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ON DEGENERATE NONMETRIC UNFOLDING SOLUTIONS

JAN DE LEEUW

Abstract. Loss functions proposed for nonmetric unfolding

are discussed critically. Practical experience suggests that they

do not work, mathematical reasons are sought why this is. Al-

though the loss functions are constructed in such a way that

they are ill-behaved at trivial solutions, it is shown that they

are rather well-behaved along differentiable paths to trivial so-

lutions. It is shown that in the neighborhood of trivial solu-

tions we can find infinitely many nonmetric unfolding solu-

tions which cannot be distinguished from stationary points,

and which can differ very considerably in loss function value.

The conclusion is that nonmetric unfolding, as currently for-

malized, is an inherently ill-posed problem and that a different

approach is called for.

This paper originally appeared as a technical report of the Depart-

ment of Data Theory, University of Leiden, in May 1983. It was

never published.

1. Introduction

The nonmetric unfolding problem is defined as follows. The data

are n rankings of m objects. We want to represent both rankings

and objects in a low-dimensional space. The rankings are repre-

sented by vectors x1, · · · , xn and the objects by vectors y1, · · · , ym.

The representation is chosen in such a way that if object j pre-

cedes object ! in ranking i then we must have d(xi,yj) ≤ d(xi,y!),
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where d(., .) is Euclidean distance. To use a common social science

example: if subject i prefers j to !, then yj must be not farther

from xi than y!. The unfolding model was introduced in this gen-

erality by Coombs. Compare for example Coombs [1964].

The unfolding model defines a system of nonlinear inequalities,

which generally does not have an exact solution, for example be-

cause there is some sort of random disturbance in the preference

judgments. Thus we want an approximate solution. We need a

loss function to tell us how good a particular solution is. The gen-

eral idea of using loss functions in unfolding and related prob-

lems is due to Kruskal and Guttman. Important early references

are Roskam [1968] and Kruskal and Carroll [1969]. The current

state of affairs is discussed very competently in the books of Hart-

mann [1979] and Borg [1981]. The general conclusion seems to

be that the Kruskal-Guttman approach to multidimensional scal-

ing has been very successfull in many areas in which it has been

applied. It has been very unsuccessfull in nonmetric unfolding. We

shall briefly discuss the reasons for this unfortunate diagnosis, a

more thoroughgoing analysis and some possible remedies are dis-

cussed in Heiser [1981].

2. A short history of nonmetric unfolding loss functions

The major trouble is the fact that on many, if not most, occasions

nonmetric unfolding algorithms find perfect but trivial solutions

to the inequalities of the unfolding model. In order to make this

clear we introduce the loss function used by Kruskal and Roskam

for nonmetric unfolding. It is

σ1(X, Y) =
1
n

n∑

i=1

min
δij

∑m
j=1(dij − δij)2∑m
j=1(dij − di$)2

.

Here dij is short for d(xi,yj), di$ is the average dij for ranking i,
and the δij are the disparities. They are restricted to be monotone

with the rankings. Thus if i prefers j to ! then we must have
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δij ≤ δi!. Nonmetric unfolding programs minimize σ1(X, Y) over

X and Y , where X contains the n vectors xi and Y contains the

m vectors yj . Of course this implies that we have to choose a

dimensionality p of the Euclidean space we work in, in almost all

applications of unfolding p is either one or two. Why did Kruskal

and Roskam choose σ1(X, Y) ?

Loss function σ1(X, Y) differs in some importent respects from

the loss function introduced by Kruskal [1964a,b] for nonmetric

scaling. This is

σ2(X, Y) = min
δij

∑n
i=1

∑m
j=1(dij − δij)2∑n
i=1

∑m
j=1d2

ij
.

Loss function σ2(X, Y) works very well for the scaling problems

for which it was designed, but it does not work for unfolding. The

reason for this is clear: if we set xi = x for all i and yj = y
for all j, then all dij are equal and σ2(X, Y) = 0. Thus this two-

point configuration always gives a perfect, but trivial, solution to

the nonmetric unfolding problem.

