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INTRODUCTION 

Perhaps the most salient feature in the progress of multidimensional scaling 
(MDS) over the past 7 years since Cliff's ( 1 973) chapter on "Scaling" has 
been the explosive growth in number and variety of models and methods, 
the proliferation of applications of MDS within many different fields, and 
a kind of semantic encroachment of the term MDS on other domains (e.g. 
factor analysis, test theory, analysis of variance or mathematical models). 
This semantic expansion of the term is not necessarily undesirable, since 
"multidimensional scaling," liberally speaking, could be taken to include 
much that has traditionally been identified with other areas of psychomet­
rics or mathematical psychology. Broadly defined, multidimensional scal­
ing comprises a family of geometric models for multidimensional 
representation of data and a corresponding set of methods for fitting such 
models to actual data. A much narrower definition would limit the term to 
spatial distance models for similarities, dissimilarities or other proximities 
data. The usage we espouse would include nonspatial (e.g. discrete geomet­
ric models such as tree structures) and nondistance (e.g. scalar product or 
projection) models that apply to nonproximities (e.g. preference or other 
"dominance") data as well as to proximities. 

Because of this methodological and semantic expansion of the field, it 
seems to us that the major service a reviewer can do for readers is to attempt 
to put some order into what may appear as chaos: that is, to impose a 
taxonomy on the field. This task is our goal. At the outset, we state our 
disclaimers. Our taxonomy is only one of many possible ways of organizing 
the field; we view the classification as provisional, relevant to the field as it 
now is and not as it may be some years in the future. In effect, our taxonomy 
might be regarded as a subjectively derived meta-multidimensional scaling 
(and/or clustering) of the current state of multidimensional scaling. We 
hope that the taxonomy will facilitate readers' understanding of the work 
reviewed herein, as well as of the chapter itself. 

A NEW TAXONOMY OF MEASUREMENT 

DATA AND OF MULTIDIMENSIONAL 

MEASUREMENT MODELS 

The present taxonomy can be viewed as an attempt to update and generalize 
Coombs' (1 964) A Theory of Data. although there are many ways in which 
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MULTIDIMENSIONAL SCALING 609 

our taxonomy departs significantly from Coombs', so that our approach is 
not, strictly speaking, a generalization. Still, the clearest antecedent is A 
Theory of Data, and Coombs (personal communication) has indicated that 
except for our use of "data" where he would use "observations," he finds 
no conflict between his (1964; also see Coombs 1979) taxonomy and the 
present one. Our viewpoint has also been influenced by Shepard's ( 1972b) 
taxonomy of data and of methods of analysis. Finally, the term "modes" 
is due to Tucker (1964), and the scale types are derived of course from 
Stevens ( 1946, 195 1). 

The main difference between Coombs' and our approach is that we 
attempt separate taxonomies of data and of models, whereas Coombs ar­
gued that data cannot be classified independently of the model to which 
those data are referred, so that the very same data (observations, in Coombs' 
terms) may fit into different quadrants (or octants) of his schema, depending 
on which model is assumed. Our attempt to separate the classification 
of data and of models may be only partially successful, since there is cer­
tainly a strong connection between type of data and of model. (There is 
only a limited class of models suitable for any specific type of data.) 
We shall nevertheless attempt to maintain the distinction wherever pos­
sible. 

When one considers the highly important aspect of scale typology, it 
could be applied exclusively to the data (a la Stevens) or to the model (as 
suggested by Guttman 1971), but our view is that the scale typology is 
decidable separately for the data and for the model. For the former, it seems 
self-evident that some tasks ask the subject to adhere to certain scale types 
(e.g. sorting versus magnitude estimation). However, there can be little 
doubt that during the years covered by this review, far greater practical 
emphasis has been placed on incorporating the transformations underlying 
the scale typology into the model. 

The advantages of maintaining the typology for both data and model are 
apparent from consideration of Shepard's ( 1972a, Chang & Shepard 1966) 
approach that embodied an exponential decay fitting procedure in a metric 
multidimensional scaling analysis. Unless such a transformation (character­
istic of many models of forgetting or confusions) can be accommodated by 
the scale typology, then it must be claimed that Shepard's analysis produced 
a new and distinct type of scale. We find it more parsimonious to view the 
data as ordinal and Shepard's analysis/model as interval with a transforma­
tion included. We could explicitly include scale type as a property of such 
models; however, for the present we are including scale type only as a 
property of the data. The current version of our new schema is presented 
below: 
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610 CARROLL & ARABIE 

I. Properties of Measurement Data 
Definitions 

A mode is defined as a particular class of entities. Modes will be denoted by capital 
letters A, D, C, . . .  etc. Entities could be, for example, subjects, stimuli, test items, 
occasions, experimental conditions, geographical areas, or components of a "multiattrib­
ute stimulus." Particular members of the class of entities corresponding to a mode are 
denoted by subscripts; e.g. Ai' i = 1,2, . . .  ,S could denote S subjects. 

An N-way array is defined as the cartesian product of a number of modes, some of 
which may be repeated. For example, an array associated with three-way multidi­
mensional scaling might be of the form AxBxB, where A denotes subjects, and B 
stimuli. An element of the array is a particular value of this cartesian product [i.e. a 
combination of particular members of the modes; e.g. (Ai,Bj,Bk»). A data array is an 
assignment of scale values to some or all elements of the array with possible replica­
tions. 

Having established these definitions, the taxonomy of data arrays follows straightfor­
wardly, as outlined below: 
A. Number of modes 

1. One mode 
2. Two modes 
3. Three or more modes 

D. Power of a given mode 
A mode's power is the number of times the mode is repeated in the N-way 
table. 
1. Monadic data (e.g. single stimulus data, as from an absolute judgment task). 

Power = 1 
2. Dyadic data (e.g. proximities data). Power = 2 

a. Symmetric 
b. Nonsymmetric 

3. Polyadic data (e.g. judgments of homogeneity of sets of three or more stimuli, 
or similarity of or preference for "portfolios" of a number of items from the same 
set). Power;;. 3 
(Note: In principle each mode could be of power greater than one. In practice 
only the "stimulus" mode commonly has power greater than one.) 

C. Number of ways, defined as total number of factors, whether repeated or not, defining 
the data array; N if table of data is N-way (exclusive of replications, which are not 
usually thought of as defining a separate mode or way unless there is a structure on 
the replications and the replications "mode" is explicitly included in the model). 
(Note: The number of ways is clearly redundant with the first two data properties, 
since it is just the sum over modes of the power of each mode. However, we find it 
convenient to include this redundant property explicitly in our schema.) 

D. Scale type of data (after Stevens, but with some additions) 
1. Nominal 
2. Ordinal 
3. Interval 
4. Ratio (sometimes called "interval with rational origin") 
5. Positive ratio 
6. Absolute 

We have added to Stevens' four scale types what is sometimes called the "interval with 
rational origin" (which we simply call "ratio") that can be viewed as a ratio scale 
admitting negative as well as 'positive values (and, of course, zero), and the "absolute" 
scale (e.g. Zwislocki 1978), in which no transformation whatsoever is allowed. At the 
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MULTIDIMENSIONAL SCALING 61 1 

suggestion of Amos Tversky, we are relabeling Stevens' "ratio scale" the "positive ratio 
scale" (i.e. a ratio scale that allows only non-negative values). 
E. Conditionality of data 

1. Unconditional data 
2. Row or column conditional data (Coombs 1964) 
3. Matrix conditional data 
4. Other types of conditional data 

F. Completeness of data 
1. Complete data 
2. Incomplete data 

G. Number and nature of replications 
1. Only one data set comprising the data array 
2. Two or more data sets 

a. Same scale type for each replication 
b. Different scale types for different replications 

II. Properties of Multidimensional Measurement Models 
A. Type of geometric model 

1. Spatial 
a. Distance models 

i) Euclidean 
ii) Minkowski-p (or lp) metrics 

iii) Riemannian metrics 
iv) Other non-Euclidean metrics 

b. Scalar product (or projection) models 
2. Nonspatial (discrete set-theoretic or graph-theoretic models) 

a. Nonoverlapping classes (partitions) (e.g. standard clustering methods) 
b. Overlapping classes (e.g. Shepard-Arabie ADCLUS model) 
c. Hierarchical tree structure 
d. Multiple tree structure 

3. Hybrid models (mixtures of continuous and discrete structure) 
a. Mixture of (single or multiple) tree structure and spatial structure 
b. Mixture of class structure (overlapping or nonoverlapping) and spatial 

structure 
i) Dimensions that generalize over aU classes 

ii) Some class-specific dimensions 
iii) Both of the above 

B. Number of sets of points in space (or other structure) 
J. One set 
2. Two sets 
3. More than two sets 

C. Number of spaces or structures (and their interrelations) 
J. One space or structure (e.g. two-way MDS) 
2. Two spaces or structures [e.g. stimulus (or other "object") space and subject (or 

other "data source") space in three-way or individual differences MDS] 
3. More than two spaces or structures 

D. Degree of external constraint on model parameters 
J. Purely "internal" solutions in which all model parameters are unconstrained 
2. Various kinds of linear, ordinal, or other constraints on specific parameters of 

model 
3. "External" models, in which one or more spaces (or other structures), or one or 

more sets of points in the same structure, is totally fixed 
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6 1 2  CARROLL & ARABIE 

The present survey of multidimensional scaling and related techniques is 
organized around our taxonomy, but does not conform exactly, owing to 
space limitations and, of course, uneven progress in various subareas during 
recent years. We take aspects I-A and I-C ("modes" and "ways" from the 
properties of data) as the dominant organizing principles. Since we are 
defining as our goal the imposition of structure on the field as a whole, we 
shall take somewhat greater liberty than may be usual for Annual Review 
chapters, to cite work that may lie outside the time period we are primarily 
covering, to cite or refer to unpublished work, or even in some cases work 
still in progress. We also note that we may underemphasize applications of 
MDS relative to theoretical and methodological developments. (Some 
methodological areas are also underemphasized or omitted altogether.) We 
hope any imbalance that results will be partly corrected by a bibliography 
now in preparation at Bell Laboratories (also see Bick et aI1977, Nishisato 
1978a). 

