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INTRODUCTION 

A well-known virtue of similarity-scaling techniques such as multi­
dimensional scaling, Thurstonian modeling, and clustering is that they reveal 
hidden structure underlying psychological data. By applying these tech­
niques, complex matrixes of similarity data such as similarity ratings, 
identification confusions, and same-different erro,rs can be efficiently de­
scribed, summarized, and displayed, and a deeper insight into the underlying 
basis of the similarity data can be derived. 
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26 NOSOFSKY 

Beyond describing and summarizing data. however, scaling techniques can 
be viewed as psychological models for the mental representation of in­
terobject similarity. In this chapter I review the role of similarity-scaling 
techniques as components in formal psychological models of perceptual and 
cognitive processes. 

Cognitive models are often conceptualized as representation-process pairs 
(e.g. Anderson 1 976). Objects that are perceived or remembered receive 
some internal representation. Various cognitive processes are then assumed to 
act upon that representation. The particular processes that operate are task 
dependent-they will vary depending on whether subjects are asked to dis­
criminate among objects; identify, categorize or recognize them; supply 
similarity ratings; make preference judgments, and so forth. Thus, to un­
derstand performance in tasks involving similarity data we must specify not 
only an underlying similarity representation, but also the cognitive processes 
that act on that representation. 

The beauty of deriving a similarity-scaling representation by modeling 
performanc,e in a given task is that the derived representation can then be used 
to predict performance in independent tasks involving the same objects and 
stimulus conditions (e.g. Cliff 1973; Henley 1969; Hutchinson & Lockhead 
1 977; Monahan & Lockhead 1977). For each task, one needs to specify the 
cognitive processes that are operating, but key aspects of the underlying 
similarity representation may be invariant. Thus, similarity-scaling tech­
niques allow one to characterize how performance across independent tasks is 
related. I believe that the characterization of such invariant relations should be 
one of the central goals of psychological science. 

I also argue that any evaluation of how well a scaling representation 
accounts for similarity data must occur within the framework of formal 
process models. Mispredictions involving a proposed scaling representation 
may reflect inadequacies in the scaling model, but they may also indicate a 
failure to specify adequately the cognitive processes that operate on the 
representation. 

I organize this chapter into two main parts. Part 1 focuses on models 
incorporating deterministic multidimensional scaling (MDS) approaches, Part 
2 on probabilistic MDS approaches. I distinguish between the two as follows: 
In deterministic MDS, each object is represented as a single point in the 
spatial representation, whereas in probabilistic MDS, each object is repre­
sented as a probabilistic distribution of points. (Note that by this definition, 
many deterministic MDS models can still have probabilistic components. 
For example, although each object is represented as a fixed point, the dis­
tance-judgment process itself may be noisy.) Because of space limitations 
I review only spatial models, although the role of discrete-feature and net­
work approaches as components in cognitive process models is of equal 
importance. 
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SIMILARITY SCALING 27 

The last review article on scaling was that of Gescheider (1 988), who also 
emphasized linkages between scaling methods and perceptual and cognitive 
processes. However, Gescheider's ( 1988) review was concerned with classic 
psychophysical tasks involving unidimensional scaling , such as magnitude 
estimation, whereas the present review focuses on multidimensional cognitive 
processes involving similarity data. I do not attempt to match the broad and 
comprehensive reviews on multidimensional scaling provided in the chapters 
by Carroll & Arabie (1980) and Young (1984a) , but rather focus on the 
intersection between similarity scaling and cognitive-process models. 
Ashby's  (1992) edited volume, Multidimensional Models of Perception and 
Cognition, covers more extensively many of the MDS-based models dis­
cussed here. 

DETERMINISTIC MULTIDIMENSIONAL SCALING 
APPROACHES 

Universal Laws of Generalization and Similarity 

A major recent contribution in the use of MDS techniques for understanding 
cognitive processes was Shepard's (1987) "Toward a universal law of 
generalization for psychological science." As argued by Shepard, an organ­
ism's generalization from one situation to another must surely stand among 
the most fundamental psychological processes. The process of generalization 
is often studied within the context of identification learning paradigms. In 
these paradigms, subjects learn to associate a unique response with each 
member of a set of stimuli. Generalization or similarity is measured in terms 
of the probability of interstimulus-confusion errors. A well-known quantita­
tive measure of generalization or similarity between stimuli i and j is given by 

gij = [(Pij . pji)/(Pii . pjj)]1/2, where Pij is the probability that stimulus i is 
identified as stimulus j .  An intuitive justification for this measure is provided 
by Shepard (1958a). The major theoretical justification is that this quantity 
gives an estimate of the similarity parameters in the classic similarity choice 
model (SCM) for predicting identification confusions (Luce 1963; Shepard 
1957). I discuss the SCM extensively in the following section. 

The similarity measures obtained in generalization experiments can be used 
as input to nonmetric multidimensional scaling algorithms, and an MDS 
solution for the stimuli can be derived.  The generalization measures gij can 
then be plotted against the corresponding distances dij between points in the 
derived solution to discover the form of the gradient relating generalization to 
distance in the psychological space. Shepard (1987) presents 12 different 
plots of these derived generalization gradients, the generalization measures 
having been obtained in experiments involving both human and animal 
subjects , and both visual and auditory stimuli . As summarized by Shepard 
(1987:1319), "in every case, the decrease of generalization with psycholog-
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28 NOSOFSKY 

ical distance is monotonic, generally concave upward, and more or less 
approximates a simple exponential decay function . . . .  " 

It is critical to realize that in discovering this exponential law relating 
generalization to psychological distance, Shepard (1987) operates at an entire­
ly psychological level of analysis. Distances between objects are derived by 
using MDS techniques that rely on only the generalization measures them­
selves. "Psychophysics" is not involved, in the sense that no physical 
measurements are ever taken on the stimuli. Indeed, Shepard (1987:1318) 
argues that the invariant law of generalization was "attainable only by 
formulating that law with respect to the appropriate abstract psychological 
space."  

When more than one dimension is  required to describe the similarity 
structure of a set of stimuli , the generalization data also provide information 
about the metric structure of the psychological space . Noting the extensive 
literature on this subject, Shepard (1987) suggests that for stimuli composed 
of relatively unanalyzable , "integral" dimensions , such as colors varying in 
lightness and saturation, the distance structure of psychological space is well 
approximated by the Euclidean metric; whereas for stimuli composed of 
highly analyzable, "separable" dimensions, such as forms varying in size and 
orientation,  the distance structure is generally best approximated by the 
"city-block" metric (see Gamer 1974 and Shepard 1991 for reviews). 

Given these observed regularities in the form of the generalization gradient 
and the metric structure of psychological space, Shepard then proposes a 
cognitive process model to account for the laws. Assume that an experience 
with an object has had some significant consequence for an organism. The 
organism must decide which new objects are enough like the old one that they 
are likely to have the same consequence . A class of objects with the same 
consequence corresponds to a region in the organism's psychological space 
that Shepard terms a consequential region. 

