
22
Three-Way MDS Models

In the Procrustean context, the dimension-weighting model was used in
order to better match a set of K given configurations Xk to each other. We
now ask how a solution of the dimension-weighting model can be found di-
rectly from the set of K proximity matrices without first deriving individual
MDS spaces Xk for each individual k. We discuss how dimension weight-
ing can be incorporated into a framework for minimizing Stress. Another
popular algorithm for solving this problem, Indscal, is considered in some
detail. Then, some algebraic properties of dimension-weighting models are
investigated. Finally, matrix-conditional and -unconditional approaches are
distinguished, and some general comments on dimension-weighting models
are made. Table 22.1 gives an overview of the (three-way) Procrustean
models discussed so far and the three-way MDS models of this chapter.

22.1 The Model: Individual Weights on
Fixed Dimensions

We now return to procedures that find a solution to dimension-weighting
models directly. That is, given K proximity matrices, each of order n × n,
a group space and its associated subject space are computed without any
intermediate analyses. This situation is depicted in Figure 3.10.
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TABLE 22.1. Overview of models for three-way data in Chapters 21 and 22.

Distance Xk Model Chapter/
Section

Equal dimension weights Given Generalized Procrustes 21.3
Equal dimension weights Derived from Pk Identity model Stress 8.6
Equal dimension weights Derived from Pk Classical scaling 12
Weighted Euclidean Given Pindis 21.4
Weighted Euclidean Derived from Pk Three-way Stress 22.1
Weighted Euclidean Derived from Pk Indscal 22.1
Generalized Euclidean Given Oblique Procrustes 21.4
Generalized Euclidean Derived from Pk Three-way Stress 22.2
Generalized Euclidean Derived from Pk Idioscal 22.2

The Weighted Euclidean Model
The problem consists of representing the dissimilarity δijk between objects
i and j as seen by individual (or replication) k by the distance dijk:

dijk(GWk) =

[
m∑

a=1

(waakgia − waakgja)2
]1/2

=

[
m∑

a=1

w2
aak(gia − gja)2

]1/2

, (22.1)

where i, j = 1, . . . , n; k = 1, . . . , K; a = 1, . . . , m;Wk is an m × m diagonal
matrix of nonnegative weights waak for every dimension a for individual k;
and G is the matrix of coordinates of the group stimulus space G. Note that
G does not have subscript k: individual differences are possible only in the
weights on the dimensions of G. The group stimulus space is also called
a common space (Heiser, 1988b). Equation (22.1) is called the weighted
Euclidean distance, which we encountered before in (21.7).

In terms of an individual k, the weighted Euclidean model says that

Xk = GWk, (22.2)

where Xk is the individual configuration. Because distances do not change
under translation, we may assume that G is column centered. Xk = GWk

is similar to ZSWk in (21.11), where Z was defined as the average config-
uration of N individual configurations Xk transformed to an optimal fit in
the sense of the generalized Procrustean loss function in (21.1). However,
in this chapter there are no individual configurations Xk to begin with,
and thus G must be computed differently.

There is an inherent indeterminacy in the weighted Euclidean model: the
dimension weights depend on the particular definition of the group space.
Let D be any diagonal matrix with full rank. Then

Xk = GWk = GDD−1Wk = (GD)(D−1Wk) = G∗W∗
k; (22.3)
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that is, if G is stretched by D, and the weights in Wk are subjected to
the inverse transformation, the product remains the same. For the group
space G, no restriction was defined yet, except for the irrelevant centering
convention. Yet, in order to make G identifiable, it must be normed some-
how. One such norming is to require that GG′ = I. Although this norming
is a purely formal requirement, it nevertheless affects the interpretation of
the weights in each Wk: they are conditional to G, as 22.3 makes clear.
Hence, care must be taken with claims that, for example, a person weights
dimension X twice as much as dimension Y . This assertion is only true
relative to the given group space G. However, it is possible to compare the
weights of different persons on each dimension in turn without restrictions.

The weighted Euclidean model can be implemented in several ways. First,
we discuss a method that minimizes Stress to find a group space G and
dimension weights Wk from K proximity matrices. Then, we discuss the
popular Indscal algorithm, which finds G and the Wks from the scalar
product matrices derived from the K proximity matrices.

Fitting the Dimension-Weighting Model via Stress
Dimension weights can be implemented fairly easily in the Stress framework
by applying the constrained MDS theory (De Leeuw & Heiser, 1980) from
Section 10.3. Let us assume that the proximities are dissimilarities. Then,
the Stress that needs to be minimized equals

σr(X1, . . . ,Xk) =
K∑

k=1

∑
i<j

(δijk − dij(Xk))2 , (22.4)

subject to the constraints that Xk = GWk as required for the dimension-
weighting model. This minimization can also be viewed as doing MDS on
a Kn × Kn dissimilarity supermatrix ∆∗ (with the individual K dissimi-
larity matrices ∆k on the diagonal blocks, and other blocks missing) and a
configuration supermatrix X∗ (with the individual configuration matrices
Xk stacked under each other); that is,

∆∗ =

⎡⎢⎢⎢⎣
∆1

∆2
. . .

∆K

⎤⎥⎥⎥⎦ and X∗ =

⎡⎢⎢⎢⎣
X1
X2
...