ONE-MODE TWO-WAY DATA 

We begin our discussion of MDS data and models with the class of data 
most frequently encountered: one-mode two-way data, which could other­
wise be characterized as two-way dyadic data. These data are typically some 
form of similarities, dissimilarities, or other proximities data (e.g. measures 
of association between pairs of stimuli or other objects, frequencies of 
confusions, second order measures of similarity or dissimilarity derived 
from standard multivariate or other data, etc). A general overview discuss­
ing and interrelating most of the spatial (both distance and scalar product) 
models and corresponding methods for analysis of such data (as well as 
two-mode three-way data) is provided by Carroll & Kruskal (1977; see also 
Carroll & Wish 1974b). Another type of ostensibly dyadic data are so-called 
"paired comparisons" data depicting preferences or other forms of domi­
nance relations on members of pairs of stimuli. However, such data are 
seldom utilized in multidimensional (as opposed to unidimensional) scaling. 
We do not cover paired comparisons data in this section because we view 
such data not as dyadic, but as replicated monadic data (having n-2 missing 
data values within each replication). 

Spatial Distance Models (for One-mode Two-way Data) 
The most widely used MDS procedures are based on spatial distance mod­
els. These are geometric models in which the similarities, dissimilarities, or 
other proximities data are assumed to relate in a simple and well-defined 
manner to recovered distances in an underlying spatial representation. If 
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MULTIDIMENSIONAL SCALING 613 

the data are interval scale, the function relating the data to distances would 
generally be assumed to be inhomogeneously linear; that is, linear with an 
additive constant as well as a slope coefficient. Data that are interval scale 
or stronger (ratio, positive ratio, or absolute) are called metric data, while 
the corresponding models and analyses are collectively called metric MDS. 
In the case of ordinal data, the functional relationship is generally assumed 
to be monotonic-either monotonic nonincreasing (in the case of similari­
ties) or monotonic nondecreasing (for dissimilarities). Ordinal data are 
often called nonmetric data, and the corresponding MDS models and analy­
ses are also referred to as non metric MDS. The distinction between metric 
and nonmetric is based on the presence or absence of metric properties in 
the data [not in the solution, which almost always has metric properties; 
Holman (1978) is an exception]. 

Following Kruskal's (1964b, 1965) innovative work in monotone regres­
sion (as the basic engine for fitting most of the ordinal models considered 
in this review), first devised by Ayer et al ( 1 955), there has been much 
activity in this area of statistics. In addition to Shepard's (1962a,b) early 
approach and Guttman's (1968) rank image principle, there have also been 
alternative and related methods proposed by Barlow et al (1972), Johnson 
(1975), Ramsay (1977a), Srinivasan (1975), and de Leeuw (1977b). A 
provocative comparison between the approaches of Kruskal (1964b) and 
Guttman (1968) is given by McDonald (1976), and the two methods are 
subsumed as special cases of Young's (1975b) general formulation. Shepard 
& Crawford (1975, Shepard 1974) and Goldstein & Kruskal (1976) have 
developed techniques for imposing various constraints on ordinal regression 
functions. 

The range of types of data to which MDS analyses are applicable has 
recently been extended through the use of nominal scale techniques of 
regression (Nishisato 1971, Hayashi 1974, Young et al 1976, Bouroche et 
a11977, Young & Null 1978), as found in the ALSCAL program (discussed 
below) of Takane et a1 (1977). 

UNCONSTRAINED SYMMETRIC DISTANCE MODELS (FOR ONE-MODE 

TWO-WAY DATA) Although one of the most intensely developed areas in 
recent years has been the treatment of nonsymmetric data (discussed in 
detail below), it is still true that most of the extant data relevant to MDS 
are symmetric, owing in part to the previous lack of models allowing for 
nonsymmetric data. Therefore, we first consider recent developments in the 
scaling of symmetric data, i.e. where the proximity of a to b is assumed 
identical to that obtained when the stimuli are considered in the reverse 
order. 
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6 1 4  CARROLL & ARABIE 

Euclidean and Minkowski-p metric The most widely assumed metric in 
MDS work is the Euclidean, in which the distance between two points i and 
j is defined as 

R 
dij = [L(x;r - Xjr?]112 

r=1 
(where Xir and Xjr are the rth coordinates of points i and j, respectively, 
in an R-dimensional spatial representation). Virtually all two-way MDS 
procedures use either the Euclidean metric or the Minkowski-p (or �) 
metric which defines distances as: 

R 
dij = [�IXir - xjrlP]l/p ( p  � 1) 

r=1 
and so includes Euclidean distance as a special case in which p = 2. 

The program KYST (Kruskal et al 1973, 1977) was christened with an 
acronym based on the names of Kruskal, Young, Shepard, and Torgerson. 
KYST is a combination of what were regarded by many as the preferred 
features of Kruskal's (1964a,b) MDSCAL and Young & Torgerson's (1967) 
TORSCA, and also includes the new feature of "constrained" or "external" 
analyses in which a subset of the stimuli are given fixed coordinates by the 
user while the remaining stimuli are mapped into the constrained configura­
tion. 

Other algorithms include the Guttman-Lingoes family of two-way 
"Smallest Space Analysis" MDS procedures (Lingoes 1 972, 1 973; see also 
Lingoes 1 977) and Roskam's  (1 975) related series of programs. An informa­
tive discussion comparing several of these different algorithmic approaches 
to MDS is given by Kruskal ( 1977a; see also de Leeuw.& Heiser 1980). 
Other techniques have also been devised by Young (1972), Johnson (1973) 
and Hubert & Busk (1976). 

Two of the most valuable algorithmic developments in unconstrained 
two-way (and three-way) MDS within the period covered by this review 
are the Takane et al ( 1 977) ALSCAL procedure and Ramsay' s (1977b) 
MUL TISCALE. ALSCAL (for Alternating Least squares SCALing) differs 
from previous two-way MDS algorithms in such ways as (a) its loss func­
tion, (b) the numerical technique of alternating least squares (ALS) used 
earlier by Carroll & Chang (1 970) and devised by Wold (1966; also see de 
Leeuw 1 977a, and de Leeuw & Heiser 1 977), and (c) allowing for nominal 
scale (or categorical), as well as interval and ordinal data. Both ALSCAL 
and MULTISCALE are also applicable to two-mode three-way data, and 
both programs will be considered again under spatial distance models for 
such data. 
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MULTIDIMENSIONAL SCALING 6 1 5  

MULTISCALE (MULTIdimensional SCAL[E]ing), Ramsay's (1 977b; 
also see Ramsay 1975) maximum likelihood based procedure, although 
strictly a metric (or linear) approach, has statistical properties which make 
it potentially much more powerful as both an exploratory and (particularly) 
a confirmatory data analytic tool. MULTISCALE, as required by the maxi­
mum likelihood approach, makes very explicit assumptions regarding dis­
tribution of errors, and about the relationship of parameters of this 
distribution to parameters defining the underlying spatial representation. 
One such assumption is that the dissimilarity values 8ij are log normally 
distributed over replications, but other distributional assumptions are also 
allowed. 

The major dividend from Ramsay's ( 1978) strong assumptions is that the 
approach enables statistical tests of significance that include, for example, 
assessment of the correct dimensionality appropriate to the data, via an 
asymptotically valid chi square test of significance. Another advantage is 

the resulting confidence regions for gauging the relative precision of stimu­
lus coordinates in the spatial representation. The chief disadvantage is the 
very strong assumptions that must be made for the asymptotic chi squares 
and/or confidence regions to be valid. Not least of these is the assumption 
of ratio scale dissimilarity judgments. In addition, there is the assumption 
of a specific distribution (log normal or normal with specified parameters) 
and of statistical independence of the dissimilarity judgments. 

Applications and theoretical investigations of the Euclidean, Minkowski-p, 
and other intradimensionally subtractive and interdimensionally additive 
metrics (for one-mode two-way symmetric data) While the Euclidean dis­
tance formula has certain computational conveniences to recommend it as 
a statistical model, only within recent years has-the formula been viewed 
as a possible contender for a psychological model. Relevant research has 
followed along three lines, the earliest of which stems from Beals et al 
( 1968), who provided a set of testable axioms underlying a wide class of 
distance metrics (including Euclidean and Minkowski-p) as a psychological 
model. Two of these conditions, intradimensional subtractivity and interdi­
mensional additivity, were extensively violated in the perception of simi­
larity of rectangles in Krantz & Tversky ( 1975). A very thorough follow-up 
by Wiener-Ehrlich (1 978) also found an interaction between dimensions for 
rectangle stimuli. However, for stimuli that were Munsell papers varying 
along the "separable" dimensions of area and brightness, she found that her 
data did satisfy the relevant axiomatic conditions. Related research has also 
been reported by Monahan & Lockhead ( 1 977), Schonemann ( 1977), 
Zinnes & Wolff (1977), and Chipman & Noma (1978). At present it seems 
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616  CARROLL & ARABIE 

that no general conclusion can be drawn from this approach to the validity 
of distance models, but there is certainly no strong support forthcoming. 

