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INTRODUCTION

Although the Annual Review of Psychology periodically offers chapters on
topics in quantitative methodology (e.g. L. V. Jones & Appelbaum’s 1989
chapter on psychometric methods), it occasionally allows reviews to herald
new subareas of intense development (e.g. Smith’s 1976 chapter on analysis
of qualitative data). The present chapter is of the latter kind. There is thus no
strong consensus on the boundaries of our area or even on when coverage in a
review chapter should begin. There is, however, one enduring certainty: We
lack adequate space to discuss all the meritorious and relevant work.

Combinatorial data analysis (CDA) concerns the arrangement of objects
for which relevant data have been obtained. Stated more explicitly, CDA is
involved either with (a) the location of arrangements that are optimal for the
representation of a given data set (and thus is usually operationalized using a
specific loss-function that guides the combinatorial search defined by some
set of constraints imposed by the particular representation chosen) or with (b)
trying to determine in a confirmatory manner whether a specific object
arrangement given a priori reflects the observed data. CDA does not (cf
Rouanet et al 1986) postulate strong stochastic models based on specific
unknown parametric structures as underlying a given data set. Although CDA
might use or empirically construct various weighting functions, the weights so
obtained are not intended to be interpreted as parameter estimates in some
presumed stochastic model viewed in turn as responsible for generating the
data. In CDA, manifest data are emphasized, and the traditional concern for
an assumed relationship between the data and a restrictively parameterized
stochastic population model is essentially ignored.

Methods of CDA are generally organized around (a) the types of com-
binatorial structures we might use to represent a given data set (e.g. Guénoche
& Monjardet 1987, Hubert 1987) and (b) the classes of combinatorial op-
timization methods used in solving problems of actually locating optimal
arrangements rather than the (confirmatory) evaluation of a given one. The
latter emphasis on computation may seem unusual, but such staples of
combinatorial structures as the “traveling salesman problem,” the “minimum
spanning tree,” and “additive trees” have been used to connect seemingly
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unrelated techniques of discrete data analysis (see respectively Hubert &
Baker 1978; Hubert 1974a; Carroll 1976); similarly, explicit optimization
techniques like “branch-and-bound” and “dynamic programming” have been
used to suggest a general approach to broad classes of data analysis tasks (see
respectively Hand 1981; Hubert & Golledge 1981).

The need for new techniques to answer questions that, for computational
ease, had often been approached using restrictive parametric models (even
when their underlying assumptions may be very unrealistic for the problem
under study) has not always been acknowledged. According to personal
communications, Lerman had considerable difficulty getting his (1980) pro-
grammatic statement published, and Edgington (1980) found a generally
unreceptive audience for the randomization emphasis in his text. But the
Zeitgeist has caught up with and vindicated those authors, as judged by the
acclaim for their continuing contributions to the area (e.g. Edgington 1987;
Lerman 1988) and by special issues of quantitative journals devoted entirely
to combinatorial data analysis (e.g. Leclerc & Monjardet 1987a,b,c).

Most of the papers cited here were published after 1974. We avoid certain
research areas here either because they rely implicitly on parameter estimation
(e.g. classification decisions based on discriminant analysis) or because they
merit their own review chapters (e.g. the related topics briefly mentioned in
the section on Rankings, Relations, and Partially Ordered Sets, below). Our
terminology for models and types of data follows that of an earlier Annual
Review chapter by Carroll & Arabie (1980:609-12). We make extensive use
of Tucker’s (1964) terminology, distinguishing between “ways” (a matrix that
has rows and columns is two-way) and modes: If the two ways both corre-
spond to the same set of entities, as in a proximity matrix of » stimuli by n
stimuli, the data are two-way one-mode; if the rows and columns correspond
to disjoint sets (e.g. subjects by attributes), the data are two-way two-mode.
We note that this terminology has found its way into relevant book titles (e.g.
one dedicated to Tucker and edited by Law et al 1984; Coppi & Bolasco
1989).

SERIATION

Methods of seriation are, in effect, techniques for the unidimensional scaling
or sequencing of a set of objects along a continuum. In the last several
decades, these and other strategies of analysis have been developed most
aggressively by archaeologists whose frequent concern is with a two-mode
mawix of artifacts by sites which is typically converted to a one-mode matrix
amenable to nonmetric multidimensional scaling (MDS) techniques. A review
of this methodology may be found in Carroll & Arabie (1980:617; also see
Lerman 1981: Ch. 8; Pliner .1984; Halperin 1989). The inherent problem is
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combinatorial in nature and can be characterized via the ordering of the
objects defined by the one mode. Because the ostensible task is to place
objects along a continuum so as to optimize an objective function, the
problem seems to be on€¢ of location estimation along the real line. It is thus
susceptible to the usual type of gradient-based optimization techniques (e.g.
Kruskal 1964a,b). Such intuition conflicts with widespread observed failures
(e.g. Shepard 1974:378-79) of gradient-based MDS algorithms when uni-
dimensional solutions are sought. De [.eeuw & Heiser (1977:740), however,
noted that the one-dimensional MDS problem was in fact one of com-
binatorial optimization and was thus reducible to the search for an ordering
along a continuum, possibly with a secondary estimation of the actual coor-
dinates if desired.

Hubert & Arabie (1986) demonstrated analytically why gradient-based
MDS approaches fail for the unidimensional case. We have since provided a
combinatorial algorithm that guarantees a global optimum and is compu-
tationally feasible for medium-sized (e.g. n = 20) proximity matrices (Hubert
& Arabie 1986). The difficulties with location estimation based on the usual
gradient methods are not restricted to the unidimensional case, and we have
shown that gradient-based MDS techniques will fail for identical technical
reasons when city-block representations are sought in two or more di-
mensions. As an alternative, combinatorial approaches to higher-dimensional
city-block spaces are being developed (Hubert & Arabie 1988; Arabie et al
1989; Heiser 1989). These methods are in a tradition of combinatorial
approaches to MDS (e.g. Hubert & Schultz 1976; Waller et al 1992).

CLUSTERING

Perhaps the most well-developed and commonly used form of combinatorial
data analysis is clustering, which comprises those methods concerned in some
way with the identification of homogeneous groups of objects, based on
whatever data are available. The immensity of the literature on cluster analy-
sis precludes our giving much space to applications; fortunately, the
Classification Society of North America publishes an annual bibliography,
Classification Literature Automated Search Service, based on citations to
“classic” articles and books as compiled by the Institute for Scientific In-
formation. The articles cited there are drawn primarily from the periodical
literature on clustering and multidimensional scaling; there were 887 citations
for 1990 (Volume 19; Day 1990).

Evidence of the activity propelling research in clustering is given by a
selection of full-length texts devoted to the subject (Sneath & Sokal 1973;
Bock 1974; Duran & Odell 1974; Hartigan 1975; Spaeth 1980, 1985; Gordon
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1981; Lorr 1983; Murtagh 1985a; Godehardt 1988; Jain & Dubes 1988;
Mandel 1988 [see Kamensky 1990]; McLachlan & Basford 1988) as well as a
lengthy report commissioned by the US National Research Council (Panel on
Discriminant Analysis, Classification, and Clustering 1988). This profusion
of texts occasionally evinces a scholar’s counterpart to Gresham’s Law: The
same publisher that took the English-language edition of Hartigan (1975) out
of print released a second edition of Everitt (1980). The technique is men-
tioned in such potboilers as Spycatcher (Wright 1987:153), is central to The
Clustering of America (Weiss 1988), and along with some other methodology
suffers frequent misrepresentation in the literature on “artificial intelligence”
(e.g. Denning 1989; and cf Dale’s 1985 criticisms of Michalski & Stepp
1983). In addition to conference volumes largely devoted to clustering and
closely related methods (e.g. Van Ryzin 1977; Felsenstein 1983a; Diday et al
1984; Diday et al 1986; Gaul & Schader 1986; Bock 1988), there have been
some noteworthy reviews in such substantive areas as marketing (Wind 1978;
Punj & Stewart 1983; Dickinson 1990; Beane & Ennis 1987; also see Green et
al 1989: Section 7), experimental psychology (Luce & Krumhansl 1988;
Shepard 1988), developmental psychology (K. Miller 1987), clinical psychol-
ogy (Blashfield & Aldenderfer 1988), criminology (Brennan 1987), informa-
tion retrieval (Willett 1988), biophysics (Hartigan 1973), image segmentation
and related areas of computer science (Dubes & Jain 1979; Jain & Dubes
1988: Ch. 5) and phenetic taxonomy (Sokal 1986a, 1988a). More methodo-
logically oriented review articles are cited below.

Formal Underpinnings

For many statisticians, the shady history of cluster analysis is an ongoing
cause for suspicion. The early approaches to clustering (e.g. McQuitty 1960)
were usually mere convenient algorithms devoid of any associated representa-
tional model or effort at optimizing a stated criterion. Subsequent remedies to
this situation have taken two paths that with few exceptions (e.g. Ling 1973)
are distinct.

The first is to note that the structures sought by many hierarchical clustering
methods (whose output is often represented as an inverted tree diagram or
dendrogram, as considered in Murtagh 1984a; see Gordon 1987a for an
excellent, comprehensive review) conform to the ultrametric inequality

d; = max (dy, dy) for all k,

where i, j, and k are members of the stimulus set; d; is the distance between
stimuli i and j predicted by the cluster analysis and corresponds to the
observed dissimilarity measure that is input for the cluster analysis. The
ultrametric inequality is to most forms of hierarchical cluster analysis what the



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

174 ARABIE & HUBERT

triangle inequality is to two-way MDS (Shepard 1962a,b; Kruskal 1964a,b).
That is, the predicted or reconstructed distances resulting from a relevant
hierarchical cluster analysis conform to the ultrametric inequality, just as
those from two-way MDS satisfy the triangle inequality. The ultrametric
inequality was inwoduced independently into the literatures of biology, ex-
perimental psychology, and data analysis by C. J. Jardine et al (1967) and
Johnson (1967; also see Hartigan 1967; and Lance & Williams 1967) in the
same year; recognition of its importance in the physical sciences has been
somewhat delayed (Rammal et al 1986) and apparently remains to be
achieved in the neurosciences (e.g. Ambros-Ingerson et al 1990). A tradition
of close inspection of its implications for clustering methods has led to a better
understanding of how various hierarchical techniques are interrelated (Hubert
& Baker 1976, 1979; Jambu 1978; Kim & Roush 1978; Leclerc 1979;
Milligan 1979; Batagelj 1981; Leclerc 1981, 1986; Hubert 1983; Degens
1983, 1985; Herden 1984; Barthélemy & Guénoche 1988; Critchley & Van
Cutsem 1989; Ohsumi & Nakamura 1989).

The second approach to providing a more defensible logical basis for
clustering algorithms is to relate such algorithms to the vast literatures on
graph theory (e.g. Monjardet 1978, 1981a; see reviews by Hubert 1974b and
Guénoche & Monjardet 1987) and set and lattice theory (Barbut & Monjardet
1970a,b; Hubert 1977a; Janowitz 1978, 1979; Janowitz & Schweizer 1989).
This strategy has yielded new insights about the results from cluster analyses
(e.g. Ling 1975; Hubert & Baker 1976, 1979; Matula 1977; Frank 1978;
Tarjan 1982; Godehardt 1988; Sriram 1990) and about the design of faster and
more capacious algorithms (e.g. Hansen & Delattre 1978; Day 1984; Day &
Edelsbrunner 1985; see reviews by Murtagh 1983, 1984b). Although much of
this literature reaches a technical depth beyond the training of most psycholo-
gists (thus perhaps explaining why some of the field’s most rudimentary
aspects are continually reinvented—e.g. Cooke et al 1986), parts of it remain
basic and highly applicable.

For example, a topic of considerable economic importance in graph theory
is the minimum spanning tree (MST) problem, in which one employs a graph
whose nodes correspond to stimuli and whose edges represent possible links,
with weights typically used to predict or reconstruct the empirical dissimilari-
ties data. The objective is to find that tree spanning the graph (so that there is a
path between each pair of nodes, but without any cycles) for which the sum of
the edge weights is a minimum/maximum for dis/similarities. Solving the
MST problem is formally equivalent to performing single-link clustering
(Gower & Ross 1969), and the connection between clustering and spanning
trees has proven substantively useful (Hubert 1974a; Murtagh 1985a: Ch. 4).
Although it is generally assumed that interest in the MST first arose in
engineering (e.g. in the layout of telephone, powerline, and other types of
networks), Graham & Hell’s (1985) laudable and comprehensive history of
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the problem indicates that work by the anthropologist Czekanowski (1909)
enabled Florek et al (1951) to devise single-link clustering before the appear-
ance of the paper (Kruskal 1956) most heavily cited in the English literature
on MST algorithms relevant to engineering. Thus, a formal problem first
recognized in the behavioral sciences became one of enormous practical
importance.

Lest our summary of these developments in clustering seem too optimistic,
we should note the absence of progress in a few areas. For example, N.
Jardine & Sibson (1971) introduced the useful distinction between methods of
clustering versus algorithms for implementing them: “It is easy to show that
the single-link method, for example, can be implemented by a divisive
algorithm, an agglomerative algorithm, or by an algorithm which belongs to
neither category” (p. 42). While this sensible recommendation has been
endorsed by various leaders in the field (e.g. Rohlf 1982:267), there are still
many authors whose writing would be much clearer if the distinction were
respected in their papers. Another regrettable tendency is the occasional
resurgence of a nostalgic preference for algorithms supported neither by
optimization nor models (e.g. Whaley 1982:173) versus the more current
approach outlined above.

We now consider some of the areas in which clustering has seen greatest
development in recent years.

Clustering of Binary Data

As the limiting case of discreteness, binary (0, 1) data have often claimed a
special place in the discussion of numerous forms of data analysis (Cox 1970;
Tucker 1983), and clustering is no exception. Such input data are usually
two-mode, and a selected list of clustering methods developed specifically for
them includes Lerman et al (1980), Buser & Baroni-Urbani (1982), Brossier
(1984), Guénoche (1985), Cliff et al (1986), Muchnik et al (1986), Govaert
(1988), Barthélemy (1989), Li & Dubes (1989), and Mkhadri (1989). An
especially elegant and model-based method is that of De Boeck & Rosenberg
(1988; also see Van Mechelen & De Boeck 1990).

A closely related problem of data analysis, often omitted in surveys of
methodology because of its nonprobabilistic basis, is the following: Devise a
set of binary vectors or keys for optimally and parsimoniously classifying a set
of objects, each represented itself as a binary vector (as in a two-mode matrix
of objects by attributes). Results on this important problem are found largely
in the biological literature (Bamett & Gower 1971; Gower 1973, 1974; Gower
& Payne 1975; Payne & Preece 1980; Sackin & Sneath 1988).

Measures of Association or Dissimilarity Coefficients

Many methods of clustering (especially hierarchical ones) require two-way
one-mode data, in the form of matrices variously gauging direct judgments of
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perceived similarity, brand switching among products, confusions, correla-
tions, etc. But the data as they occur are often two-way two-mode (e.g.
objects by attributes). As a step in preprocessing such data prior to perform-
ing a cluster analysis, the conversion from two- to one-mode data is such a
common problem that it usually receives its own chapter in texts on cluster-
ing, and it is also relevant to MDS (Shepard 1972; Coxon 1982: Ch. 2) and
related techniques of data analysis (see Gower 1985). Although the topic has
traditionally seen greatest emphasis in biology (see references in Rao 1982),
psychologists concerned with such substantive issues as content analysis
(Krippendorf 1980, 1987), interrater agreement (Hubert 1977b; Hubert &
Golledge 1983; Popping 1988), information retrieval (W. P. Jones & Furnas
1987), and choice processes (Doignon et al 1986) have recently begun
contributing to the literature.