In finding a given object to be consequential, the organism learns that there 
is some consequential region that overlaps the point in psychological space 
corresponding to that object. Probability of generalization to a new object 
would be determined by estimating the conditional probability that the con­
sequential region also overlaps the point corresponding to the second object. 
To determine this conditional probability precisely, one needs information 
concerning the probability that the consequential regions in an organism's  
psychological space are of  given shapes, sizes, and locations, and then needs 
to integrate over the hypothesized forms of the consequential regions. Never­
theless, given remarkably weak assumptions, many justified by evolutionary 
considerations, Shepard (1987) demonstrates that the conditional probability 
of overlap is always well approximated by an exponential decay function of 
the distance between the objects in the psychological space. He concludes, 
"Evidently, the form of [the generalization gradient] is a relatively robust 
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SIMILARITY SCALING 29 

consequence of the probabilistic geometry of consequential regions" (Shepard 
1987:1320). Finally , Shepard's (1987) cognitive process model also provides 
an account of why the Euclidean and city-block metrics closely approximate 
the distance structure for integral-dimension and separable-dimension stimuli, 
respectively. 

CHALLENGES The proposed universal law of generalization has not gone 
unchallenged. Work reported by Nosofsky (1985a,b; 1986, 1989) raised 
questions about the universality of the exponential-decay generalization gra­
dient, although these questions have now been largely resolved (Ennis 1988; 
Ennis et al 1988; Nosofsky 1988b; Shepard 1 986, 1987, 1988). Using es­
sentially the same theoretical approach as described by Shepard (1987) , 
Nosofsky found evidence that in some identification-confusion experiments , 
the plot of similarity against psychological distance was Gaussian in form 
rather than exponential (see also Ashby & Lee 1991). The main difference 

between the experiments conducted by Nosofsky (1985b, 1989) and those 
discussed by Shepard (1987) is that Nosofsky's studies involved protracted 
identification training involving asymptotic performance with highly confus­
able stimuli , whereas the studies considered by Shepard involved identifica­
tion learning of fairly discriminable stimuli. Shepard (1986:60) suggested that 
the Gaussian similarity functions observed by Nosofsky (1985a,b) reflected 
limitations on discrimination performance resulting from "irreducible noise in 
the perceptual/memory system," and not the cognitive form of similarity 
intrinsic to the process of generalization . 

The difference in the situations considered by Shepard (1987) and Nosof­
sky (1985a,b) can be viewed theoretically in the following way. Because of 
noise in the perceptual/memory system, presentation of an object does not 
result in the same internal representation on every trial. Rather, over trials ,  
presentation of  an object gives rise to a probabilistic distribution of  points in 
the observer's psychological space (see the second part of this chapter) . 
Nevertheless, in Shepard's  situations , the distance between thc means of the 
object representations is so great, relative to the variability of these repre­
sentations , that each object can be represented as essentially a single point in 
the psychological space . By contrast ,  in Nosofsky's situations, overlap 
among the alternative object distributions is substantial, so each object should 
really be represented as a distribution of points rather than as a single point. 
As will be seen in the section on probabilistic MDS, Ennis and his colleagues 
have demonstrated that such a model reconciles Shepard's proposed universal 
law of generalization with the findings reported by Nosofsky. 

RELATED WORK Alternative process models to account for the form of the 
generalization gradient have also been proposed. Staddon & Reid (1990) 
proposed a simple neural network model in which activation received by 
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30 NOSOFSKY 

individual units tends, over time, to spread to neighboring units in the 
network. When a given stimulus is presented for a moderate number of 
iterations, the activation gradient that it produces is approximately ex­
ponential in form. But when the stimulus is withdrawn, the diffusion process 
eventually produces a gradient that is Gaussian in form. Shepard ( 1990) notes 
that this neural network model is formally identical to his earlier proposed 
trace-diffusion model of stimulus generalization (Shepard 1 958a). He argues 
that a limitation of both diffusion models is that they fail to predict that with 
continued training, subjects can eventually learn to discriminate perfectly 
between objects that are members of contrasting consequential regions. Shep­
ard & Kannappan ( 1991) present a multi-layered, neural-network embodi­
ment of the 1987 cognitive theory of generalization, which successfully 
predicts the form of the generalization gradient under different conditions of 
discrimination training. Finally, Gluck ( 1991 )  suggests that the configural­
cue adaptive network model proposed by Gluck & Bower ( 1988) produces, in 
discrete-dimension domains, a generalization gradient that approximates the 
exponential. 

In work related to Shepard's, Blough (1988) observed highly regular results 
relating reaction time in visual search tasks to distances in multidimensional 
psychological space. Pigeons were trained to peck at a unique target em­
bedded in a field of identical distractors, and visual search reaction time (RT) 
was measured. The targets and distractors were drawn from fixed stimulus 
sets, such as squares varying in size, and rectangles varying in height and 
width. In most experiments, all possible pairs of forms from each set served 
as targets and distractors across trials, yielding a complete matrix of mean 
RTs, one for each pair of forms. MDS solutions were derived for the forms by 
using these matrixes of mean RTs as input. Blough then plotted the mean RT 
for each pair of forms against their distance (D) in the derived scaling 
solution, and found that for all stimulus sets, the RT gradients were well fitted 
by the function RT - k = c . exp( - b . D), where k, c, and b are estimated 
parameters. Thus, just as occurs for generalization, there is the suggestion of 
lawful relations between visual search speed and psychological distance (see 
also Shepard et al 1975, for reports of lawful relations between discrimination 
RT and psychological distance). 

Identification, Categorization, and Recognition 

The MDS-based models of generalization and identification learning dis­
cussed by Shepard (1987) have been extended to account for categorization 
and recognition performance. Whereas in identification each stimulus is to be 
assigned a unique response, in categorization stimuli are to be classified into 
groups. Recognition refers to a memory experiment in which subjects judge 
whether items are "old" or "new." 
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SIMILARITY SCALING 3 1  

IDENTIFICATION One of the classic models for predicting identification 
performance is the similarity choice model (SCM) proposed by Shepard 
(1957) and Luce ( 1963), whose formal properties have been further in­
vestigated by researchers such as Smith ( 1980, 1982), Townsend (1971 ;  
Townsend & Landon 1982), Nosofsky ( 1985b, 1990), and Takane & Shi­
bayama ( 1985). According to the model, the probability that stimulus i is 
identified as stimulus j is given by 

1. 

where 1/ij (0:5 1/ij, 1/ij == 1/ji) denotes the similarity between stimuli i and j, and 
bj (O:sbj=s 1 ,  �bj = 1 )  is often interpreted as the bias for making response j. 
Although descriptive in nature, a variety of process interpretations for the 
SCM have been proposed (e.g. Marley 1992; Nosofsky 1990; Smith 1980; 
Townsend & Landon 1983). 

The SCM usually provides excellent descriptions of the detailed quantita­
tive structure of identification-confusion matrixes. However, assuming n 
stimuli, fitting the model requires estimation of n(n - 1)/2 freely varying 
similarity parameters (one similarity parameter for each pair of unique stimu­
li), and n - 1 freely varying bias parameters. Furthermore, simply fitting the 
full version of the model provides little insight into the psychological pro­
cesses and similarity structure that underlie identification performance. 

A vast reduction in the number of free parameters and a deeper understand­
ing of identification processes can be achieved by testing and comparing 
restricted versions of the SCM in which theories of similarity are used to 
constrain the 1/ij parameters. One classic approach, initiated in Shepard's 
( 1957, 1958b) original formulation of the model, is to derive an MDS solution 
for the set of stimuli, and assume that the 1/ij parameters are functionally 
related to distances in the derived scaling solution. Systematic comparisons 
among different versions of this MDS-choice model can provide insights into 
the underlying dimensions of the stimuli, the metric structure of the psycho­
logical space, the extent to which values on different dimensions are per­
ceived independently of one another, and so forth. 