A major boost for the plausibility of distance models was provided by the 
elegant work of Rumelhart & Abrahamson ( 1973), who presented data 
consistent with a model in which the traditional analogy a : b : : c : x implies 
a parallelogram in a metric space. The study also established that subjects' 
solutions to certain types of analogical problems were in fact successfully 
predicted by an independently obtained MDS solution. Other experiments 
in which the parallelogram rule was verified were designed by Sternberg 
(1977). Also, a scaling algorithm which takes as input judgments assumed 
to fit the model (and thus implying linear vector equations a la Rumelhart 
and Abrahamson) was devised by Carroll & Chang (1 972b). 

The third stage for questioning the viability of distance models for psy­
chological similarity was set by important papers by Tversky ( 1 977) and 
Tversky & Gati ( 1 978). While space limitations prohibit an adequate sum­
mary or discussion of those papers, the main challenges to distance models 
were (a) questioning of the minimality (dii = 0) and (b) symmetry (dij = dji) 
conditions of the metric axioms, and (c) arguments advocating discrete 
features as opposed to continuous dimensions as the underlying basis of 
psychological similarity. Several of these challenges have been eloquently 
answered by Krumhansl ( 1 978) and will be considered below. 

Somewhat oblivious to the validity of the preceding studies, nonmetric 
(two-way) scaling has continued to grow in popularity, and we are able to 
mention only a small proportion of the applications in recent years. Scaling 
has provided representations of structure in memory (Wexler & Romney 
1972, Arabie et al 1 975, Shepard et al 1975, Holyoak & Walker 1976, 
Ebbesen & Allen 1979). Studies by Shoben (1 976, p. 372) and Friendly 
(1977, p. 206) have demonstrated the utility of the often overlooked option 
in KYST (Kruskal et al 1973, 1977) of differentially weighting the stimuli 
being scaled. The relevance of scaling to memory and other experimental 
aspects of educational research has been reviewed by Subkoviak ( 1 975). 

Many applications of scaling to perceptual phenomena have been covered 
by Fillenbaum & Rapoport ( 197 1), Carroll & Wish (1 974b), Indow (1974), 
and Gregson (1975). Other scaling studies of visual processes include 
Heider & Olivier ( 1972) and Reed ( 1972). The substantive importance of 
determining the correct dimensionality of a scaling solution was under­
scored by the comments of Rodieck ( 1977) on the investigations of Tansley 
& Boynton ( 1976, 1 977). Multidimensional scaling has also been found 
increasingly useful in olfaction (Moskowitz & Gerbers 1974, Schiffman & 
Dackis 1976). In psychoacoustics, two-way scaling has continued to play 
a prominent role, with examples provided by Shepard (1 972a), Wang et al 
( 1978), Cermak ( 1 979), and Krumhansl ( 1979). 
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MULTIDIMENSIONAL SCALING 617  

Seriation i s  a term which comes from archaeology and refers to unidi­
mensional representation of a set of objects, where the dimension in ques­
tion is usually time, so that the result is a chronological ordering of those 
entities. In several ways, seriation defies our taxonomy, although the origi­
nal data are typically two-mode two-way and nonsymmetric. An example 
in archaeology would be an incidence matrix of artifacts by sites, with the 
objective of separately ordering (Le. seriating) the objects corresponding to 
each mode. A corresponding problem in psychology considers a subjects­
by-item response matrix (Hubert 1974a). 

In spite of the description just given of the basic data structure, the actual 
analysis typically begins with one-mode two-way symmetric data that are 
analyzed by KYST (Kruskal et al }973, 1977) or some variant of that 
program. An adequate summary of developments culminating in this prac­
tice would greatly exceed the length of this chapter; for an overview, see 
Hubert (1974b, 1976) or Arabie et al (1978). The central idea of using 

KYST or related programs to get a Euclidean two-dimensional representa­
tion from which the (one-dimensional) seriation is inferred is due to Kendall 
(1970, 1975; see Shepard 1974, pp. 385-89 for an example). Refinements in 
this technique can be found in chapters of Hodson et al (1971), especially 
the papers by Kendall (1971a,b), Sibson (197 1), and Wilkinson (1971) .  
Important work has also been done by Kupershtokh & Mirkin (197 1), 
Wilkinson (1974), Graham et al (1976), Hubert & Schultz (1976a), Baker 
& Hubert (1977), and Defays (1978). The applicability of seriation to sub­
stantive problems in psychology is cogently illustrated by Coombs & Smith 
(1973) and Hubert & Baker (1978). 

Continuing theoretical interest in non-Euclidean Minkowski-p (p � 2) 
metrics is evinced in papers by Fischer & Micko ( 1972), Carroll & Wish 
(1974b), Shepard (1974), Arabie et al (1975), and Lew (1978). While it is 
not uncommon to find articles oblivious to the difficulties of local minima 
in non-Euclidean nonmetric scaling, the problems have been documented 
by various authors and appear not to be limited to specific scaling programs. 
Arabie & Boorman (1973) reported extensive local minima for non­
Euclidean metrics using Kruskal's MDSCAL, and Ramsay (1 977b, p. 255) 
found similar difficulties with his MUL TISCALE. 

Perhaps the first effort explicitly to overcome some of these drawbacks 
was by Arnold (197 1), who obtained Euclidean solutions which were then 
used as rational initial configurations for Minkowski-p (p ¢ 2) metrics. The 
latter solutions served iteratively as initial configurations for p-values in­
creasingly discrepant from 2, in search of the p-value for which stress was 
least for a given dimensionality. In unpublished work, some of which is 
described by Shepard (1974), Arabie replicated Arnold's results, and found 
that Arnold's approach generally worked well for various data sets, if the 
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6 1 8  CARROLL & ARABIE 

declared dimensionality exceeded 2. For reasons still not understood, the 
Arnold strategy appears not to work well in two-dimensional spaces, where 
Arabie instead used many different random initial configurations. Also, 
Shepard ( 1 974) has cautioned that Kruskal' s  ( 1 964a,b) measure of badness­
of-fit, stress, may not be comparable across different Minkowski p-values 
when the data are heavily tie-bound. 

The extent to which Shepard's caveat is applicable to real data is pres­
ently unknown. However, it is clear that obtaining a lower stress value for 
a non-Euclidean metric is  a necessary but not sufficient condition for declar­
ing data to be non-Euclidean. Shepard & Arabie ( 1 979, p. 1 1 5) presented 
a city-block solution possessing a least stress value for that particular Min­
kowski metric as well as a substantive interpretation for the unrotated axes. 
Another instance of a best-fitting city-block metric was given by Wiener­
Ehrlich ( 1 978, p. 405). 

Metrics other than Euclidean or Minkowski-p There have been some inter­
esting developments in MDS involving more general metrics. Perhaps the 
most general of these is Holman's (1 978) "completely nonmetric" MDS 
procedure. This approach can in some ways be viewed as an explicit al­
gorithm to accomplish what Coombs ( 1 964) attempted more heuristically 
and less algorithmically in his "nonmetric scaling" approach. That is, Hol­
man's approach is nonmetric both vis-a-vis the data and the solution (the 
latter in the sense that only the rank order of coordinate values are defined). 

Recently considerable interest has focused on another class of metrics­
the Riemannian metrics. Motivated largely by Luneburg's (1 947, 1 950) 
theory, Indow ( 1 974, 1 975, 1 979) has made various attempts to fit Rieman­
nian metrics with constant negative curvature to data relevant to the geome­
try of visual space (e.g. judgments of distances among fixed light sources), 
but has not developed an MDS algorithm involving a Riemannian metric. 
The first attempt at Riemannian multidimensional scaling was an approach 
by Pieszko ( 1 975), who first used "classical" metric MDS (Torgerson 1 958) 
to fit a configuration, limited to two dimensions, to the data and then 
obtained a very rough approximation for Riemannian distances defined on 
that configuration. Lindman & Caelli ( 1 978) have criticized the inappropri­
ateness ofPieszko's global approximation, which is only valid locally. Those 
authors were the first to produce a genuinely Riemannian (metric) MDS 
procedure, for Riemannian metrics of constant curvature. In some unpub­
lished work, Caelli, Carroll, and Chang have extended this approach to 
include Riemannian metrics of positive nonconstant curvature. 

More general Riemannian metrics can also be considered, involving 
geodesic metrics defined in very general nonlinear surfaces (or manifolds) 
embedded in high-dimensional Euclidean space. An interesting paper by 
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MULTIDIMENSIONAL SCALING 6 1 9  

Shepard ( 1 978) describes a number of perceptual (and/or judgmental) phe­
nomena that could be represented in terms of such very general geometric 
models. Weisberg (1 974) provides an urbane discussion of the relevance of 
a priori structures (and the underlying models) to psychology and related 
behavioral sciences. 

CONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR ONE-MODE 

TWO-WAY DATA) A number of approaches have emerged quite recently 
that allow the imposition of various kinds of constraints on two-way MDS 
(distance model) solutions. To date, all such research has involved the case 
of symmetric data and has been restricted to the Euclidean metric. More 
recent approaches include: Bentler & Weeks ( 1 978), in which linear con­
straints (equality of specified pairs of coordinate values or proportionality 
to given external values) are imposed; Noma & Johnson (1 979), in which 
inequality constraints are imposed on coordinate values (i.e. a given dimen­
sion in the solution is constrained to be monotonically related to an external 
variable); and Borg & Lingoes ( 1 979), in which inequality constraints are 
imposed on certain distances. Recently de Leeuw & Heiser (1 979) have 
discussed a very general class of algorithms for fitting constrained models 
of many different kinds. Finally, an approach called CANDELINC (Car­
roll et al 1 976, Green et al 1 976, Carroll, Pruzansky & Kruskal 1 979) 
includes as a special case a version of "classical" metric two-way MDS in 
which a very general class of linear constraints are imposed. (See discussion 
under two-mode three-way constrained models.) 

