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MULTIDIMENSIONAL UNFOLDING

JAN DE LEEUW

ABSTRACT. This is an entry for The Encyclopedia of Statistics in Be-

havioral Science, to be published by Wiley in 2005.

The unfolding model is a geometric model for preference and choice. It

locates individuals and alternatives as points in a joint space, and it says

that an individual will pick the alternative in the choice set closest to its ideal

point. Unfolding originated in the work of Coombs [4] and his students. It

is perhaps the dominant model in bothscaling of preferential choiceand

attitude scaling.

The multidimensional unfolding technique computes solutions to the equa-

tions of unfolding model. It can be defined asmultidimensional scaling

of off-diagonal matrices. This means the data are dissimilarities between

n row objects andm column objects, collected in ann × m matrix 1. An

important example is preference data, whereδi j indicates, for instance, how

much individuali dislikes objectj . In unfolding we have many of the same

Date: April 3, 2004.

Key words and phrases.fitting distances, multidimensional scaling, unfolding, choice

models.
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2 JAN DE LEEUW

distinctions as in general multidimensional scaling: there is unidimensional

and multidimensional unfolding, metric and nonmetric unfolding, and there

are many possible choices of loss functions that can be minimized.

First we will look at (metric) unfolding as defining the system of equations

δi j = di j (X, Y), whereX is then × p configuration matrix of row-points,

Y is them × p configuration matrix of column points, and

di j (X, Y) =

√√√√ p∑
s=1

(xis − y js)2.

Clearly an equivalent system of algebraic equations isδ2
i j = d2

i j (X, Y), and

this system expands to

δ2
i j =

p∑
s=1

x2
is +

p∑
s=1

y2
js − 2

p∑
s=1

xisy js.

We can rewrite this in matrix form as1(2)
= ae′

m + enb′
− 2XY′, wherea

andb contain the row and column sums of squares, and wheree is used for

a vector with all elements equal to one. If we define the centering operators

Jn = In−ene′
n/n andJm = Im−eme′

m/m, then we see that doubly centering

the matrix of squared dissimilarities gives the basic result

H = −
1

2
Jn1

(2) Jm = X̃Ỹ′,

where X̃ = JnX and Ỹ = JmY are centered versions ofX andY. For

our system of equations to be solvable, it is necessary thatrank(H) ≤ p.

Solving the system, or finding an approximate solution by using the singular
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value decomposition, gives us already an idea aboutX andY, except that we

do not know the relative location and orientation of the two points clouds.

More precisely, ifH = P Q′ is is full rank decomposition ofH , then the

solutionsX andY of our system of equationsδ2
i j = d2

i j (X, Y) can be written

in the form

X = (P + enα
′)T,

Y = (Q + emβ ′)(T ′)−1,

which leaves us with only thep(p + 2) unknowns inα, β, andT still to be

determined. By using the fact that the solution is invariant under translation

and rotation we can actually reduce this to1
2 p(p+ 3) parameters. One way

to find these additional parameters is given in [10].

Instead of trying to find an exact solution, if one actually exists, by algebraic

means, we can also define a multidimensional unfolding loss function and

minimize it. In the most basic and classical form, we have the Stress loss

function

σ(X, Y) =

n∑
i =1

m∑
j =1

wi j (δi j − di j (X, Y))2

This is identical to an ordinary multidimensional scaling problems where

the diagonal (row-row and column-column) weights are zero. Or, to put

it differently, in unfolding the dissimilarities between different row objects
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and different column objects are missing. Thus any multidimensional scal-

ing program that can handle weights and missing data can be used to mini-

mize this loss function. Details are in [7] or [1, Part III]. One can also con-

sider measuring loss using SStress, the sum of squared differences between

the squared dissimilarities and squared distances. This has been considered

in [11, 6].

Area Plot Code

Social Psychology SOC

Educational and Developmental Psychology EDU

Clinical Psychology CLI

Mathematical Psychology and Psychological StatisticsMAT

Experimental Psychology EXP

Cultural Psychology and Psychology of Religion CUL

Industrial Psychology IND

Test Construction and Validation TST

Physiological and Animal Psychology PHY

TABLE 1. Nine Psychology Areas

We use an example from Roskam [9, p. 152]. The Department of Psy-

chology at the University of Nijmegen has, or had, 9 different areas of

research and teaching. Each of the 39 psychologists working in the de-

partment ranked all 9 areas in order of relevance for their work. The areas
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are given in Table 1. We apply metric unfolding, in two dimensions, and

find the solution in Figure 1.
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FIGURE 1. Metric Unfolding Roskam Data

In this analysis we used the rank orders, more precisely the numbers 0 to

8. Thus, for good fit, first choices should coincide with ideal points. The

grouping of the 9 areas in the solution is quite natural.

