish to use MDS to explore connectivity
between regions activated by an experimental design,
we must use some prior, probably univariate analysis
to define the regional components constituting the ac-
tivated system, as we have done here.

The question of which multivariate technique to ap-
ply in the connectivity analysis of functional MRI data
therefore depends largely on how much the investiga-
tor already knows or is prepared to assume about the
system under investigation. A related criterion is
whether the investigator is aiming to explore in an
open-minded way the set of regional relationships that
define the system or whether there is a more focused
intent to test a specific hypothesis about it. If one is
prepared to assume only that the components of the
system must be activated experimentally, then PCA or
MDS applied to a set of regions identified by prior

univariate analysis might be appropriate; alterna-
tively, one might apply PLS directly to the data with-
out prior activation mapping. If one wishes to test
hypotheses about behavior of the system, without as-
suming a great deal of prior knowledge about the sys-
tem’s internal architecture, then it might be appropri-
ate to use data resampling or permutation to sample
the null distributions of “exploratory” multivariate sta-
tistics which do not generally have well-established
asymptotic approximations. Finally, if one wishes to
make a set of quite specific assumptions about the
directional interactions between regions in the form of
a path model, then path analysis or structural equation
modeling can be used to test hypotheses probabilisti-
cally. The methods we have proposed here are most
appropriate to the intermediate position of hypothesis
testing in the absence of secure prior knowledge about
the interregional relationships in the system.

The three dimensions of functional space defined by
MDS were interpreted in relation to the anatomical
(left/right) and functional properties of the constituent
regions. The relative proximity of regions in the space
defined by these dimensions implies that they share
important components of response to the experimental
task. To put it another way, we can regard regions that
cosegregate in the space of the first few dimensions as
constituents of important subsystems. The occurrence
of a left–right dimension in all solutions thus implies
that the right and left hemispheres may define sub-
systems of functional activation, which may not be
surprising given the verbal nature of the task and the
considerable evidence for differential specialization of
the left and right brain regions for language process-
ing. If the dimensionality of the solution is constrained
to two, then the next subsystems to be defined would be
frontal and posterior. However, if the number of di-
mensions is increased to three, the unitary frontal–
posterior dimension is replaced by two interesting,
frontally orientated subsystems. We can think of these
as frontally efferent and afferent subsystems, thereby
emphasizing the pivotal role of the frontal cortex in
conscious mediation of this task.

The frontal efferent subsystem comprising SMA, left
inferior parietal lobule, left inferior frontal gyrus, and
left dorsal prefrontal cortex we have suggested may be
functionally specialised for subvocal output, i.e., si-
lently rehearsing the living/nonliving decision de-
manded by each trial of the task. The identification of
this subsytem by MDS is compatible with prior results
of PCA and canonical variates analysis applied to data
acquired under the same experimental conditions from
a different sample (Bullmore et al., 1996) and also with
prior results of path analysis applied to the same group
of control data (Bullmore et al., 2000). Moreover, our
interpretation of this subsystem in relation to the sub-
vocal articulatory demands of the task is congruent
with previous psychological and imaging studies (Val-

1236 WELCHEW ET AL.



lar and Baddeley, 1982; Paulesu et al., 1993; Awh et al.,
1995; Bullmore et al., 2000), suggesting that left dorsal
and ventral prefrontal cortices, inferior parietal lobule,
and SMA may be components of an anatomical circuit
for articulatory rehearsal.

The frontal afferent subsystem comprising SMA, bi-
lateral dorsal prefrontal cortex, left superior temporal
gyrus, and ventral extrastriate cortex we have sug-
gested may be specialized for input processing, i.e.,
reading each word presented and making a semantic
decision about the living or nonliving status of the
object represented by it. This identification is also com-
patible with prior multivariate analysis of these and
other data acquired under identical conditions (Bull-
more et al., 1996, 2000) and with other imaging studies
of reading and semantic analysis (Kapur et al., 1994;
Rumsey et al., 1997).