UNCONSTRAINED NONSYMMETRIC EUCLIDEAN MODELS (FOR ONE­

MODE TWO-WAY DATA) A number of approaches exist for analysis of 
nonsymmetric dyadic data in terms of a Euclidean model. In the analysis 
of nonsymmetric data, an important general principle is the following: any 
nonsymmetric m-mode n-way data set can be accommodated by a symmet­
ric model designed for (m+l)-mode n-way data. The extra mode arises 
from considering the "rows" and "columns" as corresponding to distinct 
entities, so that each entity will be depicted twice in the representation from 
the symmetric model. This principle is valid throughout our discussions of 
nonsymmetric data, and we will therefore not repeat it in subsequent sec­
tions. 

An alternative, second general principle in the analysis of nonsymmetric 
proximities data assumes they are row or column conditional (possibly a 
correct assumption), but employs a model allowing only one set of entities. 
Thus the model is symmetric, but nonsymmetry is assumed to result from 
conditionality of the data. Such analyses are possible in MDSCAL-5 and 
KYST, as well as in a procedure proposed by Roskam ( 1975) called 
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620 CARROLL & ARABIE 

MNCPAEX. (See external distance models for two-mode two-way data.) 
Takane ( 1979) has produced a nonmetric maximum likelihood approach 
that allows conditional rank order data. Takane's algorithm is especially 
interesting because it is simultaneously parametric (in the sense that a 
specific error distribution is assumed) and non metric (in that the data are 
strictly ordinal). 

Gower (1978) has recently applied unfolding techniques (discussed under 
spatial distance models for two-mode two-way data) to nonsymmetric dy­
adic proximities data. In addition, a general approach for decomposing 
nonsymmetric data matrices has been developed independently by Tobler 
( 1976) and Gower ( 1977, Constantine & Gower 1978), while another has 
been proposed by Holman (1979), in which nonsymmetric proximities are 
analyzed (via nonmetric models) into symmetric proximities and row and/ 
or column bias parameters. 

Young's ( 197Sa) ASYMSCAL (for ASYMmetric multidimensional 
SCALing) provides another approach for analysis of nonsymmetric data. 
ASYMSCAL allows differential weights for dimensions for either the row 
stimuli or for the column stimuli. or both. In this respect ASYMSCAL 
closely resembles a weighted generalization of the unfolding model that will 
be discussed in the section on unfolding. 

Theoretical developments for and applications of nonsymmetric analyses (for 
one-mode two-way data) Until very recently, asymmetries in a proximities 
matrix have often been regarded as a nuisance-something to be averaged 
out or eliminated by various strategies. The recent proliferation of models 
for asymmetric data has coincided with increased awareness of the psycho­
logical importance of asymmetries in proximities data. Tversky ( 1977) and 
Tversky & Gati ( 1978) cite many examples of psychological processes 
giving rise to nonsymmetric data (see Sjoberg 1 972) and leave the reader 
with the impression that the psychological universe may indeed be more 
nonsymmetric than symmetric. 

Tversky (1977) and Tversky & Gati (1978) develop the argument still 
further in advocating the superiority of feature-theoretic models to continu­
ous spatial dimensions for representing structure in data (e.g. Gati 1979). 
However, Krumhansl (1978), drawing extensively on findings from unidi­
mensional psychophysics, has developed a highly ingenious "distance-den­
sity" model that assumes similarity is a function of both interpoint distance 
and the spatial density of other stimulus points in the surrounding region 
of the metric space. Krumhansl finds support in the literature for various 
predictions made by her model (also see Podgorny & Garner 1979) and 
suggests that spatial distance models may still be more relevant to nonsym­
metric data than Tversky ( 1977, Tversky & Gati 1978) argued. 
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While careful consideration of experimental procedures in order to avoid 
artifactual asymmetries is still warranted (Janson 1977), current practice 
clearly pays much greater attention to (and respect for) asymmetries in 
data; e.g. Cermak & Cornillon (1976), Zinnes & Wolff ( 1977), Jones et al 
(1978), Krumhansl (1979). Also, a useful inferential test for symmetry in 
a proximities matrix has been developed by Hubert & Baker (1979). 

Scalar Product (Spatial but Nondistance) Models 
(for One-mode Two-way Data) 
The scalar product between points i and j (bij) is defined in terms of their 
coordinates (Xir and Xj" r = 1 ,2, ... R) as: 

R 
bij = � XirXjr • 

r=! 
Scalar product models are sometimes called "projection models" because 

the scalar products of a set of points with a fixed point are proportional to 
the projections of those points onto a vector from the origin of the coordi­
nate system to the fixed point. 

After the factor analytic model (not considered in this chapter), probably 
the most widely known scalar product model for symmetric proximities 
data is Ekman's "content model." Important articles discussing this class 
of models, whose popularity has declined within the period covered by this 
review, are Eisler & Roskam (1977) and Sjoberg (1975). The latter argues 
strongly against the content model, in favor of the more widely accepted 
class of distance models for proximities data. 

Other scalar product symmetric approaches include Guttman and 
Lingoes' SSA-III (Lingoes 1972, 1973) and certain options in Young's 
( 1972) POLYCON (for POLYnomial CONjoint analysis). Both programs 
are nonmetric factor analytic procedures applicable to symmetric data, 
usually but not necessarily correlations or covariances. Further discussion 
of these models will be found under unconstrained scalar product models 
for two-mode two-way data. 

In considering scalar product models for nonsymmetric dyadic data, 
there is Harshman's (1975, 1978) metric procedure DEDICOM (DEcom­
position into DIrectional COMponents), which can also handle two-mode 
three-way data (see below). The "strong" case of the model assumes a 
common set of dimensions for the rows and columns, so that the model is 
in that sense symmetric. Asymmetries are accounted for in this model by 
a set of indices of "directional relationship" which indicate the degree to 
which each dimension affects each other dimension. One way of viewing the 
strong DEDICOM model is as a special case of the factor or components 
analysis model in which factor loadings and factor scores are constrained 
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622 CARROLL & ARABIE 

to be linearly related to each other. (The "weak" model is precisely equiva­
lent to the factor or components analysis model.) 

A model involving a geometrically interesting generalization of scalar 
products (defined only for two or three dimensions, however) has been 
formulated by Chino (1 978) for one-mode two-way nonsymmetric data. 

Nonspatial Distance Models (for One-mode Two-way Data) 
A development that has occurred almost entirely within the period covered 
by this review is that of nonspatial or discrete models for proximities data. 
Of course the vast area of clustering has long allowed such representation 
of proximities, but the solutions have infrequently been viewed as realistic 
psychological models for proximities data. Moreover, as is true with factor 
analysis, the clustering literature is much too vast to be covered here, so we 
refer the reader to Sneath & Sokal ( 1973), Hubert (1 974c), Hartigan (1 975), 
and Blashfield & Allenderfer ( 1978) for relevant reviews. 

Backtracking somewhat, we first consider an approach by Cunningham 
& Shepard (1974) that is, in fact, neither spatial nor nonspatial. This 
"nondimensional" scaling approach transforms the data so as to satisfy the 
metric condition of the triangle inequality. The method is useful primarily 
in converting ordinal proximities into ratio scale distance estimates, which 
could then be used as data for various metric analyses, or for determining 
the form of the function relating proximities to distances. 

One nonspatial model that assumes a discrete geometric model is the 
Shepard & Arabie ( 1 979, Arabie & Shepard 1973) ADCLUS (for ADditive 
CLUStering) model. ADCLUS assumes that similarities data can be repre­
sented in terms of discrete but possibly overlapping classes or clusters, and 
that each of these clusters has a non-negative weight (although an additive 
constant interpretable as the weight for the cluster corresponding to the 
complete set is not so constrained). The predicted similarity for any pair of 
stimuli is just the sum of the weights across the clusters containing that pair 
of stimuli. Formally stated, sij is approximated by 

R 
sij = � WrPirPjr 

r=J 

where sij is similarity of stimuli (or other objects) i and j, Wr is the weight 
for the rth class, R is the number of classes. analogous to the number of 
dimensions in various spatial models, and Pir is a binary (0,1) class member­
ship function (Pir = 1 iff stimulus i is a member of class r, and ° otherwise). 
This model is formally equivalent to the factor analytic model (without 
communalities) for correlations or covariances, except for the constraint 
that the Pir be restricted to the discrete values of ° or 1. In addition, 
ADCLUS represents a special (symmetric) case of Tversky's (1977) general 
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MULTIDIMENSIONAL SCALING 623 

features model of similarity, and is  in fact the only case for which an 
analytic procedure is currently operational. 

Arabie & Carroll (1978) have provided a different algorithm called 
MAPCLUS (for MAthematical Programming CLUStering) for fitting the 
ADCLUS model, since the algorithm used in the Shepard-Arabie (1979) 
program was very expensive computationally and otherwise unwieldy. 
Moreover, the MAPCLUS approach is easily generalized to fit the three­
way model, called INDCLUS (Carroll & Arabie 1979). 

Tree structures comprise another interesting class of discrete geometric 
models. For a given tree structure there are at least two (and in some cases 
three) types of metrics that can be defined on the stimuli. In this representa­
tion, the stimuli are represented as nodes of the tree, either terminal nodes 
only or both terminal and nonterminal. One of the two classes of metrics 
is the ultrametric (Hartigan 1967, Jardine et al 1967, Johnson 1967), in 
which "heights" are associated with nonterminal nodes of the tree, and 
"distance" between any two nodes is defined as the "height" of the first 
nonterminal node at which the two are linked. 

An interesting relationship between ultrametric and Euclidean metrics 
(see above) was formally derived by Holman (1972), who showed that a 
Euclidean representation of "ultrametric data" requires n -1 dimensions, 
where n is the cardinality of the largest subset of stimuli satisfying the 
ultrametric inequality. While this demonstration has somewhat limited 
applicability to data containing error, Holman's (1972) result should help 
dispel a lingering misconception from the factor analytic tradition, namely 
that distance-based scaling models are legitimately serviceable as a cluster­
ing method; they are not (cf Kruskal 1977b). 

