
21
Three-Way Procrustean Models

In this chapter, we look at some varieties of generalized Procrustes anal-
ysis. The simplest task is to fit several given coordinate matrices Xk(k =
1, . . . , K) to each other in such a way that uninformative differences are
eliminated. We also consider generalizations of the Procrustean problem
that first find an optimal average configuration for all Xk and then at-
tempt to explain each individual Xk in turn by some simple transforma-
tion of the average configuration. One important case is to admit different
weights on the dimensions of the average configuration. This case defines
an interesting model for individual differences scaling: if the fit is good,
then the perceptual space of individual k corresponds to the group’s per-
ceptual space, except that k weights the space’s dimensions in his or her
own idiosyncratic way.

21.1 Generalized Procrustean Analysis

We now begin by generalizing the Procrustes problem to the case of more
than two configurations. To introduce the problem, assume that we had K
proximity matrices and that each matrix was generated by one of K differ-
ent individuals. Assume further that we had computed an MDS solution
Xk for each of these K individuals. What we would have, then, is a stack
of Xks as depicted in Figure 21.1, a three-way array of coordinates xiak

(i = 1, . . . , n; a = 1, . . . , m; k = 1, . . . , K).
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FIGURE 21.1. Schematic representation of a three-way data matrix, where the
coordinate matrices Xk of six subjects are stacked one after the other.

We now ask to what extent the K different Xk “really” differ. We know
from Chapter 20 that just looking at different Xks may be misleading,
because one may notice differences that are uninformative in terms of
the data. The task to visually separate uninformative from data-based
differences becomes difficult or, indeed, unsolvable in the case of higher-
dimensional spaces, but even in 2D it is at least helpful to first align dif-
ferent MDS solutions before comparing them.

Technically, given a set of K matrices Xk, generalized Procrustean anal-
ysis is confronted with the task of optimally fitting these matrices to each
other under a choice of rigid motions, dilations, and translations.

All of the above transformations are admissible ones, because they do
not change the ratio of the distances and, hence, do not affect the way in
which the various Xk represent the corresponding proximity data. General-
ized Procrustean fitting can, however, be generalized further by admitting
nonadmissible free parameters to the transformations. For example, after
fitting the K individual configurations Xk to each other by similarity trans-
formations, one may compute from them a group configuration,1 Z. We may
then attempt to explain how the individuals differ from each other by con-
sidering certain simple transformations of Z that allow one to approximate
each Xk in turn. The most important example is to compress and stretch Z
along its dimensions so that it best explains Xk. The dimensional weights
used in these deformations of Z may be interpreted psychologically, for ex-
ample, as expressions of the different importance that individual k attaches
to the dimensions of the group space.

Gower and Dijksterhuis (2004) discuss the Procrustes problem and its
three-way extensions in great mathematical depth. It is an excellent overview

1This choice of terminology refers to the frequent case where each Xk represents the
proximity data from one individual k. The group configuration, then, is some kind of
multidimensional average that represents the respective group of K individuals.
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FIGURE 21.2. Data collection device used by Helm (1959).

of developments in this area. In the remainder of this chapter, we discuss
a selection of three-way Procrustean models.

21.2 Helm’s Color Data

We now consider an experiment by Helm (1959) that is used later on to
illustrate various formal considerations. Different individuals were asked to
judge the similarity of colors. The stimuli were 10 chips with different hues
but constant brightness and saturation. The colors ranged over the entire
spectrum from red to purple. With 10 stimuli, 120 different triples can be
formed. For each triple, the subjects were asked first to identify the two
colors that appeared most different. The respective chips were then placed
onto points 1 and 2 in a schema like the one shown in Figure 21.2. The
remaining chip of the triple was positioned somewhere in the shaded area so
that the resulting distances would correspond to the perceived similarities
among the colors. In this way, each subject generates more than the usual
n(n−1)/2 distance judgments, because each stimulus pair is presented not
just once but in combination with each of the remaining eight colors. The
data were averaged to get more reliable estimates of the perceived distances
than presenting each pair only once. The resulting values are reported in
Table 21.1, where each column contains the n(n − 1)/2 = 45 dissimilarity
pairs of colors for one subject.

There were 14 different subjects, two of whom replicated the experiment
after a four-week interval (s[1]

6 , s
[2]
6 and s

[1]
12 , s

[2]
12) leading to a total of 16

replications. The resulting dissimilarity vectors of the two replications cor-
relate with r(s[1]

6 , s
[2]
6 ) = .96 and r(s[1]

12 , s
[2]
12) = .91, which indicates high

reliability for the judgments.
The subjects fall into two groups. Some of them have normal color vision,

and others are deuteranopic (red-green deficient) in varying degrees. For a
deuteranopic person, both red and green stimuli look gray. The subjects
with deuteranopia are ordered, from least to most severe disability, as s11 <
s12 < s13 < s14.

Helm (1959, 1964) treats the data in Table 21.1 as direct distance esti-
mates and applies classical scaling in maximal dimensionality, without any
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TABLE 21.1. Distance estimates for color pairs (Helm, 1959) s
[1]
6 and s

[2]
6 , and

s
[1]
12 s

[2]
12 are replications for one subject each. Subjects s1 to s10 are color-normals,

and s11 to s14 are color-deficient.

