
24
Methods Related to MDS

In this chapter, two other techniques are discussed that have something in
common with MDS. First, we discuss the analysis of a variables-by-objects
data matrix by principal components analysis and show how it is related to
MDS. Then, we discuss correspondence analysis, a technique particularly
suited for the analysis of a contingency table of two categorical variables.

24.1 Principal Component Analysis

Principal component analysis (PCA) is a technique that goes back to Pear-
son (1901) and Hotelling (1933). It begins with a data matrix of n cases
(often: persons) and k variables (often: items, tasks). The objective of the
method is to explain the k variables by a much smaller set of m “new” vari-
ables that are linear combinations of the original variables. Thus, new vari-
able i = w1 ·(variable 1)+w2 ·(variable 2)+ · · ·+wk ·(variable k), where the
weights, wj , are the unknowns. The hypothesis is that only a few (m � k)
of these new variables suffice to explain most of the variance of the data.
For example, in intelligence testing, the testees are typically asked to work
through test batteries with many items. One assumes, however, that not
every item requires a special ability to solve it. Rather, only a few abili-
ties should be needed, and each item requires a different mixture of these
abilities. Somewhat more formally, one thus wants to (a) find these under-
lying mixtures of more general components, and then (b) assign each case
a score on them. For example, a test battery of an intelligence test may
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require essentially only verbal and numerical reasoning (the components),
and each testee is assigned a score on these components on the basis of his
or her test results. The components are, of course, not identified directly:
rather, PCA shows which variables combine with high weights to form one
particular component, and then one has to infer from the content of these
variables what the component means. This approach is similar to inter-
preting dimensions in MDS on the basis of the points that have the longest
projections onto these dimensions.

Consider an example. Assume that M is the usual person-by-variable
data matrix. We begin by standardizing M so that its columns all sum to
zero and have norms equal to 1. This leads to matrix Z; that is,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 9 1
5 5 5
4 4 5
8 7 2
7 1 4
4 5 7
5 3 6
2 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.46 .62 −.60
−.07 .00 .04
−.24 −.15 .04

.46 .31 −.44

.29 −.62 −.12
−.24 .00 .36
−.07 −.31 .20
−.60 .15 .52

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24.1)

To see what PCA does geometrically, we plot in Figure 24.1a the persons
(=rows) of Z as points in a 3D space. The axes are formed by the three
variables (=columns) of Z. If we rotate the axes, the variance of the pro-
jections of the points on the rotated axes will change in general. We know
from Section 7.10 that there exists one particular rotation to principal axes.
These axes are characterized by the property that they are closest to the
points or, expressed differently, that the projections of all points onto the
principal axes have maximal length, axis by axis in decreasing order. The
principal axes give us what we are looking for: the coordinates of the points
on the principal axes are the principal components. The variance of the el-
ements of the first principal component (denoted by k1) is maximal. The
second principal axis gives rise to the second PC, k2, and the third principal
axis to the last PC, k3. Note that each principal axis ka may be reflected
without changing the variance of the corresponding PC. Thus, any PCA
solution is unique up to reflections of its components.

To see how PCA works computationally, consider the (full rank) singular
value decomposition Z = PΛQ′; that is,

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.64 .32 −.10
.05 .03 −.08
.16 −.05 −.80

−.49 .04 .22
−.02 −.75 .03

.27 .16 .48

.20 −.25 .25

.46 .49 −.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ 1.46 0 0
0 .92 0
0 0 .20

⎤⎦⎡⎣ −.64 −.38 .67
−.38 .91 .16

.67 .15 .72

⎤⎦ , (24.2)
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FIGURE 24.1. Plot of persons of Z in space spanned by variables of Z (panel a);
same space with principal axes shown as tripod K (panel b).

where P contains the standardized principal components (PCs). The PCs
are orthogonal to each other, because P′P = I in any singular value de-
composition. The columns of K = PΛ are the unstandardized principal
components. Figure 24.1b shows the principal axes that generate these
PCs—k1,k2, and k3—in the space of the original variables, the columns of
Z. The PCs are related to the original Z by a rotation/reflection, K = ZQ,
because Q′Q = QQ′ = I in any singular value decomposition.