As one example, Nosofsky ( 1985b) collected confusion data in which two 
subjects identified stimuli varying along two continuous dimensions (size and 
angle). There were four orthogonally varying values per dimension, yielding 
a 16-member stimulus set (and, therefore, a 256-cell identification-confusion 
matrix). Nosofsky ( 1985b) found that by representing each stimulus as a point 
in a two-dimensional psychological space, computing similarities between 
stimuli on the basis of their distance in the space, and substituting these 
similarities into the SCM response rule (Equation 1 ), excellent predictions of 
the identification-confusion data could be achieved. Indeed, the fits of this 
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32 NOSOFSKY 

MDS-choice model were not significantly worse than those of the full SCM 
for either subject, suggesting that the MDS solution provided a precise 
quantitative account of the similarity structure inherent in each subject's data. 
Moreover, for one of the subjects, a constrained MDS-choice model with only 
six freely varying MDS coordinate parameters accounted for the data es­
sentially as well as the full SCM with 120 freely varying similarity parame­
ters . In this constrained model , all stimuli with a given physical value of angle 
were assumed to have the same psychological value on the angle dimension, 
and likewise for the size dimension. The excellent fits of this constrained 
MDS-choice model provided evidence that the subject perceived the size and 
angle dimensions in a separable manner. Other illustrative applications of the 
MDS-choice model are provided by Shepard (1958b) , Getty et al (1979) , 
Nosofsky (1985a, 1987, 1989), Takane & Shibayama (1985), and Heiser 
(1988) . 

CATEGORIZATION A classic issue in cognitive psychology is whether the 
principles of stimulus generalization and similarity that underlie identification 
performance also underlie categorization performance. Indeed, perhaps the 
most straightforward view of categorization, formalized in what are known 

today as exemplar models (e.g .  Estes 1986; Hintzman 1986; Medin & Schaf­
fer 1 978; Nosofsky 1986) , is that classification of an object is determined by 
how similar it is to the individual members of alternative categories . 

Seminal investigations of this idea were conducted by Shepard et al (1961) 
and Shepard & Chang (1963) . These researchers measured similarities among 
the individual objects in a set in terms of the probability of pairwise con­
fusions in identification learning paradigms. The measured similarities were 
then used to quantitatively predict the difficulty of learning different category 
structures .  Intuitively, if an exemplar-based generalization view is correct, it 
should be easier to learn structures in which within-category similarities 
among objects are large , and between-category similarities are small.  In a 
situation involving relatively unanalyzable, integral-dimension stimuli , Shep­
ard & Chang (1963) found that the difficulty of learning different category 
structures could indeed be predicted well on the basis of pairwise confusions 
in identification learning tasks. But in a situation involving highly analyzable, 
separable-dimension stimuli there were systematic failures of the exemplar­
based generalization hypothesis. Shepard et al (1961)  attributed these failures 
to the intervention of a selective-attention process, in which subjects focused 
attention on those dimensions of the stimuli that were relevant to solving a 
given categorization problem. Such a selective-attention process should be 
particularly efficient for separable-dimension stimuli. 

Nosofsky (1984, 1986) formalized these early ideas involving exemplar­
based generalization and selective attention within an integrated model. This 
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SIMILARITY SCALING 33 

model, which is a generalization of the context model of categorization 
proposed by Medin & Schaffer (1978) , builds directly on the multi­
dimensional scaling-SCM framework discussed in the previous section. 

According to the generalized context model (GCM), the evidence favoring 
Category J given presentation of stimulus i is found by summing the 
(weighted) similarity of stimulus i to all exemplars of Category J, and then 
multiplying by the response bias for Category J. This evidence is then divided 
by the sum of evidences for all categories to predict the conditional probabil­
ity with which stimulus i is classified in Category J: 

P(RJ lSi) = (bJ L Mj 7Iij) / (L bK L Mk 7Iik). 
jECJ K kECK 

2. 

where l1ij denotes the similarity between exemplars i and j; bJ denotes the 
Category J response bias; and Mj denotes the strength with which exemplar j 
is stored in memory. 

The relation between the decision rules in the GCM (Equation 2) and the 
SCM (Equation 1 )  is readily apparent. However, because of the selective­
attention processes discussed by Shepard et al (1961) , Shepard (1964) , Tver­
sky (1977), Garner (1974), Medin & Schaffer (1978) , and others, the l1ij 
similarity parameters in Equations 1 and 2 may be not invariant across the 
identification and categorization paradigms. 

Nosofsky ( 1984, 1 986) adopted the Individual Differences Scaling 
approach to multidimensional scaling (Carroll & Wish 1 974) as a theory for 
explaining attention-based changes in similarities. The distance between ex­
emplars i and j (dij) in a multidimensional psychological space is given by 

3. 

wtIere Xim is the psychological value of exemplar i on dimension m; the value 
of r defines the distance metric (e.g. r = 1 .  city-block; r = 2. Euclidean); and 
Wm (0 ::::; Wm. �wm = 1) is the "attention-weight" given to dimension m. 
Large values of Wm serve to "stretch" the psychological space along dimen­
sion m, and small values of Wm serve to "shrink" the space along that 
dimension. The distance dij is converted to a similarity measure by using the 
function 

7Iij = exp( -c . di/), 4. 

where c is a general sensitivity parameter; and the value of p defines the 
similarity gradient (e.g.  p = 1, exponential; p = 2, Gaussian). 

The general approach to predicting and relating identification and 
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34 NOSOFSKY 

categorization in terms of this multidimensional scaling framework is as 
follows. First, by fitting the MDS-choice model (Equations 1, 3, and 4) to a 
set of identification-confusion data, a maximum-likelihood MDS solution is 
derived for a set of stimuli. This MDS solution can then be used in conjunc­
tion with the GCM (Equations 2, 3, and 4) to predict performance in any 
given categorization paradigm involving the same set of stimuli. Because the 
MDS solution will have been derived from the identification-confusion data, a 
minimum of parameters remain to be estimated for predicting categorization. 
The critical parameters tend to be the weights (wm) in the distance function 
(Equation 3) , which describe the role of the selective attention process in 
modifying similarities across identification and categorization . 

Nosofsky (e .g. 1 984, 1986, 1 987, 1 989 , 1 991c) has demonstrated numer­
ous successful quantitative applications of the GCM, in situations involving 
both integral and separable-dimension stimuli. These demonstrations are 
important because they illustrate that the fundamental processes of identifica­
tion and categorization can be understood within a unified theoretical 
framework, and that precise quantitative predictions of performance in each 
paradigm can be achieved within this framework. Furthermore, the pre­
dictions of categorization are achieved with a minimum of parameter estima­
tion. Finally, the estimated attention-weight parameters vary in psy­
chologically meaningful ways. In particular, Nosofsky (e.g. 1984, 1986, 
1991c) has provided evidence that subjects often distribute attention over 
psychological dimensions so as to nearly optimize their categorization per­
formance-Le. maximize their average percentage of correct categorization 
choices. A variety of mechanistic models have recently been proposed for 
how the attention weights in the GeM may be learned trial by trial (e.g. 
Hurwitz 1990; Kruschke 1990). 

The role of MDS in developing these theoretical relations is critical . Note 
that it is not "similarity" that is invariant across identification and categoriza­
tion; rather, the MDS solution for the stimuli is invariant. Because of the 
selective-attention processes assumed to operate on the scaling representation ,  
similarities among exemplars are systematically modified. 