Such considerations as the scale type of the data— whether they are binary,
more generally discrete, or continuous—have long been paid considerable
attention, especially in biology. Gower (1971) and Lerman (1987), for ex-
ample, devised general coefficients of similarity allowing for data where the
“variables” (as in a two-mode matrix of objects by variables) were “mixed”
among those different classes.

The case of binary data is of special interest. If we consider two binary-
valued vectors x and y, then the element-by-element matches are of the four
types labekd a, b, c, and d in Figure 1. For example, if x= (1, 1, 0, 0) and
y= (1, 0, 1, 0), then the first entries (1, 1) in each vector are an a-type pair,
the second (1, 0) are a b-type pair, etc. An endless number of coefficients of
agreement can be written as a function of those four types; for example,
Pearson product-moment correlation is given by (ad - bc)/[(a + b)(a + c)(b +
d)(c + d)]”°. Cheetham & Hazel (1969) were among the first to catalog the
various coefficients published and based on the format of Figure 1, and their
list had fewer than 25 entries, whereas Hubdlek’s (1982) had 43. The
framework of Figure 1 is also useful for comparing pairs of partitions, as
considered below in the section on Assessing and Comparing Structures,
where a state of “1” corresponds to a pair of objects appearing in the same
equivalence class or cluster in a partition, and “0” otherwise. The coefficients
then can be used to gauge relatedness of pairs of partitions.

Given the plethora of such coefficients, several strategies of research have
evolved to answer data analysts’ questions concerning which coefficient(s) to
use. For example, in research somewhat more relevant to MDS and related
spatial models than to clustering, Gower (1971, 1986a,b), Critchley (1986b),
Fichet (1986), Gower & Legendre (1986), and Zegers (1986) have studied
those coefficients leading to one-mode matrices allowing the corresponding
stimuli to be embedded perfectly in Euclidean spaces (see Heiser 1986 and
Gower 1986b for a current summary of the main issues) by the fitting of
various spatial models. W. P. Jones & Furnas (1987) have taken another type
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Figure 1 The four possible patterns resulting from matching elements of two binary-valued
vectors x and y.

of geometric approach, leading to sophisticated visual portrayals of differen-
tial performance of such coefficients in the practice of information retrieval.

Another line of research has sought to fortify these descriptive statistics to
sustain inferential statistical tests. This formidable task faces the immediate
obstacle that many of the measures, as initially proposed, are not even
bounded by the familiar limits of [—1, +1] or [0, 1]. Determining the
maximum value of such coefficients for a given set of data is often a
computationally difficult problem of combinatorial optimization (cf Hubert &
Arabie 1985:199). Impressive advances on this general problem have been
made by Lerman (1983a,b, 1987), Giakoumakis & Monjardet (1987a,b), and
Lerman & Peter (1988). For coefficients most commonly used in empirical
studies, some important distributional results have recently been reported
(Heltshe 1988, Snijders et al 1990).

It is not surprising that when confronted with such an abundance of
coefficients, various investigators have taken a priori approaches, including
emphasis upon patterns of sensitivity to certain aspects of data (Faith 1984),
admissibility conditions (Hubélek 1982, Vegelius & Janson 1982, Gower &
Legendre 1986, Zegers 1986), and formal axioms (Baulieu 1989). As an
exemplar of the last approach, Baroni-Urbani & Buser (1976) began with a set
of substantively motivated axioms and then derived a new measure satisfying
them; the authors also simulated their coefficient’s numerical behavior.

While some practitioners would no doubt agree with Proverbs 20:23 that
“Divers weights [i.e. measures] are an abomination unto the Lord,” we cannot
improve upon the advice of Weisberg (1974:1652-1653): “. . . I would
contend that analysts frequently should not seek a single measure and will
never find a perfect measure. Different measures exist because there are
different concepts to measure. . . . It is time to stop acting embarrassed about
the supposed surplus of measures and instead make the fullest possible use of
their diversity.”
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Mixture Models

No overview of recent developments in clustering would be complete without
consideration of mixture models, in which an underlying continuum is
assumed to give rise to distinct but continuous clusters or subpopulations.
Sampling from such a space gives rise to a “mixture” from the clusters and to
the problem of estimating parameters characterizing those clusters. Because
this aspect of clustering relies heavily on parameter estimation (particularly by
maximum likelihood), it is somewhat outside the declared scope of our
chapter and will therefore receive only cursory treatment. Following in the
tradition of J. H. Wolfe (1970), recent advances have appeared at an increas-
ing rate (Hartigan 1975: Ch. 5; Marriott 1982; McLachlan 1982; Meehl &
Golden 1982; Basford & McLachlan 1985; Windham 1985, 1987; Bryant
1988; Ganesalingam 1989; Govaert 1989), culminating in McLachlan &
Basford’s (1988) laudable Mixture Models: Inference and Applications to
Clustering (see reviews by Windham 1988 and Morin 1990).

Overlapping Clustering

In the “modem” era of clustering, the first formalized approach to overlap-
ping, instead of hierarchical or partitioning, clustering (N. Jardine & Sibson
1968) occasioned extensive rehearsals (in the form of algorithmic de-
velopments by Cole & Wishart 1970; Rohlf 1974, 1975), but to date only one
performance (published analysis of empirical data with interpretation: Morgan
1973).

More recent times have been conducive to the developments of models,
associated algorithms, and substantive applications. The ADCLUS model
(Shepard & Arabie 1979), devised for fitting to a single (two-way one-mode)
proximity matrix, has seen extensions to the three-way (’individual dif-
ferences” or INDCLUS; Carroll & Arabie 1983) case, as well as other
developments (DeSarbo 1982; Corter & Tversky 1986; Bandelt & Dress
1989), including linkage to latent class analysis (Grover & Srinivasan 1987).
An important theoretical derivation of the relation between common and
distinctive feature models, as represented by fitting the ADCLUS model, is
given by Sattath & Tversky (1987). Algorithmic and software developments
include those of Arabie & Carroll (1980a,b), DeSarbo (1982), Carroll &
Arabie (1982, 1983), Hojo (1983), Mirkin (1987, 1989a,b, 1990), Imaizumi
& Okada (1990).

For a list of published applications of overlapping clustering, see Arabie et
al (1987a:57, 63; 1987b), as well as Faith (1985), Mirkin (1986, 1987,
1989b, 1990), Arabie & Maschmeyer (1988), Sabucedo et al (1990), and
Walker (1989).
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Partitioning

A's an alternative both to hierarchical and to overlapping clustering, partition-
ing approaches assign cach object to exactly one cluster. Described generical-
ly, the objective is to maximize similarity/cohesiveness’/homogeneity within
each cluster while maximizing heterogeneity among clusters. While the im-
portance of partitioning approaches to data analysis has long been recognized
in the behavioral and biological sciences (MacQueen 1967; Lee 1980; Lee &
MacQueen 1980), it has recently enjoyed great emphasis in economics as
well, in such applications as facility location (Klastorin 1982) and especially
in the layout of computer circuitry (Barnes 1982). Because the number of
distinct partitions of n objects into m clusters increases approximately as
m"/m! (the printers’ demons have conspired so successfully against this
expression that its denominator is incomplete in Duran & Odell 1974:41 and
missing altogether in Hartigan 1975:130), attempting to find a globally
optimum solution (regardless of the measure of goodness-of-fit employed) is
usually not computationally feasible.

Thus, a wide variety of heuristic approaches (capably reviewed both by
Belbin 1987 and by Jain & Dubes 1988:89—-117) have been developed to find
local optima. Hartigan (1975:102) summarized differences among approaches
as stemming from “(i) the starting clusters, (ii) the movement rule [i.e.
transferring objects among clusters], and (iii) the updating [of goodness-of-
fit] rule.” In addition, the measure of goodness-of-fit should be consistent
with the scale type of the data (see Hartigan 1975: Ch. 4, 6, 7). Not
surprisingly, the scale type assumed often is interval or ratio, and the strong-
est results and most readily available software are for this case (Gordon &
Henderson 1977; Spaeth 1980: Ch. 3; 1985, 1986a). Klein & Dubes (1989)
have recently suggested that the simulated annealing approach to optimization
(Kirkpatrick et al 1983; see Dubes 1988; Ripley 1990) might be useful for
partitioning, in contrast to negative results for somewhat related problems of
data analysis (De Soete et al 1988). In an interesting and novel development,
Spaeth (1986b,c) has turned the traditional partitioning problem inside out
with “anticlustering,” which seeks max imal heterogeneity within clusters and
minimal heterogeneity between clusters.

Constrained Clustering

The imposition of a priori constraints on a cluster solution generally makes
both the description and implementation of a clustering algorithm more
complicated but can sometimes confer major benefits. For example, if objects
to be partitioned are already sequenced (i.e. placed on a line), so that all
clusterings of them must respect this ordering, then the amount of computa-
tion is reduced enough to allow finding a global optimum in circumstances
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where an unconstrained global optimum would be inconceivable (Gordon
1973a; Hartigan 1975: Ch. 6; Spaeth 1980:61-64).

A commoner constraint is contiguity in a plane, with consequent difficul-
ties in designing corresponding algorithms (as reviewed by Murtagh 1985b).
The problem occurs frequently enough to have engendered an impressive
literature within clustering (Gordon 1980b; 1981:61-69; Matula & Sokal
1980; Ferligoj & Batagelj 1982, 1983; Perruchet 1983a; DeSarbo & Mahajan
1984; Margules et al 1985; Finden & Gordon 1985; Legendre 1987).

Consensus Clustering

Inventors of spatial models have long disgreed over whether and how one
should aggregate data and represent group structure or should instead portray
individual differences (among subjects or other sources of data) (Tucker &
Messick 1963; Ross 1966; Cliff 1968; Carroll & Chang 1970; Arabie et al
1987a; also see chapters in Law etal 1984 and Coppi & Bolasco 1989). But
such discrete structures as dendrograms afford a different approach to this
problem of data analysis: representation of the group structure as a consensus
over the structures fitted to individuals’ data (or dendrograms from other
sources—such as different clustering procedures applied to the same data).
That is, using the topology of the dendrograms for a common set of objects,
and based on each source’s data (and in general ignoring the ultrametric or
other numerical values associated with levels of the dendrograms), highly
formalized rules, often embodying classical approaches to voting and social
choice (Mirkin 1979: Ch. 2; Day 1988), are used to construct a best-fitting
consensus dendrogram. Excellent reviews and bibliographies of selected areas
of this research are available (Barthélemy & Monjardet 1981, 1988; Day
1986b; Leclerc & Cucumel 1987; Barthélemy et al 1986; Leclerc 1988,
1989), and a special issue of the Journal of Classification (Day 1986a) was
devoted to consensus classifications. In addition to empirically oriented de-
velopments (Gordon & Finden 1985; Gordon 1986, 1987b; Faith 1988;
Leclerc 1988), numerous axiomatic frameworks have been devised for con-
sensus structures (Barthélemy et al 1984; McMorris 1985; Day & McMorris
1985; Day et al 1986; Barthélemy & Janowitz 1990).

Cluster Validity

So long as the input data are of the appropriate number of modes, ways, etc,
most methods of clustering will deterministically produce a clustering solu-
tion. Moreover, different methods will generally produce different solutions
based on the same input data. The question naturally arises whether the
clusters have “reality” or validity vis-a-vis the data (cf Hartigan 1975:202-
203; Dubes & Jain 1979). Jain & Dubes (1988: Ch. 4) provide a useful
summary of strategies for validation: “External criteria measure performance
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by matching a clustering structure to a priori information. . . . Internal
criteria assess the fit between the structure and the data, using only the data
themselves. . . . Relative criteria decide which of two structures is better in
some sense, such as being more stable or appropriate for the data” (emphasis
in the original, p. 161). Among the issues most commonly investigated are
selection of indices of cluster structure and their distributions (Day 1977;
Murtagh 1984c; Milligan & Cooper 1986; also see the section on practical
advances, below) and detcrmining the appropriate number of clusters (Dubes
1987; Cooper & Milligan 1988; Critchley 1988; Krzanowski & Lai 1988;
Peck et al 1989).

Variable Selection and Weighting

Although we noted above in the section on dissimilarity coefficients that
conversion of a two-mode to a one-mode matrix prior to clustering should be
regarded as a step separate from the actual cluster analysis, some authors have
sought to link the original two-mode matrix more directly to the mechanics of
the cluster analysis. DeSarbo et al (1984) devised an approach for “syn-
thesized clustering” in which the variables in a two-mode (objects by vari-
ables) matrix were iteratively and differentially weighted according to their
relative importance to the emergent K-means (MacQueen 1967) cluster struc-
ture. This procedure was extended from partitions to ultrametric trees by De
Soete et al (1985), who also sketched details for further extensions to addi-
tive, multiple, and three-way trees (discussed below), some of which were
implemented later by De Soete & Carroll (1988). De Soete provided both an
algorithm (1986) and software (1988) for optimal variable weighting in fitting
either an ultrametric or an additive tree to a single two-mode matrix. Fowlkes
et al (1988) devised a forward selection procedure for variables in a two-mode
matrix intended for complete-link hierarchical clustering as well as other
methods (1987).

The practical importancc of such approachcs quickly led to evaluations.
Milligan (1989) reported positive results from a validation study of De Soete’s
(1986, 1988) techniques, whereas Green et al (1990) obtained disappointing
results in evaluating algorithms of DeSarbo et al (1984) and De Soete et al
(1985).

Computational Advances

Clustering was among the first areas of data analysis to be influenced by
computer scientists’ preoccupation with computational complexity (Day
1983a provides a nice overview), and efforts to design clustering algorithms
for large data sets are ongoing. Relevant aspects of clustering comprise
partitioning (Hansen & Jaumard 1987; Hansen et al 1989), complete-link
(Defays 1977; Hansen & Delattre 1978), single-link (Rohlf 1973; Sibson



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

182 ARABIE & HUBERT

1973; Hansen & Lehert 1980; Hansen et al 1989), and other forms of
hierarchical clustering (Morineau & Lebart 1986; Guénoche et al 1991),
including by parallel algorithms (Lerman & Peter 1984).

Substantive Developments

We noted earlier that the enormous literature of applications of clustering
could not be covered in this chapter, but we do want to mention two
substantive areas that have been especially active in their use and advance-
ment of clustering.

SOCIOMETRY AND SOCIAL PSYCHOLOGY Many articles appearing in the
journal Social Networks use and include discussions of clustering, even
though methodological sophistication is sometimes lacking (e.g. Burt 1988),
as Faust & Romney (1985) pointed out. Surveys of this area of research (e.g.
Burt 1980; Knoke & Kuklinski 1982; Wasserman & Faust 1991) generally
include sections on clustering techniques, and the contributors have greatly
expanded the range of problems to which it is applied [e.g. to studying
complex economic legislation (Boorman & Levitt 1983) or to legal precedents
and structures of communication among state supreme courts (Caldeira 1988);
also see abstracts collected in the bibliographic survey Connections (A. Wolfe
1990)]. Moreover, the area is increasingly quick to adopt recently developed
combinatorial and statistical techniques (e.g. Feger & Bien 1982; Feger &
Droge 1984; Noma & Smith 1985; Wasserman & Anderson 1987; Dow & de
Waal 1989; Hummon & Doreian 1990).