A second metric, after the ultrametric, has been given a variety of names, 
and the same is true for the resulting representations. The metric is simply 
defined as the shortest path in terms of lengths of the "branches" or "links" 
connecting adjacent nodes in the tree. For a tree structure there is only one 
path connecting any pair of nodes, so the shortest path is trivially defined 
as the length of that unique path. This metric was designated as "path 
length" and the associated trees as "path length trees" by Carroll & Chang 
(1973), Carroll (1976), and Carroll & Pruzansky (1 975, 1 980). Alternative 
algorithms for fitting the metric, as well as relevant applications, are given 
by Cunningham (1974, 1978) and Sattath & Tversky (1977). Other impor­
tant references include Bunemann (1971, 1974) and Dobson (1974). We 
note that some of these authors have also given other names to this metric 
and/or trees on which it is defined. 

Carroll & Chang (1973) also allowed a third type of metric, namely a 
synthesis of ultrametric and path length metric, in which distances were 
defined as the sum of the path length and a height value associated with the 
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624 CARROLL & ARABIE 

"least common ancestor" node. It can be shown that this "combined" 
metric can be meaningfully defined only in the case (allowed by Carroll & 
Chang 1973) of trees in which the stimuli or other objects are associated 
with at least some nonterminal as well as terminal nodes. 

The approach of Carroll & Pruzansky (1975, 1980; see also Carroll 1976) 
utilized mathematical programming techniques, analogous in some ways to 
those used in the Arabie-Carroll (1978) MAPCLUS approach, to fit either 
ultrametric or path length trees to proximities data via a least squares 
criterion. The essential new feature of the Carroll-Pruzansky approach, 
however, is the generalization to multiple tree structures, for which prox­
imities data are represented by composite distances summed over distances 
(either ultrametric or path length) from two or more trees. Carroll and 
Pruzansky applied this approach to a number of data sets, with interpret­
able results, and conjectured that there may be a relatively well-defined 
sense in which a single tree structure is approximately equivalent to a 
two-dimensional spatial structure (cf Sattath & Tversky 1977). 

A constrained nonmetric analysis in terms of (single) path length tree 
structure models has been described by Roskam (1973), which allows such 
options as constraining certain branch lengths to be equal. Constrained 
analyses are also possible by using appropriate options in most of the 
procedures designed for unconstrained fitting of the ADCLUS or tree struc­
ture models. 

Hybrid Distance Models (for One-mode Two-way Data) 
By hybrid geometric models we denote models that in some way combine 
continuous spatial structure of the type classically associated with MDS 
with discrete nonspatial structure such as assumed in ADCLUS, tree struc­
ture, other more general graph-theoretic structures, or combinations of 
these. Carroll & Pruzansky (1975) have produced the only approach known 
to us of "wholistic" fitting of a hybrid model, where both components are 
simultaneously fitted to the data. This hybrid model combines a tree struc­
ture component (either single or multiple) with an R-dimensional spatial 
component, and uses an alternating least squares procedure for fitting the 
model. Very good results were obtained in such a hybrid analysis of some 
kinship data obtained from a sorting task by  Rosenberg & Kim (1975). We 
expect to see other hybrid models formulated and the associated analytic 
procedures implemented in the future (Carroll 1975, 1976). 

TWO-MODE TWO-WAY DATA 

We now consider two-way data in which the two ways correspond to 
distinct modes (e.g. subjects and stimuli). The data array in this case will 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MULTIDIMENSIONAL SCALING 625 

correspond (in general) to a rectangular matrix which is generally nonsym­
metric (even in the case when, by coincidence or design, the matrix is 
square). 

Spatial Distance Models (for Two-mode Two-way Data) 

The principal distance model for studying individual differences in prefer­
ence judgments (as a case of two-mode two-way data) is the unfolding 
model. This approach was originally formulated by Coombs (1950), with 
a multidimensional generalization provided by Bennett & Hays ( 1 960). The 
hallmark of this model is that both stimuli and subjects' ideal points are 
simultaneously mapped into the same spatial configuration. As such, this 
approach constitutes what we have called an internal (unconstrained) anal­
ysis of preference data. The original developments by Coombs (1950) and 
Bennett & Hays ( 1 960) assumed the data were ordinal and conditional, the 
latter by subjects for subjects by stimuli preference data. Subsequent pro­
posals and corresponding computer programs have allowed for interval 
(metric) and/or unconditional data. Also, more recent procedures include 
external analyses, which are constrained in that the stimulus space is given 
a priori, while the subjects' ideal points are fitted on the basis of the prefer­
ence data. 

It should be emphasized that the unfolding model is not limited only to 
subjects by stimuli preference data, but may be applied to any two-mode 
two-way data matrix for which a distance model is appropriate. Recall, in 
particular, the first principle given above for representing nonsymmetric 
data. For a general and more detailed discussion of unfolding models, see 
Carroll (1 972, 1980). 

INTERNAL (UNCONSTRAINED) DISTANCE MODELS (FOR TWO-MODE 

TWO-WAY DATA) Procedures that allow internal unfolding analysis in­
clude KYST (Kruskal et al 1973, 1977) as well as its predecessors 
MDSCAL-5 and TORSCA-9 (cited above), Guttman and Lingoes' SSAR-I 
and SSAR-II procedures (Lingoes 1 972, 1973), and a procedure by Roskam 
(1971;  see also Lingoes & Roskam 1973). Of these, only KYST and 
MDSCAL-5 (or 6) use an appropriate loss function and/or allow use of a 
loss function (stress "formula two") with a variance-like normalization (for 
conditional analyses) or metric unfolding options (for unconditional analy­
ses). Those two programs thus are the only theoretically valid implementa­
tions, since trivial "degenerate" solutions (with a zero value of the loss 
function) occur when a loss function like stress formula one (having a 
normalizing factor resembling the sum of squared distances) is used, or 
when nonmetric conditional analysis is done (irrespective of what loss 
function is used). The rationale for a loss function like stress formula two 
can be found in Kruskal & Carroll (19�9; see also Carroll 1980). Programs 
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626 CARROLL & ARABIE 

other than KYST and MDSCAL-5 sometimes yield what appear to be good 
solutions despite this theoretical problem, but such findings are generally 
the results of convergence to substantively acceptable local minima, rather 
than the global minimum corresponding to a degenerate solution. An exam­
ple of the latter is a configuration in which the entities corresponding to the 
two modes are each mapped into a single point. 

In addition to the metric (internal or external) analyses discussed above, 
there is a metric unfolding procedure (Schonemann 1970) that attains an 
analytic internal solution for a very strong case of the unfolding model. 
Carroll & Chang'S PREFMAP-2 ( 197 1,  Chang & Carroll 1972), which is 
primarily designed for external analyses (as discussed below; see also Car­
roll 1 980), also allows an internal solution for a model similar to but slightly 
more general than Schonemann's (1970). Schonemann & Wang (1972) 
combine the metric unfolding model with the Bradley-Terry-Luce choice 
model (Luce 1959), to produce a stochastic unfolding approach that is 
applicable to paired comparisons data. The MDPREF model, which can be 
viewed as a special case of the unfolding model [in which the subjects' ideal 
points are infinitely distant from the stimulus points (Carroll 1972, 1980)] 
will be discussed in the section on scalar product models. 

EXTERNAL (CONSTRAINED) DISTANCE MODELS (FOR TWO-MODE 

TWO-WAY DATA) External analyses in terms of the unfolding model 
(and some of its generalizations) are provided by the PREFMAP procedure 
of Carroll & Chang (1967; see also Chang 1969 and Carroll 1972, 1980), 
by KYST (Kruskal et al 1973, 1977), as well as other programs described 
below. PREFMAP (and its successor PREFMAP-2, described in Carroll 
1980) is based on a general linear least squares approach involving quad­
ratic regression procedures, and allows both metric and nonmetric options. 

PREFMAP and PREFMAP-2 also allow fitting of two models more 
inclusive than the standard unfolding model. One of these models, for 
"weighted unfolding," allows a more general weighted Euclidean metric, 
with a different pattern of dimension weights as well as different location 
of ideal points for each subject. A second generalization allows the most 
general form of Euclidean metric, defined by a different quadratic form for 
each subject, thus allowing a different rigid (or orthogonal) rotation of the 
reference frame for individual subjects, followed by differential weighting 
of the resulting idiosyncratically defined dimensions. An alternative strat­
egy for implementing nonmetric external unfolding analyses is given by the 
linear programming approach of Srinivasan & Shocker (1973), which also 
includes non-negativity constraints for the dimension weights. The same 
constraints are provided in a metric procedure using quadratic program­
ming described by Davison (1976). 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MULTIDIMENSIONAL SCALING 627 

During the years covered by this chapter, substantive applications of both 
internal and external unfolding include Levine ( 1972), Coombs et al ( 1975), 
Davison ( 1977), Seligson ( 1977). Coombs & Avrunin ( 1977) provided a 
theoretical derivation of the unfolding model from fundamental psychologi­
cal principles. There also have been several studies making extensive com­
parisons (with interesting psychological results) of the structures found 
when subjects give similarity as well as preference judgments for the same 
stimulus domain (Cermak & Cornillon 1976, Nygren & Jones 1977, Sjoberg 
1977, 1980; also see Carroll 1972 for an early discussion of this question). 
A new methodological approach for combining proximities with preference 
(and possibly other rating scale) data has been discussed by Ramsay 
(1979b). The corresponding model lies somewhere between our categories 
of "internal" and "external" models. 