The MDS-bascd exemplar model accounts successfully for the effects of a 
number of fundamental variables on categorization performance. As one 
example, Nosofsky ( l988c, 1991c) established experimental learning con­
ditions in which the frequency of individual exemplars was manipulated . In 
the GCM, increasing the frequency of an exemplar is assumed to increase its 
"strength" in memory . Exemplar memory-strength is modeled by the Mj 
parameters in Equation 2. Because memory strength combines multi­
plicatively with interexemplar similarity, the GCM predicts an interactive 
effect of frequency and similarity on categorization performance. The in­
teractive effect is observed: Classification accuracy and confidence increase 
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SIMILARITY SCALING 35 

for exemplars that are presented with high frequency, and for items that are 
similar to the high-frequency exemplars. Little effect of frequency occurs for 
items that are dissimilar to the high-frequency exemplars. It is as if the 
high-frequency exemplar acts as a "magnet" in the psychological space, 
drawing nearby objects toward it. 

Alternative models of categorization can also be formulated within an MDS 

framework. According to prototype models, classification is determined by 
the similarity of an item to the central tendency of the distributions of category 
exemplars in the multidimensionally scaled psychological space (e.g .  Nosof­
sky 1987, 1991c; Reed 1972; Shin 1990) . Prototype models tend not to fare as 
well as exemplar models, however, in their quantitative predictions of 
classification performance (see Nosofsky 1992, for a review). 

The fuzzy logical model of perception (FLMP) of Massaro , Oden, and their 
colleagues (e .g.  Massaro 1987; Massaro & Friedman 1990; Oden & Massaro 
1978) can also be construed as an MDS-based prototype model, although here 

the prototype of a category is defined more generally as an "ideal point" in the 
psychological space rather than as the central tendency. In a typical ex­
perimental paradigm for testing the FLMP, the stimuli vary along M ortho­
gonal continuous dimensions, and the subject is required to classify each 
object into one of K categories. According to the model, the probability that 
stimulus i is classified in Category 1 is given by 

P(RJ I S;) = 7)iPJ / � 7)iPK, 5. 

where 7}iPJ denotes the similarity (or "fuzzy logical degree of match") of 
stimulus i to the prototype of Category 1. This similarity is given by the 
multiplicative rule 

6. 

where s(im,1m) denotes the similarity of stimulus i to Prototype 1 on dimension 
m. This interdimensional multiplicative rule for computing similarities be­
tween exemplars was also proposed by Medin & Schaffer (1978) in their 
original formulation of the context model , although they restricted attention to 
binary-valued dimensions . 

The FLMP has accounted impressively for numerous phenomena involving 
forms of information integration in diverse domains (Massaro 1987). In most 
previous applications of the model, however, all the individual s(im,1M) 
values were treated essentially as free parameters . As noted by Nosofsky 
(1984, 1986), the multiplicative similarity rule (Equation 6) has a natural 
MDS interpretation that would allow for a much more parsimonious applica­
tion of the FLMP. In particular, an interdimensional multiplicative rule arises 
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whenever p = r in Equations 3 and 4. For example, when distance in 
psychological space is described by a city-block metric (r = 1 ) ,  and similarity 
is an exponential decay function of psychological distance (p = 1 ), then we 
would have 

l1iPJ = exp [-c (� Wm I Xim-XJm 1)1 
= Il exp (-C' Wm I Xim-XJm I), 7. 

which is Equation 6 with s(im,Jm) = exp( - c . Wm 1 Xim-XJm I). Thus, by 
deriving in independent tasks similarity-scaling solutions for the objects under 
study, the FLMP could be applied to predict categorization with a minimum 
of parameter estimation . 

Recently, Anderson ( 1990) proposed a rational model of categorization .  
According to the rational model, exemplars are grouped into clusters during 
the category learning process . The probability that an exemplar joins a cluster 
is determined jointly by the current size of each cluster, the similarity of the 
exemplar to the cluster's central tendency, and the value of a "coupling" 
parameter, which is a free parameter in the model . There are also mechanisms 
in the model for determining the probability that membership in each cluster 
signals a given category label . Roughly, the probability that stimulus i is 
classified in Category J is found by summing the similarity of i to each 
cluster's central tendency,  weighted by the category-label J probability 
associated with the cluster. Similarity to the central tendency of each cluster is 
computed by using a multiplicative-similarity rule that is isomorphic to the 
one assumed in the context model and the FLMP. With the addition of some 
technical assumptions, Nosofsky (1991a) proved that in domains involving 
binary-valued dimensions , the rational model generalizes both the context 
model and the FLMP. Intuitively, when the value of the coupling parameter is 
zero, each exemplar forms its own cluster, and the rational model becomes 
the context model . By contrast,  when the value of the coupling parameter is 
unity, the clusters that are formed correspond to prototypes for each of the 
experimentally defined categories,  and the rational model is essentially the 
FLMP. For intermediate values of the coupling parameter, the rational model 
functions as a mUltiple-prototype model. A natural direction of future research 
will involve the use of MDS techniques in conjunction with the rational 
model, as I have described previously for the context model and the FLMP. 

RECOGNITION The MDS-based exemplar model (the GCM) has also been 
used to model old-new recognition memory performance (Nosofsky 1988a, 
1991c; Nosofsky et al 1989) . Following previous investigators (e.g .  Gillund 
& Shiffrin 1 984; Hintzman 1986), Nosofsky made the central assumption that 
recognition judgments are based on the overall summed similarity of an item 
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to all exemplars stored in memory. This summed similarity gives a measure of 
overall "familiarity ," with higher familiarity values leading to higher recogni­
tion probabilities. Specifically, the familiarity for item i (F;) is given by 

8. 

where the Mk and 1Jik parameters are defined as before (see Equation 2), and 
the sum is over all exemplars stored in memory. Nosofsky ( l991c) demon­
strated that by deriving MDS solutions for sets of objects, and using these 
MDS solutions in conjunction with the model (Equations 3, 4, and 8) , 
fine-grained differences in old-new recognition judgments could be predicted 
on the basis of fine-grained differences in similarities among items. 

Note that categorization and recognition are presumed to involve different 
decision rules. According to the exemplar model, categorization decisions 
involve a relative-similarity rule (Equation 2), whereas recognition decisions 
involve an absolute-similarity rule (Equation 8) . Thus, the exemplar model 
can predict markedly different patterns of performance across the two tasks, 
as are often observed. However, a unified account of categorization and 
recognition is provided by the model in the sense that both judgments are 
assumed to be based on the similarity of an item to the exemplars in a 
multidimensionally scaled psychological space. 

Same-Different Judgments and Reaction Time 
Takane & Sergent (1983) and Sergent & Takane (1987) proposed and tested a 
scaling-based process model for jointly characterizing accuracy and reaction 
time data in "same-different" judgment tasks. The model has three main 
components. The representation component specifies the function used to 
compute distances among objects in a psychological space. Takane & Sergent 
assume that error is introduced into these distance judgments. The error 
component of their model specifies the nature of the error perturbations 
operating on the distances. The distribution of error perturbations is assumed 
to be log-nornlal in form, with variance that increases as the true distance 
increases. [This assumption is the same as the one used by Ramsay ( 1977) in 
his maximum-likelihood method for scaling similarity judgments. ]  Finally, 
the response component of their model relates observed reaction times and 
same-different judgments to the error-perturbed distances. If the judged dis­
tance exceeds a threshold then a "different" response is made, else a "same" 
response is made. Based on the log-normal assumption for the distribution of 
errors, the log of the distribution of "different" reaction times for each 
stimulus pair is assumed to be normal in form, with a mean that decreases 
linearly with the difference between the (log) distance and (log) threshold. 
Thus, "different" RTs get faster as stimuli become more dissimilar. By 
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contrast, the distribution of "same" RTs is assumed to have a mean that 
increases with the difference between (log) distance and (log) threshold, 
reflecting Podgorny & Gamer's (1979) finding that "same" RT increases as 
stimuli become more dissimilar. 

