
2
Constructing MDS Representations

An MDS representation is found by using an appropriate computer pro-
gram. The program, of course, proceeds by computation. But one- or two-
dimensional MDS representations can also be constructed by hand, using
nothing but a ruler and compass. In the following, we discuss such con-
structions in some detail for both ratio MDS and for ordinal MDS. This
leads to a better understanding of the geometry of MDS. In this context,
it is also important to see that MDS is almost always done in a particular
family of geometries, that is, in flat geometries.

2.1 Constructing Ratio MDS Solutions

An MDS representation is in practice always found by using an appropriate
computer program (see Appendix A for a review of such programs). A
computer program is, however, like a black box. It yields a result, hopefully
a good one, but does not reveal how it finds this solution.

A good way to build an intuitive understanding for what an MDS pro-
gram does is to proceed by hand. Consider an example. Table 2.1 shows
the distances between 10 cities measured on a map of Europe. We now
try to reverse the measurement process. That is, based only on the values
in Table 2.1, we want to find a configuration of 10 points such that the
distances between these points correspond to the distances between the 10
cities on the original map. The reconstructed map should be proportional
in size to the original map, which means that the ratios of its distances
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TABLE 2.1. Distances between ten cities.

1 2 3 4 5 6 7 8 9 10
1 0 569 667 530 141 140 357 396 570 190
2 569 0 1212 1043 617 446 325 423 787 648
3 667 1212 0 201 596 768 923 882 714 714
4 530 1043 201 0 431 608 740 690 516 622
5 141 617 596 431 0 177 340 337 436 320
6 140 446 768 608 177 0 218 272 519 302
7 357 325 923 740 340 218 0 114 472 514
8 396 423 882 690 337 272 114 0 364 573
9 569 787 714 516 436 519 472 364 0 755

10 190 648 714 622 320 302 514 573 755 0

should correspond to the ratios of the values in Table 2.1. This defines the
task of ratio MDS. We find the solution of this task as follows.

A Ruler-and-Compass Approach to Ratio MDS
For convenience in laying out the map, we first identify those cities that are
farthest from each other. Table 2.1 shows that these are the cities 2 and 3,
whose distance is d23 = 1212 units. We then want to place two points on a
piece of paper such that their distance is proportional to d23 = 1212 units.
To do this, we choose a scale factor, s, so that the reconstructed map has a
convenient overall size. If, for example, we want the largest distance in the
map to be equal to 5 cm, then s = 0.004125 so that s · 1212 = 5. All values
in Table 2.1 are then multiplied by s. The scale factor s leaves invariant
the proportions or ratios of the data in Table 2.1.

Having fixed the scale factor, we draw a line segment with a length of
s · 1212 cm on a piece of paper. Its endpoints are called 2 and 3 (Figure
2.1).

We now elaborate our two-point configuration by picking one of the re-
maining cities for the next point. Assume that we pick city 9. Where must
point 9 lie relative to points 2 and 3? In Table 2.1 we see that the distance
between cities 2 and 9 on the original map is 787 units. Thus, point 9 must
lie anywhere on the circle with radius s · 787 cm around point 2. At the
same time, point 9 must have a distance of s · 714 cm to point 3. Conse-
quently, point 9 also must lie on the circle with radius s · 714 cm around
point 3 (Figure 2.2). Hence, for point 9, there are exactly two solutions—
labeled as 9 and 9′, respectively, in Figure 2.1—that satisfy the conditions
d29 = s · 787 cm and d39 = s · 714 cm. We arbitrarily choose point 9.

We continue by adding further points to our MDS configuration. It does
not matter which city we pick next. Assume that it is city 5. Where, relative
to points 2, 3, and 9, should point 5 lie? It should lie on (a) the circle
around point 2 with radius s · d25, (b) on the circle around point 3 with
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FIGURE 2.8. Configuration of Fig. 2.7
over a map of Europe.

radius s · d35, and (c) on the circle around point 9 with radius s · d95, as
in Figure 2.3. Point 5 satisfies all three conditions and, in contrast to the
above construction for point 9, there is only one solution point.

Once all of the cities have been considered, the configuration in Figure 2.4
is obtained. The configuration solves the representation problem, because
the distances between its points correspond to the distances in Table 2.1,
except for an overall scale factor s.