In the area of social personality and autobiography, Rosenberg’s innovative
analyses (1988, 1989) of data meticulously extracted from the auto-
biographical novels of Thomas Wolfe coincide with a greater public demand
for autobiographies. Such work might even provide a curative for psy-
chobiographies.

EVOLUTIONARY TREES When Science initiated its software review section,
the first contribution (Fink 1986) compared programs for reconstructing
phylogenetic trees, typically on the basis of molecular data. Further evidence
of the surge of interest in the role of clustering in reconstructing evolutionary
patterns is given by articles in the Proceedings of the National Academy of
Sciences (e.g. Cavalli-Sforza et al 1988; Harding & Sokal 1988; Sokal 1988b)
and attendant controversies (Cavalli-Sforza et al 1989; Bateman 1990).
Methodological contributions from combinatorial data analysis to this sub-
stantive area include hierarchical clustering (Corpet 1988), additive trees
(Dress et al 1986), computational complexity (Day et al 1986; Day & Sankoff
1986; Barthélemy & Luong 1987), graph theory (Mirkin & Rodin 1984; see
Hubert 1984), lattice theory (Estabrook & McMorris 1980), sequence com-
parison (Kruskal 1983; Sankoff & Kruskal 1983), and statistical analysis
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(Astolfi et al 1981; Felsenstein 1983b,c; Barry & Hartigan 1987). A general
review is given by Sokal (1985), and numerous chapters in Felsenstein
(1983a); Dress & von Haeseler (1990) and Luong (1989) provide a range of
current topics of investigation. Holman (1985) provides an important psycho-
logical and methodological perspective on some of the basic issues of taxon-
omy.

ADDITIVE TREES AND OTHER NETWORK MODELS

In graph theory, a tree is a connected graph without cycles. As noted earlier
when considering the MST problem, for representing psychological structure,
the nodes of the graph correspond to stimuli and the links connecting them
have weights whose numerical values are used to reconstruct or predict the
input data so that goodness-of-fit can be gauged. In the subsections above
concerned with hierarchical clustering, the metric used for predicting the data
was usually based on the ultrametric. A different metric, based on a relaxation
of the ultrametric inequality and often called the “four-points condition” is a
popular alternative and gives representations variously known as free trees,
path length trees, or additive trees. In general, we do not repeat the review of
the topic given in Carroll & Arabie (1980:623-24) except to note general
overviews by Carroll (1976) and Shepard (1980).

All subsections below, until the section on representations of two- and
higher-mode data, assume a single input (one-mode two-way) proximities
matrix.

Algorithms and Models

Considerable work on algorithms for fitting additive trees has been done
recently (Abdi et al 1984; Brossier 1985; Guénoche 1986a; Barthélemy &
Guénoche 1988); Guénoche (1987) has compared five algorithms. Some of
the strategies of specialization used successfully for hierarchical clustering
have also proved useful for additive trees. Specifically, there are versions for
binary data (Guénoche 1986b) and for constrained representations (De Soete
et al 1987).

Recent advances in devising and fitting more general graph-theoretic mod-
els are impressive (Orth 1988, 1989; Hutchinson 1989; Klauer 1989; Klauer
& Carroll 1989, 1991). Some of these papers have also provided remarkable
substantive results as well (e.g. Hutchinson 1989) whilc others (c.g. Cooke &
McDonald 1987) have not.

Substantive Advances

Friendly (1977, 1979) pointed out the advantages of modeling structure of
organization in free recall around the combinatorial framework of the MST
(see Hubert 1974a). Combinatorial models have since been devised (Hubert &
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Levin 1976, 1977, 1978; Levin & Hubert 1980; Pellegrino & Hubert 1982) to
allow testing for a wide range of substantive structural predictions. Results
from Hirtle and his colleagues (McKeithen et al 1981; Hirtle 1982; 1987,
Hirtle & Crawley 1989) have demonstrated that a tree with seriated nodes can
be reconstructed using replicated orderings of a set of objects, as in multi-trial
free recall paradigms; Shiina (1986) has attempted the same feat for obtaining
MDS solutions.

Representations Based on Two- and Higher-Mode Data

Although for many years ultrametric representations were limited to one
mode, Furnas (1980) elegantly generalized the ultrametric inequality to two-
mode data, and De Soete et al (1984a,b) provided least squares algorithms for
fitting either ultrametric or additive trees to two-way two-mode data (also see
contributions by Brossier 1986, 1990). De Soete et al (1986) have also
devised an algorithm for fitting ultrametric or additive trees to two-mode data
and simultaneously estimating optimal weights for the variables as well
during the conversion to one-mode data. Finally, in a development that has
seen rapid progress, two- or higher-mode preference data are now suitable for
fitting stochastic tree unfolding models (Carroll et al 1988, 1989; Carroll &
De Soete 1990).

ASSESSING AND COMPARING STRUCTURES

In our introductory characterization of what CDA might legitimately encom-
pass, we mentioned the confirmatory comparison of two (or more) structures
definable on some common set of objects. Usually, structures (e.g. input
matrices, sequences, partitions, graphs, trees) to be compared are first re pre-
sented in the form of matrices whose entries numerically gauge some re lation-
ship among the common objects; in the simplest case of two structures, one
matrix is typically empirical and the second either posited theoretically or also
generated empirically. The actual comparison strategy invariably relies on
some correlational measure between the entries from the two given matrices
(or their suitable transformations); a substantial literature illustrates the pro-
cedures using various types of descriptive measures. Depending on the ob-
Jects and type of matrices involved, this work may be (a) axiomatic in
attempting to characterize “good” measures in a particular context (Bar-
thélemy 1979; Leclerc 1985a,b; Barthélemy et al 1986), (b) specific to certain
types of swuctural representations (Day 1983b; Gower 1983; Leclerc 1982;
Rohlf 1974, 1982; Gordon, 1980a, 1981:132-37), and (c) perhaps even
dependent on solving certain initial (and possibly difficult) optimization tasks
(Gordon 1973b, 1982, 1988; Delcoigne & Hansen 1975; Klastorin 1980;
Lerman 1988; W. Miller & Myers 1988; ten Berge 1988; Gordon et al 1989).
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The most active area of work involving the comparison of structures
(through matices) can be seen as extending a seminal paper by Mantel
(1967), which suggests a particular randomization method that allows a
correlational measure of association between matrix entries to be assessed for
relative size, and does so through a significance test that maintains the
integrity of the structures being compared. The actual evaluation is based on
the conjecture of no relationship between matrices, and is operationalized by
the explicit hypothesis of randomness in the pairing of the objects between the
two swuctures.

The range of applications for this matrix comparison method and associated
significance testing strategy is enormous; many of the possibilities, at least as
of 1986, are documented by Hubert (1987). The encompassed topics include,
among others, almost all methods encountered in classical nonparametric
statistics (Hubert 1987), the assessment of spatial autocorrelation for variables
observed over a set of geographical locations (Upton & Fingleton 1985; Sokal
1986b; Sokal et al 1987), multivariate analysis of variance (Mielke 1978,
1979; Mielke et al 1976), assessment techniques concerned with various
conjectures of combinatorial structure that might be posited for an empirically
determined measure of proximity (Dow & de Waal 1989), and the comparison
of two empirically generated matrices that might contain rather general
measures of proximity (Dow & Cheverud 1985; Cheverud et al 1989) or
matrices with very restricted entries (e.g. binary) defining various com-
binatorial structures (Verhelst et al 1985; Lerman 1987, 1988; Lerman &
Peter 1988).

The same general strategy for comparing two matrices has recently been
extended to the comparison of sets of matrices through the use of optimally
weighted composites. The case of particular interest in the literature thus far
compares a single matrix to a set of matrices through the use of a multiple
correlation coefficient between the corresponding matrix entries (Smouse et al
1986; Hubert & Arabie 1989)

NONDESTRUCTIVE DATA ANALYSIS

Murtagh (1989) contributed the engaging rubric of “nondestructive data
analysis” to a particular class of matrix permutation strategies; we use it here
to refer in general to matrix permutation approaches to data analysis. Such
methods simply seek to find a permutation or reordering of the rows and
columns of matrices so as to reveal interpretable patterns not otherwise
apparent; historically these methods are linked to seriation (Katz 1947; see
Hubert & Baker 1978; Hubert & Golledge 1981; and Hubert et al 1982).
Perhaps because they have been orphaned in most overviews of data analysis,
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some of these techniques keep being reinvented (e.g. Beum & Brundage’s
1950 approach by Deutsch & Martin 1971 and by Lingoes 1968).
Hartigan (1972, 1975: Ch. 14-15; 1976) has shown the advantages of
“direct” clustering approaches that address two-mode data directly, without
first converting them to a one-mode matrix (see also De Soete et al 1984a,b).
Among the other strategies of matrix permutation and/or partitioning that have
seen the most activity in recent years is the “bond energy” approach of
McCormick et al (1972; also see Lenstra 1974). Reviews are given by
Murtagh (1985a: Ch. 1) and Arabie & Hubert (1990). For a sampling of
recent work on the problem, see Kusiak et al (1986), Marcotorchino (1986,
1987), Kusiak & Finke (1987), Hilger et al (1989), and Arabie et al (1990).

RELATIONSHIPS BETWEEN DISCRETE VERSUS
SPATIAL STRUCTURES

C. J. Jardine et al (1967) provided a continuous transformation relating the
triangle and ultrametric inequalities, somewhat in support of the common
intuition that the Euclidean metric and ultrametric-based hierarchical cluster-
ing were highly compatible vehicles for representing structure in data. Hol-
man’s classic (1972; also see the appendix of Gower & Banfield 1975) result
shattered this complacency by showing that data conforming perfectly to one
metric were somewhat antithetical to the other. But because empirical data
rarely ever fit either model without error, the folklore of compatibility be-
tween relevant discrete and spatial models is still empirically useful (see
Kruskal 1977 for an excellent discussion). Critchley (1986a) aptly decried and
undermined the “widespread myths surrounding the work [i.e. result] of
Holman (1972),” which are still promulgated by some cognitive psychologists
(e.g. McNamara 1990). Such misunderstandings can hardly be blamed on
Holman, who stated his results concisely and elegantly.

Strategies of comparing the two classes of representations have included
geometric analyses (Tversky & Hutchinson 1986) and computationally based
comparative data analyses (Pruzansky et al 1982) which suggested that data
from perceptual domains were more compatible with Euclidean spatial repre-
sentations whereas data from conceptual domains were better suited to dis-
crete representations. Furnas (1989) has provided an innovative graphical
approach show ing interrelations among families of relevant metrics. Critchley
& Heiser (1988) showed that data perfectly conforming to hierarchical trees
can also be represented without error unidimensionally, while Brossier (1984)
and Diday (1986) have sought to generalize and exploit relationships between
these different types of representations (Arabie 1986). Hybrid approaches
seeking simultaneously to combine the advantages of MDS and clustering
continue to be appealing (Carroll & Pruzansky 1980; Bock 1986; Mirkin
1989b).
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REPRESENTATIONS OF THREE- AND
HIGHER-WAY DATA

Carroll & Arabie (1980:638) noted that “we see a strong trend toward the
development of three-way models with applications of three- and higher-way
methods becoming almost as numerous as two-way applications.” As re-
viewed by Arabie & Daws (1988), various substantive developments have
helped assure the outcome of this prediction (Snyder et al 1984), and we noted
earlier that some recent edited volumes (Law et al 1984; Coppi & Bolasco
1989) are exclusively concerned with representing higher-way data. In addi-
tion to the papers cited in the section above on additive trees, examples of
such generalizations include hybrid models for three-way data (Carroll &
Pruzansky 1983) and ultrametric representations for three-way two-mode
(Carroll et al 1984) as well as three-mode data (De Soete & Carroll 1989).

RANKINGS, RELATIONS, AND PARTIALLY
ORDERED SETS

As noted above, this congeries has demonstrated the signs of a mature
subdiscipline, including its own specialized journal (Order, established in
1984), joining numerous others of relevance and amassing a burgeoning
literature. We can give these topics only cursory consideration here—a
constraint regrettable because too many psychologists are unaware of the
enormous strides (some of them of eminently practical use) that have recently
taken place in this area of research. For example, Cook and his collaborators
(Armstrong et al 1982; Cook & Kress 1984; Cook et al 1986) have provided
useful results for obtaining a consensus ordering from a set of ordinal rankings
of n entities from a committee of m members. Other applications-oriented
developments include those reported by Critchlow (1985) and Fligner &
Verducci (1986).

Monjardet and his collaborators (Monjardet 1973, 1979a,b, 1981b; Bar-
thélemy & Monjardet 1981; Barthélemy et al 1982, 1986) have capably
surveyed the general area of partially ordered sets, ordered sets, and complete
orderings, and have shown their relevance to combinatorial data analysis and
the social sciences. Other especially noteworthy contributions include those
of Marcotorchino & Michaud (1979), Michaud & Marcotorchino (1979,
1980), Schader (1979), Doignon & Falmagne (1984), Leclerc (1984, 1987,
1989), Gaul & Schader (1988), Saporta (1988), and Fishburn & Falmagne
(1989).

PRACTICAL ADVANCES

A considerable lag will undoubtedly precede much of CDA’s impact on
workaday data analysis. We now wish to consider instead some results that
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should have more immediate impact. For example, we noted above that
converting from a two- to a one-mode matrix is a common prerequisite for
many cluster analyses. If the data are a matrix of objects by variables and the
analyst wishes to compute Euclidean distances between all pairs of objects, a
common problem is whether and how to standardize the variables, prior to
using their entries as coordinates for computing inter-object distances. Milli-
gan & Cooper (1988) have provided a result (the superiority of dividing by the
range of a variable) that probably merits “written in stone” status.

Another practical problem on which Milligan and his collaborators have
made progress is the question of which measure of relatedness between
partitions is best for cluster validation. (As noted earlier, the framework of
Figure 1 facilitates proliferation of such measures between partitions, just as it
does for measures of association for paired variables.) Concluding a com-
parative study of the coefficients regarded for either theoretical or empirical
reasons to be forerunners, Milligan & Cooper (1986:457) stated: ... it would
appear that of the five indices the Hubert and Arabie [1985] adjusted Rand
measure seems to be the index of choice for clustering validation research.”

Most statistical consultants have at some time been badgered by users of
clustering who feel unfulfilled and forlorn without some test of significance.
This lacuna in general reflects no lack of interest in devising such tests
(Perruchet 1983b; Bock 1985; Hartigan 1977, 1978, 1985) but rather the
adamantine nature of the problems. It should be noted, however, that in-
ferential procedures are available for testing significance for bimodality
(Giacomelli et al 1971) as well as for multimodality (Hartigan & Hartigan
1985; Hartigan 1988; Hartigan & Mohanty 1992).

Another common problem arises as users of techniques try to compare the
output from two or more analyses when in fact the substantive theory suggests
that a correlation between the input proximity (or other types of) matrices is
instead called for (cf Carroll & Arabie 1980:636). Although the inferential
problem was solved over a decade ago (Hubert 1978, 1979), no general-
purpose software is available for carrying out such analyses. Mehta (1990;
personal communication) has informed us of the possibility of including such
a capability in StatXact (Mehta 1990). StatXact runs as a stand-alone package
but can also be invoked from SYSTAT (Wilkinson 1989). This development
should undercut all excuses for doing the wrong analysis.