Using maximum-likelihood methods, Sergent & Takane (1987) fitted the 
model to same-different data obtained for a variety of stimulus sets. One of 
the central purposes of their study was to gain "information about similarity 
structure of stimulus sets as they actually emerge under conditions of speeded 
judgment process" (Sergent & Takane 1987:312) . The argument is that 
similarity structure and the nature of dimensional interactions may be func­
tions not only of stimulus characteristics,  but also of perceptual processes. 
Similarity relations among objects may differ depending on whether the 
objects are processed under speeded or unspeeded conditions. Indeed, Sergent 
& Takane (1987) found that under their process-limited conditions, the 
best-fitting distance metric for a set of separable-dimension stimuli (circles 
varying in size, and in the orientation of a radial line) was Euclidean rather 
than city-block, in contrast to the usual finding obtained under process­
unlimited conditions (for similar evidence, see Nosofsky 1985b) . 

Cognitive Processes and the Metric Axioms 

In their well-known and elegant work, Tversky and his colleagues have called 
into question the psychological validity of the fundamental metric axioms 
underlying traditional MDS approaches (e.g . Gati & Tversky 1982; Tversky 
1977; Tversky & Gati 1982) . Using an extensive array of similarity data, 
including direct judgments and recognition confusions, Tversky's dem­
onstrations suggest, for example , that similarities can be asymmetric, that 
stimuli can have differing degrees of self-similarity, and that similarity data 
often entail violations of the triangle inequality. As an alternative to spatial 
MDS models, Tversky (1977) proposed a set-theoretic model of similarity 
based on feature matching, which has been extremely influential and widely 
used, and which can account for the patterns of similarity data noted above. 

I believe that some of the force of Tversky's demonstrations is diminished, 
however, when MDS representations are viewed as components of cognitive 
process models. As I have argued previously , observed behavior reflects only 
indirectly the underlying similarity representation. Process models that in­
corporate symmetric-similarity representations can predict asymmetric pat­
terns of proximity data. A straightforward example involves identification­
confusion data, which are often highly asymmetric (e.g .  the probability of 
identifying object i as object j may be far greater than the probability of 
identifying object j as object i). Despite these asymmetries, the symmetric­
similarity SCM usually accounts accurately for the structure of identification­
confusion matrixes. It accounts for the asymmetries by virtue of the bias 
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parameters in the model (Luce 1963; Shepard 1957), as well as the nature of 
the decision rule itself (e.g .  see Getty et al 1979).  

A very general reason why similarity data are often asymmetric may be that 
in addition to the role of pairwise similarities, properties of individual objects 
play a fundamental role in cognitive processes . For example, suppose that in a 
categorization experiment a particular exemplar is presented with high fre­
quency. According to the GCM, the exemplar receives a strong memory 
representation, and the strength with which that individual item is stored in 
memory plays a fundamental role in subsequent classification. According to 
the model, a strong item is activated by a weak item far more than the weak 
item is activated by the strong, leading to asymmetries in classification 
behavior. 

Holman (1979) presented a series of hierarchically organized models for 
describing asymmetric proximity data. These models incorporate a sym­
metric-similarity function together with individual item bias functions. "Bias" 

is defined very generally as a property associated with an individual object. 
According to one of the stronger models he presents, the proximity of i to j 
[p(i,j)] is given by 

p(i.j) = F[s(i,j) + r(i) + c(j»), 9. 

where s(i,j) is the symmetric similarity between i and j, rei) is the "row" bias 
for item i (the "subject" of the object pair), c(j) is the "column" bias for item j 
(the "referent" of the object pair), and F is an increasing function. In general, 
we have p(i,j) > p(j,i) whenever r(i) + c(j) > r(j) + c(i). Various models that 
have successfully accounted for asymmetric proximities are special cases of 
this "additive similarity and bias model," including the additive version of 
Tversky's (1977) feature-contrast model, Krumhans1' s  (1978) distance­
density model, and the SCM for predicting identification confusions. Car­
roll's (1976) hybrid model, which combines spatial and hierarchical com­
ponents, is a symmetric special case of Equation 9. Nosofsky (1991b) reviews 
a wide variety of phenomena involving asymmetric proximities that appear to 
be readily interpretable in terms of symmetric similarities together with 
individual item biases, as described by Holman's (1979) model. [It should be 
noted in this section, however, that in tests of Krumhansl's (1978) model, 
Corter ( 1987) conducted a series of experimental manipulations involving 
stimulus density, but failed to observe effects of this variable on similarity 
judgments. ]  

Self-proximities are also bound to be influenced by  properties of  the 
individual objects . For example, in a same-different judgment task, it should 
take more time to respond "same" for a complex object than for a simple one. 
In their modeling of same-different judgments, Takane & Sergent (1983) 
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discuss a representation based on Equation 9 in which the bias terms are 
assumed to reflect stimulus complexity. 

Another diagnostic used to question the psychological validity of MDS 
models is nearest-neighbor analysis of proximity data (Tversky & Hutchinson 
1986).

· 
Low-dimensional spatial solutions are unable to account for patterns of 

proximity data in which a single item is the nearest neighbor (most proximal) 
to many other items in the set. Such data arise frequently in semantic domains 
that include a single focal element such as the superordinate of a category. 
However, as noted by Tversky & Hutchinson (1986) , by augmenting the 
spatial representation with individual item-bias components to model the 
hierarchical structure of the set, one can readily account for such pattems of 
proximity data. One interpretation is that above and beyond "similarity," 
properties of individual objects play a fundamental role in cognitive pro­
cesses. 

According to the triangle inequality, for any three points a, b ,  and c, the 
psychological distance from a to c must be less than or equal to the sum of the 
distances from a to b and b to c. Although the triangle inequality cannot be 
tested directly on the basis of ordinal data, in a clever experimental design 
Tversky & Gati (1982) were able to infer systematic violations of the triangle 
inequality. These violations occurred in situations involving highly sepa­
rable--dimension stimuli, in which objects a and b coincided on one dimen­
sion, and b and c coincided on a second dimension. Tversky & Gati provided 
corroborating evidence of these qualitative violations in a series of MDS 
analyses that showed that a value of r < I in the Minkowski power model 
(Equation 3) yielded a best fit to the similarity data. A process-interpretation 
for r < 1 is that, in making their similarity judgments , subjects systematically 
give greater attention weight to those dimensions along which stimuli are 
more similar (Tversky & Gati 1982: 150) . This process interpretation is 
consistent with Sjoberg & Thorslund's (1979) suggestion that, in making 
similarity judgments , subjects carry out an active search for the ways stimuli 
are similar. 

Summary 
In the first part of this chapter I discussed MDS-based models for predicting a 
variety of performances, including generalization, identification, categoriza­
tion, recognition, same-different accuracy and reaction time, and similarity 
judgment. The MDS-based similarity representation is a fundamental com­
ponent of these models. In the case of categorization, for example, it is 
important to specify whether the representation consists of a prototype, 
multiple prototypes, individual exemplars, and so forth. Furthermore, to 
apply the models, the representational objects must be located as points in the 
psychological scaling solution. But a complete account of performance in 
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each task also requires specificat�on of the cognitive processes that operate on 
the similarity representation.-Some of the critical processes that were dis­
cussed were the nature of the decision rule, the role of selective attention in 
modifying the structure of the psychological space, and the influence of 
individual item properties such as memory strength. Testing the process 
models and deriving the scaling representations are mutually dependent, and 
one cannot proceed without the other. 