We can also directly look at the space spanned by the principal axes,
where the elements of K are the coordinates of points that represent the
persons. This view is shown in Figure 24.2a, where the tripod of z1, z2, and
z3 indicates how the original variables are oriented in this principal axes
space.

The norms of the principal components k1,k2, and k3 are equal to the
respective singular values λa on the diagonal of Λ. The squared singular
values indicate how much variance is accounted for by the various principal
components. In our small example, we see that the third PC is very small
so that the various person points are almost all located at the same height
on the third dimension of Figure 24.2a. Expressed algebraically, the data
matrix Z is decomposed into a sum of matrices each with rank 1, λ1p1q′

1 +
λ2p2q′

2 + λ3p3q′
3 (with qa column a of Q), so that the first k < 3 terms

are the best approximation of Z by a matrix of lower rank k. The singular
value λa is the weight of the information in the term λapaq′

a (see Section
7.6, item 4).

Standardizing K amounts to adjusting the components k1,k2, and k3 to
length one by dividing each column of K by the corresponding λa. That is,
P = KΛ−1. Geometrically, this operation means that the configuration is
stretched or compressed along the axes of Figure 24.2a. The result of this
transformation is shown in Figure 24.2b.
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FIGURE 24.2. Persons as points in space that have a principal axes orientation;
the axes that correspond to the original variables are shown as the tripod Z
(panel a). Panel (b) shows same as panel (a), except that space is spanned here
by the standardized principal components.

Figure 24.2b can be obtained from the original data as follows. Start
with the original row-points configuration Z, rotate it to principal axes
orientation by Q, and then stretch or compress the configuration along the
principal axes by the weights in Λ−1. Algebraically, this corresponds to
computing P = ZQΛ−1, where the columns of P are obviously weighted
sums of Z’s columns, as intended.

The matrices Q and Λ can also be found from an eigendecomposition
of the intercorrelation matrix of the original variables, R = Z′Z, because
R = QΛP′PΛQ′ = QΛ2Q′. Thus, the eigenvalues of R are equal to the
squared singular values of Z. A graphical representation of the first two
principal axes for our small example is given in Figure 24.3.

Once the components P are found, one can reverse the perspective and
ask how they explain the original variables. Assuming here that the de-
composition has full rank, we can simply reverse the equation P = ZQΛ−1

to get Z from P via Z = PL′ with L = QΛ. The coefficients in L are
called component loadings and can be interpreted as the correlations be-
tween the variables and the components. This property can be seen as
follows. The correlations between the variables (columns) of Z and P
are Z′P, because both Z and P are standardized. Thus, we get Z′P =
Z′ZQΛ−1 = RQΛ−1 = QΛ2Q′QΛ−1 = QΛ. This yields for the example
above

L =

⎡⎣ −.93 −.35 .13
−.55 .84 .03

.98 .14 .14

⎤⎦ .
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FIGURE 24.3. Persons (labeled by row numbers) in the space of the first two stan-
dardized principal components, together with projections of the original variables
z1, z2, and z3 onto this space.

L shows that the column vector 1 of the data matrix correlates with the
first PC with −0.93. It is therefore almost fully explained by this PC. The
second variable of the data matrix correlates with the first PC with −0.55,
and the third variable with 0.98. Overall, the component loadings make
clear that the three variables of our data matrix are essentially only two-
dimensional (as Figure 24.2a shows graphically). They correlate most with
the first PC, and almost not at all with the third PC.

The loadings can also be interpreted geometrically as the lengths of the
projections of the vectors that represent the variables onto the standardized
PCs P. The squares of the elements of the component loadings in L are a
measure of fit for the variables (see Table 24.1). The sum of the squared
component loadings for dimension a is equal to the eigenvalue λ2

a. Because
the sum-of-squares of the loadings in matrix L above is 1 in each row, each
variable is fully accounted for in the 3D space spanned by the PCs and for
98.7% in 2D.