Color-Normals Color-Deficients
Pair s1 s2 s3 s4 s5 s

[1]
6 s

[2]
6 s7 s8 s9 s10 s11 s

[1]
12 s

[2]
12 s13 s14

AC 6.8 5.9 7.1 7.5 6.6 5.2 5.8 6.2 7.5 6.0 9.2 11.5 9.3 9.0 10.4 9.9
AE 12.5 11.1 10.2 10.3 10.5 9.4 10.5 10.8 9.1 9.4 10.8 13.1 10.7 10.0 12.4 13.2
AG 13.8 18.8 11.1 10.7 10.2 11.4 13.4 9.9 10.2 9.5 9.7 12.6 10.7 10.4 12.8 12.3
AI 14.2 17.3 12.5 11.6 9.6 13.3 14.0 11.1 12.1 9.5 10.1 10.6 11.9 10.0 13.7 11.1
AK 12.5 16.6 11.8 10.6 10.8 12.0 13.2 10.3 12.5 9.8 10.3 10.6 11.0 9.3 11.8 8.7
AM 11.0 16.5 9.9 9.7 9.7 12.3 11.7 8.8 9.7 8.7 9.7 10.8 9.8 8.6 4.3 5.6
AO 8.6 8.3 8.6 8.4 8.5 10.6 10.2 7.6 9.8 6.7 9.0 7.3 8.9 8.8 4.0 7.4
AQ 5.5 5.7 4.3 5.8 4.9 4.9 6.4 5.8 8.3 4.9 6.6 5.4 8.9 7.5 5.5 6.4
AS 3.5 4.2 2.9 3.6 3.5 3.5 3.5 3.0 6.7 4.1 4.6 5.0 5.1 5.8 4.1 5.8
CE 5.4 4.9 5.7 6.9 5.5 6.2 4.9 7.5 4.4 7.1 5.5 6.0 6.5 6.9 8.1 7.3
CG 8.3 10.6 11.5 8.5 9.6 11.2 12.2 8.9 7.9 9.5 8.2 7.9 8.0 8.9 10.8 7.9
CI 10.4 14.3 10.7 10.7 9.3 13.5 14.8 10.7 10.4 9.5 9.4 8.4 8.2 8.4 10.4 6.9
CK 11.6 16.6 11.8 11.1 9.9 12.9 14.6 10.8 11.2 9.9 10.1 9.4 8.9 8.3 4.6 6.8
CM 13.8 17.3 11.2 12.2 11.7 12.0 14.1 10.6 12.6 10.6 10.5 10.2 9.3 9.7 9.6 9.9
CO 14.3 14.5 12.5 10.8 11.6 11.5 13.4 10.4 11.4 10.6 10.8 11.3 10.7 11.1 12.3 13.1
CQ 11.8 9.5 9.2 9.9 10.3 8.2 9.7 9.0 11.3 8.5 11.2 11.5 10.1 10.6 14.2 12.7
CS 8.9 7.3 8.2 8.0 8.0 6.3 7.9 7.5 10.4 7.9 10.5 11.5 9.6 10.3 13.0 12.1
EG 5.2 4.8 6.7 4.9 7.2 5.6 4.6 6.3 5.7 7.6 4.6 6.2 4.4 6.0 3.5 4.5
EI 7.2 8.3 8.9 6.6 8.3 8.2 8.3 8.7 8.3 8.9 6.7 8.4 7.0 6.8 4.3 5.3
EK 9.5 13.2 9.4 8.7 9.3 9.6 10.7 9.6 10.2 9.8 9.8 9.9 10.8 8.2 7.9 9.7
EM 11.3 14.6 11.3 10.6 11.3 12.7 12.8 10.1 11.3 10.5 11.3 10.3 10.4 10.9 13.0 11.5
EO 13.5 16.1 12.5 11.7 11.9 13.7 14.1 10.8 12.2 10.7 11.9 12.7 11.8 11.6 13.8 13.7
EQ 14.6 14.0 11.9 11.1 11.8 13.4 12.9 11.7 11.9 9.7 11.5 12.9 11.6 9.6 14.8 14.1
ES 14.1 13.8 10.5 12.0 11.5 11.7 10.9 9.4 10.7 10.2 10.2 10.7 10.2 10.5 13.9 13.4
GI 3.7 3.6 3.7 3.5 4.7 4.0 3.5 3.9 3.9 3.8 3.7 5.2 4.6 4.2 3.5 5.3
GK 5.9 5.3 5.9 6.3 6.2 5.8 4.7 6.8 6.5 5.3 6.6 6.5 9.6 7.3 9.0 8.6
GM 10.1 8.2 10.3 7.8 8.9 6.8 8.8 9.4 8.7 7.3 8.7 8.8 10.8 10.1 12.3 12.5
GO 11.1 14.5 11.6 10.4 10.3 9.3 11.0 9.7 10.3 7.6 10.6 11.2 11.9 10.2 12.3 13.4
GQ 12.3 17.0 10.9 11.6 11.6 10.5 11.8 10.4 10.7 9.2 10.0 11.7 11.3 10.6 12.9 14.1
GS 12.5 17.3 11.5 11.3 10.2 12.2 11.7 9.7 12.6 10.1 7.7 10.2 10.9 10.3 14.5 13.1
IK 4.2 3.5 3.6 4.1 3.3 3.8 3.6 5.0 4.6 4.8 4.0 4.1 5.8 5.2 7.0 6.9
IM 6.9 6.8 8.2 6.5 6.3 5.4 6.9 8.3 7.8 6.2 7.5 7.0 8.0 7.6 13.1 9.0
IO 10.2 11.0 9.8 8.6 9.1 7.9 9.4 9.0 9.9 8.2 9.9 10.4 10.5 9.2 13.1 12.2
IQ 12.1 15.8 11.3 10.0 11.1 9.9 12.4 10.9 11.2 9.1 10.9 10.8 10.4 10.3 13.6 12.5
IS 11.2 15.8 11.1 10.8 10.4 13.2 13.7 9.6 11.6 9.7 10.6 10.6 10.7 10.3 14.1 13.4
KM 4.3 3.8 5.1 5.0 4.2 3.6 4.1 4.3 6.3 4.7 5.4 6.4 7.7 6.4 9.9 6.7
KO 6.8 7.4 8.1 7.4 8.9 5.6 6.9 7.3 9.6 6.7 9.3 9.9 9.6 9.5 11.3 9.7
KQ 9.9 13.8 10.2 9.1 9.4 9.0 10.6 9.0 10.6 8.8 9.9 9.4 10.6 10.0 13.6 11.3
KS 10.7 15.1 10.6 10.7 10.6 10.4 12.2 8.8 11.6 9.9 9.7 10.1 10.7 9.6 12.3 9.9
MO 4.8 5.7 4.9 5.9 6.6 4.2 4.1 4.9 4.8 4.5 5.6 4.2 7.4 7.0 3.9 5.5
MQ 7.4 10.9 8.7 8.7 8.9 8.2 10.0 7.2 6.8 7.2 8.2 8.4 9.0 7.9 5.3 7.4
MS 8.7 13.9 9.7 9.6 9.2 9.8 11.1 7.6 9.1 6.8 9.7 8.1 8.7 8.7 6.4 5.4
OQ 4.5 5.0 6.3 5.6 5.8 5.1 4.1 4.7 4.6 4.0 5.3 4.5 4.5 4.8 4.7 4.2
OS 6.1 6.0 7.5 6.7 7.3 6.8 6.9 5.6 7.4 5.3 6.3 6.4 7.0 6.7 3.2 4.0
QS 3.6 3.5 3.0 3.5 2.9 3.8 3.4 3.5 5.2 3.4 3.4 3.0 4.5 4.3 2.4 4.3
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TABLE 21.2. Eigenvalues obtained by classical scaling on each of the 16 indi-
vidual dissimilarity matrices of the Helm (1959) data; color-normal subjects in
upper table, color-deficient subjects in lower table; “Average” shows eigenvalues
for averaged data.

s1 s2 s3 s4 s5 s
[1]
6 s

[2]
6 s7 s8 s9 s10 Average

1 260.0 449.2 191.6 179.7 166.8 233.8 276.4 147.7 182.0 126.6 164.8 204.4
2 178.3 276.5 143.6 125.8 127.1 165.1 190.1 110.4 150.0 105.9 102.9 160.2
3 28.6 32.0 44.1 22.8 29.5 23.3 27.5 32.7 28.5 28.4 48.6 12.1
4 17.9 15.8 18.4 18.6 26.8 16.4 8.9 21.6 24.9 18.2 32.3 6.7
5 4.8 5.2 11.3 13.3 15.8 6.6 7.0 11.2 14.7 12.9 10.7 6.5
6 4.3 .0 5.2 8.9 7.3 1.3 2.3 7.8 10.7 7.2 6.7 4.8
7 .0 -12.6 2.8 1.0 5.6 .0 .0 6.7 7.9 3.0 6.0 2.5
8 -9.5 -17.2 .0 .0 .0 -6.2 -6.2 .0 .0 .0 .0 1.3
9 -18.2 -40.6 -5.4 -3.4 -2.1 -10.5 -17.3 -.4 -5.9 -2.4 -3.1 .0