Although we regard this characterization of two
frontally orientated subsystems as quite straightfor-
ward given prior knowledge (especially of this task), it
is important to be clear that our labeling of these
dimensions in terms of afferent and efferent, input-
and output-specialized subsystems is an act of inter-
pretation. Different investigators approaching these
results from different theoretical or empirical back-
grounds might choose different labels for these dimen-
sions, and it will ultimately require MDS or other
connectivity analysis of several experiments sharing
some component process, e.g., articulatory rehearsal,
to consolidate (or not) the associations between psycho-
logical process and integrated brain function that we
have suggested. In any case, the precise interpretation
of the dimensions is not critical to the use of these
methods to investigate possible between-group differ-
ences in functional connectivity.

It is interesting that we found no evidence of signif-
icant functional dysconnectivity “on average” in the
schizophrenic patient group. There have been several
prior analyses suggesting abnormal fronto-temporal
functional connectivity in schizophrenia (Fletcher et
al., 1999; Meyer-Lindenberg et al., 2001). Path analy-
sis has been used to identify significant differences
between schizophrenic patients and comparison sub-
jects in effective connections between brain regions
(Jennings et al., 1998). There is also some inferential
analysis in support of abnormal anatomical connectiv-
ity in schizophrenia (Wright et al., 1999; Bullmore et
al., 1997). The conceptual background and other data
in support of the notion that schizophrenia can be
understood as a disconnexion syndrome are reviewed
elsewhere (Friston 1998; Bullmore et al., 1998). In this
context, our results clearly refute the very general
hypothesis that functional connections between all
brain regions are abnormal under all experimental
conditions in schizophrenia; indeed, this general hy-
pothesis has previously been refuted by other negative
functional imaging studies (Spence et al., 2000).

The following question therefore arises: What ac-
counts for variability in the detection of functional
dysconnectivity in schizophrenia? Several possible ex-
planations have already been proposed. First, it must
be considered likely that dysconnectivity is anatomi-
cally restricted, rather than ubiquitous, with certain
cortico-cortical and cortico-subcortical connections be-
ing particularly vulnerable to disruption in schizophre-
nia. Probably the strongest evidence to date has high-
lighted dysconnectivity between the frontal and lateral
temporal cortices (Frith et al., 1995), between the fron-
tal cortex and the hippocampus (Weinberger et al.,
1992; Meyer-Lindenberg et al., 2001), in fronto-striato-
thalamic circuits (Robbins, 1990), and in fronto-
thalamo-cerebellar circuits (Andreasen et al., 1998).
The particular task we have used here activates pre-
dominantly frontal, occipital, and parietal regions, and
therefore it may be that the functional configuration of
the regional components of the system appears normal
because fronto-parietal and fronto-occipital connec-
tions in particular are spared by whatever pathological
process is responsible for dysconnectivity in other
brain systems in schizophrenia. In short, we might
argue that functional dysconnectivity is task depen-
dent, and this conclusion would be compatible with
previous results showing the task dependency of hypo-
frontality and other functional abnormalities in schizo-
phrenia (Curtis et al., 1999).

The main alternative position is that dysconnectivity
is dependent on the characteristics of the sample of
patients studied; i.e., not all patients with a diagnosis
of schizophrenia will be equally likely to express func-
tional dysconnectivity under the same experimental
conditions. The strongest evidence in support of this
view to date is that patients scanned during a task
(overt verbal fluency) which normally elicits strong
fronto-temporal connectivity may or may not demon-
strate functional dysconnectivity in the fronto-tempo-
ral axis depending on their symptom state—more pos-
itively symptomatic patients being more functionally
dysconnected (Spence et al., 2000). We could demon-
strate no comparable association between the salience
of positive or negative symptoms of psychosis and the
variability of interregional configurations within the
patient group. However, we did find evidence for sig-
nificantly greater variability of integrated brain func-
tion in patients relative to normal comparison subjects,
suggesting that some degree of inconsistency in this
literature may be attributable to abnormal heteroge-
neity of interregional connections in patients with
schizophrenia.
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