Scalar Product Models (for Two-mode Two-way Data) 

By far the dominant class of models for two-mode two-way data are scalar 
product models, which include factor analysis and principal components 
analysis. One approach seeks to fit the score matrix, another to fit correla­
tions or covariances; Kruskal ( 1978) refers to these as the direct and indirect 
approaches, respectively. 

INTERNAL (UNCONSTRAINED) MODELS (FOR TWO-MODE TWO-WAY 

DATA) The program SSA-III (Lingoes 1972, 1973) can be viewed as a 
form of nonmetric factor analysis differing markedly in rationale from the 
Kruskal-Shepard ( 1974) variety of nonmetric factor analysis. SSA-III gen­
erally assumes correlations or covariances (but can use other proximities 
data) and seeks a representation involving vectors such that the scalar 
products between vectors reproduce the order of the proximities. In con­
trast, the Kruskal-Shepard approach starts with a general rectangular (two­
mode as well as two-way) data matrix, and seeks a representation in terms 
of two sets of vectors such that the scalar products reproduce (as well as 
possible) the conditional rank orders (within one of the two modes) of the 
scores. Thus, Kruskal and Shepard's method uses the direct approach, 
while Guttman and Lingoes' SSA-III or Young's POL YCON uses the 
indirect approach. The theoretical rationale of the latter approach is less 
clear because, aside from Guttman's simplex structure, it is difficult to 
envision conditions where correlations or covariances are only defined ordi­
nally. 

In passing we would like to note that when the Kruskal & Shepard ( 1974) 
method is applied to two-mode two-way data, it is often expedient to depict 
the objects of one mode as vectors and the other as points. This representa­
tion has various advantages over the more conventional display of both 
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628 CARROLL & ARABIE 

modes as points in a joint space, particularly when the data are conditional 
with respect to the mode represented by vectors. 

A particular type of data to which a factor or component analytic type 
of model has been very usefully applied comprises a subjects by stimuli 
matrix of preference (or other dominance) data. In this case the scalar 
product or projection model has come to be known as the "vector model" 
because of the very convenient pictorial representation of stimuli as points 
and subjects as vectors. We view this technique as the "right" way to depict 
such solutions, since in the case of such data, the matrices are conditional 
with respect to subjects. Thus, the order of projections of (stimulus) points 
onto a (subject) vector, but not that of vectors onto a point, is meaningfully 
defined, both in the data and in the geometric representation. 

Tucker (1960) and Slater (1960) were the first to propose (independently) 
somewhat limited versions of such a model for preferences (see also Ni­
shisato 1978b). Probably the most widely used method of analysis involving 
this model is Carroll & Chang'S (1964; see also Carroll 1972, 1980) 
MDPlR.EF (for MultiDimensional PREFerence analysis), which is actually 
a special type off actor analysis of either a derived or given preference score 
matrix. While MDPREF applied to paired comparisons preference data is 
computationally a metric technique, there is a reasonable index of ordinal 
agreement with the paired comparisons preference data which is optimized 
by this procedure (Carroll 1972). 

It is possible, at least in principle, to effect a multidimensional analysis 
of "classical" paired comparisons data, in which the paired comparisons 
judgments are aggregated over different subjects or over replications for a 
single subject. As argued earlier, the result of such preprocessing can be 
viewed as replicated two-mode two-way data. A multidimensional model 
for such a matrix, called the "wandering vector" model, is discussed by 
Carroll (1980). de Leeuw & Heiser (1979) independently proposed a mathe­
matically equivalent model based on Thurstone's Case I model. 

EXTERNAL (CONSTRAINED) SCALAR PRODUCT MODELS (FOR TWO­
MODE TWO-WAY DATA) In scalar product external models for two­
mode two-way data (as with external unfolding models), one set of points 
is fixed and the other "mapped in." In the case of conditional data, it is 
almm,t always the points corresponding to the conditional mode (the one 
typically represented as vectors) that are mapped in. One metric means of 
implementation is multiple linear regression, where the regression coeffi­
cients (possibly after some normalization) define the coordinates of the 
second set of points or vectors. In the case of nonmetric data, some form 
of what has variously been called nonmetric, ordinal, or monotonic multiple 
linear regression is necessary. Carroll & Chang'S (197 1 ,  Chang & Carroll 
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MULTIDIMENSIONAL SCALING 629 

1972) PREFMAP and PREFMAP-2 both provide metric and non metric 
options for such mapping. 

One class of models and methods not usually viewed in this way, but 
which can be characterized as external analysis in terms of a scalar product 
or vector model (see discussion below and Carroll 1980), is the class includ­
ing approaches variously called conjoint measurement (Luce & Tukey 
1964), functional measurement (Anderson 1974, 1977), and/or conjoint 
analysis (Green & Wind 1973, Green & Srinivasan 1978). While all three 
approaches allow more general models, in the most widely known and used 
versions of these three closely related approaches, a simple additive model 
is assumed to relate a (metric or nonmetric) dependent variable to a set of 
qualitative independent variables that form a (complete or fractional) fac­
torial design. In conjoint measurement, the dependent variable is always 
assumed to be ordinal, in functional measurement it is usually but not 
always assumed metric, while conjoint analysis includes both metric and 
nonmetric alternatives. 

The additivity analysis central to these three approaches can be viewed 
as fitting a "main effects only" analysis of variance model to the data either 
metrically (via classical ANOV A procedures) or nonmetrically. Such ad­
ditivity analysis can be viewed as an external one in terms of a scalar 
product model by expressing the main effects ANOV A model in the now 
widely known form of a multiple linear regression model with appropriately 
defined (usually binary) "dummy" variables, which play the role of the 
external dimensions. One widely used procedure for fitting a nonmetric 
version of this model is Kruskal's (1965, Kruskal & Carmone 1965) 
MONANOV A, and other nonmetric procedures for fitting this simple addi­
tive model include ADDIT (Roskam & Van Glist 1967), POLYCON 
(Young 1972), CM-I (Lingoes 1972, 1973), and ADDALS (de Leeuw et al 
1976). ADDALS also allows more general cases in which, say, the factors 
of the factorial design are treated as ordinal or interval scale rather than 
(necessarily) nominal scale variables (or mixtures of scale types are allowed 
for factors), or in which the dependent variable is nominally scaled. Car­
roll's ( 1969) categorical conjoint measurement and Nishisato's ( 1971 )  opti­
mal scaling approach also provide options for dealing with nominal scale 
dependent variables. 

In recent years there have been increasingly frequent applications of 
conjoint measurement to data from experimental and other judgmental 
tasks (e.g. Cliff 1972, Ullrich & Painter 1974, Falmagne 1976), as well as 
relevant theoretical developments (e.g. Fishburn 1975, Falmagne et al 
1979), which generally fall under the purview of a forthcoming chapter on 
unidimensional scaling and psychophysics in the Annual Review of Psy­
chology. However, conjoint analysis remains one of the most underem-

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



630 CARROLL & ARABIE 

ployed techniques for data analysis in psychology. In contrast, the method 
has enjoyed extensive usage in marketing research, where Green & Wind 
(1973) provided a practitioner's handbook. Although applications are too 
numerous to cite at length, the following serve as examples: Johnson ( 1974), 
Green &; Wind (1975), Green et al ( 1975), Bouroche ( 1977), Green (1977), 
Green &: Carmone ( 1977). Helpful overviews of current developments in the 
application of conjoint analysis in marketing can be found in Green & 
Srinivasan (1978) and Wind (1976, 1978a,b). 

A general procedure called ORDMET, that is applicable to nonmetric 
external analysis in terms of a scalar product model, is described by McClel­
land & Coombs (1975). Given data sufficiently close to being errorless, 
ORDMET's linear programming approach can be applied to fitting any 
external scalar product model, conjoint measurement model, and even 
external versions of the unfolding model. 

Nonspatial Distance Models (for Two-mode Two-way Data) 
The only nonspatial model proposed to date (outside the clustering litera­
ture) that is directly applicable to two-mode two-way data is Tversky & 
Sattath's ( 1979) "Preference Trees" model. This model is applicable to 
a paired comparisons preference matrix aggregated over subjects (or, 
more appropriately, over replications by a single subject) and so can be 
viewed {see above) as a two-mode two-way model. The Preference Tree 
(PRETREE) model follows as a special case of the elimination by aspects 
(EBA) model (Tversky 1972a,b) and subsumes Luce's ( 1959, 1977) constant 
ratio model. Although there is no program for fitting the PRETREE model 
to data, it has been tested by utilizing trees derived from similarity data or 
on a priori grounds. 

TWO-MODE THREE-WAY DATA 

As mentioned under one-mode two-way data, Carroll & Kruskal ( 1977) 
have provided a general overview of spatial models and data analytic meth­
ods falling under the present heading. 

Spatial Distance Models (for Two-mode Three-way Data) 

UNCONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR TWO­

MODE THREE-WAY DATA) The principal type of data falling under this 
classification is three-way dyadic data, comprising two or more square 
symmetric proximities matrices for pairs of stimuli, from two or more 
subjects (or other data sources). The dominant type of model is a distance 
model (only Euclidean models to date) for stimuli, with a set of individual 
differenees parameters characterizing subjects. The models extend from the 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MULTIDIMENSIONAL SCALING 63 1 

"points of view" approach of Tucker & Messick ( 1963) through various 
forms of a weighted Euclidean model (Bloxom 1968, Horan 1969, Carroll 
& Chang 1969, 1 970), frequently called the INDSCAL (for INdividual 
Differences SCALing) model [but called a "subjective metrics" model by 
Schonemann (1972)]. 