10 -30.5 -71.8 -17.1 -8.6 -15.3 -35.8 -26.5 -8.0 -11.3 -3.0 -14.1 -.4

s11 s
[1]
12 s

[2]
12 s14 s14 Average

1 213.2 175.2 154.0 347.7 296.0 232.0
2 80.7 92.5 72.5 98.7 56.9 59.9
3 48.4 47.5 51.7 34.2 38.3 51.5
4 36.0 32.7 31.3 25.0 26.3 22.0
5 14.9 28.3 19.9 9.8 21.6 15.8
6 10.9 14.8 13.2 .0 13.1 11.6
7 .8 7.0 6.8 -1.8 .4 8.6
8 .0 .0 3.3 -4.0 .0 2.6
9 -3.0 -2.5 .0 -6.2 -3.1 .0

10 -13.0 -5.0 -3.0 -17.7 -13.1 -1.3

prior transformations. The eigenvalues of classical scaling for each subject
are reported in Table 21.2. One notes some negative eigenvalues, because
the dissimilarities are not exact distances. The negative eigenvalues are,
however, relatively small and can be explained by the Messick–Abelson
model (Section 19.4). On the average, the color-normal subjects have two
rather large eigenvalues, with the remaining eight eigenvalues close to zero.
For the deuteranopic subjects, on the other hand, we find essentially only
one large eigenvalue.

If a configuration is sought that is most representative for all color-normal
subjects, the simplest answer is to derive it from the scores averaged over
all respective data sets. This leads to the eigenvalues shown in the column
“Average” of Table 21.2. Their distribution suggests that the color-normal
subjects have a true 2D MDS configuration and that further dimensions are
due to errors in perception and judgment. This interpretation is buttressed
by the fact that the plane spanned by the first two eigenvectors shows
the expected color circle as shown in Figure 21.3a. Classical scaling on
the average data of the color-deficient subjects leads to Figure 21.3b. For
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FIGURE 21.3. The 2D configuration obtained by classical scaling on the average
of (a) the color-normal subjects, (b) the color-deficient subjects.

these subjects, one notes that the second principal axis of the color circle
is clearly less pronounced.

21.3 Generalized Procrustean Analysis

Using average data is a rather crude approach. A possible alternative is to
map all 11 data sets simultaneously into one configuration. Another pos-
sibility is generalized Procrustes analysis (GPA), which transforms all K
individual configurations, X1, . . . ,XK , at the same time so that each con-
figuration matches all others as closely as possible. The admissible trans-
formations consist of rotations, reflections, dilations, and translations, as
in Procrustean similarity transformations.

Expressed in terms of a loss function, generalized Procrustes analysis
amounts to minimizing

GPA =
K∑

k<l

tr (X̃k − X̃l)′(X̃k − X̃l), (21.1)

where X̃k = skXkTk + 1t′
k and T′

kTk = I. The function (21.1) is to
be minimized through a proper choice of K scale factors sk, K orthonor-
mal matrices Tk, and K translation vectors tk. The trivial solution where
sk = 0 must be avoided by imposing additional restrictions. For example,
Commandeur (1991) proposes to require

∑K
k s2

ktr X̃′
kX̃k =

∑K
k tr X′

kXk,
which we assume implicitly whenever needed.

The GPA loss function (21.1) has to be minimized with an iterative al-
gorithm, because no direct analytical solution is known. We describe three
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methods for minimizing GPA. The first method consists of cyclically updat-
ing one configuration while keeping the others fixed. Thus, each iteration
consists of first updating X̃1 while keeping the remaining configurations
fixed, then updating X̃2 while keeping the remaining configurations fixed,
and so on. Writing only the terms of the GPA function dependent on X̃k

gives

GPAk(X̃k) = (K − 1)tr X̃′
kX̃k − 2tr X̃′

k

∑
l �=k

X̃l + c

= (K − 1)(tr X̃′
kX̃k − 2tr X̃′

kY) + c,

where Y = (K−1)−1 ∑
l �=k X̃l, and c contains terms that are not dependent

on X̃k. The minimum of GPAk(X̃k) can be found by the Procrustean sim-
ilarity transformation procedure outlined in Section 20.4. This procedure
is iteratively repeated over all ks until GPA no longer drops. The proposed
algorithm must converge, because (21.1) can never become greater as a
consequence of any individual Procrustean fitting and because (21.1) has
a lower bound of 0. Usually, very few iterations are required to reach con-
vergence. The current procedure is used by Kristof and Wingersky (1971)
and Ten Berge (1977).

A second procedure for solving the GPA problem is described by Gower
(1975). Differentiating (21.1) with respect to tk, he first finds that all con-
figurations must be translated so that their respective centroids are all
incident with the origin. Hence, all Xks must be centered so that their
columns sum to 0. This solves the translation problem directly. The ro-
tation/reflection problems associated with Tk can then be solved in the
iterative manner described above. Finally, a direct solution exists for the
scale factors sk (Ten Berge, 1977). Let B be the K × K matrix with ele-
ments bkl = tr X′

kXl and QΛQ′ the eigendecomposition of B. Then, the
scale factors should be chosen as sk = (

∑
k X′

kXk/tr X′
kXk)1/2qk1, where

qk1 is element k of the largest eigenvector of B.
A third method for minimizing GPA uses the centroid configuration Z

of all X̃ks, Z = (1/K)
∑

k X̃k. The function GPA in (21.1) is equivalent to

GPA = K

K∑
k=1

tr (X̃k − Z)′(X̃k − Z), (21.2)

which is minimized by updating the X̃ks and the centroid configuration Z
one at a time while keeping the others fixed. Commandeur (1991) notes,
however, that this procedure has slower convergence properties than the
method described above.

To see that (21.1) is the same as (21.2), consider the following.

GPA =
K∑

k<l

tr (X̃k − X̃l)′(X̃k − X̃l) (21.3)
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=
1
2

K∑
k=1

K∑
l=1

tr (X̃k − X̃l)′(X̃k − X̃l) (21.4)

=
1
2

K∑
k=1

K∑
l=1

tr X̃′
kX̃k +

1
2

K∑
k=1

K∑
l=1

tr X̃′
lX̃l

−
K∑

k=1

K∑
l=1

tr X̃′
kX̃l. (21.5)

Summing the first two terms of (21.5) yields K
∑K

k=1 tr X̃′
kX̃k. Because X̃k

in the last term of (21.5) does not depend on l, this term can be written
as K

∑K
k=1 tr X̃′

k(K−1 ∑K
l=1 X̃l), so that

GPA = K

K∑
k=1

tr X̃′
kX̃k − K

K∑
k=1

tr X̃′
k(K−1

K∑
l=1

X̃l)

= K

(
K∑

k=1

tr X̃′
kX̃k −

K∑
k=1

tr X̃′
kZ

)
.