XK

⎤⎥⎥⎥⎦
subject to the constraints that Xk = GWk. The theory of Section 10.3
says that every iteration of the majorization algorithm for confirmatory
MDS consists of the following two steps.

1. Compute the unconstrained update X
∗

by the Guttman transform
(8.28).
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2. Minimize tr (X−X
∗
)′V∗(X−X

∗
) over X subject to the constraints

to obtain the update Xu, where here V∗ is a block-diagonal matrix
with nJ on the diagonal blocks and where J = I − n−111′ is the
centering matrix.

Minimizing tr (X − X
∗
)′V∗(X − X

∗
) in the second step is equal to mini-

mizing ∑
k

tr n(Xk − Xk)′J(X − Xk) =∑
k

tr n(GWk − Xk)′(GWk − Xk) (22.5)

over G and Wk. The centering matrix nJ may be removed from (22.5),
because Xk is already column centered. De Leeuw and Heiser (1980) give a
solution that is based on dimensionwise solving (22.5). Let Xa denote the
n×K matrix with column a of each unconstrained update Xk stacked next
to each other. Let ga be column a of G and wa the K × 1 vector of the
dimension weight waak for individual k in dimension a. Then, minimizing
(22.5) is the same as minimizing∑

a

tr (gaw′
a − Xa)′(gaw′

a − Xa). (22.6)

This problem can be solved for each dimension separately by an alternating
least squares algorithm, where in each iteration (22.6) is minimized over
ga, keeping wa fixed, followed by the minimization over wa, keeping ga

fixed. Alternatively, the analytic minimum is obtained by computing the
singular value decomposition of Xa = PΦQ′ and setting ga = p1 and
wa = φ1q1. The Proxscal program implements the dimension-weighting
model for Stress with more options (such as fixing coordinates and allowing
for missing proximities). For the detailed mathematics of that approach,
we refer to Heiser (1988b) and Commandeur and Heiser (1993). A different
algorithm for dimension weighting with constrained dimensions is given by
Winsberg and De Soete (1997).

If all weights wa are constrained to be equal, we get the identity model
for three-way proximities (Commandeur & Heiser, 1993). Then, the only
thing that needs to be estimated is the group stimulus space G. This allows
(22.4) to be written as

σr(G) =
K∑
k

∑
i<j

(δijk − dij(G))2

= K
∑
i<j

(
δij − dij(G)

)2
+

∑
i<j

K∑
k

(
δij − δijk

)2
,
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where δij = K−1 ∑K
k δijk. The first term of σr(G) amounts to simple

MDS of the average dissimilarity matrix, and the second term measures
the difference of the individual dissimilarity matrices to their average.

Heiser (1989b) discusses the minimization of the weighted Euclidean
model for Stress with city-block distances. The minimization can be done
by a combinatorial approach (similar to combinatorial methods used for
unidimensional scaling) combined with a majorizing approach that accom-
modates negative disparities, or by majorization of city-block distances
(Groenen et al., 1995).

The Indscal Algorithm
A popular algorithm for solving the dimension-weighting model is based on
the scalar-product matrix, similar to classical scaling. Let B∆k

= − 1
2J∆(2)

k J
be the n × n scalar-product matrix for individual k derived from the dis-
tances via (12.2). Classical scaling for individual k minimizes

1
4
||J[∆(2)

k − D(2)(X)]J||2 =
1
4
4||B∆k

− XX′||2.
This is extended by including dimension weights in the Indscal loss func-
tion; that is,

LIND(G,W1, . . . ,WK) =
K∑
k

||B∆k
− GW2

kG
′||2 (22.7)

=
K∑

k=1

∑
i,j

(
bijk −

m∑
a=1

giagjaw2
aak

)2

. (22.8)

It is assumed that the scalar-product matrices B∆k
, k = 1, . . . , K, are

given. In the case of interval-scale proximities, an additive constant that
leads to Euclidean distances must be computed, and scalar products are
then derived from these distances. If only ordinal proximities (possibly even
with missing data values) are given as data, one often proceeds as in Pindis,
that is, by first computing the individual configurations Xk, k = 1, . . . , K,
via ordinal MDS, and then from these deriving the needed scalar products
(e.g., Krantz & Tversky, 1975). We now describe a solution for (22.7).

The Indscal procedure (Carroll & Chang, 1970) proceeds as follows.
The Indscal loss function LIND has to be solved over two sets of param-
eters, G and the Wks. Unfortunately, this loss function does not have an
analytical solution, except in the error-free case (Schönemann, 1972). Ind-
scal uses the alternating update strategy in which an update of G for
fixed Wks is followed by an update of the Wks for fixed G. These updates
are iterated until convergence. The two steps are computed as follows.