BIBLIOGRAPHIC CONSIDERATIONS

Authors of Annual Review chapters should be allowed the indulgence of
observing what makes their work—and presumably that of others in the
field—easy or difficult: We have already noted that much of the literature on
CDA is found in conference proceedings and other edited volumes. These
single volumes often cost three or more times the price of an annual subscrip-
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tion to the most relevant journals, and the chapters are generally not covered
by indexing services like the Institute for Scientific Information or their
publications. Reviewers’ unhappiness has apparently become ritual: “In fu-
ture publications, I hope editors can be prevailed upon to provide an index and
the publisher can match price with quality of production and do greater justice
to the contributors’ work” (Coxon 1988:298), or “Finally, two ‘classical’
critical comments on such publications: unfortunately, this volume does not
include a subject index and it is very expensive (US $136.75)" (Ferligoj
1990:158). Even when an index is included (Bock 1988), it is found in-
adequate (Okada 1989). Publishers’ increasing reluctance to produce such
volumes coincides with librarians’ (not to mention private individuals’) dis-
pleasure over the prices; the problem may be self-terminating.

PROSPECTS

Despite the disciplinary diversity of contributions (both negative and posi-
tive), it is clear that the field is coalescing around certain themes: (a) types of
data and their implications for possible representations; (») the relationships
among algebraic, geometric, and logical structures; and (c) those rela-
tionships’ implications for representations of structure in data. Such de-
velopments, however, are not buttressed by the software found in statisti cal
packages, and the result is a widening gap between elegant developments in
algorithms and models versus access to them by potential users.

ACKNOWLEDGMENTS

This research was supported in part by AT&T Information Systems’ Industrial
Affiliates Program at the University of Illinois. Of the many colleagues who
helpfully pointed out references to us, we are especially indebted to J.-P.
Barthélemy, J. Douglas Carroll, Geert De Soete, A. D. Gordon, John C.
Gower, Steve Hirtle, Bruno Leclerc, 1. C. Lerman, Jacqueline Meulman,
Bernard Monjardet, Fionn Murtagh, and Akinori Okada. We are grateful to
Francesca Lundstom for editorial expertise. For bibliographic assistance, we
are indebted to Frangois Bronsard, Tom Merritt, and Nicole Sullivan.

Literature Cited

Abdi, H., Barthélemy, J.-P., Luong, X. 1984.
Tree representations of associative struc-
tures in semantic and episodic memory re-
search. In Trends in Mathematical Psychol-
ogy, ed. E. Degreef, J. van Buggenhaut,

experimental designs, pyramids, and seria-
tion. In Multidimensional Data Analysis,
ed. J. de Leeuw, W. Heiser, J. Meulman,
F. Critchley, pp. 235-37. Leiden, The
Netherlands: DSWO-Press

pp. 3-31. Amsterdam: North-Holland
Ambros-Ingerson, J., Granger, R., Lynch, G.
1990. Simulation of paleocortex performs
hierarchical clustering. Science 247.1344—
48
Arabie, P. 1986. Comments on confounded

Arabie, P., Carroll, J. D. 1980a. MAPCLUS:
a mathematical programming approach to
fitting the ADCLUS model. Psychometrika
45:211-35

Arabie, P., Caroll, J. D. 1980b. How T o Use
MAPCLUS, a Computer Program for Fit-



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

190 ARABIE & HUBERT

ting the ADCLUS Model. Murray Hill, NI:
AT&T Bell Laboratories

Arabie, P., Carroll, J. D., DeSarbo, W. S.
1987a. Three-way Scaling and Clustering.
Newbury Park, CA: Sage. Translated into
Japanese by A. Okada and T. Imaizumi,
1990. Tokyo: Kyoritsu Shuppan

Arabie, P., Daws, J. 1988. The interface
among data analysis, marketing, and knowl-
edge representation. In Data, Expert
Knowledge and Decisions, ed. W. Gaul, M.
Schader, pp. 10-15. Berlin: Springer-
Verlag

Arabie, P., Hubert, L. J. 1990. The bond
energy algorithm revisited. /EEE Trans.
Syst. Man Cybern. 20:268-74

Arabie, P., Hubert, L., Hesson-Mclnnis,
M. 1989. Combinatorial optimization ap-
proaches to multidimensional scaling in
city-block spaces. Paper presented at the
2nd Conf. Int. Fed. Classif. Soc., Univ.
Virginia, Charlottcsville

Arabie, P., Hubert, L., Schleutermann, S.
1990. Blockmodels from the bond energy
algorithm. Soc. Networks 12:99-126

Arabie, P., Maschmeyer, C. J. 1988. Some
current models for the perception and judg-
ment of risk. Organ. Behav. Hum. Decis.
Process. 41:300-29

Arabie, P., Maschmeyer, C. J., Carroll, J. D.
1987b. Impact scaling: method and applica-
tion. Technol. Forecast. Soc. Change
32:245-72

Armstrong, R. D., Cook, W. D., Seiford, L.
M. 1982. Priority ranking and consensus
formation: the case of ties. Manage. Sci.
28:638-45

Astolfi, P., Kidd, K. D., Cavalli-Sforza, L. L.
1981. A comparison of methods for
reconstructing evolutionary trees. Syst.
Zool. 30:156-69

Bandelt, H.-J., Dress, A. 1989. Weak
hierarchies associated with similarity mea-
sures—an additive clustering technique.
Bull. Math. Biol. 51:133-66

Barbut, M., Monjardet, B. 1970a. Ordre et
Classification, Algébre et Combinatoire,
Tome 1. Paris: Hachette

Barbut, M., Monjardet, B. 1970b. Ordre et
Classification, Algébre et Combinatoire,
Tome II. Paris: Hachette

Bames, E. R. 1982. An algorithm for
partitioning the nodes of a graph. SIAM J.
Algorithms Disc. Methods 3:541-50

Bamett, J. A., Gower, J. C. 1971. Selecting
tests in diagnostic keys with unknown re-
sponses. Nature 232:491-93

Baroni-Urbani, C., Buser, M. W. 1976. Sim-
ilarity of binary data. Syst. Zool. 25:251-59

Barry, D., Hartigan, J. A. 1987. Statistical
analysis of hominoid molecular evolution.
Stat. Sci. 2:191-210

Barthélemy, J.-P. 1979. Caractérisations ax-
iomatiques de la distance de la différence
symétrique entre des relations binaires.
Math. Sci. hum. 17(67): 85-113

Barthélemy, J.-P. 1989. Introduction: les
arbres, de la matiére pour bricoler. Sce
Luong 1989, pp. 3-21

Barthélemy, J.-P., Flament, C., Monjardct,
B. 1982. Ordered sets and social sciences.
In Ordered Sets, ed. 1. Rival pp. 721-58).
Dordrecht: Reidel

Barthélemy, J.-P., Guénoche, A. 1988. Les
arbres et les représentations des proximités.
Paris: Masson. To be translated into English
as Tree Representation of Proximity Data,
and published by Wilcy.

Barthélcmy, J.-P., Janowitz, M. F. 1990. A
formal theory of consensus. SIAM J. Disc.
Math. In press

Barthélemy, J.-P., Leclerc, B., Monjardet, B.
1984. Enscmbles ordonnées et taxonomie
mathématique. Ann. Disc. Math. 23:523~48

Barthélemy, J.-P., Leclerc, B., Monjardet, B.
1986. On the use of ordered sets in prob-
lems of comparison and consensus of classi-
fications. J. Classif. 3:187-224

Barthélemy, J.-P., Luong, X. 1987. Sur la
topologie d'un arbrec phylogénétique:
aspects théoriques, algorithmes et applica-
tions a l’analyse de données textuelles.
Math. Sci. hum. 25(100): 57-80

Barthélemy, J.-P., Monjardet, B. 1981. The
median procedure in cluster analysis and
social choice theory. Math. Soc. Sci. 1:235-
67

Barthélemy, J.-P., Monjardet, B. 1988. The
median procedure in data analysis: new re-
sults and open problems. See Bock 1988,
pp- 309-16

Basford, K. E., McLachlan, G. J. 1985. The
mixture method of clustering applied to
three-way data. J. Classif. 2:109-25

Batagelj, V. 1981. Note on ultrametric hierar-
chical clustering algorithms. Psychometrika
46:351-52

Bateman, R. M. 1990. Balancing American
linguists [Letter to editor]. Science
249:1228

Baulieu, F. B. 1989. A classification of pres-
ence/absence based dissimilarity coeffi-
cients. J. Classif. 6:233-46

Beane, T. P., Ennis, D. M. 1987. Market
segmentation: a review. Eur. J. Mark.
21:20-42

Belbin, L. 1987. The use of non-hierarchical
allocation methods for clustering large sets
of data. Aust. Comput. J. 19:32-41

Beum, C. O., Brundage, E. G. 1950. A
method for analyzing the sociomatrix.
Sociometry 13:141-45

Blashfield, R. K., Aldenderfer, M. S. 1988.
The methods and problems of cluster



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

analysis. In Handbook of Multivariate Ex-
perimental Psychology, ed. J. R. Nessel-
roade, R. B. Cattell, pp. 447-73). New
York: Plenum. 2nd ed.

Bock, H. H. 1974. Automatische Klassifika-
tion. Theoretische und praktische Methoden
zur Gruppierung und Strukturierung von
Daten (Clusteranalyse). Goettingen: Van-
denhoeck Ruprecht

Bock, H. H. 1985. On some significance tests
in cluster analysis. J. Classif. 2:77-108

Bock, H. H. 1986. Multidimensional scaling
in the framework of cluster analysis. In Die
Klassifikation und [hr Umfeld, ed. P. O.
Degens, H.-J. Hermes, O. Opitz, pp. 247-
58. Frankfurt: Indeks Verlag

Bock, H. H., ed. 1988. Classification and
Related Methods of Data Analysis. Amster-
dam: North-Holland

Boorman, S. A., Levitt, P. R. 1983.
Blockmodeling complex statutes: mapping
techniques based on combinatorial op-
timization for analyzing economic legisla-
tion and its stress point over time. Econ.
Lett. 13:1-9

Brennan, T. 1987. Classification: an overview
of selected methodological issues. In Pre-
diction and Classification: Criminal Justice
Decision Making, ed. D. M. Gottfredson,
M. Tonry, pp. 201-48. Chicago: Univ. Chi-
cago Press

Brossier, G. 1984. Algorithmes d’or-
donnancement des hiérarchies binaires et
propriétés. Rev. Stat. Appl. 23(3): 65-79

Brossier, G. 1985. Approximation des dis-
similarites par des arbres additifs. Math.
Sci. hum. 23(91): 5-21

Brossier, G. 1986. Etude des matrices de
proximité rectangulaires en vue de la
classification. Rev. Stat. Appl. 25 (4):43-
68

Brossier, G. 1990. Piecewise hierarchical
clustering. J. Classif. 7:197-216

Bryant, P. 1988. On characterizing op-
timization-based clustering methods. J.
Classif. 5:81-84

Burt, R. S. 1980. Models of network struc-
ture. Annu. Rev. Sociol. 6:79-141

Burt, R. S. 1988. Some properties of structur-
al equivalence measures derived from
sociometric choice data. Soc. Networks.
10:1-28

Buser, M. W., Baroni-Urbani, L. 1982. A
direct nondimensional clustering method for
binary data. Biometrics 38:351-60

Caldeira, G. A. 1988. Legal precedent: struc-
tures of communication between state su-
preme courts. Soc. Networks 10:29-55

Carroll, J. D. 1976. Spatial, non-spatial and
hybrid models for scaling. Psychometrika
41:439-63

Carroll, J. D., Arabie, P. 1980. Multi-

COMBINATORIAL ANALYSIS 191

dimensional scaling. Ann. Rev. Psychol.
31:607-49

Carroll J. D., Arabie, P. 1982. How to Use
INDCLUS, a Computer Program for Fitting
the Individual Differences Generalization of
the ADCLUS Model. Murray Hill, NI
AT&T Bell Laboratories

Carroll, J. D., Arabie, P. 1983. INDCLUS: an
individual differences generalization of the
ADCLUS model and the MAPCLUS algo-
rithm. Psychometrika 48:157-69

Carroll, J. D., Chang, J. J. 1970. Analysis of
individual differences in multidimensional
scaling via an N-way generalization of
“Eckart-Young” decomposition. Psycho-
metrika 35:283-319

Carroll, J. D., Clark, L. A., DeSarbo, W. S.
1984. The representation o f three-way prox-
imities data by single and multiple tree
structure models. J. Classif. 1:25-74

Carroll, J. D., De Soete, G. 1990. Fitting a
quasi-Poisson case of the GSTUN (General
Stochastic Tree Unfolding) model and some
extensions. In Knowledge, Data and Com-
puter-Assisted Decisions, ed. M. Schader,
W. Gaul. Berlin: Springer-Verlag

Carroll, J. D., DeSarbo, W., De Soete, G.
1988. Stochastic tree unfolding (STUN)
models: theory and application. See Bock
1988, pp. 421-30

Carroll, J. D., DeSarbo, W., De Soete, G.
1989. Two classes of stochastic tree unfold-
ing models. In New Developments in Psy-
chological Choice Modeling, ed. G. De
Soete, H. Feger, C. Klauer, pp. 161-76.
Amsterdam: North-Holland

Carroll, J. D., Pruzansky, S. 1980. Discrete
and hybrid scaling models. In Similarity and
Choice, ed. E. D. Lantermann, H. Feger,
pp. 108-39. Bern: Hans Huber

Carroll, J. D., Pruzansky, S. 1983. Represent-
ing proximities data by discrete, continuous
or “hybrid” models. See Felsenstein 1983a,
pp. 229-48

Cavalli-Sforza, L. L., Piazza, A., Menozzi,
P., Mountain, J. 1988. Reconstruction of
human evolution: bringing together genetic,
archaeological, and linguistic data. Proc.
Natl. Acad. Sci. USA 85:6002-6

Cavalli-Sforza, L. L., Piazza, A,, Menozzi,
P., Mountain, J. 1989. Genetic and linguis-
tic evolution [Letter to the editor]. Science
244:1128-29

Cheetham, H. L., Hazel, J. E. 1969. Binary
(prescnce-absence) similarity coefficients.
J. Paleontol. 43:1130-36

Cheverud, J. M., Wagner, G. P., Dow, M.
M. 1989. Methods for the comparative anal-
ysis of variation patterns. Syst. Zool.
38:201-13

Cliff, N. 1968. The "idealized individual” in-
terpretation of individual differences in mul-



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

192 ARABIE & HUBERT

tidimensional scaling. Psychometrika 33:
225-32

Cliff, N., McCormick, D. J., Zatkin, J. L.,
Cudek, R. A., Collins, L. M. 1986. BINC-
LUS: nonhierarchical clustering of binary
data. Multivar. Behav. Res. 21:201-27

Cole, A. J., Wishart, D. 1970. An improved
algorithm for the Jardine-Sibson method of
‘%enleratng overlapping clusters. Computer

Cook, W. D Kress, M. 1984. Relationships
between £ metrics on linear ranking spaces.
SIAM J. Appl. Math. 44:209-20

Cook, W. D., Kress, M., Seiford, L. M.
1986. Information and preference in partial
orders: a bimawix representation. Psy-
chometrika 51:197-207

Cooke, N. M., Durso, F. T., Schvaneveldt,
R. W. 1986. Recall and measures of mem-
ory organization. J. Exp Psychol.: Learn.
Mem. Cognit. 12:538-49

Cooke, N. M., McDonald, J. E. 1987. The
application of psychological scaling tech-
niques to knowledge elicitation for knowl-
edge-based systems. Int. J. Man-Machine
Stud. 26:533-50

Cooper, M. C., Milligan, G. W. 1988. The
effect of measurement ertor on determining
the number of clusters in cluster analysis.
See Arabie and Daws 1988, pp. 319-28

Coppi, R., Bolasco, S., eds. 1989. Multiway
Data Analysis. New York: North-Holland

Corpet, F. 1988. Multiple sequence alignment
with hierarchical clustering. Nucleic Acids
Res. 16:10881-890

Corter, J., Tversky, A. 1986. Extended sim-
ilarity trees. Psychometrika 51:429-51

Cox, D. R. 1970. The Analysis of Binary
Data. London: Chapman & Hall

Coxon, A. P. M. 1982. The User’s Guide to
Multidimensional Scaling. Portsmouth, NH:
Heinemann

Coxon, A. P. M. 1988. Review of Classifica-
tion as a Tool of Research, edited by W.
Gaul, M. Schader. J. Classif. 5:297-98

Critchley, F. 1986a. Dimensionality theorems
in multidimensional scaling and hierarchical
cluster analysis. See Diday et al 1986, pp.
45-70

Critchley, F. 1986b. Some observations on
gé)stance matrices. See Arabie 1986, pp. 53—

Critchley, F. 1988. The Euclidean structure of
a dendrogram, the variance of a node and
the question: "How many clusters really are
there?” See Bock 1988, pp. 75-84

Critchley, F., Heiser, W. 1988. Hierarchical
trees can be perfectly scaled in one dimen-
sion. J. Classif. 5:5-20

Critchley, F., Van Cutsem, B. 1989. Pre-
dissimilarities, prefilters and ultrametrics on
an arbitrary set. Res. Rep. No. 171. Univ.
Warwick, Dept. Stat.