Using this result, the derivation continues as

GPA = K

(
K∑

k=1

tr X̃′
kX̃k +

K∑
k=1

tr X̃′
kZ − 2

K∑
k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k + K(K−1

K∑
k=1

tr X̃k)′Z − 2
K∑

k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k + K(tr Z′Z) − 2

K∑
k=1

tr X̃′
kZ

)

= K

(
K∑

k=1

tr X̃′
kX̃k +

K∑
k=1

tr Z′Z − 2
K∑

k=1

tr X̃′
kZ

)

= K
K∑

k=1

tr (X̃k − Z)′(X̃k − Z). (21.6)

This shows that GPA minimizes the squared differences of all X̃k to the
centroid configuration Z. Therefore, Z can be used as the configuration that
summarizes all of the optimally transformed Xks. Dijksterhuis and Gower
(1991) go one step further. They provide a much more detailed analysis-of-
variance-like decomposition of the error of the GPA loss function, so that
several sources of misfit can be attributed.

Geometrically, each of Z’s points is the centroid of the corresponding
points from the fitted individual configurations. Thus, if (21.1) is small,
these centroids lie somewhere in the middle of a tight cluster of K points,
where each single point belongs to a different X̃k.
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FIGURE 21.4. (a) Centroid configuration for 11 color-normal subjects in Table
21.1. (b) Example of an individual space using the weighted Euclidean distance
for a hypothetical subject with dimension weights 1.0 (dim 1) and .5 (dim 2).
(c) Example of an individual space using the generalized Euclidean distance for
a hypothetical subject with dimension weights 1.0 (dim 1), .5 (dim 2), and id-
iosyncratic anticlockwise rotation of 30◦.

21.4 Individual Differences Models:
Dimension Weights

The generalized Procrustean transformation problem is of limited interest
in practice. A more interesting question to ask is whether each individual
configuration can be accounted for by stretching the centroid configuration
appropriately along the dimensions. This idea for explaining individual dif-
ferences was introduced by Horan (1969) and Bloxom (1968) and developed
by Carroll and Chang (1970) in the Indscal procedure (see Section 22.1).

To illustrate the model, let us look at Figure 21.4a which shows the
centroid configuration obtained by GPA. Every individual is allowed his or
her own weights for every column of Z. For example, a mildly color-deficient
subject k could weight the first dimension by 1.0 and the second dimension
by 0.5, showing that the second dimension accounts for less variance in
his or her data than the first dimension. Figure 21.4a shows the centroid
configuration obtained by GPA. The weighted centroid configuration in
Figure 21.4b shows clearly that for this subject the first dimension of Z is
more important than the second dimension.

The weighted centroid configuration for subject k can be expressed as
ZWk, where Wk is an m×m diagonal matrix of nonzero dimension weights.
Hence, the corresponding distance between points i and j is

dijk(ZWk) =

[
m∑

a=1

(waakzia − waakzja)2
]1/2

=
[
(zi − zj)′W2

k(zi − zj)
]1/2

, (21.7)
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where z′
i is row i of Z. Equation (21.7) is called the weighted Euclidean

distance.2 Note waak may be positive or not: a negative dimension weight
simply reflects the corresponding axis but does not change the distances.

An extension of dimension weighting allows for idiosyncratic rotations as
well. Before applying dimension weights, an individual would first orient
Z in his or her particular way. The transformed centroid configuration for
individual k becomes ZSkWk, where Sk is a rotation matrix with S′

kSk =
SkS′

k = I. The generalized Euclidean distance is

dijk(ZSkWk) =
[
(zi − zj)′SkW2

kS
′
k(zi − zj)

]1/2
. (21.8)

The use of this type of distance was popularized by Carroll and Wish
(1974a) in the Idioscal model (see Section 22.2). In Figure 21.4c, the
perceptual space of a hypothetical individual is shown. This individual
first rotates the centroid configuration of Figure 21.4a by 30◦ anticlockwise
and then weights the newly obtained axes by w11k = 1.0 and w22k = 0.5.

Helm’s Color Data and the Subject Space
Consider our color perception example. Figure 21.4a shows the centroid
configuration Z derived from the 11 MDS configurations of the color-normal
subjects by minimizing (21.1). Z matches each of the 11 individual configu-
rations exceedingly well, as can be seen from the r2(X̃k,Z) values in Table
21.3. None of the fit values shows an agreement of less than 96%; hence,
Z is truly representative for these subjects. In Figure 21.4a, the coordinate
axes are rotated so that the vertical dimension intersects the color circle at
the points red-purple and green-blue. But these are just the colors that the
deuteranopic subjects cannot reliably discriminate, although they have no
problems distinguishing yellow from blue. Thus, their color circles should
be squeezed together in the red-green direction, because the point distances
represent the perceived dissimilarities. Figure 21.4b shows what distance
structures would be expected for a mildly deuteranopic subject. In this
case, the transformation can be represented in terms of point coordinates
as X̃k ≈ ZWk, where ZWk is the approximated MDS configuration of
individual k, and Wk is a 2 × 2 diagonal matrix consisting of the weights
w11 = 1.00 and w22 = 0.5, which has the effect of shrinking all coordinates
in Z’s second column to a half of their original magnitude.

In general, this fitting problem can be expressed as

tr (ZWk − X̃k)′(ZWk − X̃k) = min, (21.9)

2Actually, dijk is simply a Euclidean distance on a “weighted” MDS space, Xk =
ZWk. The term “weighted Euclidean distance”, therefore, characterizes formula (21.7)
but does not imply that we are dealing with a special type of distance.
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TABLE 21.3. Fit measures for simple and weighted Procrustean analyses of MDS
configurations of Helm data, split by color-normal subjects and color-deficient
subjects.

Color- Color-
Normals r2(X̃k, Z) r2(X̃k, ZWk) Deficients r2(X̃k, Z) r2(X̃k, ZWk)

s1 0.98 0.98 s11 0.89 0.92
s2 0.98 0.98 s

[1]
12 0.91 0.92

s3 0.99 0.99 s
[2]
12 0.94 0.97

s4 0.99 0.99 s13 0.50 0.75
s5 0.99 0.99 s14 0.44 0.82
s
[1]
6 0.97 0.97 Average 0.74 0.88

s
[2]
6 0.98 0.99
s7 0.98 0.98
s8 0.97 0.97
s9 0.98 0.98
s10 0.96 0.97

Average 0.98 0.98

13

 yellow-blue

14

 re
d-

gr
ee

n

FIGURE 21.5. Subject space for centroid configuration in Fig. 21.4a and data
in Table 21.1; solid points represent color-normal and open points color-deficient
subjects.
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where Wk is the unknown diagonal matrix of weights, and X̃k is the ith
individual configuration optimally fitted to Z by similarity transformations.
Because Wk is diagonal, finding the best Wk amounts to solving a set
of simple regression problems. To see this, let za and xa be the column
vectors of of Z and X̃a, respectively, and zia and xia the ith elements in
these vectors. Then, find the weight wa (the ath diagonal element of Wk)
for za such that

∑n
i=1(wazia −xia)2 is minimal. Differentiating and setting

the derivative equal to 0 leads to wa = (
∑

i xiazia)/
∑

i z2
ia, the formula for

the regression coefficient. With such weights in each Wk, the agreement of
the ZWks and the individual configurations of the deuteranopic subjects
goes up substantially relative to the unweighted case (Table 21.3). The size
of the increments mirrors the degree of deuteranopia.