If we replace the numbers with city names, then Figure 2.5 shows that
the reconstructed map has an unconventional orientation. But this can be
easily adjusted. We first reflect the map along the horizontal direction so
that West is on the left-hand side, and East is on the right-hand side (Figure
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2.6). Second, we rotate the map somewhat in a clockwise direction so that
the North–South arrow runs in the vertical direction, as usual (Figure 2.7).

Admissible Transformations of Ratio MDS Configuration
The final “cosmetic” transformations of the MDS configuration—rotation
and reflection—are obviously without consequence for the reconstruction
problem, because they leave the distances unchanged (invariant). Rotations
and reflections are thus said to be rigid motions. Another form of a rigid
motion is a translation, that is, a displacement of the entire configuration
relative to a fixed point. A translation of the configuration in Figure 2.7
would, for example, move all points the same distance to the left and leave
the compass where it is.

There are two ways to think of rigid motions, the alibi and the alias. The
former conceives of the transformation as a motion of the points relative
to a fixed frame of reference (e.g., the pages of this book) and the latter as
a motion of the frame of reference relative to points that stay put in their
positions in space.

Transformations often make MDS representations easier to look at. It
is important, though, to restrict such transformations to admissible ones,
that is, to those that do not change the relations among the MDS dis-
tances that we want to represent in the MDS configuration. Inadmissible
transformations are, on the other hand, those that destroy the relationship
between MDS distances and data. For the problem above, rigid motions are
certainly admissible. Also admissible are dilations, that is, enlargements or
reductions of the entire configuration. Dilations do not affect the ratios of
the distances.

Rigid motions and dilations together are termed similarity transforma-
tions, because they leave the shape (but not necessarily the size) of a figure
unchanged. For a better overview, a summary of these transformations is
given in Table 2.2. The term invariance denotes those properties of geomet-
rical objects or configurations that remain unaltered by the transformation.
Instead of rigid motions, one also speaks of isometries or, equivalently, of
isometric transformations. This terminology characterizes more directly
what is being preserved under the transformation: the metric properties of
the configuration, that is, the distances between its points.

2.2 Constructing Ordinal MDS Solutions

The ruler-and-compass construction in the above attempted to represent
the data such that their ratios would correspond to the ratios of the dis-
tances in the MDS space. This is called ratio MDS. In ordinal MDS, in
contrast, one only requires that the order of the data is properly reflected
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TABLE 2.2. Two important transformation groups and their invariances.

Transformation Group Transformations Invariance
Rigid motion Rotation Distances
(isometry) Reflection

Translation
Similarity Rotation Ratio of
transformation Reflection distances

Translation
Dilation

TABLE 2.3. Ranks for data in Table 2.1; the smallest distance has rank 1.

1 2 3 4 5 6 7 8 9 10
1 – 26 34 25 3 2 14 16 27 5
2 26 – 45 44 31 20 11 17 41 33
3 34 45 – 6 29 40 43 42 36 36
4 25 44 6 – 18 30 38 35 23 32
5 3 31 29 18 – 4 13 12 19 10
6 2 20 40 30 4 – 7 8 24 9
7 14 11 43 38 13 7 – 1 21 22
8 16 17 42 35 12 8 1 – 15 28
9 27 41 36 23 19 24 21 15 – 39

10 5 33 36 32 10 9 22 28 39 –

by the order of the representing distances. The reason for such a weaker
requirement is usually that the scale level of the data is taken as merely
ordinal. If only greater than and equal relations are considered informative,
we could simplify Table 2.1 and replace its values by ranking numbers, be-
cause the original data are (order-)equivalent to their ranking numbers.
This replacement renders Table 2.3.

Ordinal MDS is a special case of MDS, and possibly the most important
one in practice. Thus, we may ask how we can proceed with our geometrical
tools, ruler and compass, in constructing such an ordinal MDS solution.

A Ruler-and-Compass Approach to Ordinal MDS
The first step in ordinal MDS remains the same as above. That is, we
begin by picking a pair of cities that define the first two points of the
configuration. If the cities 2 and 3 are picked as before, we can use Figure
2.1 as our starting configuration. Assume now that we want to add point 9
to this configuration. What can be derived from the data to find its position
relative to points 2 and 3?