Critchlow, D. E. 1985. Metric Methods for
Analyzing Partially Ranked Data. New
York: Springer-Verlag

Czekanowski, J. 1909. Zur Differential di-
agnose der Neandertalgruppe. Kortrspon-
denz-Blatt der Deutschen Gesellschaft fiir
Anthroplogie. Ethnol. Urgeschichte 40:44—
47

Dale, M. B. 1985S. On the comparison of con-
ceptual clustering and numerical taxonomy.
IEEFE Trans. Pattern Anal. Machine Intell.
PAMI-7:241-44

Day, W. H. E. 1977. Validity of clusters
formed by graph-theoretic cluster methods.
Math. Biosci. 36:299-317

Day, W. H. E. 1983a. The relevance of com-
putational complexity to classification re-
search. Presented at Meet. Classif. Soc. N.
Am., Philadelphia

Day, W. H. E. 1983b. The role of complexity
in comparing classifications. Math. Biosci.
66:97-114

Day, W. H. E. 1984. Efficient algorithms for
agglomerative  hierarchical  clustering
methods. J. Classif. 1:7-24

Day, W. H E., ed 1986a. Consensus
classification. J. Classif. 3(2) (Special
issue)

Day, W. H. E. 1986b. Foreword: comparison
and consensus of classifications. J. Classif.
3:183-85

Day, W. H. E. 1988. Consensus methods as
tools for data analysis. See Bock 1988, pp.
317-24

Day, W. H. E., ed. 1990. Classif. Lit. Auto-
mat. Search Serv. 19

Day, W. H. E., Edelsbrunner, H. 1985. In-
vestigation of proportional link linkage
clustering methods. J. Classif. 2:239-54

Day, W. H. E., Johnson, D. S., Sankoff, D.
1986a. The computational complexity of in-
ferting rooted phylogenies by parsimony.
Math. Biosci. 81:33-42

Day, W. H. E., McMorris, F. R. 1985. A
formalization of consensus index methods.
Bull. Math. Biol. 47:215-29

Day, W. H. E., McMorris, F. R., Meronk, D.
B. 1986b. Axioms for consensus functions
based on lower bounds in posets. Math.
Soc. Sci. 12:185-90

Day, W. H. E., Sankoff, D. 1986. Com-
putational  complexity of inferring
phylogenies by compatibility. Syst. Zool.
35:224-29

De Boeck, P., Rosenberg, S. 1988. Hierar-
chical classes: model and data analysis. Psy-
chometrika 53:361~81

Defays, D. 1977. An efficient algorithm for a
g%mplete link method. Computer J. 20:364—

Degens, P. O. 1983. Hierarchical cluster
methods as maximum likelihood estimators.
See Felsenstein 1983a, pp. 249-53



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

Degens, P. O. 1985. Ultrametric approxima-
tion to cistances. Comput. Stat. Q. 2:93—
101

Delcoigne, A., Hansen, P. 1975. Sequence
comparison by dynamic programming.
Biometrika 62:661--64

de Leeuw, J., Heiser, W. 1977. Convergence
of correction-matrix algorithms for multi-
dimensional scaling. In Geometric Repre-
sentations of Relational Data: Readings in
Multidimensional Scaling ed. J. C. Lingoes,
pp. 735-52. Ann Arbor, MI: Mathesis

Denning, P. J. 1989. The science of comput-
ing: Bayesian learning. Am. Sci. 77:216-
18

DeSarbo, W. S. 1982. GENNCLUS: new
models for general nonhierarchical cluster-
ing analysis. Psychometrika 47:446-49

DeSarbo, W. S., Carroll, J. D., Clark, L. A.,
Green, P.E. 1984. Synthesized clustering: a
method for amalgamating alternative
clustering bases with differential weighting
of variables. Psychometrika 49:57-78

DeSarbo, W. S., Mahajan, V. 1984. Con-
strained classification: the use of a priori
information in cluster analysis. Psy-
chometrika 49:187-216

De Soete, G. 1986. Optimal variable weight-
ing for ulsrametric and additive tree cluster-
ing. Qual. Quant. 20:169-80

De Soete, G. 1988. Tree representations of
proximity data by least squares methods.
See Bock 1988, pp. 147-56

De Soete, G., Carroll, J. D. 1988. Optimal
weighting for one-mode and two-mode ul-
trametric tree representations of three-way
three-mode data. In The Many Faces of
Multivariate Data Analysis, ed. M. G. H.
Jansen, W. H. van Schuur, pp. 16-29. Gro-
ningen: RION

De Soete, G., Carroll, J. D. 1989. Ultrametric
wee representations of three-way three-
mode data. See Coppi & Bolasco 1989, pp.
415-26

De Soete, G., Carroll, J. D_, DeSarbo, W. S.
1986. Alternating least squares optimal
variable weighting algorithms for ultrame-
tric and additive tree representations. See
Gaul & Schader 1986, pp. 97-103

De Soete, G., Carroll, J. D., DeSarbo, W. S.
1987. Least squares algorithms for con-
structing constrained ultrametric and addi-
tive tree representations of symmetric prox-
imity data. J. Classif. 4:155-73

De Soete, G., DeSarbo, W. S., Carroll, J. D.
1985. Optimal variable weighting for
hierarchical clustering: an alternating least-
squares algorithm. J. Classif. 2:173-92

De Soete, G., DeSarbo, W. S., Fumas, G.
W., Carroll, J. D. 1984a. The estimation of
ultrametric and path length trees from rec-
tangular proximity data. Psychometrika
49:289-310

COMBINATORIAL ANALYSIS 193

De Soete, G., DeSarbo, W. S., Fumas, G.
W., Carroll, J. D. 1984b. Tree representa-
tions of rectangular proximity matrices. See
Abdi et al 1984, pp. 377-92

De Soete, G., Hubert, L., Arabie, P. 1988.
On the use of simulated annealing for com-
binatorial data analysis. See Arabic & Daws
1988, pp. 329-40

Deutsch, S. B., Martin, J. J. 1971. An order-
ing algorithm for analysis of data arrays.
Oper. Res. 19:1350-62

Dickinson, J. R. 1990. The Bibliography of
Marketing Research Methods. Lexington,
MA: Lexington. (3rd ed.)

Diday, E. 1986. Orders and overlapping clust-
el;‘s by pyramids. See Arabie 1986, pp. 201-
3

Diday, E., Escoufier, Y., Lebart, L., Pages,
J. P., Schektman, Y., Tomassone, R., eds.
1986. Data Analysis and Informatics, 1V.
New York: North-Holland

Diday, E., Jambu, M., Lebart, L., Pages, J.,
Tomassone, R., eds. 1984. Data Analysis
and Informatics, IlI. Amsterdam: North-
Holland

Doignon, J.-P., Falmagne, J.-C. 1984.
Matching relations and the dimensional
structure of social choices. Math. Soc. Sci.
7:211-29

Doignon, J.-P., Monjardet, B., Roubens, M.,
Vincke, P. 1986. Biorder families, valued
relations, and preference modelling. J.
Math. Psychol. 30:435-80

Dow, M. M., Cheverud, J. M. 1985. Com-
parison of distance matrices in studies of
population structure and genetic microdif-
ferentiation: quadratic assignment. Am. J.
Phys. Anthropol. 68:367-73

Dow, M. M., de Waal, F. B. M. 1989.
Assignment methods for the analysis of net-
work subgroup interactions. Soc. Networks
11:237-55

Dress, A., von Haeseler, A., eds. 1990. Trees
and Hierarchical Structures (Lecture Notes
in Biomathematics 84). New York: Sprinit/:lr

Dress, A., von Haeseler, A., Krueger, M.
1986. Reconstructing phylogenetic trees us-
ing variants of the “four-point-condition.”
See Bock 1986, pp. 299-305

Dubes, R. C. 1987. How many clusters are
best? —An experiment. Pattern Recognit.
20:645-63

Dubes, R. C. 1988. Review of Simulated An-
nealing: Theory and Practice by P. J. M.
van Laarhoven, E. H. L. Aarts. J. Classif.
5:126-28

Dubes, R., Jain, A. K. 1979. Validity studies
in clustering methodologies. Pattern Recog-
nit. 11:235-54

Duran, B. S., Odell, P. L. 1974. Cluster Anal-
ysis: A Survey. New York: Springer-Verlag

Edgington, E. S. 1980. Randomization Tests.
New York: Marcel Dekker



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

194 ARABIE & HUBERT

Edgington, E. S. 1987. Randomization Tests.
New York: Marcel Dekker. (2nd ed.)

Estabrook, G. F., McMorris, F. R. 1980.
When is one estimate of evolutionary rela-
tionships a refinement of another? J. Math.
Biol. 10:367-73

Everitt, B. 1980. Cluster Analysis. New York:
Wiley-Halsted. (2nd ed.)

Faith, D. P. 1984. Patterns of sensitivity of
association measures in numerical taxon-
omy. Math. Biosci. 69:1-9

Faith, D. P. 1985. A model of immunological
distances in systematics. J. Theor. Biol.
114:511-26

Faith, D. P. 1988. Consensus applications in
the biological sciences. See Bock 1988, pp.
325-32

Faust, K., Romney, A. K. 1985. Does
STRUCTURE find structure? A critique of
Burt’s use of distance as a measure of
structural equivalence. Soc. Networks 7:77—
103

Feger, H., Bien, W. 1982. Network unfold-
ing. Soc. Networks 4:257-83

Feger, H., Droge, U. 1984. Ordinale Netz-
werkskalierung [Ordinal network scaling].
Iz(glner Z. Soziol. Sozialpsychol. 3:417-

Felsenstein, J. , ed. 1983a. Numerical Taxon-
omy. Berlin: Springer-Verlag

Felsenstein, J. 1983b. Methods for inferring
phylogenies: a statistical view. See Felsen-
stein 1983a, pp. 315-34

Felsenstein, J. 1983c. Statistical inference of
phylogenies (with discussion). J. R. Stat.
Soc. Ser. A 146:246-72

Ferligoj, A. 1990. Review of Data Analysis
and Informatics V, edited by E. Diday. J.
Classif. 7:153-58

Ferligoj, A., Batagelj, V. 1982. Clustering
with relational constraint. Psychometrika
47:413-26

Ferligoj, A., Batagelj, V. 1983. Some types of
clustering with relational constraints. Psy-
chometrika 48:541-52

Fichet, B. 1986. Distances and Euclidean dis-
tances for presence-absence characters and
their application to factor analysis. See Ara-
bie 1986, pp. 23-46

Finden, C. R., Gordon, A. D. 1985. Obtain-
ing common pruned trees. J. Classif.
2:255-76

Fink, W. L. 1986. Microcomputers and
phylogenetic analysis. Science 234:1135-39

Fishburn, P. C., Falmagne, J.-C. 1989. Bina-
ry probabilities and rankings. Econ. Lett.
31:113-17

Fligner, M. A., Verducci, J. S. 1986. Dis-
tance based ranking models. J. R. Stat. Soc.
Ser. B 48:359-69

Florek, K., Xukaszewicz, J., Perkal, J.,
Steinhaus, H., Zubrzycki, S. 1951. Sur la

liaison et la division des points d’'un ensem-
ble fini. Collog. Math. 2:282-85

Fowlkes, E. B., Gnanadesikan, R., Ketten-
ring, J. R. 1987. Variable selection in
clustering and other contexts. In Design,
Data, and Analysis, ed. C. L. Mallows, pp.
13-34. New York: Wiley

Fowlkes, E. B., Gnanadesikan, R., Ketten-
ring, J. R. 1988. Variable selection in
clustering. J. Classif. 5:205-28

Frank, O. 1978. Inferences concerning cluster
structure. In COMPSTAT 1978 Proceedings
in Computational Statistics, ed. L. C. A.
Corsten, J. Hermans, pp. 259-65) Vienna:
Physica-Verlag

Friendly, M. L. 1977. In search of the M-
gram: the structure of organization in free
recall. Cognit. Psychol. 9:188-249

Friendly, M. L. 1979. Method for finding
graphic representations of associative mem-
ory structures. In Memory Organization and
Structure, ed. C. R. Puff, pp. 85-129. New
York: Academic

Furnas, G. W. 1980. Objects and their fea-
tures: the metric analysis of two-class data.
PhD thesis. Stanford Univ., Stanford, CA

Furnas, G. W. 1989. Metric family portraits.
J. Classif. 6:7-52

Ganesalingam, S. 1989. Classification and
mixture approaches to clustering via max-
imum likelihood. Appl. Stat. (J. R. Stat.
Soc. Ser. C) 38:455-66

Gaul, W., Schader, M., eds. 1986. Classifica-
tion as a Tool of Research. Amsterdam:
North-Holland

Gaul, W., Schader, M. 1988. Clusterwise
aggregation of relations. Appl. Stoch. Mod-
els Data Anal. 4:273-82

Giacomelli, F., Wiener, J., Kruskal, J. B.,
Pomeranz, J. V., Loud, A. V. 1971. Sub-
populations of blood lymphocytes demon-
strated by quantitative cytochemistry. J.
Histochem. Cytochem. 19:426-33

Giakoumakis, V., Monjardet, B. 1987a.
Coefficients d’accord entre deux preordres
totaux: comparaison ordinale des coeffi-
cients. Math. Sci. hum. 25(98).69-87

Giakoumakis, V., Monjardet, B. 1987b.
Coefficients d’accord entre deux préordres
totaux. Stat. Anal. Données 12:46-99

Godehardt, E. 1988. Graphs as Structural
Models: The Application of Graphs and
Multigraphs in Cluster Analysis. Wies-
baden: Vieweg

Gordon, A. D. 1973a. Classification in the
gl:lesence of constraints. Biometrics 29:821-

Gordon, A. D. 1973b. A sequence-
comparison statistic and algorithm. Biomet-
rika 60:197-200

Gordon, A. D. 1980a. On the assessment and
comparison of classifications. In Analyse de



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

Données et Informatique, ed. R. Tomas-
sone, pp. 149-60. Le Chesnay: Inst. Natl.
Rech. Inform. Automat.