If the weights are normalized appropriately (see below), they can be dis-
played as in Figure 21.5. The diagram, known as a subject space (Carroll &
Chang, 1970), shows the color-normal persons represented by solid points
and the color-deficient subjects by open points. The coordinates of these
points correspond to the weights assigned to the dimensions by the respec-
tive individual. The color-normal persons weight the centroid configuration
on both the red-green (X-axis) and the yellow-blue (Y -axis) dimensions
about equally, because the points cluster tightly around the bisector. The
color-deficient persons, on the other hand, weight the red-green dimension
of Z less than the yellow-blue dimension. Moreover, the open point closest
to the yellow-blue axis represents s14, the individual with the most severe
case of deuteranopia, and the open point next to it stands for s13, who is
next in color deficiency. For these individuals, the red-green dimension is
practically irrelevant for their dissimilarity judgments, as predicted.

For the subject space, the dimension weights waak were normed so that
their sum-of-squares is equal to r2(X̃k,ZWk). This equality holds if the
normed weights, w̄aak, satisfy w̄aak = waak/(

∑
i z2

ia)1/2, which follows from
writing out the squared correlation r2(X̃k,ZWk) in scalar notation (Borg,
1977a). Thus, the distance of the points in the subject space from the origin
corresponds to the communality of the weighted average configuration and
an individual configuration. We have X̃k = ZWk if the weight point of
individual k lies on the circle with radius 1 around the origin.

Common Misinterpretations of the Subject Space
We should note here that the subject space depends on how the group
space Z is defined. In the above example, Z was the centroid configuration
of the color-normal persons only. Alternatively, it would also be possible
to derive Z from, say, the configurations of all subjects. But then Z would
have a different shape: it would be more elliptical, and this would entail
that all points and stars in the subject space be rotated towards the red-
green dimension, so that the color-normals would not be distributed around
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the bisector. Hence, it is not possible to infer from a subject’s point in the
subject space that he or she weights dimension a more than dimension b,
because these ratios change if we change the group space. The weights,
thus, are only relative to those of other subjects.

Another misinterpretation can occur if we take the name “subject space”
in the sense of a Euclidean point space. The meaning of distances computed
by the Euclidean distance formula in the subject space is completely ob-
scure, because each of its points is placed so that the distance from the
origin denotes the communality of the respective configuration X̃k with Z,
and the direction of the ray on which the point lies represents the weights in
Wk. Moreover, as we mentioned above, the distances in the subject space
are conditional on how Z is defined: if we choose different Zs, different
subject spaces result. To avoid the distance interpretation between points
in the subject space, one can project the points on the dimensions and
interpret the weights for each dimension separately.

Dimension Weighting with Idiosyncratic Rotations
The dimensional weighting of Z in Figure 21.4 was done along the given
dimensions red-green and yellow-blue. Different ellipses would have resulted
in Figures 21.4b and 21.4c if Z were squeezed together in other directions.
For example, we could squeeze Z in the direction purple 1/green-yellow 2,
which would bring the points S and I in close proximity. Expressed more
technically, if the dimensional system in Figure 21.4a were rotated by S,
then weighting ZS by Wk would lead to a different result than weighting
Z by Wk, in general. Thus, for each S, we obtain the loss function

tr (ZSWk − X̃k)′(ZSWk − X̃k), (21.10)

where S′S = I, and X̃k is an individual configuration fitted optimally to
ZS. Note that S does not have a subscript here, so that ZS is the group
space for all individuals.

How do we minimize (21.10 over all k = 1, . . . , K individuals? To do this,
we need to find the best S in

L =
K∑

k=1

tr (ZSWk − XkTk)′(ZSWk − XkTk), (21.11)

where we write XkTk (with T′
kTk = I) for X̃k, because it turns out that

the optimal translation of an individual configuration is always to center it,
and because the optimal scaling factor becomes irrelevant when correlations
are used as similarity measures (Lingoes & Borg, 1978). Equation (21.11)
involves the unknown S, and K unknown weight matrices Wk and rotations
Tk. To find the optimal matrices is a difficult problem, and it is useful to
consider a simpler case first.
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Let Sk be an idiosyncratic rotation, that is, a different rotation matrix
Sk for every subject k. Find Sk and Wk in

tr (ZSkWk − XkTk)′(ZSkWk − XkTk). (21.12)

In terms of our color perception example, we want to find a rotation Sk

and a set of dimensional weights Wk that distort the color circle in Fig-
ure 21.4a such that individual k-th’s configuration, rotated appropriately
by Tk, is approximated as closely as possible. A direct solution for this
problem is known only for the 2D case (Lingoes & Borg, 1978; Mooijaart
& Commandeur, 1990). This solution can be used for each plane of the
space in turn, and then one can repeat the fittings iteratively, because ev-
ery m × m rotation matrix can be expressed as the product of m(m − 1)/2
planar rotation matrices (see also Section 7.10). The average of all ZSks is
then used as a target matrix to solve for the ZS of (21.11).

We obtain a group space that is uniquely rotated; that is, L in (21.11) is
minimal for one particular S and increases for any other rotation, except in
special cases. This will be so for any Z, whether it represents empirical data
or whether it has been defined completely at random. Hence, to conclude
that “this method automatically gives psychologically meaningful axes, if
they exist” (Indow, 1974, p.497) appears too optimistic. It may just be the
case that no dimensional theory is psychologically relevant and that the
dimension-weighting model, which leads to the unique dimensions, yields
nothing but substantively empty formal relations. But even when the model
is adequate, we should keep in mind that the rotational uniqueness is an
algebraic property. For real data, which always have error components, it
may just be that the resulting dimensions are a consequence of the par-
ticular error distribution. In any case, we usually find that the rotational
uniqueness is statistically weak. Thus, for formal as well as substantive
reasons, we recommend rotating Z such that the dimensions reflect some
substantive theory (as in Figure 21.4) rather than leaving the finding of
the coordinate axes to a blind procedure.