Yet further generalizations of this model include Tucker's ( 1972) "three­
mode scaling" model, Carroll & Chang's ( 1972a) IDIOSCAL model, and 
Harshman's ( 1972b) PARAFAC2 model. Of these IDIOSCAL is the most 
general, as it includes the other two as special cases. IDIOSCAL assumes 
a different generalized Euclidean metric, which for each subject is defined 
by a quadratic form described by a symmetric RxR matrix. Three-mode 
scaling is essentially a special case of Tucker's ( 1964) model for three-mode 
factor analysis, applied to an array of estimated scalar products derived 
from three-way proximities data. Tucker's approach can be viewed as a 
special case of the IDIOSCAL model, in which a special structure is im­
posed on the quadratic form matrices (that is, the individual quadratic 
forms are linear combinations of a small set of symmetric RxR matrices). 
Recent statistical developments in three-mode factor analysis are given by 
Bentler & Lee (1978, 1979). Harshman's ( 1972b) PARAFAC2 provides an 
interesting special case of both IDIOSCAL and three-way scaling. In terms 
of a geometric interpretation (also adopted by Tucker 1 972), PARAFAC2 
allows the dimensions to be oblique or correlated (Le. have nonindependent 
effects on the data) but assumes that the angles between dimensions remain 
the same for all subjects. 

All three of these models have the simple weighted Euclidean model 
INDSCAL (Carroll & Chang 1970) as a special case. INDSCAL has an 
important property, however, that two of these three more general models 
(IDIOSCAL and three-mode scaling) do not share, and which has only 
been conjectured but not proved for PARAFAC2 (Harshman 1972b). The 
specific feature is "dimensional uniqueness," which means that the dimen­
sions are not invariant under orthogonal (or general linear) transforma­
tions, but are uniquely defined (or are "identifiable" in current statistical 
parlance) except for permutations and reflections. [See Harshman ( l972a) 
and Kruskal ( 1976, 1977c) for uniqueness proofs. It should be noted that 
these results have actually been proved for the more general three-way 
CANDECOMP (for CANonical DECOMPosition) model provided by 
Carroll & Chang ( 1970) and independently by Harshman ( 1970) under the 
name of PARAFAC (for PARAllel FACtor analysis).] A more extensive 
discussion of these models can be found in Carroll ( 1973), Carroll & Wish 
( 1974a,b) and Wish & Carroll (1 974). 

The principal algorithmic advances in this domain during recent years 
have entailed the procedure already discussed when considering the 
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632 CARROLL & ARABIE 

ALSCAL method of Takane et al (1977) and Ramsay's ( l 977b) maximum 
likelihood approach in MUL TISCALE. Each of these programs has both 
(one-mode) two-way and (two-mode) three-way capability. In the latter 
case, both techniques assume the weighted Euclidean, or INDSCAL model. 
The principal new feature of the ALSCAL treatment of three-way data is 
that the program provides a nonmetric implementation of the INDSCAL 
model. Another capability, also not available in other approaches (e.g. 
INDSCAL) to fitting the weighted Euclidean model, is the provision for 
missing or replicated data. In the case of MUL TISCALE, which is re­
stricted to the metric case, there are some points to be emphasized concern­
ing thn:e-way data. First, the asymptotic chi-square criterion for tests of 
statistical significance of dimensions is more questionable than in the two­
way case. Ramsay ( 1979a) has devised an adjustment in degrees of freedom 
to expedite more valid nominal levels of significance. In addition, of course, 
MULTI SCALE in the three-way case allows the definition of confidence 
regions for subject weights as well as for stimulus points. In research 
currently underway, Sharon Weinberg is comparing the confidence regions 
produced by MUL TISCALE with those produced by straightforward jack­
knifing of INDSCAL, a less model-specific procedure employed earlier by 
Cohen ( 1974a) and Ebbesen ( 1977). 

A mathematical development that has led to some important new al­
gorithms for the INDSCAL model is Schonemann's (1 972) "analytic solu­
tion for a class of subjective metrics models." This solution, however, is 
appropriate only for errorless data that fit the model exactly. More robust 
modific·ations have been provided by Carroll & Chang ( 1972a), Schone­
mann et al ( 1976), and de Leeuw & Pruzansky ( 1978). These three modifica­
tions all have the advantage that they provide approximate solutions for the 
weighted Euclidean or INDSCAL model in much less time than for the 
more standard implementations (Carroll & Chang 1970, Pruzansky 1975, 

Takane et al 1977, Ramsay 1977b). The solutions resulting from the 
more rapid algorithms often provide useful initial configurations for the 
standard approaches, which have more well-defined and probably more 
stable numerical properties. Another approach providing an initial config­
uration for the INDSCAL procedure is implemented in a program called 
SINDSCAL-LS (Carroll & Pruzansky 1979), based on a special case of 
CANDELINC (called LINCINDS) providing a linearly constrained ver­
sion of INDSCAL. SINDSCAL-LS uses the stimulus space and/or subjects 
space from three-mode scaling to define the constraint matrices (cf Cohen 
1974b, MacCallum 1976). 

A final approach to be discussed here is one by Lingoes & Borg ( 1978), 
based generally on using "Procrustean" configuration matching techniques, 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MULTIDIMENSIONAL SCALING 633 

called PINDIS (for Procrustean INdividual DIfferences Scaling). In 
addition to providing options for fitting models of the INDSCAL and 
IDIOSCAL variety, PINDIS introduces a new "vector weighting" or "per­
spective" model. 

APPLICATIONS OF TWO-MODE THREE-WAY SYMMETRIC EU­

CLIDEAN MODELS Along with the increased capabilities of higher-way 
models, the user must accept the responsibility for offering convincing 
interpretations of a larger number 'of fitted parameters. Accordingly, the 
highly elegant work of Bisanz et al (1978) and LaPorte & Voss (1979) 
closely related the model parameters of INDSCAL solutions to substantive 
issues in the study of memory for prose. Other interesting results in the area 
of memory and cognition can be found in Shoben (1974), Howard & How­
ard (1977), and Friendly (1977). There have been many three-way analyses 
of perceptual data, including the studies reviewed in Carroll & Wish 

(1974a,b) and Wish & Carroll (1974). Other such papers include Carroll & 
Chang ( 1974), Walden & Montgomery (1975), Fraser (1976), Chang & 
Carroll (1978), Getty et al ( 1979), Soli & Arabie ( 1979), Arabie & Soli 
( 1980). Researchers in social psychology and sociology have been especially 
active in applying the weighted Euclidean model (e.g. Rosenberg & Kim 
1975; Breiger et a1 1975; Wish 1975, 1976; Wish et a1 1976; Wish & Kaplan 
1977; Coxon & Jones 1978; Wish 1979a,b). The studies by Wish and his 
colleagues used the INDSCAL model and obtained substantive results 
supportive of Wish's implicit theory of interpersonal communication. 

CONSTRAINED SYMMETRIC EUCLIDEAN MODELS (FOR TWO-MODE 

THREE-WAY DATA) A constrained approach to individual differences 
MDS that takes as its basic model the Tucker three-mode scaling model has 
been provided by Bloxom (1978), who imposes various equality constraints 
so that parameters are equal to each other or to prespecified values. Bloxom 
(1978) also includes a constrained version of the INDSCAL model as a 
special case, since INDSCAL itself corresponds to three-mode scaling with 
all (off diagonal) dimension cosines constrained to zero, and all three modes 
constrained to have the same number of dimensions. 

A different approach to a constrained INDSCAL analysis is provided in 
a procedure called LINCINDS (for LINearly Constrained INDSCAL) that 
is a special case of the CANDELINC procedure (Carroll, Pruzansky & 
Kruska1 1979) to be discussed in detail under constrained three-mode three­
way scalar product models. In LINCINDS the INDSCAL stimulus coordi­
nates, subject weights, or both can be constrained to be linearly related to 
a set of exogenous ("outside") variables (measured on the stimuli, subjects, 
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634 CARROLL & ARABIE 

or both). Specifically, the coordinate Xir of the ith stimulus on the rth 
dimension can be constrained to be of the form 

S 
Xir := LbrsviI' 

s = 1 

where Vii' is the known value of stimulus i on exogenous variable s, and 
brs is a fitted coefficient (analogous to a regression coefficient in the least 
squares regression equation predicting dimension r from the S exogenous 
variables). In practice it has been found inappropriate to use this procedure 
to constrain the subject weights, however, both from empirical experience 
and for theoretical reasons related to MacCallum's (1977) criticism of 
applying linear procedures to INDSCAL weights, although we regard his 
arguments as overstated (see Carroll, Pruzansky & Kruskal 1 979). 

NONSYMMETRIC EUCLIDEAN MODELS (FOR TWO-MODE THREE­

WAY DATA) DeSarbo (1978) has produced a three-way metric unfolding 
approach which can accommodate nonsymmetric data according to the first 
general principle listed above for such data. Also, as noted above in the 
discussion of Young's ( 1975a) ASYMSCAL, there is a three-way general­
ization! of that model. 

Scalar Product Models (for Two-mode Three-way Data) 
While not originally formulated as such, both the INDSCAL (Carroll & 
Chang 1970) and three-mode scaling (Tucker 1 972) procedures have been 
applied directly to scalar product data. Both methods ordinarily start out 
with dissimilarities data and, via preprocessing, transform these data into 
estimated scalar product matrices, which are then analyzed by a symmetric 
version of three-way CANDECOMP or of three-mode factor analysis, 
respectively. Either procedure just as easily fits a model directly for two­
mode three-way scalar product data. Moreover, the INDSCAL program 
(Chang & Carroll 1969) and its successor SINDSCAL (Pruzansky 1975) 
both have options to deal with scalar product data directly. 

A s,�alar product model explicitly formulated for nonsymmetric two­
mode three-way data is a three-way version of Harshman's (1975, 1 978) 
DEDICOM model. This is a generalization of the one-mode two-way 
DEDICOM model to the two-mode three-way case. A set of dimension 
weights analogous to those assumed in the INDSCAL-CANDECOMP· 
PARAFAC models are introduced as parameters describing the second 
mode (and third way), which may correspond to subjects or other data 
sources. 