1. The update for the Wks for fixed G is found by standard regression.
However, LIND has to be rewritten. First, we string out each B∆k
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into one column vector with n2 elements and then form an n2 × K
matrix B∗ by stacking these column vectors next to each other. In a
similar fashion, we then stack the diagonals of the K weight matrices
W2

k in an m×K matrix W. Finally, we compute the products gag′
a,

string out its elements into one column vector, and place them for
each dimension a = 1, . . . , m next to each other in the n2 ×m matrix
V. This leads to a compact way of writing LIND as

LIND = tr (B∗ − VW)′(B∗ − VW). (22.9)

The update for W is found by differentiating (22.9) with respect to
W and setting the result equal to the null matrix 0, which yields

W = (V′V)−1V′B∗. (22.10)

The columns of W are the diagonals of the individual weight matri-
ces W2

k. Note, however, that some elements of W may be negative,
so that the corresponding dimension weight is not a real number.
This problem of negative squared dimension weights in the Indscal
algorithm could be avoided by minimizing (22.9) over W under the
constraint that W ≥ 0, as suggested by Ten Berge, Kiers, and Krij-
nen (1993), who used nonnegative least-squares (Lawson & Hanson,
1974). De Soete, Carroll, and Chaturvedi (1993) imposed these con-
straints using the alternating least-squares method discussed in Sec-
tion 9.6.

2. A better G, relative to the given W2
ks, is computed by Indscal as

follows. With fixed Wks, we minimize

LIND(G,H) =
K∑
k

||B∆k
− HW2

kG
′||2

=
K∑
k

tr B2
∆k

+ tr G

[∑
k

W2
kH

′HW2
k

]
G)′

−2tr G

[∑
k

W2
kH

′B∆k

]
(22.11)

over both G and H, the so-called candecomp algorithm (Carroll &
Chang, 1970). After convergence, it turns out that G and H are equal
or can be made equal. Differentiating (22.11) with respect to G and
setting the result equal to 0 gives the update for G; that is,

G =

(∑
k

B∆k
HW2

k

)(∑
k

W2
kH

′HW2
k

)−1

.

H is updated with the same update formula by reversing the roles of
G and H.
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These two steps are repeated until the process converges to a final solution
for W and G, which “almost always” is the global optimum, according to
Carroll and Wish (1974a, p. 90) and Ten Berge and Kiers (1991).

22.2 The Generalized Euclidean Model

The weighted Euclidean distance can be extended by the generalized Eu-
clidean distance, where the individual space is defined as Xk = GTk, with
Tk an m × m (real-valued) matrix that need not be diagonal.

Interpreting the Generalized Euclidean Model
The generalized Euclidean model can be interpreted as follows. Consider
the singular value decomposition of Tk, Tk = PΛQ′. Then, the transfor-
mation GTk = GPΦQ′ can be interpreted as: take group space G, rotate
it by P, and stretch it along its dimensions by Φ. Because we are concerned
with the distances of GTk, the final rotation by Q′ is irrelevant. This shows
that in the generalized Euclidean model every individual k transforms the
group space first by a rotation and/or a reflection, and then by stretching.
In contrast to the weighted Euclidean model, each individual may weight
a different set of dimensions of the group space. Therefore, this model is
somewhat less restrictive than the dimension-weighting model.

Other interpretations are possible. For example, Tucker (1972) and Harsh-
man (1972) proposed decomposing Tk = DkMk, where the diagonal matrix
Dk contains the standard deviation of the column elements of Tk [so that
diag(D2

k) = diag(T′
kTk)]. Thus, M′

kMk has diagonal elements 1 and can
be seen as a correlation matrix or as a matrix of cosines of angles among
oblique dimensions. The interpretation of the generalized Euclidean model
using this decomposition is that the individual space Xk can be obtained
from the group space G by first stretching its dimensions by Dk and then
applying an oblique rotation by Mk. Harshman and Lundy (1984) proposed
a model with only one M that is common to all individuals. However, this
model is not equivalent to the generalized Euclidean model.

Whether or not there are applications for the generalized Euclidean
model, there is nothing that rules it out formally. Indeed, even more exotic
interpretations derived from other decompositions (Carroll & Wish, 1974a,
1974b) are possible.

If generalized Euclidean models are interpreted as a distance model in
G,

d2
ijk(G) = (giTk − gjTk)′(giTk − gjTk)

= (gi − gj)′Ck(gi − gj),
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then Ck must be positive definite, not just positive semidefinite, as Carroll
and Wish (1974b) declare, because otherwise one may obtain dijk(G) = 0
even though i �= j. That is, if we want to interpret the model in such a way
that each individual k picks his or her own particular distance function
from the family of weighted Euclidean distances or, as mathematicians
sometimes call it, from the family of elliptical distances (Pease, 1965, p.
219) on the group space G, then all dimension weights must be positive. If
some of these weights are zero, then this interpretation has to be changed
slightly to one in which individual k first reduces G to a subspace and then
computes distances in this, possibly further transformed, subspace of G.
The first model has been called a subjective metrics model (Schönemann
& Borg, 1981a), and the latter, due to Schulz (1972, 1975, 1980), may be
called a subjective transformations model. From a practical point of view,
however, these distinctions are irrelevant because, in the subjective metrics
model, G may be almost reduced to a lower rank by choosing extremely
small weights for some of its dimensions.

Fitting the Generalized Euclidean Model via Stress
The method for minimizing Stress with the generalized Euclidean model
is the same as for the weighted Euclidean model via Stress, except that
Xk is restricted as Xk = GTk, where Tk may be any real-valued m × m
matrix. In the second step of the algorithm, the restrictions are imposed
by minimizing ∑

k

tr (GTk − Xk)′(GTk − Xk) (22.12)

over G and the Tks. Let the n × mK matrix X contain the Xks stacked
next to each other, and the m × mK matrix T the Tks stacked next to
each other. Then, (22.12) is equal to

tr (GT − X)′(GT − X),

which is solved analytically (De Leeuw & Heiser, 1980) by taking the
singular value decomposition of X = PΦQ′ and setting G = Pm and
T = ΦmQ′

m, where the subscript m implies taking only the first m singu-
lar values and vectors.