21.5 An Application of the Dimension-Weighting
Model

Consider another example. Green and Rao (1972) asked 41 individuals
to evaluate the 15 breakfast objects described in Table 14.1 with respect
to their pairwise similarities. (The 41 proximity matrices are presented
in Green & Rao’s book.) By an ordinal MDS of each of the 41 15 × 15
proximity matrices, 2D representations are obtained. Using the program
Pindis (Lingoes & Borg, 1977), the centroid configuration Z shown in
Figure 21.6 is derived. The representation shows Z in its optimal rotation
with respect to the loss function (21.12), so that we already have ZS. The
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FIGURE 21.6. The Pindis centroid configuration derived from 41 individual con-
figurations obtained by MDS of the 15 breakfast items reported in Table 14.1
(after Borg & Lingoes, 1977).

fit measures (squared correlations, common variances, or communalities)
between this group space and each individual configuration are given in
Table 21.4 in the column r2(X̃k,Z). These values vary substantially over
the individuals. Although X̃22 and Z share some 92% of their variance,
X̃38 and Z have almost nothing in common.

There is one typical misinterpretation of such results. Table 21.4 shows
that, for example, X̃25 and X̃35 correlate with Z with about r2 = .50. Yet
we cannot infer from this value that X̃25 and X̃35 have anything in common:
a simple, pairwise Procrustean analysis could show that r2(X̃25, X̃35) = 0.
It is easy to see why this is so. X̃25 and X̃35 each share some 50% variance
with Z, but these variance proportions may be complementary, so that
Z shares with X̃25 one-half of its variance, and with X̃35 the remaining
half. To see how similar X̃25 and X̃35 are, we would have to do a pairwise
Procrustean analysis.

We now use dimensional weightings with and without idiosyncratic rota-
tions. This is a purely formal exercise here because, in contrast to the color
perception data considered above, there is no reason why the individuals
should perceive the similarity of these breakfast items dimensionally, and
also no reason why they should differ with respect to the importance of di-
mensions. This lack of a substantive theory is, in fact, evidenced by the very
fact that we use such blindly optimizing rotations in the first place. Not
surprisingly, it turns out that both dimension-weighting models do not ac-
count for much additional variance relative to the model using unit weights.
Table 21.4 shows the respective fit values in columns r2(X̃k,ZSWk) and
r2(X̃k,ZSkWk). On the average, the fit increments are just 2.6% and 4.5%,
and in no individual case is there an increment of the magnitude found in
Table 21.3 for the severely color-deficient persons.
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TABLE 21.4. Communalities of individual configurations fitted to different trans-
formations of centroid configuration Z.

Subject r2(X̃k, Z) r2(X̃k, ZSk) r2(X̃k, ZSkWk) r2(X̃k, VkZ)
1 0.7999 0.8005 0.8008 0.8335
2 0.8520 0.8713 0.8714 0.8926
3 0.9088 0.9112 0.9159 0.9519
4 0.9194 0.9222 0.9283 0.9488
5 0.5669 0.6811 0.7352 0.8410
6 0.8939 0.9056 0.9065 0.9376
7 0.8376 0.8469 0.8480 0.8692
8 0.8365 0.9014 0.9032 0.8900
9 0.8518 0.8520 0.8849 0.8977

10 0.7369 0.7404 0.7439 0.8407
11 0.7765 0.7958 0.8803 0.8631
12 0.7044 0.7188 0.7649 0.8099
13 0.7833 0.9152 0.9161 0.9154
14 0.7772 0.7814 0.8020 0.9219
15 0.8982 0.9175 0.9175 0.9339
16 0.6199 0.6698 0.6747 0.7751
17 0.6871 0.7765 0.7805 0.8015
18 0.7881 0.8174 0.8324 0.8821
19 0.8050 0.8469 0.8493 0.8540
20 0.1118 0.1307 0.1307 0.7782
21 0.6179 0.6310 0.6631 0.6754
22 0.9222 0.9429 0.9470 0.9588
23 0.8770 0.8794 0.9005 0.9184
24 0.8721 0.8777 0.8785 0.8866
25 0.5101 0.5135 0.5419 0.8383
26 0.6827 0.6884 0.6895 0.7731
27 0.8251 0.8280 0.8385 0.8712
28 0.7198 0.7268 0.7644 0.8292
29 0.8493 0.8931 0.8936 0.9199
30 0.8593 0.8978 0.9068 0.9289
31 0.3929 0.4067 0.4695 0.8143
32 0.2728 0.2994 0.3642 0.6585
33 0.8498 0.8700 0.8776 0.9448
34 0.7973 0.8299 0.8451 0.8860
35 0.5126 0.6170 0.6623 0.6976
36 0.6076 0.6212 0.6894 0.6806
37 0.8137 0.8192 0.8322 0.8786
38 0.0192 0.0262 0.0331 0.4690
39 0.7077 0.7426 0.7478 0.8903
40 0.7824 0.8004 0.8019 0.8306
41 0.8559 0.8581 0.9178 0.9178

Mean 0.7196 0.7456 0.7647 0.8465
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FIGURE 21.7. The subject space for the dimension-weighting model of the
Green–Rao data (after Borg & Lingoes, 1977).

Most programs (e.g., Indscal; see Chapter 22) designed specifically to
represent data in the dimension-weighting model skip the step with the unit
weights, which yields the fit values in column r2(X̃k,Z) of Table 21.3. In
other words, they analyze the entire 41 × 15 × 15 data block at once in the
sense of the dimension-weighting models, which yields a group space and
its related subject space of weights. This information alone is difficult to
interpret, however. Consider the subject space for the dimension-weighting
model of the present data (Figure 21.7). We observe that: (1) the sub-
ject points scatter considerably in their distance from the origin, which
expresses the different communalities of ZS and the individual configu-
rations; (2) the subject points also scatter in terms of their North-West
directions, and this, as we saw, indicates that the subjects weight the di-
mensions differently. But, as Table 21.4 demonstrates, this second scatter
really does not mean much, because if all of the points were forced onto the
bisector, the model would be reduced to the unit-weighting case, whose av-
erage communality is just 2.6% lower. Thus, it would be risky to infer that
because the subject points scatter so much in terms of direction, the differ-
ential weights (and with them, the particular dimensions) are meaningful
or even descriptively important. The scatter simply reflects the fact that
no restrictions were placed on the Procrustean procedure, so that whatever
reduces the loss function most is chosen for a weight.

21.6 Vector Weightings

Because the dimension-weighting models proved ineffective in explaining
the interindividual differences in the Green–Rao breakfast data, we might
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FIGURE 21.8. Illustration of some vector weights for centroid configuration and
MDS configuration of subject 20 in Green–Rao study.

seek other, more successful models. Dimensional weightings are constrained
by the property that the neighborhood relations of the points in Z are
preserved in a certain way when transforming Z into ZWk. Namely, those
points that are close together in Z are also close together in ZWk.

Radial Point Shifts by Vector Weightings
For the Green–Rao breakfast data, it may be possible that most individuals
do indeed perceive the breakfast objects just as the average person Z does
but that they see some neighborhood relations differently. We consider a
particularly simple transformation, whose loss function is expressed by

K∑
k=1

tr (VkZ − X̃k)′(VkZ − X̃k), (21.13)

where Vk is an n × n diagonal matrix of unknown weights and X̃k is the
individual configuration Xk optimally fitted to VkZ. The elements in Vk

act on the points and are called vector weights. Formally, (21.13) differs
from (21.9) only insofar as Z is now weighted by a diagonal matrix from
the left, not the right. The solution of (21.13) is simple in the 2D case, but
to find all transformations (Vk and all those on Xk) in higher-dimensional
spaces simultaneously appears intractable. Hence, to minimize (21.13) we
have to iterate over all planes of the space (see Lingoes & Borg, 1978). We
continue with an example of the vector-weighting model, and then discuss
several ways to interpret and apply vector weights.