Gordon, A. D. 1980b. Methods of constrained
classification. See Gordon 1980a, pp. 161-
71

Gordon, A. D. 1981. Classification. London:
Chapman and Hall

Gordon, A. D. 1982. An investigation of two
sequence-comparison statistics. Aust. J.
Stat. 24:332--42

Gordon, A. D. 1986. Consensus supertrees:
the synthesis of rooted trees containing
overlapping sets of labeled leaves. J. Clas-
sif. 3:335-48

Gordon, A. D. 1987a. A review of hierarchi-
cal classification. J. R. Stat. Soc. Ser. A
150:119-37

Gordon, A. D. 1987b. Parsimonious trees. J.
Classif. 4:85-101

Gordon, A. D. 1988. Sequence comparison
statistics. In Encyclopedia of Statistical Sci-
ences, cd. S. Kotz, N. L. Johnson, C. B.
Read, 8:375-77. New York: Wiley

Gordon, A. D., Finden, C. R. 198S.
Classification of spatially-located data.
Comput. Stat. Q. 2:315-28

Gordon, A. D., Henderson, J. T. 1977. An
algorithm for Euclidean sum of squares
classification. Biometrics 33:355-62

Gordon, A. D., Jupp, P. E., Byme, R W.
1989. The construction and assessment of
mental maps. Br. J. Math. Stat. Psychol.
42:169-82

Govaert, G. 1988. Classification binaire et
modéle. Rep. No. 949. Le Chesnay: Inst.
Natl. Rech. Informn. Automat.

Govaert, G. 1989. Clustering model and met-
ric with continuous data. Fn Data Analysis,
Learning Symbolic and Numeric Knowl-
edge, ed. E. Diday, pp. 65-71. Commack,
NY: Nova Science

Gower, J. C. 1971. A general coefficient of
similarity and some of its properties.
Biometrics 27:857-71

Gower, J. C. 1973. Classification problems.
Bull. Int. Stat. Inst. 45:471-77

Gower, J. C. 1974. Maximal predictive
classification. Biometrics 30:643-54

Gower, J. C. 1983. Comparing classifications.
See Felsenstein 1983a, pp. 137-55

Gower, J. C. 1985. Measures of similarity,
dissimilarity and distance. In Encyclopedia
of Statistical Sciences, ed. S. Kotz, N. L.
Johnson, C. B. Read, 5:307-405). New
York: Wiley

Gower, J. C. 1986a. Euclidean distance matri-
ces. See Arabie 1986, pp. 11-22, 61-

63

Gower, J. C. 1986b. Reply to discussants. See
Arabie 1986, pp. 61-63

Gower, J. C., Banfield, C. F. 1975. Good-

COMBINATORIAL ANALYSIS 195

ness-of-fit  criteria  for  hierarchical
classification and their empirical distribu-
tions. In Proc. 8th Int. Biometric Con-
ference, ed. L. C. A. Corsten, T. Dostelni-
cu, pp. 347-61). Bucharest: Editura
Academiei Republicii Socialiste Romania

Gower, J. C., Legendre, P. 1986. Metric and
Euclidean properties of dissimilarity coeffi-
cients. J. Classif. 3:5-48

Gower, J. C., Payne,R. W. 1975. A compari-
son of different criteria for selecting binary
tests in diagnostic keys. Biometrika 62:665—
72

Gower, J. C., Ross, G. J. S. 1969. Minimum
spanning trees and single linkage cluster
analysis. Appl. Stat. 18:54-64

Graham, R. L., Hell, P. 1985. On the history
of the minimum spanning tree problem.
Ann. Hist. Comput. 7:43-57

Green, P. E., Carmone, F. J. Jr., Smith, S.
M. 1989. Multidimensional Scaling: Con-
cepts and Applications. Boston: Allyn and
Bacon

Green, P. E., Carmnone, F. J., Kim, J. 1990.
A preliminary study of optimal variable
weighting in k-means clustering. J. Classif.
7:271-85

Grover, R., Srinivasan, V. 1987. A simulta-
neous approach to market segmentation and
market structuring. J. Market. Res. 24:139—-
53

Guénoche, A. 1985. Classification using di-
lemma functions. Comput. Stat. Q. 2:103-8

Guénoche, A. 1986a. Représentations
arborées des classifications. Rech. Opér./
Oper. Res. 20:341-54

Guénoche, A. 1986b. Graphical representa-
tion of a Boolean array. Comput. Hum.
20:277-81

Guénoche, A. 1987. Cinq algorithmes
d’approximation d’une dissimilarité par des
arbres a distances additives. Math. Sci.
hum. 25(98): 21-40

Guénoche, A., Monjardet, B. 1987. Méthodes
ordinales et combinatoires en analyse des
données. Math. Sci. hum. 25(100):5-47

Guénoche, A., Hansen, P., Jaumard, B. 1991.
Efficient algorithms for divisive hierarchical
clustering with the diameter criterion. J.
Classif. 8:5-30

Halperin, D. 1989. Towards deciphering the
Ugaritic musical notation. Tel-Aviv Univ.,
Dept. Musicol.

Hand, D. J. 1981. Branch and bound in statis-
tical data analysis. Statistician 30:1-13
Hansen, P., Delattre, M. 1978. Complete-link
cluster analysis of graph coloring. J. Am.

Stat. Assoc. 73:397—403

Hansen, P., Jaumard, B. 1987. Minimum sum
og diameters clustering. J. Classif. 4:215—
2

Hansen, P., Jaumard, B., Frank, O. 1989.



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

196 ARABIE & HUBERT

Maximum sum-of-splits clustering. J. Clas-
sif. 6:177-93

Hansen, P., Lehert, P. 1980. Clustering by
connected components large data sets with
Minkowsky distances between entities. In
Data Analysis and Informatics, ed. E. Di-
day, L. Lebart, J. P. Pages, R. Tomassone,
pp. 561-67. Amsterdam: North-Holland

Harding, M. R., Sokal, R R. 1988.
Classification of the European language
families by genetic distance. Proc. Natl.
Acad. Sci. USA 85:9370-72

Hartigan, J. A. 1967. Representation of sim-
ilarity matrices by trees. J. Am. Stat. Assoc.
62:1140--58

Hartigan, J. A. 1972. Direct clustering of a
data mawix. J. Am. Stat. Assoc. 67:123—
29

Hartigan, J. A. 1973. Clustering. Annu. Rev.
Biophysics 2:81-101

Hartigan, J. A. 1975. Clustering Algorithms.
New York: Wiley

Hartigan, J. A. 1976. Modal blocks in denti-
tion of West Coast mammals. Syst. Zool.
25:149-60

Hartigan, J. A. 1977. Distribution problems in
clustering. See Van Ryzin 1977, pp. 45-
71

Hartigan, J. A. 1978. Asymptotic distributions
for clustering criteria. Ann. Stat. 6:117-
31

Hartigan, J. A. 1985. Statistical theory in
clustering. J. Classif. 2:63-76

Hartigan, J. A. 1988. The span test for un-
imodality. See Bock 1988, pp. 229-36

Hartigan, J. A., Hartigan, P. M. 1985. The
dip test of unimodality. Ann. Statr. 13:70--84

Hartigan, J. A., Mohanty, S. 1992. The runt
test for multimodality. J. Classif. 9

Heiser, W. J. 1986. Distances and their
approximation. See Arabie 1986, pp. 47-52

Heiser, W. J. 1989. The city-block model for
three-way multidimensional scaling. See
Coppi & Bolasco 1989, pp. 395-404

Heltshe, J. F. 1988. Jackknife estimate of the
matching coefficient of similarity. Biomet-
rics 44:447-60

Herden, G. 1984. Some aspects of clustering
functions. SIAM J. Algorithms Disc.
Methods 5:101-16

Hilger, J., Harhalakis, G., Proth, J.-M. 1989.
Generalized cross-decomposition method:
algorithm and implementation Res. Rep.
No. 1055. Le Chesnay: Inst. Natl. Rech.
Inform. Automat.

Hirtle, S. C. 1982. Lattice-based similarity
measures between ordered trees. J. Math.
Psychol. 25:206--25

Hirtle, S. C. 1987. On the classification of
recall strings using lattice-theoretic mea-
sures. J. Classif. 4:227-42

Hirtle, S. C., Crawley, E. 1989. The use of

ordered trees for uncovering strategies in
free-recall. See Luong 1989, pp. 125-38

Hojo, H. 1983. A maximum likelihood
method for additive clustering and its ap-
plications. Jpn. Psychol. Res. 25:191-201

Holman, E. W. 1972. The relation between
hierarchical and Euclidean models for psy-
chological distances. Psychometrika 37:
417-23

Holman, E. W. 1985. Evolutionary and psy-
chological effects in pre-evolutionary classi-
fications. J. Classif. 2:29-39

Hubilek, Z. 1982. Coefficients of association
and similarity, based on binary (presence-
absence) data: an evaluation. Biol. Rev.
57:669-89

Hubert, L. J. 1974a. Spanning trees and
aspects of clustering. Br. J. Math. Stat.
Psychol. 27:14-28

Hubert, L. J. 1974b. Some applications of
graph theory to clustering. Psychometrika
39:283-309

Hubert, L. J. 1977a. A set-theoretical
approach to the problem of hierarchical
clustering. J. Math. Psychol. 15:70-88

Hubert, L. J. 1977b. Nominal scale response
agreement as a generalized correlation. Br.
J. Math. Stat. Psychol. 30:98-103

Hubert, L. J. 1978. Generalized proximity
function comparisons. Br. J. Math. Stat.
Psychol. 31:179-92

Hubert, L. J. 1979. Generalized concordance.
Psychometrika 44:135-42

Hubert, L. J. 1983. Hierarchical cluster anal-
ysis. In Encyclopedia of Statistical Scien-
ces, ed. S. Kotz, N. Johnson, C. Read,
3:623-30. New York: Wiley

Hubert, L. J. 1984. Review of Graphs and
Genes by B. G. Mirkin and S. N. Rodin. J.
Classif. 1:275-717

Hubert, L. J. 1987. Assignment Methods in
Combinatorial Data Analysis. New York:
Marcel Dekker

Hubert, L. J., Arabie, P. 1985. Comparing
partitions. J. Classif. 2:193-218

Hubert, L. J., Arabie, P. 1986. Uni-
dimensional scaling and combinatorial
optimization. See Arabie 1986, pp. 181-
96

Hubert, L. J., Arabie, P. 1988. Relying on
necessary conditions for optimization: uni-
dimensional scaling and some extensions.
See Bock 1988, pp. 463-72

Hubert, L., Arabie, P. 1989. Combinatorial
data analysis: confirmatory comparisons be-
tween sets of matrices. Appl. Stoch. Models
Data Anal. 5:273-325

Hubert, L. J., Baker, F. B. 1976. Data anal-
ysis by single-link and complete-link hierar-
chical clustering. J. Educ. Star. 1:87~111

Hubert, L. J., Baker, F. B. 1978. Applications
of combinatorial programming to data anal-



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

ysis: the traveling salesman and related
problems. Psychometrika 43:81-91

Hubert, L. J., Baker, F. B. 1979. Identifying a
migration effect in complete-link hierarchi-
cal clustering. J. Educ. Stat. 4:74-92

Hubert, L. J., Golledge, R. G. 1983. Rater
agreement for complex assessments. Br. J.
Math. Stat. Psychol. 36:207-16

Hubert, L. J., Golledge, R. G. 1981. Matrix
reorganization and dynamic programming:
applications to paired comparison and
unidimensional seriation. Psychometrika
46:429-41

Hubert, L. J., Golledge, R. G., Richardson,
G. D. 1982. Proximity matrix reorganiza-
tion and hierarchical clustering. Environ.
Plan. Ser. A 14:195-203

Hubert, L. J., Levin, J. R. 1976. A general
statistical framework for assessing categor-
ical clustering in free recall. Psychol. Bull.
83:1072-80

Hubert, L. J., Levin, J. R. 1977. Inference
models for categorical clustering. Psychol.
Bull. 84:378-87

Hubert, L. J., Levin, J. R. 1978. Evaluating
priority effects in free recall. Br. J. Math.
Stat. Psychol. 31:11-18

Hubert, L. J., Schultz, J. R. 1976. Quadratic
assignment as a general data analysis strat-
egy. Br. J. Math. Stat. Psychol. 29:190-
241

Hummon, N. P., Doreian, P. 1990. Com-
putational methods for social network anal-
ysis. Soc. Networks 12:273-88

Hutchinson, J. W. 1989. NETSCAL: a
network scaling algorithm for nonsym-
metric proximity data. Psychometrika 54:
25-51

Imaizumi, T., Okada, A. 1990. Three-way
Scaling and Clustering: How to Use the
Software. Tokyo: Kyoritsu Shuppan

Jain, A. K., Dubes, R. C. 1988. Algorithms
for Clustering Data. Englewood Cliffs, NJ:
Prentice-Hall

Jambu, M. 1978. Classification Automatique
pour I’ Analyse des Données, Tome l. Paris:
Dunod

Janowitz, M. F. 1978. An order theoretic
model for cluster analysis. SIAM J. Appl.
Math. 34:55-72

Janowitz, M. F. 1979. Monotone equivariant
cluster methods. SIAM J. Appl. Math.
37:148-65

Janowitz, M. F., Schweizer, B. 1989. Ordinal
and percentile clustering. Math. Soc. Sci.
18:135-86

Jardine, C. J., Jardine, N., Sibson, R. 1967.
The structure and construction of taxonomic
hierarchies. Math. Biosci. 1:173-79

Jardine, N., Sibson, R. 1968. The construc-
tion of hierarchic and non-hierarchic classi-
fications. Comput. J. 11:177-84

COMBINATORIAL ANALYSIS 197

Jardine, N., Sibson, R. 1971. Mathematical
Taxonomy. London: Wiley

Johnson, S. C. 1967. Hierarchical clustering
schemes. Psychometrika 32:241-54

Jones, L. V., Appelbaum, M. 1. 1989. Psy-
chometric methods. Annu. Rev. Psychol.
40:23-43

Jones, W. P., Fumas, G. W. 1987. Pictures of
relevance: a geometric analysis of similarity
measures. J. Am. Soc. Inform. Sci. 38:420-
42

Kamensky, V. 1990. Review of Klasternyi
Analyz by 1. D. Mandel. J. Classif. 7:119-
23

Katz, L. 1947. On the matric analysis of
sociometric data. Sociometry 10:233-41

Kim, K. H., Roush, F. W. 1978. Ultrametrics
and matrix theory. J. Math. Psychol.
18:195-203

Kirkpatrick, S., Gelatt, C. D. Jr., Vecchi, M.
P. 1983. Optimization by simulated anneal-
ing. Science 220:671-80

Klastorin, T. D. 1980. Merging groups to
maximize object partition comparison. Psy-
chometrika 45:425-33

Klastorin, T. D. 1982. An alternative method
for hospital partition determination using
hierarchical cluster analysis. Oper. Res.
30:1134-47