In a related context Kruskal [1965] introduced the loss function

σ3(X, Y) = min
δij

∑n
i=1

∑m
j=1(dij − δij)2∑n

i=1

∑m
j=1(dij − d$$)2

,

where d$$ is the average of all nm “between-set” distances dij . In

the appropriate context this works nicely. It excludes the two-point

configuration from consideration, because σ3(X, Y) is undefined if

all distances are equal. In fact it excludes a more subtle trivial

solution as well: if xi = 0 for all i and all yj have equal length,

then all distances are also equal. The same thing is true if all yj
are zero and all xi have equal length. These configurations are

called the objects-sphere and the rankings-sphere, where we have to

remember that if the rankings are on the sphere then the objects

are in the center and if the objects are on the sphere then the

rankings are in the center.
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Another more general trivial configuration, of which the rankings-

sphere is a special case, merely has yj = 0 for all j. The xi are

quite arbitrary. Thus dij is equal to the length of xi, which means

that the dij are constant within rankings, although not necessar-

ily between rankings. Thus if the xi have different lengths, then

σ3(X, Y), and we have a perfect trivial solution, which we call the

object-point configuration. Observe that all trivial solutions we dis-

cuss satisfy the nonlinear inequalities defining the unfolding prob-

lem. This has nothing to do with the definition of loss functions.

Loss functions are merely designed to make the trivial solutions in-

admissible in the minimization problem, basically by making loss

equal to 0/0 at the trivial configurations.

How must we eliminate the object-point configuration ? Roskam

and Kruskal have experimented with

σ4(X, Y) = min
δij

∑n
i=1

∑m
j=1(dij − δij)2∑n

i=1

∑m
j=1(dij − di$)2

,

This is undefined at the object-point configuration, and in this

sense it does what it was supposed to do. But again another trivial

solution exists for which σ4(X, Y) = 0. It is discussed by Kruskal

and Carroll [1969]. We call it the two-plus-two configuration. Sup-

pose the rankings and objects are numbered in such a way that

object 1 comes last in ranking 1 (and should thus correspond to

the largest distance in the first row of dij). Consider the one-

dimensional configuration with y1 = 0, y2 = · · · = ym = 1, x2 =
· · · = xn = 2, x1 = 3. Then dij = 1 for all i, j except for d11, which

is equal to three. A little reflection shows that for this configura-

tion indeed σ4(X, Y) = 0. Thus loss function σ4(X, Y) also fails.

Finally, Kruskal and Roskam arrived at σ1(X, Y). It has not been

possible to find additional trivial solutions, not depending on the

data in any essential way, for which σ1(X, Y) is always equal to

zero.
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Does it follow that the search for an appropriate nonmetric unfold-

ing loss function has been successfull ? Some people are rather

optimistic (Roskam [1977, p. 329] is an example). Others are more

reserved. Borg [1981, ch. 17] calls the unfolding model “ziemlich

tuckisch” from the technical point of view, and points out that the

degeneracy problems are not yet solved. Heiser [1981, chapters 7

and 8] is even more pessimistic. He argues that there is not enough

information in the data to fit the unfolding model nonmetrically in

a reliable way. The only possible remedy is to either strengthen the

model or to restrict the class of admissible transformations (i.e.

minimize over smaller sets of δij). In their recent survey De Leeuw

and Heiser [1980] conclude that it is already very difficult to con-

struct a program for metric multidimensional unfolding that works

reliably (in metric unfolding the δij are given numbers). Nonmetric

unfolding is even more difficult.