Analyzing X20 and the Z configuration from Figure 21.6 with the vector-
weighting model yields 15 weights, one for each point. Most of these weights
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are very close to +1, except those for points A, E, and F , where the pro-
cedure finds 1.7, 1.6, and −1.4, respectively. Premultiplying Z by V20 has
the effect shown in Figure 21.8. Point A is shifted away from the origin in
the direction and sense of the vector associated with it. In other words, the
vector with endpoint A is simply stretched by the factor 1.7. The analogous
movement is true for point F . For point E, in contrast, the weight −1.4
not only stretches the respective vector but also flips it over, or reverses its
sense. From Table 21.4, column r2(X̃k,VkZ), we see that these movements
lead to a communality increment of almost 70% relative to the unweighted
Procrustean fitting. Thus, moving the points A, E, and F into different
neighborhoods in the described way seems to capture an important char-
acteristic in which person 20 differs from most others.

Evaluating the Fit in Vector Weighting
Table 21.4 shows that the vector weightings allow a much better approxi-
mation of the individual configurations than the dimension-weighting mod-
els. However, the dimension-weighting models use only 2 (the dimensional
weights) or 3 (the idiosyncratic rotation angle, in addition) parameters,
but the vector weightings use up to 15 parameters. Of course, the sheer
number of free parameters cannot be compared directly if the models are
restricted in different ways, but simulation studies (Langeheine, 1980a,
1982) show that the vector-weighting model can be expected to fit 2D ran-
dom configurations considerably better than dimensional weightings. For
K = 41, m = 2, and n = 15, the average fit value of 0.169 was found for the
unweighted Procrustean fitting, 0.186 for the dimension-weighting model,
0.200 for the dimension-weighting model with idiosyncratic orientation, and
0.699 for the vector-weighting model. If we evaluate the observed fit values
against these expectations for random configurations, the performance of
the vector weighting is less impressive in this example.

As the dimensionality m goes up, the dimension-weighting model offers
increasingly more fitting parameters, whereas their number remains con-
stant in the vector-weighting model. This partly explains why, when m
goes up and n remains constant, the communalities for random configu-
rations grow substantially for unweighted Procrustean fittings and dimen-
sional weightings but do not increase much for the vector-weighting models.
Naturally, this is also a consequence of how these parameters are used in
the analyses. Because there are various complicated interdependencies, it
becomes difficult to say what should be expected for random configurations
in general, but fortunately Langeheine (1980a) provides extensive tables.

Interpreting Vector Weights
In contrast to dimensional weighting, there is no convincing interpreta-
tion of vector weighting as a psychological model. For dimension weights,
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such terms as relative importance or salience may be appropriate. No such
interpretations can be given to the vector weights, except when their val-
ues are constrained to be nonnegative (see below: the perspective model).
However, vector weighting may provide valuable index information. If we
find that an optimal fitting of Z to each individual configuration can be
done only with weights varying considerably around +1, then it makes lit-
tle sense to consider the centroid configuration Z as a structure common
to all individuals. To see this, consider the distribution of voters in France.
This distribution is almost perfectly bimodal over the political left–right
continuum. But it would be foolish to say that “the” French voter is po-
litically “in the middle”. In fact, no one really is. Similarly, in respect to
centroid configurations, it may just be the case that this configuration does
not really represent anybody. But there may be groups of individuals with
very similar perceptions. Whether this is so may be seen from studying the
distributions of the vector weights.

Because we can also arrive at such conclusions by directly studying the
data, we return to the question of whether there is an interpretation of vec-
tor weighting as a psychological model. The answer is yes, but only under
some restrictions on (21.13). One possibility would be to carry out the vec-
tor weightings with respect not to the centroid of Z but to a substantively
meaningful origin. In a radex (see Chapter 5), for example, the centroid is
extrinsic to the scientific problem under investigation, but the point chosen
as the radex origin is not. If several such radexes were given, we could first
translate them all such that their origins lie at these points. If we then
fit each individual configuration to an average configuration derived from
them all, the vector weights would express the different relative centrality
of the points.

A different interpretation is given by Feger (1980) which clarifies why
the vector-weighting transformations are called the perspective model un-
der certain conditions. Feger asked nine subjects to rate pairs of 10 attitude
objects (the six major political parties in West Germany; the trade unions;
the Church; the employers’ association; the subject him- or herself) with
respect to the criterion “closeness”. The ratings were replicated 12 times
in intervals of 3 weeks. The data led to 108 2D MDS configurations. A cen-
troid configuration was computed, and all configurations were translated
such that their origins were at the points representing the object self. Using
vector weightings on Z, it was possible to explain most of the intra- and
interindividual differences. It seemed as if the individuals perceived the
attitude objects from this perspective in space, sometimes pulling some
objects closer to themselves, sometimes pushing them farther away. Feger
(1980) goes on to interpret the self point as the ideal point of the subjects
(just as in the unfolding models) and the distances from the ideal point
to the (possibly shifted) points of the nine other objects as indicators of
the strength of preference of the respective person for these objects. In
this interpretation, the point shiftings assessed by the vector weights are
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due to changes of preferences over time and individuals. This complex but
interesting interpretation implies a dependency between similarity judg-
ments and preferences but becomes intractable if negative vector weights
are observed.

Adding an Idiosyncratic Origin to Vector Weighting
Finally, as in the idiosyncratic rotations in the dimension-weighting model,
we can generalize the vector-weighting transformations to a model with
an idiosyncratic origin. In other words, rather than fixing the perspective
origin externally either at the centroid or at some other more meaningful
point, it is also possible to leave it to the model to find an origin that maxi-
mizes the correspondence of an individual configuration and a transformed
Z. The relevant loss function becomes rather complex:

K∑
k=1

tr E′
kEk, with Ek = Vk(Z − 1t′

k) − sk(Xk − 1u′
k)Tk, (21.14)

where tk and uk are translation vectors for Z and Xk, respectively, T′
kTk =

I, Vk is diagonal, and sk is a scalar. Differentiating (21.14) with respect to
the unknowns Vk, tk,uk, sk, and Tk shows that none of these unknowns
is redundant and that they are interrelated in a complicated way (Lingoes
& Borg, 1978). However, minimizing (21.14) is uninteresting in itself, be-
cause what was true for idiosyncratic rotations holds here: an origin chosen
by substantive considerations is always preferable to one found by blind
optimization. The latter may, at best, serve an exploratory purpose as an
index.