Even after specifying the processing mechanisms, however, a potential 
shortcoming of all the models just reviewed is that they involve deterministic 
scaling representations, in which each object is represented as a single point in 
the psychological space. More general cognitive-process models make use of 
probabilistic scaling representations, which I review in the second part of this 
chapter. 

PROBABILISTIC MULTIDIMENSIONAL SCALING 
APPROACHES 

Probabilistic MDS models represent individual objects as probabilistic distri­
butions of points in a multidimensional space, an extension of Thurstone's 
(1927a) classic framework for scaling unidimensional psychological magni­
tudes. As in deterministic models, presentation of an object is assumed to give 
rise to some internal representation. Because of noise in the system, however, 
the same internal representation is not yielded on every trial. Rather, across 
trials, presentation of an object gives rise to a probabilistic distribution of 
internal representations. Conceptually, such probabilistic representations are 
necessary in situations in which there is a good deal of noise in the perceptual 
processing system. Also, probabilistic models are needed for situations in 
which there is uncertainty in subjects' memory for the previously presented 
objects, as might occur because of diffusion of memory traces over time. 

Each of the deterministic MDS models discussed in Part 1 of this chapter 
can be generalized by allowing the single-point representations of the objects 
to become probabilistic in nature. In addition, once one allows probabilistic 
representations, a variety of new process models suggest themselves. In the 
following, I focus primarily on these new models. 

Probabilistic Scaling of Distance Judgments 
Zinnes & MacKay (1983) developed maximum-likelihood procedures to 
obtain estimates of the parameters in the Hefner (1958) model . In this model, 
each object is represented as an n-dimensional random-vector, where the 
values on each dimension have been drawn at random from independent 
normal distributions of equal variance. Thus, each object is characterized on 
each dimension by a location parameter (the mean of the distribution) and a 
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variability parameter. Although a given stimulus is assumed to have the same 
variance on each dimension, the variance associated with different stimuli can 
be unequal . When the model is applied at the level of individual subjects, one 
interpretation of the variance parameter is that it represents the subject's level 
of unfamiliarity with, or uncertainty about, the nature of the stimulus. 

Because each stimulus has the same variance on each of its dimensions, the 
Hefner ( 1 958) model is isotropic, in the sense that there are no dominant 
directions in the space. MacKay ( 1989) generalized the model to allow each 
stimulus to have different variances on each of its dimensions, yielding an 
anisotropic model. In addition, he allowed the coordinates of each stimulus to 
be correlated. Techniques for obtaining maximum-likelihood estimates of the 
parameters were proposed and tested. 

It is assumed in these models that in judging the distance between objects i 
and j ,  a point from each of the object distributions is randomly and in­
dependently sampled, and the Euclidean distance between the points is com­
puted. This momentary distance, dij , is a random variable, and is conceptually 
distinct from the distance between the means of the object distributions (Dij),  
which Zinnes & MacKay (1983) term the "true" distance . The expected value 
of dij , E(djj) , also differs from the true distance Dij . Indeed, even if Dij is zero, 
E(dij) will become indefinitely large as the variance of the object distributions 
approaches infinity . 

Thus, in the Hefner model, the expected distance between objects is not 
related to the "true" distance in a simple, monotonic way. This property of 
nonmonotonicity can lead to highly pathological solutions if a deterministic 
MDS algorithm is used to analyze data generated from a probabilistic MDS 
process. As one example, Zinnes & MacKay (1983) constructed a configura­
tion in which the objects were positioned along an inner and an outer 
hexagon, the variances of the points forming the inner hexagon being larger 
than those forming the outer hexagon. Simulated distance judgments were 
then used as input to a nonmetric (deterministic) scaling program and to the 
maximum-likelihood (ML) procedure developed by Zinnes & MacKay. The 
ML procedure accurately recovered the true configuration, but the determinis­
tic model actually interchanged the positions of the inner and outer hexagons. 
The reason is that the expected value of the interpoint distances strongly 
reflected the large variances of the inner hexagon stimuli, so the deterministic 
program incorrectly "perceived" the inner hexagon to be large. 

In general, by fitting alternative restricted versions of the general anisotro­
pic model to sets of distance judgments, and systematically comparing the 
fits, one can statistically test hypotheses concerning the dimensionality of the 
space, the values of the coordinates, whether the space is isotropic or ani­
sotropic, and whether individual stimuli have common variance-covariance 
structures. 
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SIMILARITY SCALING 43 

The general recognition theory (GRT) of Ashby, Townsend, and their associ­
ates (e.g .  Ashby & Perrin 1 988; Ashby & Townsend 1 986; Kadlec & Town­
send 1992) is a multidimensional generalization of signal detection theory 
(Green & Swets 1 966) and of Thurstone's ( 1927b) law of categorical judg­
ment. Besides assuming probabilistic internal representations , the critical 
assumption in this theory is that the observer establishes decision boundaries 
to partition the psychological space into response regions. Any internal 
representation or "perceptual effect" falling in Region A would lead to an A 
response . Most applications of the GRT have assumed that the perceptual 
effects are distributed as multivariate normal random variables, an assumption 
that I make in the following discussion. 

FUNDAMENTAL CONSTRUCTS Ashby & Townsend ( 1 986) discuss a variety 
of fundamental constructs and their interrelations within the framework of the 
GRT. For simplicity , imagine a complete identification experiment in which 
there are two physically manipulated dimensions, A and B ,  with r levels on 
dimension A and q levels on dimension B that are factorially combined. 
Assume further that the psychological dimensions along which the objects are 
represented correspond to the physically manipulated dimensions. Thus, over 
trials, each stimulus gives rise to a bivariate normal distribution. On each trial 
the subject is required to identify the level on each dimension of the presented 
stimulus (or provide an informationally equivalent response). 

Perceptual independence for a pair of dimensions in a particular stimulus 
holds if the perceptual effects of the two dimensions are statistically in­
dependent, which, for the bivariate normal distribution, occurs if there is zero 
correlation between the perceptual effects on each dimension. Note that 
perceptual independence is a property of an individual stimulus. 

Perceptual separability holds if, across stimuli , the perceptual effects of a 
given level of one dimension do not depend on the level of the other 
dimension. Consider, for example, the set of stimuli AiBj constructed from 
dimension A at level i and dimension B at level j .  Dimension A would be 
perceptually separable from dimension B if, for each i, the perceptual effects 
of Ai do not depend on the level of B .  In the case of the normal distribution, 
this property holds if, for each i ,  the stimuli AiB " AiB2, . . .  , AiBq have the 
same mean and variance on dimension A. Note that dimension A can be 
perceptually separable from dimension B without the converse relation hold­
ing. Also, whereas perceptual independence is a property pertaining to an 
individual stimulus, perceptual separability is a property pertaining to a set of 
stimuli . 

Decisional separability on dimension A holds if a subject' s  decision about 
the level of dimension A does not depend on the value of the perceptual effect 
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associated with dimension B .  This property holds if the subject's decision 
boundaries are perpendicular to the Dimension A coordinate axis (or, 
equivalently, parallel to the Dimension B axis) . As is the case for perceptual 
separability , note that decisional separability can hold on Dimension A 
without holding on Dimension B ,  and vice versa. 