Clearly, the following holds: point 9 must be closer to 3 than to 2, because
the distance d39 must be smaller than d29. This follows from Table 2.3,
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because the ranking number for the distance of 3 and 9 is 36, whereas the
ranking number for the distance of 2 and 9 is 41. (Note that the ranking
numbers here are dissimilarities or distance-like measures; hence, a greater
ranking number should lead to a greater distance.) The distances in the
MDS configuration are ordered as the data are only if d39 < d29. Thus,
the plane in Figure 2.9 is divided into two regions by the perpendicular
line through the middle of the line segment that connects points 2 and 3.
The shaded area indicates that point 9 must lie in the region below the
horizontal line if the condition d39 < d29 is to be met. We call the set of
points below this line the solution set or the solution space for the problem
of placing point 9. Each point of this region, for example, 9, 9′, or 9′′, could
be chosen as point 9.

But Table 2.3 also requires that point 9 must be closer to 2 than the
distance between point 2 and 3, because the rank of pair 2 and 9 is 41 and
that of pair 2 and 3 is 45. Hence, d29 < d23, which means that point 9
must be placed within a circle around point 2 whose radius is somewhat
smaller than d23. This condition is graphically illustrated in Figure 2.10
by the circle with radius max(d29), where max(d29) is “somewhat” smaller
than d23. Moreover, point 9 must also be placed such that d39 < d23. This
leads to the second circle in Figure 2.10, a circle whose radius is somewhat
smaller than d23.

Of course, point 9 must satisfy all three conditions at the same time.
Therefore, the desired solution space in Figure 2.11 results from superim-
posing Figures 2.9 and 2.10.

Comparing Figure 2.2 with Figure 2.11, we see that the second solution is
much more indeterminate, offering infinitely many possible candidates for
point 9, not just two. The reason for this increased indeterminacy lies in
the weaker constraints that ordinal MDS puts onto the MDS configuration:
only the order of the data, not their ratios, determines the distances in
MDS space. In spite of that, point 9 cannot lie just anywhere. Rather, the
inequalities have led to “some” reduction of freedom in placing point 9 in
the given plane.

We now arbitrarily select one point from the solution set to represent
object 9: let this be point 9 in Figure 2.11. We then add a fourth point
representing object 5 to the present configuration consisting of points 2,
3, and 9. Table 2.3 says that the resulting configuration must satisfy (a)
d25 < d29, because the corresponding ranking numbers in Table 2.3 are
31 and 41, and because the distances in the MDS representation should
be ordered as the data are; (b) d35 < d39, because for the corresponding
ranking we find 29 < 36; (c) d59 < d35, because 19 < 29; (d) d59 < d25,
because 19 < 31; and (e) d35 < d25, because 29 < 31. These conditions
each induce a boundary line bisecting the plane in Figure 2.12 into a region
whose points all satisfy one of the inequalities, and a complementary region
whose points violate it. Point 5 must then be so placed that it satisfies all
inequality conditions, (a) through (e).
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FIGURE 2.13. No point 10 can be placed into the configuration {2, 3, 9′′} so that
it satisfies the shown inequalities.

Figure 2.12 shows the solution space for point 5 as a shaded area. We
note that this area is smaller than the solution space for point 9 in Figure
2.11. Hence, the freedom with which we can choose a point for object 5 is
less than it was for point 9 in Figure 2.11.

Proceeding in this way, we end up with an MDS representation whose
distances are ordered as the ranking numbers in Table 2.3. However, finding
this solution turns out not to be as straightforward as it may seem, because
our construction method, in practice, would run into dead-end alleys over
and over again. We show this in the next section.

Solution Spaces in Ordinal MDS
It may happen that the solution space is empty. In the example above, this
occurs, for example, if we pick a “wrong” point for 9 in the sense that the
chosen point will make it impossible to add further points in the desired
sense. Consider an example. Assume that we had picked point 9′′ in Figure
2.11. We then would try to add a point for object 10 to the configuration
{2, 3, 9′′}. From Table 2.3 we note that point 10 must be closer to 2 than to
9′′, and so it must lie within the shaded circle in Figure 2.13. At the same
time, point 10 must also lie below the line that is perpendicular through
the midpoint of the line connecting points 3 and 9′′, because point 10
must satisfy the condition d3,10 < d9′′,10. But no point can simultaneously
lie below this line and within the shaded circle, and so we see that the
solution space for point 10 is empty. Thus, had we decided on point 9′′, we
later would have had to reject this point as unacceptable for the enlarged
representation problem and start all over again with a new point 9.