Klauer, K. C. 1989. Ordinal network repre-
sentation: representing proximities by
graphs. Psychometrika 4:737-50

Klauer, K. C., Carroll, J. D. 1989. A mathe-
matical programming approach to fitting
general graphs. J. Classif. 6:2247-70

Klauer, K. C., Carroll, J. D. 1991. A com-
parison of two approaches to fitting directed
graphs to nonsymmetric proximity mea-
sures. J. Classif. 8

Klein, R. W., Dubes, R. C. 1989. Ex-
periments in projection and clustering by
simulated annealing. Pattern Recognit.
22:213-20

Knoke, D., Kuklinski, J. H. 1982. Network
Analysis. Newbury Park, CA: Sage

Krippendorf, K. 1980. Content Analysis, an
Introduction to Its Methodology. Newbury
Park, CA: Sage

Krippendorff, K. 1987. Association, agree-
ment, and equity. Qual. Quant. 21:109-23

Kruskal, J. B. 1956. On the shortest spanning
subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7:48-
50

Kruskal, J. B. 1964a. Multidimensional scal-
ing by optimizing goodness of fit to a
ggnmetric hypothesis. Psychometrika 29:1-

Kruskal, J. B. 1964b. Nonmetric multi-
dimensional scaling: a numerical method.
Psychometrika 29:115-29

Kruskal, J. B. 1977. The relationship between



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

198 ARABIE & HUBERT

multidimensional scaling and clustering.
See Van Ryzin 1977, pp. 17-44

Kruskal, J. B. 1983. An overview of sequence
comparison. In Time Warps, String Edits,
and Macromolecules: The Theory and Prac-
tice of Sequence Comparison, ed. D. Sank-
off, J. B. Kruskal, pp. 1-44. Reading, MA:
Addison-Wesley

Krzanowski, W. J., Lai, Y. T. 1988. A crite-
rion for determining the number of groups
in a data set using sum-of-squares cluster-
ing. Biometrics 44:23-4

Kusiak, A., Finke, G. 1987. Hierarchical
approach to the process planning problem.
Disc. Appl. Math. 18:145-84

Kusiak, A., Vannelli, A., Kumar, K. R.
1986. Clustering analysis: models and
algorithms. Control Cybern. 15:139~-54

Lance, G. N., Williams, W. T. 1967. A
general theory of classificatory sorting strat-
egies. 1. Hierarchical systems. Comput. J.
9:373-80

Law, H. G., Snyder, C. W. Jr., Hattie, J. A.,
McDonald, R. P., eds. 1984. Research
Methods for Multimode Data Analysis. New
York: Praeger

Leclerc, B. 1979. Semi-modularité des treillis
(_j,:,ulkamétriques. C. R. Acad. Sci. 288:575-

Leclerc, B. 1981. Description combinatoire
des ultramétriques. Math. Sci. hum. 19
(73):5-37

Leclerc, B. 1982. Description, évaluation et
comparaison de hi€rarchies de parties. Cent.
Anal. Math. Soc., Paris

Leclerc, B. 1984. Efficient and binary con-
sensus functions on transitively valued rela-
tions. Math. Soc. Sci. 8:45-61

Leclerc, B. 1985a. La comparaison des
hiérarchies: indices et metriques. Math. Sci.
hum. 23(92):5-40

Leclerc, B. 1985b. Les hiérarchies de parties
et leur demi-treillis. Math. Sci. hum.
23(89):5-34

Leclerc, B. 1986. Caractérisation, construc-
tion et dénombrement des ultramétriques su-
périeures minimales. Stat. Anal. Données
11(2):26-50

Leclerc, B. 1987. Arbres minimums communs
et compatibilité de données de types variés.
Math. Sci. hum. 23(98):41-67

Leclerc, B. 1988. Consensus applications in
the social sciences. See Bock 1988, pp.
333-340

Leclerc, B. 1989. Consensus approaches for
multiple categorical or relational data. See
Coppi & Bolasco 1989, pp. 65-75

Leclerc, B., Cucumel, G. 1987. Consensus en
classification: une revue bibliographique.
Math. Sci. hum. 25(100):109-28

Leclerc, B., Monjardet, B. 1987a. Avant-
propos. Math. Sci. hum. 25(98):5-7

Leclerc, B., Monjardet, B. 1987b. Com-
binatorics and data analysis, Part I Marh.
Sci. hum. 25(98) (Special issue)

Leclerc, B., Monjardet, B. 1987c. Com-
binatorics and data analysis, Part I Math.
Sci. hum. 25(100) (Special issue)

Lee, H. B. 1980. A K-means cluster analysis
computer program with cross-tabulations
and next-nearest-neighbor analysis. Educ.
Psychol. Meas. 40:133-38

Lee, H. B., MacQueen, J. B. 1980. Control
parameters for program KMEANS. Pro-
gram documentation, UCLA

Legendre, P. 1987. Constrained clustering. In
Developments in Numerical Ecology [NATO
Adv. Stud. Inst. Ser. G (Ecol. Sci.)], ed. P.
Legendre, L. Legendre, pp. 289-307. Be-
rlin: Springer-Verlag

Lenstra, J. K. 1974. Clustering a data array
and the traveling-salesman problem. Oper.
Res. 22:413-14

Lerman, I. C. 1980. Combinatorial analysis in
the statistical treatment of behavioral data.
Qual. Quant. 14:431-69

Lerman, I. C. 1981. Classification et analyse
ordinale des données ata classification and
ordinal analysis. Paris: Dunod

Lerman, I. C. 1983a. Indices d’association
partielle entre variables “qualitatives nomi-
nales”. Rech. Opér./Oper. Res. 17:213-
59

Lerman, I. C. 1983b. Indices d’associa-
tion partielle entre variables “qualitatives”
ordinales. Publ. Stat. Univ. Paris 28:7—
46

Lerman, I. C. 1987. Construction d’un indice
de similarité entre objets décrits par des
variables d’un type quelconque. Application
au probléme du consensus en classification
(1). Rev. Stat. Appl. 25(2):39-60

Lerman, I. C. 1988. Comparing partitions:
mathematical and statistical aspects. See
Bock 1988, pp. 121-31

Lerman, I. C., Hardouin, M., Chanwel, T.
1980. Analyse de la situation relative enwre
deux classifications floues. See Hansen &
Lehert 1980, pp. 523-52

Lerman, L. C., Peter, P. 1984. Analyse d’un
algorithme de classification hiérarchique
“en parallele” pour le traitement de gros
ensembles. Res. Rep. No. 339. Le Ches-
nay: Inst. Natl. Rech. Inform. Automat.

Lerman, I. C., Peter, P. 1988. Swructure max-
imale pour la somme des carrés d’une con-
tingence aux marges fixées; une solution
algorithmique programmée. Rech. Opér./
Oper. Res. 22:83-136

Levin, J. R., Hubert, L. J. 1980. Measuring
clustering in free recall. Psychol. Bull.
87:59-62

Li, X., Dubes, R. C. 1989. A probabilistic
measure of similarity for binary data in pat-



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

tern recognition. Pattern Recognit. 22:397-
409

Ling, R F. 1973. A probability theory of
cluster analysis. J. Am. Stat. Assoc.
68:159-64

Ling, R. F. 1975. An exact probability dis-
tribution on the connectivity of random
graphs. J. Math. Psychol. 12:90-98

Lingoes, J. C. 1968. The multivariate analysis
of qualitative data. Multivar. Behav. Res.
3:61-94

Lorr, M. 1983. Cluster Analysis for Social
Scientists. San Francisco: Jossey-Bass

Luce, R. D., Krumhansl, C. L. 1988.
Measurement, scaling, and psychophysics.
In Stevens’ Handbook of Experimental Psy-
chology, ed. R. C. Atkinson, R. J. Herm-
stein, G. Lindzey, R. D. Luce, pp. 3-74.
New York: Wiley

Luong, X., ed. 1989. Analyse arborée des
Données textuelles [Tree Analysis of Textual
Data]. Nice: Ccnt. Natl. Rech. Sci.

MacQueen, J. 1967. Some methods for
classification and analysis of multivariate
observations. In Proceedings Fifth Berkeley
Symposium on Mathematical Statistics and
Probability, ed. L. M. Le Cam, J. Neyman,
1:281-97). Berkeley: Univ. Calif. Press

Mandel, 1. D. 1988. Klasternyi analyz [Clus-
ter Analysis]. Moscow: Finansy and Statis-
tika

Mantel, N. 1967. The detection of disease
clustering and a generalized regression
approach. Cancer Res. 27:209-20

Marcotorchino, F. 1986. Cross association
measures and optimal clustering. In Comp-
stat, ed. F. DeAntoni, N. Lauro, A. Rizzi,
pp- 188-94. Heidelberg: Physica-Verlag

Marcotorchino, F. 1987. Block seriation prob-
lems: a unified approach. Appl. Stoch. Mod-
els Data Anal. 3:73-91

Marcotorchino, F., Michaud, P. 1979.
Optimisation en Analyse ordinale des
Données. Paris: Masson

Margules, C. R., Faith, D. P., Belbin, L.
1985. An adjacency constraint in agglom-
erative hierarchical classifications of geo-
graphic data. Environ. Plan. A 17:397-
412

Marriott, F. H. C. 1982. Optimization
methods of cluster analysis. Biometrika
69:417-21

Matula, D. W. 1977. Graph theoretic tech-
niques for cluster analysis algorithms. See
Van Ryzin 1977, pp. 95-129

Matula, D. W., Sokal, R. R. 1980. Properties
of Gabriel graphs relevant to geographic
variation research and the clustering of
points in the plane. Geograph. Anal.
12:205-22

McCormick, W. T. Jr., Schweitzer, P. J.,
White, T. W. 1972. Problem decomposition

COMBINATORIAL ANALYSIS 199

and data reorganization by a clustering tech-
nique. Oper. Res. 20:993-1009

McKceithen, K. B., Reitman, J. S., Rueter, H.
R., Hirtle, S. C. 1981. Knowledge organ-
ization and skill differences in computer
programmers. Cognit. Psychol. 13:307-25

McLachlan, G. J. 1982. Classification and
mixture maximum likelihood approaches to
cluster analysis. In Handbook of Statistics
2: Classification, Pattern Recognition, and
Reduction of Dimensionality, ed. P. R.
Krishnaiah, L. N. Kanal, pp. 199-208.
Amsterdam: North-Holland

McLachlan, G. J., Basford, K. E. 1988. Mix-
ture Models: Inference and Applications to
Clustering. New York: Marcel Dekker

McMorris, F. R. 1985. Axioms for consensus
functions on undirected phylogenetic trees.
Math. Biosci. 74:17-21

McNamara, T. P. 1990. Memory’s view of
space. Paper presented at Dept. Psychol.,
Univ. Illinois, Champaign

McQuitty, L. L. 1960. Hierarchical syndrome
analysis. Educ. Psychol. Meas. 20:293-304

Meehl, P. E., Golden, R. R. 1982. Taxomet-
ric methods. In Handbook of Research
Methods in Clinical Psychology. ed. P. C.
Kendall, J. N. Butcher, pp. 127-81. New
York: Wiley

Mehta, C. R. 1990. StatXact: a statistical
package for exact nonparametric inference.
J. Classif. 7:111-4

Michalski, R. S., Stepp, R. E. 1983. Auto-
mated construction of classifications: con-
ceptual clustering versus numerical taxon-
omy. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-5:396-410

Michaud, P., Marcotorchino, F. 1979. Mod-
éles d’optimisation en analyse des données
relationnclles. Math. Sci. hum. 17(67):7-38

Michaud, P., Marcotorchino, F. 1980. Op-
timisation en analyse des données relation-
nelles: application a 1’agrégation des préf-
érences et a la recherche de partitions op-
timales. See Hansen & Lehert 1980, pp.
655-70

Mielke, P. W. 1978. Clarification and appro-
priate inference for Mantel & Valand’s
nonparametric multivariate analysis tech-
nique. Biometrics 34:277-82

Mielke, P. W. 1979. On asymptotic non-
normality of null distributions of MRPP sta-
tistics. Comm. Stat.: Theory and Methods
A8:1541-50. Errata: 1981. A10:1795 and
982. A11:847

Mielke, P. W., Berry, K. J., Johnson, E. S.
1976. Multi-response permutation pro-
cedures for a priori classifications. Comm.
Stat.: Theory and Methods AS:1409-24

Miller, K. F. 1987. Geometric methods in
developmental research. In Formal Methods
in Developmental Psychology, ed. J.



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

200 ARABIE & HUBERT

Bisanz, C. J. Brainerd, R. Kail, pp. 216~
62. New York: Springer-Verlag

Miller, W., Myers, E. W. 1988. Sequence
comparison with concave weighting func-
tions. Bull. Math. Biol. 50:97-120

Milligan, G. 1979. Ultrametric hierarchical
clustering algorithms. Psychometrika 44:
34346

Milligan, G. 1989. A validation study of a
variable weighting algorithm for cluster
analysis. J. Classif. 6:53-71

Milligan, G. W., Cooper, M. C. 1986. A
study of the comparability of external
criteria for hierarchical cluster analysis.
Multivar. Behav. Res. 21:441-58

Milligan, G. W., Cooper, M. C. 1988. A
study of standardization of variables in clus-
ter analysis. J. Classif. 5:181-204

Mirkin, B. G. 1979. Group Choice, ed. P. C.
Fishburn, transl. Y. Oliker. Washington,
DC: V. H. Winston. (Original work pub-
lished 1974)

Mirkin, B. G. 1986. Additive clustering and
qualitative factor analysis methods. See Di-
day et al 1986, pp. 71-82

Mirkin, B. G. 1987. Additive clustering and
(1ualitative factor analysis methods for sim-
ilarity matrices. J. Classif. 4:7-31 (Erra-
tum, 1989, 6:271-72)

Mirkin, B. G. 1989a. Erratum. J. Classif.
6:271-72

Mirkin, B. G. 1989b. Bilinear clustering
algorithms. See Govaert 1989, pp. 65-71

Mirkin, B. G. 1990. A sequential fitting pro-
cedure for linear data analysis models. J.
Classif. 7:167-95

Mirkin, B. G., Rodin, S. N. 1984. Graphs
and Genes. Heidelberg: Springer-Verlag

Mkhadri, A. 1989. Pondération des variables
pour la classification binaire. Res. Rep. No.
1079. Le Chesnay: Inst. Natl. Rech. In-
form. Automat.