Perceptual independence, perceptual separability, and decisional separabil­
ity are all logically independent from one another. However, Ashby & 
Townsend ( 1986) and Kadlec & Townsend ( 1992) prove a number of fun­
damental theorems that allow the constructs to be interrelatec by means of 
observable response probabilities in an identification experiment. For ex­
ample, in an identification experiment with two levels on each of the two 
dimensions, sampling independence in stimulus AiBj holds if the probability 
of A2 and B2 both being reported given presentation of stimulus AiBj is equal 
to the product of the individual probabilities of A2 being reported and B2 
being reported (given stimulus AiBj). Ashby & Townsend (1986) prove that if 
decisional separability holds on both dimensions , then sampling in­
dependence is equivalent to perceptual independence. This simple example is 
intended to give only a flavor of the rich web of interrelated concepts that the 
GRT provides for investigating the structure of subjects' internal representa­
tions of multidimensional stimuli. Other methods for investigating the proper­
ties of perceptual independence, perceptual separability, and decisional sepa­
rability are discussed and illustrated by Ashby ( 1988) and Wickens & Olzak 
( 1989) . 

MODELS OF CLASSIFICATION The GRT provides a powerful and flexible 
language for expressing numerous different models of stimulus classification. 
These models differ in terms of the types of decision boundaries that the 
subject uses for partitioning the multidimensional space into response regions. 

Ashby & Gott (1988) distinguish between independent-decisions boundar­
ies and several types of information-integration boundaries (cf Shaw 1982). 
Imagine, for example, that there are two categories, A and B, composed of 
objects varying on two dimensions. Both categories of objects are distributed 
as bivariate normal random variables, with members of Category A tending to 
have low values on both of dimensions 1 and 2 ,  and members of Category B 
having high values on both dimensions. According to an independent­
decisions model, the subject would establish a separate criterion on each 
dimension for partitioning low versus high values. Given presentation of a 
stimulus ,  separate decisions would be made about its value on each dimen­
sion, and these decisions would then be combined in making a response. 
"Low-low" decisions would result in a Category A response and high-high 
decisions would result in a Category B response.  Low-high and high-low 
decisions provide ambiguous information, so the subject would be forced to 
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guess. In terms of the GRT, this decision strategy corresponds to establishing 
two orthogonal boundaries that are parallel to the coordinate axes (i .e .  
decisional separability holds on both dimensions) . Percepts falling in the 
lower-left quadrant would be classified in Category A, whereas percepts 
falling in the upper-right quadrant would be classified in Category B .  Percepts 
falling in the remaining two quadrants provide ambiguous information and the 
subject must guess. 

By contrast, according to information-integration models, subjects are able 
to combine information from both dimensions into an integrated percept, and 
a single decision is then made with regard to that integrated information. 
Ashby & Gott (1988) discuss a variety of information-integration models in 
terms of the types of decision boundaries they entail. A minimum distance 
boundary is a linear boundary that bisects and is perpendicular to the segment 
that connects the central tendencies (prototypes) of Categories A and B.  
Minimum distance bounds arise when classification decisions are based on 
distance to the prototype: If the percept is closer to the prototype of Category 
A, then respond A; else respond B .  General linear boundaries generalize 
minimum distance bounds by allowing the slope and y-intercept of the linear 
boundary to be free parameters. These boundaries can be interpreted in terms 
of a (biased) prototype model in which differential weight is given to each 
dimension in calculating distance. Optimal boundaries (that maximize pro­
bability of correct classification) are those in which the subject computes the 
overall likelihood of the percept coming from Category distribution A or B ,  
and responds with the category with greater likelihood. There are close formal 
relations between these optimal likelihood-based boundaries and the decision 
boundaries that are predicted by certain types of exemplar storage models 
(Estes 1986; Nosofsky 1990) . 

Ashby & Gott (1988) and Ashby & Maddox ( 1990, 1992) have conducted a 
number of experimental studies to investigate the types of decision boundaries 
that subjects adopt. Using a procedure known as the general recognition 
randomization technique, which involves the systematic addition of multi­
variate external noise to the prototypes of each category, they have obtained 
convincing evidence that in their paradigm: 1 .  subjects adopt information­
integration strategies rather than independent-decisions strategies (Ashby & 
Gott 1988), even if the underlying perceptual dimensions are highly separable 
in nature (Ashby & Maddox 1990); 2. if given sufficient motivation and 
training, subjects can adopt decision boundaries that are highly nonlinear, and 
sometimes close to optimal (Ashby & Maddox 1992); and 3 .  rather than using 
probabilistic decision rules, subjects use decision rules that are deterministic 
in nature (or close to it). The latter finding means that each percept in the 
psychological space has an associated category response probability that is 
essentially 0 or 1, in contrast to the predictions of models that postulate 
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competing response tendencies such as Nosofsky's  (1986) GeM. Finally, in 
recent work, Ashby & Lee (1991) demonstrated successful applications in 
which versions of the GRT perfonned as well or better than the SCM and 
GCM at predicting identification and categorization data. These applications 
were in standard designs that did not involve the introduction of external 
noise. 

SIMILARITY Ashby & Perrin (1988) proposed to model similarity judg­
ments in terms of the GRT by assuming that the judged similarity of A to B is 
related to the proportion of the A distribution that overlaps the B response 
region. A virtue of the model is that it contains the general Euclidean scaling 
model (Young 1984b) as a special case. For example, in the GRT, differential 
weighting of dimensions corresponds to differential variances of the distribu­
tions of perceptual effects, and oblique dimensions correspond to dependen­
cies (correlations) in the distributions of perceptual effects. Unlike the general 
Euclidean scaling model, however, the GRT similarity model is not con­
strained by the metric axioms. Ashby & Perrin ( 1 988) demonstrated support 
for the model by conducting an experiment in which distance between the 
prototypes of distributions A and B was held constant, but overlap between 
the A and B distributions was varied across conditions. Overall similarity 
judgments were observed to increase as the proportion of overlap increased. 

In my view, this application of the GRT seems reasonable as a model of the 
similarity between categories, or as a model of similarity between objects 
with substantial variability. But in numerous experimental situations, one 
judges the similarity between pairs of individual objects with essentially no 
psychological variability. The applicability of the GRT similarity model in 
these situations seems more limited. Another interesting challenge for the 
model would be to explain the exponential gradient of similarity discussed by 
Shepard ( 1 987), as well as why the metric of psychological space depends 
systematically on the types of dimensions that compose the stimuli. 

COMPARING THE GCM AND THE GRT Because the GeM and the GRT are 
two MDS-based models that have been applied rigorously in recent years to 
relate similarity, identification, and categorization data, it is of some interest 
to compare and contrast them. First, in the GCM, each object is represented 
as a single point in psychological space, whereas the GRT represents each 
object as a probabilistic distribution of points . In situations involving sub­
stantial perceptual or memorial variability, the single-point assumption of the 
GeM clearly needs to be modified. Second, the GeM assumes a probabilistic 
decision rule, whereas the GRT incorporates a deterministic decision rule. 
Ashby & Gott ( 1988) provided convincing evidence of the use of detenninis­
tic decision rules in experiments involving the recognition randomization 
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technique, but the generalizability of these results to more standard designs is 
open to question. It may well be that the use of probabilistic versus de­
terministic decision rules depends on the experimental situation. 