We also note that the solution space for each newly added point shrinks
in size at a rapidly accelerating rate. Therefore, the chances for picking
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wrong points for later construction steps also go up tremendously as each
new point is added. Indeed, new points also have, in a way, a backwards
effect: they reduce the size of the solution spaces for the old points. Every
new point that cannot be properly fitted into a given configuration (as in
Figure 2.13) forces one to go back and modify the given configuration until
all points fit together.

The shrinkage of the solution spaces as a consequence of adding further
points occurs essentially because the number of inequalities that determine
the solution spaces grows much faster than the number of points in the
configuration. We see this easily from our example: the solution space in
Figure 2.11 is defined by three inequalities, namely, d29 > d39, d23 > d29,
and d23 > d39. When point 5 is added, we have four points and six dis-
tances. Because every distance can be compared to any other one, the MDS
configuration must pay attention to 15 order relations.

More generally, with n points, we obtain n·n = n2 distances dij . Of these
n2 distances, n are irrelevant for MDS, namely, all dii = 0, i = 1, . . . , n.
This leaves n2 −n distances. But dij = dji, that is, the distance from i to j
is always equal to the distance from j to i, for all points i, j. Thus, we obtain
(n2−n)/2 = (n)(n−1)/2 relevant distances. This is equal to the number of
pairs out of n objects, which is denoted by

(
n
2

)
[read: n-take-2]. But all of

these
(
n
2

)
distances can be compared among each other. Consequently, we

have (n-take-2)-take-2 or
((n

2)
2

)
order relations (assuming that all values of

the data matrix are different). Hence, the ranking numbers for n = 4 objects
imply 15 inequalities; for n = 50, we obtain 749,700 inequalities, and for
n = 100 there are 12,248,775 inequalities. We can understand intuitively
from the sheer number of independent constraints why the ordinal MDS
solution is so strongly determined, even for a fairly small n.

Isotonic Transformations
Isotonic transformations play the same role in ordinal MDS as similarity
transformations in ratio MDS. Isotonic transformations comprise all trans-
formations of a point configuration that leave the order relations of the
distances unchanged (invariant). They include the isometric transforma-
tions discussed above as special cases.

An ordinal MDS solution is determined up to 1 isotonic transformations—
just as the ratio MDS configurations are fixed up to similarity transforma-
tions—because as long as the order of the distances is not changed, any
configuration is as good an ordinal MDS representation as any other. How-
ever, unless only a very small number of points is being considered, isotonic
transformations allow practically no more freedom for changing the point

1“Up to” means that weaker transformations which leave even more properties in-
variant are also admissible.
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FIGURE 2.14. Comparing ratio MDS (solid points) and ordinal MDS (open cir-
cles) after fitting the latter to the former.

locations than isometric transformations. This is a consequence of the rapid
shrinkage of the solution sets for the points.2

2.3 Comparing Ordinal and Ratio MDS Solutions

The solutions of both the ratio MDS and the ordinal MDS are shown
together in Figure 2.14. The solid black points are the ratio MDS solution,
and the open circles are the ordinal MDS configuration. We notice that the
two configurations are very similar. This similarity has been brought out by
admissibly transforming the ordinal MDS configuration so that it matches
the ratio MDS configuration as much as possible. That is, leaving the former
configuration fixed, we shifted, rotated, reflected, and dilated the ordinal
MDS configuration so that its points 1, . . . , 10 would lie as close as possible
to their respective target points 1, . . . , 10 in the ratio MDS configuration.
(How this fitting is done is shown in Chapter 20.)

The fact that we obtain such highly similar structures demonstrates that
treating the data as ordinal information only may be sufficient for recon-
structing the original map. This seems to suggest that one gets something
for free, but it really is a consequence of the fact that the order relations
in a data matrix like Table 2.3 are on pairs of pairs of objects, not just
on pairs of objects. In the second case, we would have weak information,
indeed, and in the first, obviously not.