The Idioscal Model
The generalized Euclidean model gained its popularity in the framework
of scalar products. This idiosyncratic weighting model is also called the
Idioscal model (Carroll & Wish, 1974a, 1974b; Schulz, 1980). In scalar
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product notation, this model minimizes

LIDIO(G,T1,T2, . . . ,TK) =
K∑

k=1

||Bk − (GTk)(GTk)′||2

=
K∑

k=1

||Bk − GTkT′
kG

′||2

=
K∑

k=1

||Bk − GCkG′||2, (22.13)

where TkT′
k = Ck and Ck is positive semidefinite.

Apart from the many possibilities for factoring Ck, it is of interest to
ask whether there is only one Ck and one G that solve (22.13). This is not
so, because

Bk = GCkG′

= G(AA−1)Ck(AA−1)′G′

= (GA)[A−1Ck(A′)−1](GA)′

= G∗C∗
k(G∗)′, (22.14)

where A is an arbitrary m × m matrix with full rank. In comparison to
(22.3), the more general Idioscal model is less unique. This has the prac-
tical implication that if this model is applied to a set of data matrices,
many quite different group spaces G can be derived, and it is impossible to
say which one is the true common structure. Schönemann (1972) proposed
imposing the restriction that the Cks average to I; that is,

1
K

K∑
k=1

Ck = I. (22.15)

Given a set of k = 1, . . . , K arbitrary C∗
k as in (22.14), property (22.15)

can be imposed by choosing a transformation matrix A such that

I = K−1[A−1C∗
1(A

′)−1 + . . . + A−1C∗
K(A′)−1]

= K−1A−1(C∗
1 + . . . + C∗

K)(A′)−1,

whence KAA′ = C∗
1 + . . .+C∗

K . Because each C∗
k is symmetric by (22.13),

C∗
1 + . . . +C∗

K is also symmetric, so A is found by factoring the average of
all Cks into AA′. If (22.15) holds, then

1
K

K∑
k=1

Bk =
1
K

∑
GCkG =

1
K

G(C1 + . . . + CK)G′ = GG′. (22.16)

For error-free data, this equation can be solved immediately (by classical
scaling) to yield the group space G, or, more properly, one possible G
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because each such G can be arbitrarily rotated and/or reflected and would
still satisfy (22.16).

To find each individual Ck is also simple. We just solve the following
equation for Ck,

Bk = GCkG′, (22.17)
G′BkG = G′GCkG′G, (22.18)

(G′G)−1G′BkG(G′G)−1 = Ck. (22.19)

Note that the pre- and postmultiplications in (22.18) serve the purpose of
generating the matrix G′G, which, assuming that rank(G) = m, is invert-
ible, whereas G generally is not. Thus, for error-free Bks, the Idioscal
loss function (22.13) can be solved analytically (Schönemann, 1972).

Chaturvedi and Carroll (1994) imposed the additional restriction on G
that every row only contains a single 1 and the rest 0, which makes G an
indicator matrix. Thus, G classifies each stimulus i to one of M clusters.
This model, called Indclus, falls somewhere between clustering and MDS.

22.3 Overview of Three-Way Models in MDS

To develop some geometric feeling for the various three-way models dis-
cussed in this chapter, let us demonstrate with the help of a simple example
how they relate a common space to the individual space of each subject.1.
An overview of these models is given in Figure 22.1 The identity model
is trivial boundary case: every subject space should be equal to the com-
mon space, that is, Xk = G. This model is equivalent to computing the
average dissimilarity and doing an ordinary MDS (see Section 22.1). Note
that the weight plot shows dimension weights of one for all subjects on all
dimensions.

However, we also know that only the relative distances between the points
in a configuration are of importance, not the absolute distances. Therefore,
instead of the identity model, it is better to fit the dilation model that
allows for a dilation factor for each subject; that is, Xk = wkG. This
model is shown in the second row of Figure 22.1. Inserting the dilation
factors ensures that the size of the individual configuration reflects the fit
(see Section 11.1). As the weights do not differ per dimension, the points
for individuals in the weights plot are on a line.

The third row in Figure 22.1 shows the weighted Euclidean model that
allows each subject to weight the fixed dimensions of the common space,
that is, Xk = GWk. In this example, the weights are w111 = 1.5 and w221 =

1Note that we are not discussing models with idiosyncratic origins or with vector
weightings, as discussed in Chapter 21. Rather, the models considered here are all within
the dimension-weighting family for group spaces centered at the origin.
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FIGURE 22.1. Overview of five three-way models for MDS. For each model the
common space, the weights, and three individual spaces are given. The first row
considers the identity model, the second row the dilation model, the third row
the weighted Euclidean distance model, the fourth row the generalized Euclidean
distance model, and the fifth row the reduced rank model.
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.5 for Subject 1, w112 = .8 and w222 = 1.5 for Subject 2, and w113 = 1 and
w223 = .3 for Subject 3. The weights plot shows each subject as a point
with its dimension weights as coordinates. The weighted Euclidean model
generalizes the dilation model by allowing for each subject to have unequal
weights per dimension. In this example, we see that the Subjects 1 and 3
emphasize the first dimension in their individual spaces and Subject 2 the
second dimension.