In this case, and in many other cases, the problems we are analyzing suggest

that we really are interested in nonmetric unfolding. It is difficult to think of
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actual applications of metric unfolding, except perhaps in the life and phys-

ical sciences. This does not mean that metric unfolding is uninteresting.

Most nonmetric unfolding algorithms solve metric unfolding subproblems,

and one can often make a case for metric unfolding as a robust form to solve

nonmetric unfolding problems.

The original techniques proposed by Coombs [4] were purely nonmetric

and did not even lead to metric representations. In preference analysis,

the protypical area of application, we often only have ranking information.

Each individual ranks a number of candidates, or food samples, or invest-

ment opportunities. The ranking information is row-conditional, which

means we cannot compare the ranks given by individuali to the ranks

given by individualk. The order is defined only within rows. Metric data

are generally unconditional, because we can compare numbers both within

and between rows. Because of the paucity of information (only rank or-

der, only row-conditional, only off-diagonal) the usual Kruskal approach to

nonmetric unfolding often leads to degenerate solutions, even after clever

renormalization and partitioning of the loss function [8]. In Figure 2 we

give the solution minimizing

σ(X, Y, 1) =

n∑
i =1

∑m
j =1 wi j (δi j − di j (X, Y))2∑m

j =1 wi j (δi j − δi ?)2
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over X andY and over those1 whose rows are monotone with the ranks

given by the psychologists. Thus there is a separatemonotone regression

computed for each of the 39 rows.
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FIGURE 2. Nonmetric Unfolding Roskam Data

The solution is roughly the same as the metric one, but there is more cluster-

ing and clumping in the plot, and this makes the visual representation much

less clear. It is quite possible that continuing to iterate to higher precision

will lead to even more degeneracy. More recently Busing et al. [2] have
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adapted the Kruskal approach to nonmetric unfolding by penalizing for the

flatness of themonotone regressionfunction.

One would expect even more problems when the data are not even rank

orders but just binary choices. Supposen individuals have to choose one al-

ternative from a set ofm alternatives. The data can be coded as anindicator

matrix, which is ann × m binary matrix with exactly one unit element in

each row. The unfolding model says there aren pointsxi andm pointsy j in

Rp such that, if individuali picks alternativej , then‖xi − y j ‖ ≤ ‖xi − y`‖

for all ` = 1, . . . , m. More concisely, we use them points y j to draw a

Voronoi diagram. This is illustrated in Figure 3 for six points in the plane.

x

y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

FIGURE 3. A Voronoi Diagram
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There is one Voronoi cell for each they j , and the cell (which can be bounded

on unbounded) contains exactly those points which are closer toy j than to

any of the othery`. The unfolding model says that individuals are in the

Voronoi cells of the objects they pick. This clearly leaves room for a lot of

indeterminacy in the actual placement of the points.

The situation becomes more favorable if we have more than one indicator

matrix, that is if each individual makes more than one choice. There is a

Voronoi diagram for each choice and individuals must be in the Voronoi

cells of the object they choose for each of the diagrams. Superimposing the

diagrams creates smaller and smaller regions that each individual must be

in, and the unfolding model requires the intersection of the Voronoi cells

determined by the choices of any individual to be nonempty.

It is perhaps simplest to apply this idea to binary choices. The Voronoi

cells in this case are half spaces defined by hyperplanes dividingRn in two

parts. All individuals choosing the first of the two alternatives must be on

one side of the hyperplane, all others must be on the other side. There is a

hyperplane for each choice.
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FIGURE 4. Unfolding Binary Data

This is the nonmetric factor analysis model studied first by Coombs and

Kao [5]. It is illustrated in Figure 4.

The prototype here is roll call data [3]. If 100 US senators vote on 20 issues,

then the unfolding model says that (for a representation in the plane) there

are 100 points and 20 lines, such that each issue-line separates the “aye”

and the “nay” voters for that issue. Unfolding in this case can be done by

correspondence analysis, or by maximum likelihood logit or probit tech-

niques. We give an example, using 20 issues selected by Americans for

Democratic Action, and the 2000 US Senate.
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FIGURE 5. The 2000 US Senate
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