Another model for this type of nonsymmetric data has been formulated 
by Carroll & Sen (1976). and was explicitly designed for the case of "cross 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

98
0.

31
:6

07
-6

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

- 
U

rb
an

a 
C

ha
m

pa
ig

n 
on

 0
8/

25
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



MULTIDIMENSIONAL SCALING 635 

impact" data, in which each of a number of subjects judges the impact of 
each of a set of events on each other event. See Carroll ( 1977) for a descrip­
tion of the model and the corresponding analytic procedure, called Impact 
Scaling. 

THREE-MODE THREE-WAY DATA 

Spatial Distance Models (for Three-mode Three-way Data) 
As already mentioned in the section on distance models for two-mode 
three-way nonsymmetric data, DeSarbo ( 1978) has implemented a three­
way metric unfolding procedure, which can be interpreted either as a direct 
generalization of Schonemann's ( 1972) two-way metric unfolding model 
and method or as a nonsymmetric generalization of INDSCAL. The 
DeSarbo procedure, like Schonemann's, is both metric and unconditional 
(although a case can be made that DeSarbo's approach is matrix condi­
tional). A typical data array to which this three-way unfolding procedure 
can be applied is a set of subjects by stimuli matrices of preference scale 
values, one such matrix for each of a number of situations or experimental 
conditions. 

Scalar Product Models (for Three-mode Three-way Data) 
The two principal unconstrained models appropriate to this section 
are the Tucker ( 1964) three-mode factor analysis model and the general 
three-way case of CANDECOMP-PARAFAC. While there have been 
some useful applications of three-mode factor analysis (Wiggins & Black­
burn 1976, Sjoberg 1977, Redfield & Stone" 1979), there have so far been 
very few convincing applications of the general three-mode three-way case 
of CANDECOMP-PARAFAC (but see Harshman, Ladefoged & Gold­
stein 1977). CANDECOMP has mainly been useful (in its two-mode three­
way symmetric case) as the analytic underpinnings of the Carroll-Chang 
INDSCAL procedure and, more recently, as the first step in DeSarbo's 
(1978) approach to three-way unfolding. 

Turning now to constrained models, we note that the CANDELINC 
approach, which has been referred to previously (Carroll, Pruzansky 
& Kruskal 1979), is directly applicable to the three- or higher-way 
CANDECOMP model. In the three-way case, CANDELINC allows linear 
constraints on all modes, or on just one or two of the three modes. In 
general these constraints take the form that the parameters for a given mode 
must be linear combinations of a set of a priori external variables. These 
external variables are defined via a "design matrix" for each of the linearly 
constrained modes, with the design matrix containing the evaluated exter­
nal variables. 
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636 CARROLL & ARABIE 

HIGHER-WAY DATA 

Tucker's three-mode factor analysis could easily be generalized to the high­
er-way case (see Carroll & Wish 1974a,b), but to our knowledge no actual 
implementation has been achieved. The N-way CANDECOMP model has 
been so implemented. While it has not been usefully applied to general 
N-way multivariate data, one particular useful application has been to a 
least squares fitting of the Lazarsfeld latent class model (Carroll, Pruzansky 
& Gn:en 1979). 

DATA COLLECTION AND RELATED ISSUES 

Althoiligh we have emphasized the development of models and their al­
gorithms, there has also been much research in the techniques used before 
the model is to be fitted, including the perennial problem of comparing two 
or more proximities matrices. The fact that the straightforward approaches 
(e.g. correlating two matrices) encounter formidable difficulties when infer­
ential tests are sought has often caused investigators to feel that only the 
scaling output (but not the input matrices) could be compared. The conse­
quent practices have recently become less forgivable owing to results (Hu­
bert & Schultz 1976b, Hubert 1978) which generalized earlier work of 
Mantel (1967) to allow significance tests for the correspondence between 
two or more (Hubert 1979) input matrices as well as related applications. 

The: extensive variety of models (and their associated types of input data) 
notwithstanding, situations often arise where the data at hand are not 
immediately compatible with the intended model. A typical example occurs 
when a one-mode two-way nonmetric scaling representation is sought for 
either of the modes of a two-mode two-way data set. Shepard ( 1972b) has 
labeled as "indirect similarities" (also sometimes called "profile similari­
ties") the secondary data that ultimately serve as input to the program 
implementing the model. An example consists of computing the squared 
Euclidean distances (cf Carroll 1968) between all pairs of rows/columns of 
such a two-mode two-way data set. 

Om: relevant area of research concerns the partitions that result when 
subjects are asked to sort a set of stimuli into "homogeneous groups." For 
analyses where differences bt;tween subjects ' sortings are of interest, a vari­
ety of measures of distance between such partitions have been developed 
(Boorman & Arabie 1972, Arabie & Boorman 1973). For situations in 
which the stimuli being sorted are of greater interest in the analysis, there 
is an extensive literature on techniques for going from partitions of the 
stimuli to one-mode two-way (stimuli by stimuli) data: Carroll (1968), 
Rosenberg & Jones (1972), Rosenberg & Sedlak (1972), Rosenberg & Kim 
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(1975), Wish (1976), Wish et al ( 1976), Wish & Kaplan ( 1977), Drasgow 
& Jones (1979). Other papers relevant to indirect similarities data include 
Sibson ( 1972), Lund ( 1974), Batchelder & Narens (1977), Arabie & Soli 
(1980). Finally, R. A. Harshman (personal communication) has reported 
favorable results when two-way marginals are subtracted from three-way 
data in applications of CANDECOMP-PARAFAC, and Kruskal (1977d) 
has derived least squares properties supporting this strategy. 

A related area of activity in scaling concerns the development of incom­
plete experimental designs to reduce the effort and expense involved in 
collecting MDS data. For selectively obtaining data on a subset of the 
n(n- 1)/2 pairs of n stimuli, the following may serve as useful references: 
Spence & Domoney (1974), Green & Bentler ( 1979), Deutscher (1980), 
Green (1980), Isaac (1980), Kohler & Rushton (1980), Spence (1980), 
Young et al (1980). For conjoint analysis, Green et al (1978) have discussed 
an approach that spares researchers the need to execute a full factorial 
design. 

MDS: NEW AREAS OF USAGE 

In addition to research activities in the United States, Canada, the United 
Kingdom, the Netherlands, Israel, and Sweden, various other countries 
have developed their own traditions of MDS. In Japan, Hayashi, Indow, 
and others have been especially active (see references throughout this chap­
ter), and Okada and Watanabe have translated into Japanese the two vol­
umes of the 1969 Irvine conference (Shepard et a1 1976, Romney et a1 1977). 
Bouroche and his colleagues in France have been responsible for many 
developments and applications of scaling techniques (Bertier & Bouroche 
1975, Bouroche & Dussaix 1975). In Germany, Feger (1978) and Bick and 
MUller have formed the core of groups actively developing and using MDS 
and related methods. In the Soviet Union, there is continuing work by 
Mirkin and others (Terekhin 1973, 1974; Kamenskii 1977). 

With respect to disciplines, MDS has maintained a strong base in market­
ing research. There also appear to be possible applications in econometrics 
(MaitaI 1978), and usage in political science (e.g. Weisberg 1972) and sociol­
ogy (e.g. Boorman & White 1976; Coxon & Jones 1977) is also apparent 
from various references cited earlier. From an advocacy point of view, 
perhaps the greatest gains in areas related to psychology have come from 
geography (e.g. Tobler & Wineburg 197 1 ,  Olshavsky et al 1975, Golledge 
& Spector 1978, Golledge et al 1980; also see other papers in Golledge & 
Rayner 1980). We view this substantive interest in MDS from related 
disciplines as providing a salutary diversity of assumptions upon which new 
models can be formulated. 
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AIDS TO USERS: TEXTBOOKS 

MDS remains an area characterized by a considerable lag between new 
methodological developments and routine use by nonspecialists (viz., the 
majority of the consumer community). The fact that the two-volume Irvine 
conference proceedings (Shepard et al 1 972, Romney et al 1 972) were never 
intended to be a textbook has frustrated many instructors, and so have the 
ongoing developments subsequent to publication of some of the most useful 
textbooks (Dawes 1 972, Green & Rao 1972, Green & Wind 1973). Fortu­
nately, a monograph by Kruskal & Wish ( 1978) has recently appeared, and 
it is eminently usable as a textbook covering two- and three-way MDS of 
proxirnities data. This monograph provides helpful guidelines to and exam­
ples of usage, and has been enthusiastically received by graduate and ad­
vanced undergraduate students in courses we have taught. 

PROSPECTS 

As stated in our introduction, our primary goal in this chapter has been to 
impos�: a taxonomy on current models and methods so that their interrela­
tionships as well as various lacunae would be more apparent. While review­
ing developments and applications in MDS, we have noted several trends. 
First, there is increased attention to the substantive appropriateness of these 
models in contrast to earlier years when the techniques served primarily as 
convenient vehicles (and sometimes steam rollers) for data reduction. Sec­
ond, we find increased realization that no particular model, in general, gives 
"the true representation." Most analyses choose a model that at best cap­
tures part of the structure inherent in the data; the part not fitted often 
awaits another analysis with a different model and perhaps a complemen­
tary interpretation as well. Third, we see a strong trend toward the develop­
ment of three-way models with applications of three- and higher-way 
methods becoming almost as numerous as two-way applications. A develop­
ment not unrelated to the two preceding observations is that we see consid­
erable :interest in discrete and hybrid models and predict that their coverage 
will be more extensive in the next chapter on MDS in this series. 
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