The generalized Euclidean model is given in the fourth row of Figure 22.1.
In this model, the common space is first rotated to each individual’s prin-
cipal directions, as Young (1984) calls this orientation, and subsequently
weighted to obtain the individual space, that is, Xk = GTkWk, where Tk

is a rotation matrix and Wk is again a diagonal matrix with weights.
In our example, we choose

T1 =
[

.866 −.500

.500 .866

]
, W1 =

[
1.2 .0
.0 .5

]
,

T2 =
[

.707 −.707

.707 .707

]
, W2 =

[
.8 .0
.0 .5

]
,

T3 =
[

.985 .174
−.174 .985

]
, W3 =

[
1.0 .0
.0 .3

]
,

where the rotation matrices T1,T2, and T3 correspond to rotation by
30◦, 45◦, and −10◦. The weight plot is different than before. It shows how
to obtain the subject space from the common space. For example, the solid
vectors 11 and 12 show that the space of subject 1 is obtained by rotating
the common space by 30◦ and to obtain dimension 1, stretch in the direction
of vector 11 by a factor 1.2 (i.e., the length of vector 11) and for dimension
2, shrink in the direction of vector 12 by a factor 0.5 (the length of vector
12). Thus, the weight vectors belonging to each subject always have an
angle of 90◦. These vectors are obtained by T′

kWk.
The last row of Figure 22.1 displays the reduced rank model. In this case,

the individual spaces are allowed to have a lower rank than the common
space, that is, Xk = GTkWk, where G is n × m, Tk is an m × q rotation
projection matrix with q < m, and Wk a diagonal q × q matrix with
dimension weights. Thus, the dimensionality m of the common space is
reduced to q for each subject space by the Tks. The example shows the
common space of a cube in 3D and the individual spaces in 2D (thus m = 3
and q = 2). Then, the weights plot is interpreted in the same way as for the
generalized Euclidean model. For example, the vectors 21 and 22 for subject
2 are connected to form a rectangle so that it is easy to see which 2D plane
is associated with the space of Subject 2. Again, the length of each vector
indicates the weighting factor for stretching or shrinking along its direction
to obtain the dimension for this subject. Unless the common space and the
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subject spaces are very structured, it may be hard to interpret the reduced
rank model in empirical applications.

22.4 Some Algebra of Dimension-Weighting Models

The fit measure provided by Indscal is the correlation between the origi-
nal scalar products, given in the K matrices Bk, and the reproduced scalar
products, computed by B̂k = GW2

kG
′. These correlations are usually ex-

tremely high, even if the model is not adequate. This was shown by Mac-
Callum (1976). He generated synthetic data from a group space that was
stretched not only differentially for each k = 1, . . . , K, but also, in violation
of the Indscal model, along different directions for each k. He observed
fit coefficients that were not lower than r = .97 and commented that “one
must wonder whether this index provides in any sense a measure of the ap-
propriateness of the Indscal model to a given set of data” (pp. 181–182).

Finer fit indices can, however, be derived from an algebraic analysis of
the model. Such an analysis starts out by assuming the ideal case, where
data are given that perfectly satisfy the model. Of course, this is unrealistic,
because data always have error components. Hence, one can never expect to
satisfy a deterministic model strictly, except in trivial cases. Nevertheless,
by studying the ideal case, one can derive certain properties that data must
possess if they are to be accounted for by a particular model. Real data
should then also satisfy these conditions “more or less”. They may also
violate the model conditions systematically, and this provides potentially
very informative insights into the structure of the data.

The Common-Space Condition
What does the dimension-weighting model imply for the data? That is,
what properties must the data possess so that they can be explained by
such models? For the subjective metrics interpretation, it is necessary that
rank(Bk) = m, for all k, because rank(Ck) = m and rank(G) = m. More-
over, because Ck = TkT′

k, rank(Tk) = m. Even if rank(Ck) < m (as may
be the case in the subjective transformations model), it must hold that
each individual space, Xk = GTk, lies in the column space of G; that is,
the columns of Xk must be linear combinations of the columns of G. For
example, column 1 of Xk should result from adding the columns of G with
the weights of column 1 of Tk.

In practical applications of the model, we typically would not use the
G resulting from (22.16) as the group space but only its first few dimen-
sions. But, with only a subspace of the complete G, each Bk can only
be approximated by the model, because the model requires rank(Bk) =
rank(G) = m. However, if the dropped dimensions represent just error,
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g11
g21
g31
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xr
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g12
g22
g32

FIGURE 22.2. Geometric view of projecting a vector x onto the column space of
a matrix with column vectors g1 and g2.

then the low-dimensional G should account for most of the variance of
each Bk or, at least, for more variance than could be expected by chance.

This is easier to understand geometrically. In Figure 22.2, the column
vectors g1 and g2 span a plane onto which the vector x is projected. The
vectors g1 and g2 together form the 3 × 2 matrix G. The projection of x
onto the G-plane, xp, is equal to some linear combination w1 ·g1+w2 ·g2 or
xp = Gw, where w′ = (w1, w2) is the weight or coordinate vector of xp. The
residual vector (i.e., the component of x not contained in G) is xr = x −
xp = x−Gw. As Figure 22.2 shows, xr is orthogonal to xp. Thus, x′

pxr = 0
or (Gw)′(x−Gw) = 0 or w′(G′x−G′Gw) = 0. Because w �= 0, in general,
we have G′x−G′Gw = 0 and w = (G′G)−1G′x. With this weight vector,
we obtain xp = Gw = G[(G′G)−1G′x] = [G(G′G)−1G′]x = PGx, where
PG denotes the matrix that effects the projection of x onto the column
space of G.