2The solution sets in ordinal MDS are also called isotonic regions, because the dis-
tances of each point in this set to a set of particular points outside of this set are ordered
in the same way.
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Ratio and ordinal MDS solutions are almost always very similar in prac-
tice. However, there are some instances when an ordinal MDS will yield a
degenerate solution (see Chapter 13). Also, the positions of the points in
an ordinal MDS are practically just as unique as they are in ratio MDS,
unless one has only very few points. With few points, the solution spaces
remain relatively large, allowing for much freedom to position the points
(see, e.g., Figure 2.11).

But why do ordinal MDS at all? The answer typically relates to scale
level considerations on the data. Consider the following experiment: a sub-
ject is given a 9-point rating scale; its categories range from 1 = very poor
to 9 = very good; the subject judges three pictures (A, B, and C) on this
scale and arrives at the judgments A = 5, B = 7, and C = 1. Undoubtedly,
it is correct to say that the subject has assigned the pictures A and B more
similar ratings than A and C, because |A−B| = 2 and |A−C| = 4. But it is
not so clear whether the subject really felt that pictures A and B were more
alike in their quality than pictures A and C. The categories of the rating
scale, as used by the subject, need not correspond in meaning to the arith-
metical properties of the numbers 1, 2, . . . , 9. For example, it is conceivable
that the subject really only makes a poor-average-good distinction, or that
she understands the category “very good” as “truly extraordinary”, which
might mean that 8 is much farther from 9 than 5 is from 6. In this case,
the assigned scores 5, 7, and 1 would have a much weaker interpretability,
and we could really only assert that the subject regarded B as best, A as
next best, and C as worst.

2.4 On Flat and Curved Geometries

Taking a closer look at the European map in Figure 2.8, one notes that
Stockholm has about the same Y -coordinate as points in Scotland. Ge-
ographically, however, Stockholm lies farther to the north than Scotland.
Hence, the map is incorrect in the sense suggested by the compass in Figure
2.8, because points with the same Y -coordinates generally do not have the
same geographical latitude. The distances in Table 2.1 are, on the other
hand, correctly represented in Figure 2.8. But these distances were mea-
sured on a map printed on the pages of an atlas, and not measured over
the curved surface of the globe.

Any geographical map that is flat is wrong in one way or another. Con-
sider the globe in Figure 2.15, and assume that we want to produce a flat
map of a relatively small region of its surface such as, for example, one of
the shown spherical rectangles. This can only be done by projecting this
region onto a flat plane, and any such projection will distort some fea-
ture of the original geometry. The usual method, for example, projects the
globe’s surface (except for the areas close to the poles) by rays emanating
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FIGURE 2.15. Globe with meridians (North–South lines) and parallels
(East–West lines).

from the globe’s center onto the surface of a cylinder that encompasses the
globe and touches it on the Equator. The converging meridians—the lines
running from the North Pole to the South Pole in Figure 2.15—thus are
mapped onto parallel lines on the flat map. This projection properly repre-
sents the points’ North–South coordinates on the Y -axis of the flat map. It
also preserves the points’ meridians as lines with the same X-coordinates.
However, although the map is quite accurate for small areas, the size of
the polar regions is greatly exaggerated so that, for example, Alaska looks
much larger than it is. There are many other projections, which are used
for different purposes. The map in Figure 2.8 is a projection that preserves
area, but it is misleading when one naively reads its X−Y -coordinates as
geographical longitude and latitude, respectively.

Anyone who approaches a point configuration first looks at it in the
Euclidean sense. Euclidean geometry is flat geometry, with the flat plane as
its most prominent example. Euclidean geometry is the natural geometry,
because its properties are what they appear to be: circles look like circles,
perpendicular lines look perpendicular, and the distance between two points
can be measured by a straight ruler, for example. Euclidean geometry is a
formalization of man’s experience in a spatially limited environment. Other
geometries besides the Euclidean one were discovered only by a tremendous
effort of abstraction that took some 2000 years.3 The surface of the globe