21.7 Pindis, a Collection of Procrustean Models

The transformations of Z for individual k discussed so far are the dimension
weights Wk, the idiosyncratic rotations Sk, and the vector weightings Vk.
Table 21.5 summarizes all combinations of these transformations and the
resulting models. Note that the models with the idiosyncratic rotation Sk

but without the dimension weights Wk are equivalent to the same model
without Sk. In this case, the idiosyncratic rotation appears both in Z and
in X̃k, so that one of them can be omitted. The vector dimension-weighting
model, VkZWk, and the full model, VkZSkWk, are difficult to interpret.
This explains why the other models are more popular.

Most of the Procrustean transformations discussed above are carried out
by the program Pindis3 (Lingoes & Borg, 1977). The program needs as in-

3A good overview of the least-squares estimation of the Pindis models can be found in
Commandeur (1991). Moreover, his Matchals algorithm can handle entire rows of miss-
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TABLE 21.5. Overview of transformations of Z in Procrustes models. For each
model a ‘+’ indicates the presence of the factor, a ‘–’ the absence. The factors
are: dimension weights Wk, idiosyncratic rotations Sk, vector weights Vk. Ek

denotes the error of the model, and tr E′
kEk is the loss function minimized.

Wk Sk Vk Model Ek

– – – GPA Z − X̃k

+ – – Dimension weighting ZWk − X̃k

– + – GPA ZSk − X̃k ⇔ Z − X̃k

– – + Vector weighting VkZ − X̃k

+ + – Idiosyncratic rotations ZSkWk − X̃k

+ – + Vector and dimension weighting VkZWk − X̃k

– + + Vector weighting VkZSk − X̃k ⇔ VkZk − X̃k

+ + + Full VkZSkWk − X̃k

put K individual configurations (Xk). From these, it computes a centroid
configuration Z via the generalized Procrustean fitting in (21.1). Alter-
natively, we can input some configuration Z derived externally from, say,
substantive considerations. Z can also be based on an empirical configu-
ration that is fixed in some desirable rotation and/or translated to some
meaningful origin.

The various models and transformations discussed above are summarized
in Table 21.6. X̃k always denotes an Xk optimally rotated and translated
relative to the (weighted, rotated, translated) Z that tries to account for it.
For the Procrustean transformations involving rigid motions and dilations
only, all of the parameters chosen to maximize r2(X̃k,Z) are admissible
and, thus, uninformative because they leave the distance ratios of Xk and
Z invariant. Informative are those parameters on Z that change the ratios
of its distances directly or in combination with other transformations that
are applied at the same time. The dimension-weighting model uses, in gen-
eral, different weights for each of the m dimensions of Z, which has the
effect of changing the distance ratios of Z. Hence, these weight parameters
are informative about simple ways in which Z relates to Xk. In contrast to
admissible fitting parameters that cannot possibly be interpreted in a sub-
stantive sense, informative parameters are potential candidates for interpre-
tations: the dimensional weights, for example, might be viewed as dimen-
sional saliences. Similarly, the rotation angles in the dimension-weighting
model with idiosyncratic rotation lead to the interpretation that this sub-
ject uses dimensions differently from those chosen by the average person.
Because there is one such angle for each of the m(m − 1)/2 planes, this
model has m(m − 1)/2 additional inadmissible parameters. The perspec-

ing values in the coordinate matrices. Ten Berge et al. (1993) discuss a GPA algorithm
in which only the missing values themselves are discarded.
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TABLE 21.6. Overview of the transformations in Pindis. Zr = optimally rotated
Z in model 2; Zr

k = idiosyncratically optimal Z in model 3; Wr
k is Wk relative

to Zr
k. Similarly for Zt,Vt, and Zt

k, where t denotes an optimal translation.

Number of
Informative

Model Fitting Parameters Fit Index
(1) Similarity transformation 0 r2(X̃k, Z)

(unit weighting)
(2) Dimension weighting m r2(X̃k, ZrWk)

(dimensional salience)
(3) Dimension weighting with m + m(m − 1)/2 r2(X̃k, ZrWr

k)
Idiosyncratic orientation

(4) Perspective model with fixed n r2(X̃k, VkZ)
origin (vector weighting)

(5) Perspective model with n + m r2(X̃k, Vt
kZt

k)
idiosyncratic origin

tive model involves n inadmissible fitting parameters, one for each point. In
its generalized version with an idiosyncratic origin, there are m additional
parameters corresponding to the m coordinates of the freely chosen origin
of Z.

The Pindis transformations form two genuine hierarchies: the models
denoted as 1, 2, and 3 in Table 21.6 establish one such set of nested ap-
proaches, and models 1, 4, and 5 the other. Moreover, in practical appli-
cations, n is usually much greater than m, so that 0 < m < m + m(m −
1)/2 < n < n + m results. Thus, in terms of complexity, the models in
Pindis are linearly ordered. The order of the various communality values
typically mirrors the order of complexity.

21.8 Exercises

Exercise 21.1 Consider the data matrix from Exercise 1.6 on p. 16.

(a) Compute Euclidean distances for its columns. Then scale these dis-
tances in a two-dimensional MDS space (ordinal MDS).

(b) Next, randomly eliminate 20, 30, and 40 percent of the Euclidean
distances and consider these distances as missing data. With the re-
maining distance values run three ordinal MDS analyses in 2D.

(c) Then compare the four configurations using Procrustean methods.
(Hint: Would you choose one fixed target, or would you rather do
one generalized Procrustean fitting?)
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(d) Discuss the similarity of the MDS solutions in terms of robustness of
MDS.

Exercise 21.2 The table below contains the coordinates of four configura-
tions, X1 to X4.

Point X1 X2 X3 X4

1 1 2 2 1 1 1 2.64 0.50
2 -1 2 -2 1 -1 1 -1.00 1.32
3 -1 -2 -2 -1 -1 -1 -2.64 -0.50
4 1 -2 2 -1 1 -1 1.00 -1.32

(a) Find, by geometric means, the centroid configuration Z of the config-
urations X1 to X3. (Hint: Plot the configurations in one chart, then
determine Z’s points.)

(b) Find the dimension weights that turn Z into X1, X2, and X3, respec-
tively.

(c) Find the dimension weights that turn (a possibly rotated) Z into X4.

(d) Characterize in which way rotating Z and then weighting its dimen-
sions affects the resulting configuration?

Exercise 21.3 Consider the group space in Figure 21.6 on p. 463.

(a) Interpret this configuration and its four clusters.

(b) Interpret what weighting the X- and the Y -axis of this configuration
means in terms of the perceived similarity of the breakfast items.

(c) Assume that one particular person assigns a vector weight of −1 to
item B, and weights of about +1 to all other items. What do you
conclude from this?

(d) Assume that we decided to adopt an interpretation for this group
space with two orthogonal dimensions whose ends are defined by the
characteristics of the items in the four clusters in Figure 21.6. In that
case, we may also decide to translate the group space to a more mean-
ingful origin. Sketch in Figure 21.6 what seems the most reasonable
origin to you. Discuss what implications such a shift of origin has for
dimensional- and for vector-weighting models.