Now, the common-space index is constructed as follows. The portion
of Bk that can be reproduced from PGXk is B̂k = (PGXk)(PGXk)′ =
PGBkP′

G. The sum-of-squares of its elements can be expressed as
tr (PGBkPG)2, and the sum-of-squares of Bks elements is tr B2

k. The ra-
tio of these two sums-of-squares is a possible measure for how well the
common-space condition is satisfied empirically:

vk =
tr (PGBkPG)2

tr B2
k

, (22.20)

the common-space index for individual k (Schönemann, James, & Carter,
1979). We would require, of course, that this index be close to 1 or “high”
before any of the models in the Idioscal family could be considered seri-
ously as an explanation for an individual’s data.
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The Diagonality Condition
The common-space condition is a rather weak criterion the data must sat-
isfy so that they can be represented by a model of the Idioscal type. This
weakness is simply a consequence of the generality of the models, which,
without many more additional constraints on G and/or Ck, are not likely
to lead to much scientific insight. Thus, we now go on to the more re-
strictive dimension-weighting model Bk = GW2

kG
′ and investigate what

further properties must hold in the Bks for such a representation to be
possible.

We first impose a condition similar to the one in (22.15),

1
K

K∑
k=1

Wk = I, (22.21)

which leads to
1
K

∑
k

Bk = GG′ (22.22)

and thus to a direct solution2 for G. To compute Wk is somewhat more
demanding than to find Ck in (22.19) because Wk must be diagonal. Thus,
we first find Ck and then try to “diagonalize” it. This is done as follows.
We note again that G is determined only up to an orthogonal matrix S,
because G∗(G∗)′ = (GS)(GS)′ = GSS′G′ = GG′. Hence, we want to find
that S which diagonalizes Ck; that is,

Bk = (GS)Ck(GS)′ = GSCkS′G′ = G(SCkS′)G′, (22.23)

so that
SCkS′ = W2

k. (22.24)

If we write
Ck = S′W2

kS, (22.25)

we see that S and W2
k are the eigenvector and eigenvalue matrices of Ck.

Because Ck is symmetric and positive definite, S is orthogonal or can be
so constructed, and W2

k is positive definite. Note, however, that S does
not have a subscript, and thus (22.25) cannot be guaranteed to hold for
every set of Bks. Rather, these Bks must have a common set of eigenvec-
tors. Otherwise, the data cannot be explained by the dimension-weighting
model. Geometrically, the reason for this condition is apparent and sim-
ply expresses that the model requires one fixed dimension system for all
individuals.

2This G is taken as a rational starting configuration in the dimension-weighting
option of Alscal (Takane et al., 1977). For Alscal, see Appendix A.
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With an S computed from one particular Ck or from the average of
all Cks, we can check how well it does in generating a diagonal matrix
W2

k from SCkS′. An index for how much the data violate this diagonality
condition is provided by the sum-of-squares of the nondiagonal elements
of all W2

ks, computed with this one S, appropriately normed to make the
index independent of the size of G. Schönemann et al. (1979) define a
diagonality index

δk =
tr [W̃2

k − I]2

(m − 1)m
, (22.26)

where W̃2
k is a normalized3 form of W2

k. If Wk is diagonal, then δk = 0.
Otherwise, δk > 0, and we then must decide whether it is still acceptably
small.

An Empirical Application: Helm’s Color Similarities
To illustrate, we scale the Helm color data from Table 21.1 with Cospa
(Schönemann, James, & Carter, 1978), a program that also computes a
common-space and a diagonality index for each k. Table 22.2 shows these
indices. If the model were strictly adequate, we should have vk = 1 and
δk = 0 for all individuals. Even though this is not true, it holds that
all vks are high and most δks are small. Moreover, the vk-indices of the
color-deficient subjects are generally lower than those of the color-normal
subjects. This could be expected from the results in Table 22.2, because
the former persons have relatively much more variance accounted for by the
“small” dimensions, possibly due to a greater error variance in their data.
Also, s13 has the worst δk value, which mirrors this person’s relatively low
communality values from Table 21.3.

Schönemann et al. (1979) report some statistical norms for these in-
dices, derived by computer simulations under various error conditions. In
the least restrictive or—relative to the model—the “nullest” case, each in-
dividual scalar-product matrix Bk is generated by forming the product
XkX′

k with a random Xk. For m = 2, n = 10, and N = 16, it is found
that 90% of the vk-values are less than 0.40. Hence, common-space values
of the magnitude of those in Table 22.2 are extremely unlikely if the null-
hypothetical situation is true. For the diagonality index, 90% of the values
obtained were greater than 0.04. Some of the δks in Table 22.2 are greater
than this value, and, if taken by themselves, would not lead to a rejection
of the null hypothesis. But if all of the diagonality indices are taken to-
gether, then a value distribution like the one observed for the Helm data
is highly improbable under this random condition. These tests provide just
rough guidelines, because it is not clear when we should assume such a

3The normalization of W2
k is achieved by pre- and postmultiplying it by

diag[(W2
k)′W2

k]−1.
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TABLE 22.2. Model test, indices for Helm data of Table 21.1.