The most fundamental difference between the GCM and the GRT concerns 
the presumed nature of the category representation. In the GCM it is assumed 
that people classify items on the basis of their summed similarity to the 
exemplars of alternative categories .  By contrast, in the GRT, it is assumed 
that people form "decision boundaries" to partition the multidimensional 
space into response regions . The ORr should be viewed as providing a 
general and powerful language for expressing alternative models of classifica­
tion. To use the GRT to predict classification probabilities, one needs to 
specify the types of decision boundaries that the subject uses to partition the 
multidimensional space . In recent work, Ashby & Maddox (1992) propose 
that subjects adopt quadratic bounds, which is the form that likelihood-ratio 
bounds take when the category distributions are normal in form. They have 
also discussed (mainly as foils) independent-decisions bounds , minimum 
distance bounds, general linear bounds, and bilinear bounds . My vicw is that 
each different type of boundary that is assumed constitutes an alternative 
model of classification. An infinite variety of such models is available within 
the general framework provided by the ORT. Indeed, one could formulate an 
exemplar-similarity model in its framework by assuming an exemplar­
similarity boundary: The decision rule is to classify a percept into Category A 
if its summed similarity to the Category A exemplars exceeds its summed 
similarity to the Category B exemplars , else classify it in Category B .  Thus, 
with modifications in some of the technical differences noted above, the 
exemplar-based GeM can be expressed within the language of the GRT. 

Multivariate Discrimination Methods 

Ennis, Mullen, and their colleagues (e.g . Ennis 1988, 1992; Ennis & Mullen 
1986; Ennis et al 1988; Mullen & Ennis 1987 have developed a number of 
multivariate models for discrimination and grouping methoqs, such as the 
duo-trio method and the triangular method . They have also extended these 
models to account for same-different judgments and identification perfor­
mance. Among other things, Ennis (1988; Ennis et al 1988) showed how 
these models could be used to reconcile Nosofsky's  (1985a,b) observations of 
a Gaussian similarity gradient with Shepard's (1987) proposed universal law 
of generalization. 

I illustrate the nature of the discrimination modelling by reviewing Ennis & 
Mullen's (1986) multivariate Euclidean model for the triangular method. In 
the triangular method, the subject is instructed to select out of three stimuli 
(two sampled from one stimulus distribution and one from another) the 
stimulus that is perceptually different from the other two. In the Ennis & 
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Mullen ( 1986) model , each stimulus distribution is assumed to be multivariate 
normal in form. The stimuli sampled from each distribution are assumed to be 
mutually independently distributed. The decision rule is to group together the 
two stimuli that are the shortest Euclidean distance apart. A correct response 
occurs if these shortest-distance stimuli were the ones that were sampled from 
the same distribution. 

Ennis & Mullen ( 1986) developed a mathematical formulation of the 
triangular-method model for the bivariate case, and used Monte Carlo sim­
ulations to evaluate the more general multivariate model. Of most general 
conceptual importance regarding their findings was that discrimination per­
formance is not a function solely of the distance between the means of the 
stimulus distributions, but depends critically on such characteristics of the 
distributions as their dimensionality, correlation structure, relative orienta­
tion, and variances. 

In an extension of these methods to account for same-different judgments, 
similarity, and identification, Ennis ( 1988, 1992; Ennis et al 1988) combined 
assumptions about the stochastic, multivariate representation of the stimulus 
objects with the kinds of distance-based similarity judgments assumed in the 
models of Shepard ( 1 957,  1987) and Nosofsky ( 1986). Assume that a pair of 
stimuli has been presented and the subject must judge whether they are the 
"same" or "different." As described previously, it is assumed that each 
stimulus gives rise to a momentary psychological representation (i . e .  a point) 
in the perceptual space. The distance (d) between these points is computed by 
using the Minkowski power model, and the similarity between the objects is 
then given by g(d) = exp (-dj,  where a > 0 (cf Nosofsky 1986; Shepard 
1957 , 1987). In one version of the same-different model, Ennis et al ( 1988) 
take g(d) to be the (unbiased) probability that the subject judges the pair of 
stimuli to be the "same" on the given trial. 

To predict the probability that a pair of stimuli is judged "same" during the 
course of the experiment, one would compute the expected value of g(d), 
E[g(d)] . (Note that because the stimulus representations are stochastic, the 
distance between stimuli is a random variable in the model . )  Ennis et al 
( 1988) provide expressions for E[g(d)] in the case in which the stimuli are 
distributed as multivariate normal random variables. They also illustrate that 
the parameters of the stimulus distributions can be accurately recovered by 
fitting the model to generated matrixes of same-different judgments. Thus, 
the model provides a viable approach to obtaining probabilistic MDS solu­
tions for sets of multidimensional stimuli. 

In further analyses, Ennis et al ( 1988) investigated the effect of the multi­
variate stochastic portion of the model on the presumed form of the similarity 
gradient. In particular, suppose that one modeled a set of similarity data by 
using a deterministic MDS model, but that the similarity data had actually 
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been generated by the probabilistic MDS process discussed above. Ennis et al 
( 1988) provided evidence that the gradient relating similarity to distance 
between points in the space could look Gaussian in form, even if the true 
similarity judgment function was exponential. (Intuitively, the Gaussian­
distributed dispersions associated with each stimulus can swamp the ex­
ponential similarity function that operates within trials . )  Thus, Nosofsky' s  
( 1 985b) observation of a Gaussian similarity gradient (which was obtained 
within a deterministic MDS framework) can be reconciled with Shepard's  
( 1987) proposed exponential law . Conceptually, Shepard's ( 1987) law con­
cerns a cognitive similarity-judgment process that operates at the level of 
individual trials, but when the stimuli are highly confusable , one needs to also 
model the variability that is associated with the stimulus representations 
across trials. 

FUTURE DIRECTIONS 

The recent influx of probabilistic scaling approaches to the study of similarity 
and classification is a welcome development. In addition to the increased 
power and generality that is afforded by probabilistic scaling models , the 
fundamental assumption that objects give rise to probabilistic representations 
in perception and memory seems conceptually well motivated. With this 
increased power and flexibility, however, it becomes even more important to 
search for invariances across tasks when fitting these models to similarity 
data. Thus, the probabilistic scaling representation that is derived by fitting a 
model to a matrix of same-different data should be useful for predicting how 
subjects will identify , classify, and recognize the same set of objects. 

What lies in the near future regarding the intersection between similarity 
scaling and cognitive process models? One direction likely to be pursued will 
involve the use of similarity scaling to constrain connectionisUdistributed 
models of perception and cognition. The recent explosion of studies that 
demonstrate the potential power of connectionist models is slowly giving way 
to efforts to test these models rigorously on their psychological validity and 
predictive, quantitative accuracy. An impediment to developing rigorous tests 
is that there is often no associated theory of stimulus representation in these 
models .  A particular form of input representation might be assumed a priori, 
or the investigators might search for an input representation that "works" (in 
the sense that when used with the model, it delivers the desired behavior) . 

The process-model approach to scaling that I advocate in this chapter could 
easily be incorporated in the connectionist-modeling domain. For example, 
suppose that one wanted to test the quantitative predictions of a given 
connectionist model of category learning. As a first step, one could fit the 
model to a set of identification learning data. This step would involve 
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searching for the input representation of the stimuli that maximized the 
likelihood of the data with respect to the model-the portion of the modeling 
in which a scaling representation is derived. Then, using the same basic 
connectionist architecture and scaling representation, one could use the model 
to predict category learning in situations involving the same set of objects. 
With an invariant scaling representation , we gain greater confidence that a 
successful connectionist model captures psychological processes in a 
meaningful way. 
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