We have reviewed the history of loss function construction in non-

metric unfolding in some detail, because it makes the strategy of

the people developing the techniques perfectly clear. Degenerate

or trivial solutions kept popping up. They tried to get rid of them

by adjusting the normalization factors (the denominators) of the

loss functions in such a way that they were not defined (equal to

0/0 at trivial solutions. It was hoped, obviously, that this also kept

the iterative process away from these trivial solutions. In practice

it turns out that the iterative process still tends to degenerate the

solution in the great majority of the cases. In fact, Heiser (per-

sonal communication, 1982) conjectures that published nontrivial

solutions are probably nontrivial only because the iterations were

stopped before the process had properly converged. In this paper

we show clearly that the whole idea of hoping that a clever choice

of the denominator solves all problems is basically unsound. There

is no reason at all why the iterative process should keep away from

0/0.
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3. Perturbation of trivial solutions

In this section we try to find out what happens in the neighborhood

of a trivial solution (X0, Y0) for which σ1(X, Y) is 0/0. Thus we use

perturbations X(ε) and Y(ε), depending on a positive parameter ε,
such that (X(ε), Y(ε)) converges to (X0, Y0) if ε decreases to zero.

In fact we use the stronger assumption that

lim
ε↓0

X(ε)−X0

ε
= X1,

lim
ε↓0

Y(ε)− Y0

ε
= Y1,

where X1 and Y1 are matrices, not both equal to the zero matrix.

Triviality of (X0, Y0) implies that the unperturbed distances are

equal within rows. We use λi for the common value of the dis-

tances in row i. Thus λi = d(xi(0),yj(0)). The λi are supposed to

be nonzero. Define

cij =
(x0

i −y0
j )′(x

1
i −y1

j )
λi

and suppose that for each i there are at least two different cij .

Theorem 1. Under the stated assumptions limε↓0σ1(X(ε), Y(ε)) ex-

ists, and is equal to

σ5(X0, Y0, X1, Y1) =
1
n

n∑

i=1

min
γij

∑m
j=1(cij − γij)2∑m
j=1(cij − ci$)2

.

Here the γij must satisfy the same ordinal constraints as the δij
earlier.

Proof. In the first place we compute perturbed distances in row i.
They are di(ε) = λiu + εci + o(ε), where u is an m-vector with

all elements equal to +1. Thus if ε ↓ 0 we find that di(ε)−λiu
ε con-

verges to ci, row i of C . If Πi is the metric projection on the cone of

vectors which are in the correct order for row i, then Πi(di(ε)−λiuε )
converges to Πi(ci) = γi, because the metric projection is continu-

ous. Thus if δi(ε) = Πi(di(ε)) then δi(ε) = λiu+ εγi + o(ε). Also
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dij(ε) − di$(ε) = ε(cij − ci$) + o(ε). Combining all this gives the

stated result. !

Before we proceed we discuss the precise contents of the theorem.

If ε decreases to zero the configuration (X(ε), Y(ε)) converges to

the trivial solution (X0, Y0), but the corresponding loss function

value σ1(ε) converges to a finite value, depending on X0, Y0, X1, Y1.

A nonmetric unfolding algorithm is not concerned with the fact

that loss is undefined at a trivial solution. In the neighborhood of

such a trivial solution it merely searches for a solution with a low

value of σ5(X0, Y0, X1, Y1). If we have a (X0, Y0, X1, Y1) such that

σ5(X0, Y0, X1, Y1) is low and (X0, Y0) is trivial, then we can con-

struct a solution to the unfolding problem, which is almost trivial

and which has loss almost equal to σ5(X0, Y0, X1, Y1).

In the case of the specific trivial configurations we have discussed

earlier we can specialize our theorem somewhat. For the object-

point configuration we have Y0 = 0, and we can choose without loss

of generality X1 = 0. Thus cij = −
(x0
i )
′y1
j

λi
. In the neighborhood of

the object-point configurations nonmetric unfolding algorithms fit

the vector model (also known as the nonlinear factor analysis, non-

linear component analysis, or the compensatory model). If there

exists a perfect solution to the nonlinear inequalities defining the

vector model, then there also is an unfolding solution that cannot

be distinguished from a trivial object-point solution and which has

loss that cannot be distinguished from zero.