Subject Common Space (vk) Diagonality (δk)
s1 0.95 0.04
s2 0.94 0.02
s3 0.94 0.01
s4 0.96 0.02
s5 0.93 0.04
s
[1]
6 0.91 0.09

s
[2]
6 0.96 0.08

s7 0.92 0.02
s8 0.93 0.12
s9 0.92 0.07
s10 0.87 0.08
s11 0.86 0.06
s
[1]
12 0.84 0.04

s
[2]
12 0.85 0.01

s13 0.86 0.45
s14 0.93 0.17

null hypothesis. In color perception, it is certainly not the incumbent hy-
pothesis, which the null hypothesis should be (Guttman, 1977). Moreover,
we are not really interested in “some” dimension-weighting model but in
a model where a particular group space (i.e., the color circle) is expected,
and where this configuration is individually transformed by weighting a
particular dimension, not just any one. Because everything comes out as
predicted (except that, for some individuals, there is some residual un-
specified variance) it would be foolish to reject the model altogether, just
because some formal norms are too high. Rather, it seems more fruitful to
take this result as a reasonable approximation, modify and/or supplement
the theory somewhat, and test it in further empirical studies.

22.5 Conditional and Unconditional Approaches

The dimension-weighting model Bk = GW2
kG comes in two variants. In

one case, the individual scalar-product matrices are processed as they are;
in the other, they first are normed so that their sum-of-squares is equal
to 1 for each k. Some authors call the first case the Horan model and
the latter the Indscal model (Schönemann et al., 1979). A more gripping
distinction calls the first approach unconditional and the latter matrix-
conditional (Takane et al., 1977). This reveals the similarity to the situation
in unfolding, where we did not want to compare data values across the
rows of the data matrix and so used a split-by-rows or row-conditional
approach. Analogously, a matrix-conditional or split-by-matrices treatment
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FIGURE 22.3. Synthetic (a) group space G and (b) subject space weights w11k

and w22k for subjects a, b, . . ., i used in the MacCallum (1977) study.

of the data implies that we do not want to compare the values of Bk and Bl,
for any k �= l. The approach to be chosen depends on the particular data
under investigation. For the Helm color data, for example, it seems that
we should opt for the unconditional approach, because the data collection
procedure suggests that all individuals used the same ratio scale for their
proximity judgments. For the Green–Rao breakfast data (Table 14.1), on
the other hand, the data were just ordinal, so ordinal MDS was used to
arrive at ratio-scaled values. These values are the MDS distances, and they
can be uniformly dilated or shrunk, of course, so that in this case we should
prefer the matrix-conditional approach.

If the data are unconditionally comparable over individuals, then to
norm all of the Bks in the same way leads to a loss of empirical infor-
mation. This is apparent from the following demonstration due to Mac-
Callum (1977). [Similar examples are given by Möbus (1975) and Schulz
and Pittner (1978).] Figure 22.3 shows a group space G (panel a) and
the associated subject space (panel b) that determines the weight matri-
ces Wa,Wb, . . . ,Wi. The nine Bks that can be derived from these figures
as Bk = GW2

kG
′ differ in their sum-of-squares: for example, Bc’s values

are all much larger than the corresponding values in Bg. Now, scaling the
Bks with Indscal (which is always matrix-conditional) or with the matrix-
conditional option of Alscal yields the subject space in Figure 22.4 (panel
a). The different “size” of each individual’s private perceptual space Xk is
not represented. But because, for example, Xc, Xe, and Xg are perfectly
similar and differ only in their sizes, the norming has the effect of project-
ing c, e, and g onto the same point in the subject space, as shown in Figure
22.4 (panel b). If the unconditional approach is used, the subject space is
recovered perfectly.
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22.6 On the Dimension-Weighting Models

The dimension-weighting models have received considerable attention in
the literature. In their restrictive versions with fixed dimensions, they have
been used in many applications because they promised to yield dimensions
with a unique orientation while offering an intuitively appealing explana-
tion for interindividual differences. The only other popular MDS model
that accounts for interindividual differences is unfolding, but unfolding is
for dominance data, not for similarity data. Unfolding assumes that the
perceptual space is the same for all persons. It models different preferences
by different ideal points in this space. The weighted Euclidean model allows
for different perceptual spaces, related to each other by different weights
attached to a set of fixed dimensions. Both models can be combined into
one, an unfolding model with different dimensional weights for each person
(see Chapter 16).