3Euclid, in his Elements, had systematically explained and proved well-known theo-
rems of geometry such as the theorem of Pythagoras. The proofs rely on propositions
that are not proved (axioms). One of these axioms is the parallel postulate. It says that
through a point outside a straight line there passes precisely one straight line parallel to
the first one. This seems to be a very special axiom. Many attempts were made to show
that it is superfluous, because it can be deduced from the other axioms. “The mystery
of why Euclid’s parallel postulate could not be proved remained unsolved for over two
thousand years, until the discovery of non-Euclidean geometry and its Euclidean models
revealed the impossibility of any such proof. This discovery shattered the traditional
conception of geometry as the true description of physical space . . . a new conception
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in Figure 2.15 is an example for a curved geometry. Distance is measured
on the globe not with a straight ruler but with a thread stretched over
its surface. This yields the shortest path between any two points and thus
defines their distance. Extending the path of the thread into both directions
defines a straight line, just as in Euclidean geometry. (From the outside,
this path appears curved, but for the earthbound, it is “straight”.) On the
globe, any two straight lines will meet and, hence, there are no parallels in
this kind of plane. Moreover, they will intersect in two points. For example,
any two meridians meet both at the North and the South pole. Following
any straight line brings you back to the point you started from, and so the
globe’s surface is a finite but unbounded plane. Another one of its “odd”
properties is that the sum of the angles in a triangle on this plane is not a
fixed quantity, but depends on the size of the triangle, whereas in Euclidean
geometry these angles always add up to 180◦.

Thus, the globe’s surface is a geometry with many properties that differ
from Euclidean geometry. Indeed, most people would probably argue that
this surface is not a plane at all, because it does not correspond to our
intuitive notion of a plane as a flat surface. Mathematically, however, the
surface of the sphere is a consistent geometry, that is, a system with two sets
of objects (called points and lines) that are linked by geometrical relations
such as: for every point P and for every point Q not equal to P there exists
a unique line L that passes through P and Q.

Some curved geometries are even stranger than the sphere surface ge-
ometry (e.g., the locally curved four-dimensional space used in modern
physics) but none ever became important in MDS. MDS almost always is
carried out in Euclidean geometry. If MDS is used as a technique for data
analysis, then it is supposed to make the data accessible to the eye, and
this is, of course, only possible if the geometric properties of the representa-
tion space are what they seem to be. Conversely, if MDS is non-Euclidean,
then it is never used as a tool for data explorations. Rather, in this case,
the properties of the representing geometry are interpreted as a substan-
tive theory. Curved geometries play a minor role in this context. Drösler
(1981), for example, used the properties of a particular two-dimensional
constant-curvature geometry to model monocular depth perception. Most
non-Euclidean modeling efforts remained, however, restricted to flat ge-
ometries such as the city-block plane discussed in Chapter 1, Section 1.4.
In this book, we only utilize flat geometries and, indeed, mostly Euclidean
geometry, unless stated otherwise.

emerged in which the existence of many equally consistent geometries was acknowledged,
each being a purely formal logical discipline that may or may not be useful for modeling
physical reality” (Greenberg, 1980, p. xi).
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2.5 General Properties of Distance Representations

A geometry—whether flat or curved—that allows one to measure the dis-
tances between its points is called a metric geometry. There are usually
many ways to define distances. In the flat plane, the natural way to think
of a distance is the Euclidean distance that measures the length of the ruler-
drawn line between two points. Another example is the city-block distance
as shown in Figure 1.7. These two variants of a distance, as well as all other
distances in any geometry, have a number of properties in common. These
properties are important for MDS because they imply that proximities can
be mapped into distances only if they too satisfy certain properties.

Consider a plane filled with points. For any two points i and j, it holds
that

dii = djj = 0 ≤ dij ; (2.1)

that is, the distance between any two points i and j is greater than 0 or
equal to 0 (if i = j). This property is called nonnegativity of the distance
function. Furthermore, for any two points i and j, it is true that

dij = dji; (2.2)

that is, the distance between i and j is the same as the distance between j
and i (symmetry). Finally, for all points i, j, k, it holds that

dij ≤ dik + dkj . (2.3)

This triangle inequality says that going directly from i to j will never be
farther than going from i to j via an intermediate point k. If k happens to
be on the way, then (2.3) is an equality.

These properties, which are obviously true for distances in the familiar
Euclidean geometry, are taken as the definitional characteristics (axioms)
of the notion of distance. One can check whether any given function that
assigns a numerical value to pairs of points (or to any pair of objects)
possesses these three properties.