For the objects-sphere configuration we have X0 = 0 and diag Y0Y ′0 =
I. Thus cij = −(y0

j )′(x
1
i − y1

j ), which can be considered as a sort

of signed version of the compensatory distance model discussed

by Coombs [1964] and Roskam [1968]. For the two-point configu-

ration all rows of X0 are the same and all rows of Y0 are the same.

Thus cij = ζ′(x1
i −y1

j ), with ζ = x0−y0
λ . Because ζ′x1

i is constant in

a row this actually means that in the neighborhood of the two-point
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configuration nonmetric unfolding fits cij = −ζ′y1
j , or cij = θj , a

row-conditional version of the additive model.

It is of some interest to observe that Theorem 1 remains true if

there are ties in the data. It does not matter whether we use the

primary or the secondary approach to ties discussed by Kruskal

[1964a,b]. Theorem 1 also remains true if we use Guttman’s rank

image principle to compute the δij , instead of the monotone re-

gression method used by Kruskal and Roskam.

4. Stationary values

Using more complicated, but essentially identical, computations

we can prove Theorem 2, below. In this theorem the following

notation is used, If f is a function of s vector variables, then

Dtf (x1, · · · , xs) is the vector of partials of f with respect to xt,
evaluated in x1, · · · , xs .

Theorem 2. Under the same assumptions as in Theorem 1

lim
ε↓0
εD1σ1(X(ε), Y(ε)) = D3σ5(X0, Y0, X1, Y1),

lim
ε↓0
εD2σ1(X(ε), Y(ε)) = D4σ5(X0, Y0, X1, Y1).

Proof. As Theorem 1. !

Again a verbal description of the contents of Theorem 2 is use-

ful. If the partials of σ5(X0, Y0, X1, Y1) with respect to X1 and Y1

are zero, then we can find (X, Y) arbitrary close to (X0, Y0) with

arbitrary small derivatives. For a given (X0, Y0) we can find the

corresponding (X1, Y1) that minimizes σ5(X0, Y0, X1, Y1). For small

ε we have, by Theorem 1,

σ1(X(ε), Y(ε)) ≈ σ5(X0, Y0, X1, Y1),
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and by Theorem 2

εD1σ1(X(ε), Y(ε)) ≈ 0,

εD2σ1(X(ε), Y(ε)) ≈ 0.

Observe that for fixed(X0, Y0) the function cij is linear in (X1, Y1).
Finding the optimum (X1, Y1) is consequently a linear nonmetric

problem.

Alternatively it becomes interesting to minimize σ5(X0, Y0, X1, Y1)
over all four arguments, with the restriction that (X0, Y0) is triv-

ial for the nonmetric unfolding problem. We have seen that this

triviality constraint can be decomposed into the union of Y0 = 0

(object-point configuration) and X0 = 0 with diag Y ′0Y0 = I (objects-

circle configuration). In the first case minimizing σ5(X0, Y0, X1, Y1)
amounts to fitting the vector model to the data, in the second case

the signed compensatory distance model. Although each trivial so-

lution to the unfolding inequalities can be made to correspond with

a flat point of σ1(X, Y), it seems sensible to compute these “opti-

mum trivial soIutions” first by fitting a vector or compensatory

distance model.

5. A small example

We generated 10 random rankings of 5 objects as our data, and

10 random points of the circle as our X0. We study our loss func-

tions in the neighborhood of the object-point configuration. Thus

Y0 = 0 and X(ε) ≡ X0. We first minimized σ5(X0, Y0, X1, Y1) =
σ5(X0,0,0, Y1) over Y1 for fixed X0. This was done in APL, very

precisely, by an ad hoc program which found a point where largest

partial derivative was less than 1E-10 (this is APL-notation for float-

ing point numbers). The value of σ5(X0, Y0, X1, Y1) at this point

was .4023140247. In Table 1 we have collected information on

σ1 ∗ X9, εY1) for various values of ε. In the two last columns of

the table we give upper bounds on the size of the largest partials.
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Thus, for example, for ε =1E-7 the largest element in Y(ε) = εY1 is

3E-7, and the configuration is for all practical purposes an object-

point. The partials of σ1 with respect to X are all less than 1E-8 and

the partials with respect to Y are all less than 1E-7, which means

that for all practical purposes we have a stationary point here. Cer-

tainly all the existing nonrnetric unfolding programs will consider

it as a stationary point. For ε which is too small the round-off

makes the approximation of σ1(X0, εY1) deteriorate, while Theo-

rem 2 tells us that the partials become very large again.