Some more recent developments should also be mentioned. They are mo-
tivated by practical and applied problems such as analyzing data sets where
n is very large. The usual computer programs cannot handle such cases,
or, more important, the subject space tends to be cluttered. “Marketing
research suppliers often collect samples from thousands of consumers, and
the ability of MDS procedures to fully portray the structure in such vol-
umes of data is indeed limited. The resulting joint spaces or individual
weight spaces become saturated with points/vectors, often rendering inter-
pretation impossible . . . Yet, marketeers are rarely interested in the partic-
ular responses of consumers at the individual level . . . marketeers are more
concerned with identifying and targeting market segments—homogeneous
groups of consumers who share some designated set of characteristics (e.g.,



492 22. Three-Way MDS Models

demographics, psychographics, consumption patterns, etc.) . . .” (DeSarbo,
Manrai, & Manrai, 1994, p. 191). In order to identify such segments, mod-
els were invented that combine a fuzzy form of cluster analysis with MDS.
In essence, what one wants is an MDS solution where the subject space
does not represent individual persons but types of persons. One procedure
for that purpose is Clascal by Winsberg and De Soete (1993), a latent
class MDS model (LCMDS). If the number of types of persons, S, is equal
to 1, Clascal is but normal MDS. If S = K, Clascal corresponds to the
Indscal model. For 1 < S < K, Clascal estimates the probability that
each person belongs to class S and, furthermore, computes an Indscal-like
MDS solution for each class separately.

The dimension-weighting model therefore continues to be of interest. One
may ask, however, whether it has led to noticeable substantive insights or
to the establishment of scientific laws. In this regard, the model seems to
have been much less successful, in contrast, for example, to the numer-
ous regional laws established in the context of facet theoretical analyses
of “normal” MDS data representations (see Chapter 5). Why is this so,
even though the model certainly seems to be a plausible one? The an-
swer may be found in the problems that we encountered with dimensional
models in Chapter 17: if one takes a close look at dimensional models in
the sense that the distance formula explains how dissimilarity judgments
are generated from meaningful psychological dimensions, they are found
to be less convincing, even in the case of stimuli as simple as rectangles.
Adding interindividual differences to such models does not change things
for the better. One should, therefore, be careful not to be misled by the
dimension-weighting models: the dimensions they identify are not automat-
ically meaningful ones, even though they may be rotationally unique.

22.7 Exercises

Exercise 22.1 Consider the three correlation matrices in Table 20.1 at p. 438.

(a) Without going into much theory, represent these data in the dimen-
sionally weighted (DW) MDS model by using, for example, the Prox-
scal program in SPSS. How do you evaluate the outcome of this
scaling effort?

(b) Scale each data matrix individually via MDS and then compare the
configurations (by using Procrustean methods) and its Stress values
with the DW solution.

(c) Use the DW configuration as a common starting configuration for
an MDS scaling of each correlation matrix. How does this approach
affect the MDS solutions?



22.7 Exercises 493

Exercise 22.2 Consider Figure 17.7 at p. 373.

(a) Use the configuration of the 16 points on the solid grid to construct
two different configurations, one by stretching this grid by factor 2
along the horizontal dimension (width), the other by stretching the
grid by 2 along the vertical dimension (height). Compute the dis-
tances for the two resulting configurations.

(b) Use the two sets of distance as data in dimensional-weighting individ-
ual differences scaling. Check whether you succeed in recovering both
the underlying configurations and the weights used in (a) to generate
these distances.

(c) Add error to the distances and repeat the MDS analyses.

(d) Interpret the above weightings of the dimensions’ width and height
in substantive terms in the context of the perception of rectangles.

(e) Assume that you would generate more sets of distance matrices. This
time, the configuration of points on the dashed grid in Figure 17.7 is
stretched (or shrunk) along the dimensions width and height. Would
these data lead to the same MDS configurations as the data generated
above in (a)?

(f) Again assume that you would generate more sets of distances, this
time by differentially stretching the configuration of points on the
dashed grid in Figure 17.7 along a width-by-height coordinate system
rotated counterclockwise by 45 degrees. Discuss what this would mean
in terms of rectangle perception.

(g) Would you be able to discriminate persons using a weighted width-
by-height model as in (a) and (e) from those using the rotated system
in (f) by using Indscal or by using Idioscal?

Exercise 22.3 Young (1987) reports the following hypothetical coordinates
for four food stimuli and the dimension weights for five persons.

Food I II Person I II
Potato -2 1 1 .0 .9
Spinach -1 4 2 .2 .8 .
Lettuce 1 3 3 .6 .6
Tuna 4 -1 4 .4 .4

5 .8 .2

(a) Interpret these data in the context of a dimensional salience model.

(b) Use the matrix equations of this model to compute the distance ma-
trix for each person.
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(c) Use a suitable MDS program to reconstruct the underlying configu-
ration and weights from the set of distance matrices.

(d) Add an idiosyncratic rotation for each person, and repeat the above
analyses with an MDS program that fits this model.

Exercise 22.4 The table below (Dunn-Rankin, Knezek, Wallace, & Zhang,
2004) shows ratings of five persons on the similarity of four handicaps:
Learning Disability (LD), Mental Retardation (MR), Deafness (D), and
Blindness (B).

Person Handicap LD MR D B Person Handicap LD MR D B
1 LD – 4 LD –
1 MR 4 – 4 MR 2 –
1 D 4 5 – 4 D 2 4 –
1 B 4 2 5 – 4 B 6 2 5 –
2 LD – 5 LD –
2 MR 6 – 5 MR 2 –
2 D 3 8 – 5 D 6 7 –
2 B 2 2 4 – 5 B 6 4 5 –
3 LD –
3 MR 5 –
3 D 4 6 –
3 B 4 3 4 –

(a) Analyze these data with a dimensional salience model. Assess its fit.

(b) Interpret the dimensions of the solution space.

(c) Interpret the subject space (its meaning and how well it explains each
person).