Consider, for example, the trivial distance defined by dij = 1 (if i �= j)
and dij = 0 (if i = j). To prove that this function is a distance, we have to
show that it satisfies the three distance axioms. Starting with nonnegativity,
we find that we have dii = 0 for all i by the second part of the definition,
and that dij > 0 for all i �= j by the first part of the definition. Symmetry
also holds because the function is equal to 1 for all i �= j. Finally, for the
triangle inequality, we obtain 1 < 1 + 1 if i, j, and k are all different;
1 = 1+0 if k = j and so on. Hence, the left-hand side of the inequality can
never be greater than the right-hand side.

Naturally, the trivial distance is not a particularly interesting function.
Even so, it can still serve as a nontrivial psychological model. If it is used
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as a primitive model for liking, it may turn out empirically wrong for a
given set of persons if there are persons who like somebody else more than
themselves.

We may also have proximities where pij = pji does not hold for all i and
j. The proximities, in other words, are not symmetric. Such proximities
are rather typical for the social relation “liking” between persons. If such
nonsymmetry is observed and if it cannot be interpreted as due to error,
then the given data cannot be represented directly in any metric geometry.
Symmetry, thus, is always a precondition for MDS.

The other properties of distances may or may not be necessary conditions
for MDS. If one has observed “self”-proximities for at least two piis and if
they are not all equal or if any pii is greater than any pij (for i �= j) prox-
imity then, strictly speaking, one cannot represent these proximities by any
distance. If the proximities violate the triangle inequality, it may or may
not be relevant for MDS. In ordinal MDS, it is no problem because adding
a sufficiently large constant to all pijs eliminates all violations (see Section
18.2). In ratio MDS, however, the proximities are assumed to have a fixed
origin and no such arbitrary additive constants are admissible. Hence, vio-
lations of the triangle inequality are serious problems. If they are considered
large enough, they exclude any distance representation for the data.

2.6 Exercises

Exercise 2.1 If you square the correlations in Exercises 1.1, 1.2, or 1.4, and
then do ordinal MDS, you obtain exactly the same solutions as for the
original values.

(a) Explain why.

(b) Specify three other transformations that change the data values sub-
stantially but lead to the same ordinal MDS solutions as the raw
data.

(c) Specify a case where such a transformation of the data values changes
the ordinal MDS solution.

Exercise 2.2 Specify the admissible transformations for the city-block or-
dinal MDS solution in Figure 1.7.

Exercise 2.3 Consider the table of distances between five objects below.

Object 1 2 3 4 5
1 0 1.41 3.16 4.00 8.06
2 1.41 0 2.00 3.16 8.54
3 3.16 2.00 0 1.41 8.06
4 4.00 3.16 1.41 0 7.00
5 8.06 8.54 8.06 7.00 0
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(a) Use the ruler-and-compass method described in Section 2.1 to con-
struct a ratio MDS solution. Choose the scale factor s equal to 1, so
that the distance between points 1 and 4 should be equal to 4 cm in
your solution.

(b) Connect points 1 to 2 by a line, points 2 and 3, etc. What pattern
emerges?

(c) Verify your solution by using an MDS program. Explain possible dif-
ferences between the two solutions obtained by hand and by using
the computer program.

Exercise 2.4 A psychologist investigates the dissimilarity of the colors red,
orange, green, and blue. In a small experiment, she asks a subject to rank
the six pairs of colors on their dissimilarity (1 = most similar, 6 = most
dissimilar). The resulting table of ranks is given below.

Item R O G B
Red –
Orange 1 –
Green 3 2 –
Blue 5 6 4 –

The psychologist wants to do an ordinal MDS in two dimensions on these
data but does not have an MDS program for doing so. So far, she has found
the coordinates for Red (0, 3), Orange (0, 0), and Green (4, 0).

(a) Use the ruler-and-compass method described in Section 2.2 to find
a location for point Blue that satisfies the rank-order of the data.
Specify the region where Blue may be located.

(b) Interpret your solution substantively.

(c) Suppose that none of the coordinates were known. Try to find an
ordinal MDS solution for all four points. Does this solution differ
from the one obtained in (a)? If so, explain why.