Monjardet, B. 1973. Tournois et ordres mé-
dians pour une opinion. Math. Sci. hum.
11(43):55-70

Monjardet, B. 1978. Théorie des Graphes et
Classification: Bibliographie et Index
matiére. Paris: Cent. Math. Soc. Univ.
Paris-V

Monjardet, B. 1979a. Metriques et relations:
avant-propos. Math. Sci. hum. 17(67):5-6

Monjardet, B. 1979b. Relations a “€loigne-
ment minimum” de relations binaires. Note
bibliographique. Math. Sci. hum. 17(67):
115-22

Monjardet, B. 1981a. Théorie des graphes et
taxonomie mathématique. In Regards sur la
Théorie des Graphes, ed. P. Hansen, D. de
Werra, pp. 111-25. Lausanne: Presses
Polytechniques Romandes

Monjardet, B. 1981b. Metrics on partially order-
ed sets: a survey. Disc. Math. 35:173-84

Morgan, B. J. T. 1973. Cluster analyses of

two acoustic confusion matrices. Percept.
Psychophys. 13:13-24

Morin, A. M. 1990. Review of Mixture Mod-
els: Inferences and Applications to Cluster-
ing by G. J. McLachlan, K. E. Basford.
Psychometrika 55:167-68

Morineau, A., Lebart, L. 1986. Specific
clustering algorithms for large data sets and
implementation in SPAD software. See
Gaul & Schader 1986, pp. 321-29

Muchnik, I. B., Chkuaseli, N. F., Shvartser,
L. V. 1986. Modeling of behavior and in-
telligence: linguistic analysis of 0-1 matri-
ces using monotone systems. Automat. Re-
mote Control 4:533—60

Murtagh, F. 1983. A survey of recent ad-
vances in hierarchical clustering algorithms.
Comput. J. 26:354-59

Murtagh, F. 1984a. Counting dendrograms: a
survey. Disc. Appl. Math. 7:191-99

Murtagh, F. 1984b. Complexities of hierarch-
ic clustering algorithms: state of the art.
Comput. Stat. Q. 1:101-13

Murtagh, F. 1984c. An empirical study of
coefficients for measuring the structure of
hierarchic classifications. See Diday et al
1984, pp. 385-93

Murtagh, F. 1985a. Multidimensional Cluster-
ing Algorithms. Vienna: Physica-Verlag

Murtagh, F. 1985b. A survey of algorithms for
contiguity-constrained clustering and re-
lated problems. Compur. J. 28:82-88

Murtagh, F. 1989. Review of Data, Expert
Knowledge and Decisions, edited by W.
Gaul, M. Schader. J. Classif. 6:129-32

Noma, E., Smith, D. R. 1985. Benchmark for
thc blocking of sociometric data. Psychol.
Bull. 97:583-91

Ohsumi, N., Nakamura, N. 1989. Space dis-
torting properties in agglomerative hierar-
chical clustering algorithms and a simplified
method for combinatorial method. See
Govaert 1989, pp. 103-8

Okada, A. 1989. Review of Classification and
Related Methods of Data Analysis, edited
by H. H. Bock. J. Classif. 6:121-25

Orth, B. 1988. Representing similarities by
distance graphs: monotonic network anal-
ysis (MONA). See Bock 1988, pp. 489-94

Orth, B. 1989. Graph theoretical representa-
tions of proximities by monotonic network
analysis (MONA). In Mathematical Psy-
chology in Progress, ed. E. E. Roskam, pp.
299-308. Ncw York: Springer-Verlag

Panel on Discriminant Analysis, Classification
and Clustering. 1988. Discriminant Analy-
sis and Clustering. Washington, DC: Natl.
Academy Press

Payne, R. W, Preece, D. A. 1980. Identifica-
tion keys and diagnostic tables: a review. J.
R. Stat. Soc. Ser. A 143:253-92

Peck, R., Fisher, L., Van Ness, J. 1989. Ap-
proximate confidence intervalsforthe num-



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

ber of clusters. J. Am. Stat. Assoc. 84:184—
91

Pellegrino, J., Hubert, L. J. 1982. The anal-
ysis of organization and structure in free
recall. In Handbook of Research Methods in
Human Memory and Cognition, ed. C.
Richard Puff, pp. 129-72. New York: Aca-
demic

Perruchet, C. 1983a. Constrained agglomera-
tive hierarchical classification. Pattern
Recognit. 16:213-17

Perruchet, C. 1983b. Significance tests for
clusters: overview and comments. See
Felsenstein 1983a, pp. 199-208

Pliner, V. M. 1984. A class of metric scaling
models. Automat. Remote Control 6:122-28

Popping, R. 1988. On agreement indices for
nominal data. In Sociometric Research.
Vol. 1. Data Collection and Scaling, ed.
W. E. Saris I. N. Gallhofer, pp. 90-105.
London: Macmillan

Pruzansky, S., Tversky, A., Carroll, J. D.
1982. Spatial versus tree representations of
proximity data. Psychometrika 47:3-24

Punj, G., Stewart, D. W. 1983. Cluster analy-
sis in marketing research: review and sug-
gestions for application. J. Market. Res.
20:134-48

Rammal, R., Toulouse, G., Virasoro, M. A.
1986. Ultrametricity for physicists. Rev.
Mod. Phys. 58:765-88

Rao, C. R. 1982. Diversity and dissimilarity
coefficients: a unified approach. Theor.
Popul. Biol. 21:24-43

Ripley, B. D. 1990. Review of Simulated An-
nealing (SA) & Optimization edited by M.
E. Johnson J. Classif. 7:287-90

Rohlf, F. J. 1973. Hierarchical clustering us-
ing the minimum spanning tree. Comput. J.
16:93-5

Rohlf, F. J. 1974. Graphs implied by the Jar-
dine-Sibson overlapping clustering models,
By. J. Am. Stat. Assoc. 69:705-10

Rohlf, F. J. 1975. A new approach to the
computation of the Jardine-Sibson By clus-
ters. Comput. J. 18:164-68

Rohlf, F. J. 1982. Single-link clustering algo-
rithms. See McLachlan 1982, pp. 267-84

Rosenberg, S. 1988. Self and others: studies in
social personality and autobiography. Adv.
Exp. Soc. Psychol. 21:57-95

Rosenberg, S. 1989. A study of personality in
literary autobiography: an analysis of Tho-
mas Wolfe’s “Look Homeward, Angel”. J.
Pers. Soc. Psychol. 56 416-430

Ross, J. 1966. A remark on Tucker & Mes-
sick’s “points of view” analysis. Psy-
chometrika 31:27-31

Rouanet, H., Bernard, J.-M., Lecoutre, B.
1986. Nonprobabilistic statistical inference:
a set-theoretic approach. Am. Statistician
40:60-65

Sabucedo, J., Ekehammar, B., Arce, C.,

COMBINATORIAL ANALYSIS 201

Wendelheim, A. 1990. The cognitive repre-
sentation of European countries: a compari-
son between Swedish and Spanish samples.
Tech. Rep. No. 722. Univ. Stockholm,
Dept. Psychol.

Sackin, M. J., Sneath, P. H. A. 1988. Choos-
ing the smallest number of binary characters
to distinguish the greatest number of OTUs.
See Bock 1988, pp. 14146

Sankoff, D., Kruskal, J. B., eds. 1983. Time
Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Com-
parison. Reading, MA: Addison-Wesley

Saporta, G. 1988. About maximal association
criteria in linear analysis and in cluster anal-
ysis. See Bock 1988, pp. 541-50

Sattath, S., Tversky, A. 1987. On thc rclation
between common and distinctive feature
models. Psychol. Rev. 94:16-22

Schader, M. 1979. Distance minimale entre
partitions et préordonnances dans un ensem-
ble fini. Math. Sci. hum. 17(67):39-48

Shepard, R. N. 1962a. The analysis of prox-
imities: Multidimensional scaling with an
unknown distance function. 1. Psy-
chometrika 27:125-40

Shepard, R. N. 1962b. Analysis of proximi-
ties: multidimensional scaling with an un-
known distance function. II. Psychometrika
27:219-46

Shepard, R. N. 1972. A taxonomy of some
principal types of data and of multi-
dimensional methods for their analysis. In
Multidimensional Scaling: Theory and Ap-
plications in the Behavioral Sciences. Vol.
I: Theory, ed. R. N. Shepard, A. K. Rom-
ney, S. B. Nerlove, pp. 24-47. New York:
Seminar Press

Shepard, R. N. 1974. Representation of struc-
ture in similarity data: problems and pros-
pects. Psychometrika 39:373-421

Shepard, R. N. 1980. Multidimensional scal-
ing, tree-fitting, and clustering. Science
210:390-98

Shepard, R. N. 1988. George Miller’s data
and the development of methods for
representing cognitive structures. In The
Making of Cognitive Science: Essays in
Honor of George A. Miller, ed. W. Hirst,
pp. 45-70. Cambridge: Cambridge Univ.
Press

Shepard, R. N., Arabie, P. 1979. Additive
clustering: representation of similarities as
combinations of discrete overlapping prop-
erties. Psychol. Rev. 86:87-123

Shiina, K. 1986. A maximum likelihood
nonmetric multidimensional scaling pro-
cedure for word sequences obtained in free-
recall experiments. Jpn. Psychol. Res.
28(2):53-63

Sibson, R. 1973. SLINK: an optimally effi-
cient algorithm for the single-link cluster
method. Comput. J. 16:3045



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

202 ARABIE & HUBERT

Smith, J. E. K. 1976. Analysis of qualitative
data. Annu. Rev. Psychol. 27.487-99

Smouse, P. E., Long, J. C., Sokal, R. R.
1986. Multiple regression and correlation
extensions of the Mantel test of matrix cor-
respondence. Syst. Zool. 35:627-32

Sneath, P. H. A., Sokal, R. R. 1973. Numer-
ical Taxonomy. San Francisco: W. H. Free-
man

Snijders, T. A. B., Dormaar, M., van Schuur,
W. H., Dijkman-Caes, C., Driessen, G.
1990. Distribution of some similarity coef-
ficients for dyadic binary data in the case
of associated attributes. J. Classif. 7:5-
31

Snyder, C. W. Jr., Law, H. G., Hattie, J. A.
1984. Overview of multimode analytic
methods. See Law et al 1984, pp. 2-35

Sokal, R. R. 1985. The continuing search for
order. Am. Nat. 126:729-49

Sokal, R. R. 1986a. Phenetic taxonomy:
theory and methods. Annu. Rev. Ecol. Syst.
17:423-42

Sokal, R. R. 1986b. Spatial data analysis and
historical processes. Sec Diday et al 1986,
pp. 29-43

Sokal, R. R. 1988a. Unsolved problems in
numerical taxonomy. See Bock 1988, pp.

45-56

Sokal, R. R. 1988b. Genetic, geographic, and
linguistic distances in Europe. Proc. Natl.
Acad. Sci. USA 85:1722-26

Sokal, R. R., Lengyel, 1. A., Derish, P. A.,
Wooten, M. C., Oden, N. L. 1987. Spatial
autocorrelation of ABO serotypes in
mediaeval cemeteries as an indicator of
ethnic and familial structure. J. Archaeol.
Sci. 14:615-33

Spaeth, H. 1980. Cluster Analysis Algorithms,
transl. U. Bull. Chichester, England: Ellis
Horwood. (Original work published 1977)

Spaeth, H. 1985. Cluster Dissection and Anal-
ysis: Theory, FORTRAN Programs, Ex-
amples, transl. J. Goldschmidt. Chichester:
Ellis Horwood. (Original work published
1983)

Spaeth, H. 1986a. Maximizing partitioning
cluster criteria for quantitative data. See
Bock 1986, pp. 221-28

Spaeth, H. 1986b. Anticlustering: maximizing
the variance criterion. Control Cybern.
15:213-18

Spaeth, H. 1986c. Homogenous and heteroge-
neous clusters for distance matrices. See
Bock 1988, pp. 157-64

Sriram, N. 1990. Clique optimization: a
method to construct parsimonious ultramet-
ric trees from similarity data. J. Classif.
7:33-52

Tarjan, R. E. 1982. A hierarchical clustering
algorithm using strong components. Inf.
Process. Lett. 14:26-29

ten Berge, J. M. F. 1988. Generalized

approaches to the maxbet problem and the
maxdiff problem, with applications to ca-
nonical correlations. Psychometrika
53:487-94

Tucker, L. R 1964. The extension of factor
analysis to three-dimensional matrices. In
Contributions to Mathematical Psychology,
ed. N. Frederiksen, H. Gulliksen, pp.
109-27. New York: Holt, Rinehart, and
Winston

Tucker, L. R 1983. Searching for structure in
binary data. In Principals of Modern Psy-
chological Measurement. ed. H. Wainer, S.
Messick, pp. 215-35. Hillsdale, NI:
Erlbaum

Tucker, L. R, Messick, S. J. 1963. An in-
dividual difference model for multi-dimen-
sional scaling. Psychometrika 28:333-67

Tversky, A., Hutchinson, J. W. 1986. Nearest
neighbor analysis of psychological spaces.
Psychol. Rev. 93:3-22

Upton, G., Fingleton, B. 1985. Spatial Data
Analysis by Example. Vol. 1. Point Pattern
and Quantitative Data. New York: Wiley

Van Mechelen, 1., De Bocck, P. 1990. Projec-
tion of a binary criterion into a model of
hierarchical classes. Psychometrika 55:677-

Van Ryzin, J., ed. 1977. Classification and
Clustering. New York: Academic

Vegelius, J., Janson, S. 1982. Criteria for
symmetric measures of association for
nominal data. Qual. Quant. 16:243-50

Verhelst, N. D., Koppen, M. G. M., Van
Essen, E. P. 1985. The exact distribution of
an index of agreement between partitions.
Br. J. Math. Stat. Psychol. 38:44-57

Walker, M. 1989. An analysis of auditory
alphabet confusions. Percept. Psychophys.
45:315-22

Waller, N. G., Lykken, D. T., Tellegen, A.
1992. Occupational interests, leisure time
interests and personality: three domains or
one? Findings from the Minnesota Twin
Registry. In Assessing Individual Dif-
ferences in Human Behavior: New Methods,
Concepts, and Findings, ed. R. V. Dawis,
D. Lubinski. Minneapolis: Univ. Minnesota
Press. In press

Wasserman, S., Anderson, C. 1987. Stochas-
tic a posteriori blockmodels: conswruction
and assessment. Soc. Networks 9:1-36

Wasserman, S., Faust, K. 1991. Social Net-
work Analysis: methods and Applications.
New York: Cambridge Univ. Press

Weisberg, H. F. 1974. Dimensionland: an ex-
cursion into spaces. Am. J. Polit. Sci.
18:743-76

Weiss, M. J. 1988. The Clustering of Amer-
ica. New York: Harper Row

Whaley, C. P. 1982. Interactive clustering.
Behav. Res. Meth. Instrument. 14:170-
75



Annu. Rev. Psychol. 1992.43:169-203. Downloaded from www.annual reviews.org
by University of Illinois - Urbana Champaign on 09/03/12. For personal use only.

Wilkinson, L. 1989. SYSTAT: The System for
Statistics. Evanston, IL: Systat, Inc.

Willett, P. 1988. Recent trends in hierarchic
document clustering: a critical review. Inf.
Process. Manage, 24:577-97

Wind, Y. 1978. Issues and advances in
segmentation research. J. Market. Res.
15:317-37

Windham, M. P. 1985. Numerical classifica-
tion of proximity data with assignment mea-
sures. J. Classif. 2:157-72

Windham, M. P. 1987. Parameter modifica-
tion for clustering criteria. J. Classif.
4:191-214

COMBINATORIAL ANALYSIS 203

Windham, M. P. 1988. Review of Mixture
Models: Inference and Applications to
Clustering by G. J. McLachlan, K. E. Bas-
ford. J. Classif. 5:105-7

Wolfe, A. , ed. 1990. Connections 13

Wolfe, J. H. 1970. Pattern clustering b y multi-
variate mixture analysis. Multivar. Behav.
Res. 5:329-50

Wright, P. 1987. Spycatcher: New York: Vik-
in

Zegers, F. E. 1986. Two classes of element-
wise transformations preserving the psd na-
ture of coefficient matrices. J. Classif.
3:49-53



	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Psychology Online
	Most Downloaded Psychology Reviews
	Most Cited Psychology Reviews
	Annual Review of Psychology Errata
	View Current Editorial Committee


	ar: 
	logo: 