In Table 2 we have done essentially the same thing, except for the

fact that σ5(X0,0,0, Y1) was minimized over X0 and Y1 first by the

same ad hoc APL program. Thus X0 and Y1 define a stationary point

for the vector model. The value of σ5(X0,0,0, Y1) at this point was

.0956953055. Table 2 shows that around 1E-7 we have an object-

point configuration with almost exactly this value for unfolding

loss σ1 which is almost exactly stationary. Any program would

except it as a local minimum.

6. Discussion

The problem discussed in the introduction was that nonmetric un-

folding often gives solutions which are wholly or partly degenerate.

Designers of nonmetric unfolding programs have tried to avoid the

obvious trivial solutions, which are not even data-dependent, by a

clever choice of the normalization factors in the loss functions.

This has produced the Kruskal-Roskam loss function σ1 which is

“partitioned by rows”. It is clear, from practical experience with

unfolding reported for example in Heiser [1981] and Borg [1981],

that use of this loss function still leads to partial degeneracies. We

show that use of this loss function cannot even guarantee that the

completely trivial solutions do not occur.

Technically speaking it is clear that σ1(X, Y) does not exist at the

points (X, Y) which define trivial solutions. It certainly does not
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make sense to investigate if σ1(X, Y) is continuous or differen-

tiable at these points. We have investigated the loss function along

paths of the form (X(ε), Y(ε)) which tend to a trivial solution if the

parameter ε decreases to zero and which are differentiable func-

tions of the parameter. We found that σ1(X(ε), Y(ε)) converges if

ε ↓ 0 to a value which could be related to fit of the vector model or

compensatory distance model along the path. Because it is the job

of an algorithm to find a path along which the function decreases,

it is clear that in the neighborhood of a trivial point nonmetric

unfolding algorithms will choose their paths according to the fit

of the vector or compensatory distance model. It is not true that

the partials of σ1(X(ε), Y(ε)) converge if ε ↓ 0, but if the pertur-

bations X1 and Y1 are close to stationary points of the vector or

compensatory distance models we can find points arbitrary close

to a trivial solution with arbitrary small derivatives.

Our discussion can be extended in principle to partial degener-

acy. If the objects are on a circle, and not all rankings are in the

center of the circle, then we have deqeneracy only in some rows.

In other rows the additional freedom can be used to improve the

fit. There are obviously very many possibilities of partial degener-

acy, although clearly the objects-circle is far more flexible in this

respect than the object-point. It seems to us that by using this par-

tial deqereracy clever nonmetric unfolding programs will almost

always find very good solutions, which tell us something about

the data, but not very much. We repeat the statement made by

De Leeuw and Heiser in their discussion of metric unfolding. “As

a matter of fact, even the best metric unfolding methods do not

work very well. Nonmetric unfolding methods do not work at all. "

[De Leeuw and Heiser, 1980, p. 305]
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Table 1. approximation of loss function and gradi-

ent at arbitrary object-point

eps loss DX DY

1E-3 .4024913570 1E-4 1E-3

1E-5 .4028107802 1E-6 1E-5

1E-7 .4028139922 1E-8 1E-7

1E-9 .4028140340 1E-7 1E-8

1E-11 .4026087144 1E-6 1E-2

Table 2. approximation of loss function and gradi-

ent at optimal object-point

eps loss DX DY

1E-3 .0956136560 1E-5 1E-3

1E-5 .0956944676 1E-9 1E-5

1E-7 .0956953971 1E-9 1E-7

1E-9 .0956953046 1E-7 1E-7

1E-11 .0947034739 1E-5 1E-2
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