The simultaneous representation of objects and variables in one plot as in
Figure 24.3 is called a biplot (Gabriel, 1971). The term bi in biplot refers to
the representation of the two modes (the objects and the variables) in one
plot but not to the dimensionality, although the plots are usually made in
two dimensions. The two sets of points, the object points that correspond
to the rows of P and the variables whose coordinates are the component
loadings L = QΛ, are related as scalar products. This means that we can
only interpret the projection of object points on the vector that represents
a variable (similar to Figure 16.3), not the distance between an object point
and the variable-vector. This projection predicts the value of the object on
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TABLE 24.1. Squared component loadings of the example data in (24.1). The
last row contains the proportion of variance accounted for (VAF).

Dimension Total
Variable 1 2 3 1 + 2 1 + 2 + 3

1 .860 .122 .018 .982 1.000
2 .299 .700 .001 .999 1.000
3 .961 .019 .021 .980 1.000
λ2

a 2.120 .841 .040 2.961 3.000
VAF .707 .280 .013 .987 1.000

the variable. For more details and some examples of biplots, we refer to
Gabriel (1971), Gower and Hand (1996), and Gifi (1990).

A Typical Application of PCA
In many applications, only the structure of the variables is of interest.
Then, PCA becomes quite similar to (metric) MDS, because it then re-
duces to the question of analyzing the structure of a correlation matrix. As
an illustration, consider the correlation matrix in Table 5.1. Rather than
taking these numbers as similarities and attempting to represent them by
distances in a Euclidean space, in PCA we look at the correlations as scalar
products. An optimal solution for a PCA representation is easy to find, as
was shown above. The loadings of the intelligence test items of Table 5.1
are exhibited in Table 24.2. Overall, these eight variables have a total vari-
ance of 8 (geometrically expressed: a total length of 8). Hence, for example,
the first three PCs account for λ2

1 + λ2
2 + λ2

3 = 3.37 + 1.35 + 1.05 = 5.77 or
(5.77/8) · 100 = 72% of the variance. This follows from the spectral decom-
position theorem [see (7.11)], and the convention to norm the eigenvectors
to length 1. Note also that the ath PC accounts for a maximum of the
variance of the original variables that has not been explained already by
the PCs 1, . . . , a − 1.

Geometrically, we see that the configuration of the variables in the space
spanned by the first three PCs, as shown in Figure 24.4, is similar to Figure
5.1. Both exhibit a circular arrangement of the points and vector endpoints,
respectively. The PCA representation, however, is higher-dimensional. The
(ordinal) MDS representation of Figure 5.1 essentially corresponds to a
plane that captures the vector endpoints in Figure 24.4, because in MDS
it is the distance of the vectors’ endpoints that we want to represent, not
the angles that the vectors subtend.

MDS and PCA (in the sense of metrically analyzing a correlation matrix)
are, therefore, closely related. However, one cannot always expect similar
results. PCA not only leads to higher-dimensional representation spaces
than MDS. PCA is also almost always done metrically, whereas most MDS
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FIGURE 24.4. 3D principal component representation of correlations in Table
5.1, rotated to simple structure.

TABLE 24.2. Loading of variables in Table 5.1 on principal components (PC1,
. . ., PC8) and on dimensions rotated to simple structure in the space spanned
by first three PCs (SS1, SS2, SS3).

Test PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 SS1 SS2 SS3
1 0.63 -0.59 0.15 -0.14 -0.22 -0.02 -0.22 0.33 0.02 0.85 0.24
2 0.69 -0.50 0.24 -0.13 -0.11 -0.04 0.06 -0.41 0.15 0.86 0.18
3 0.70 0.02 0.50 0.06 0.35 0.15 0.31 0.15 0.60 0.61 -0.07
4 0.68 0.48 0.22 0.18 0.11 0.17 -0.42 -0.10 0.84 0.16 0.12
5 0.60 0.57 0.10 -0.20 -0.10 -0.49 0.06 0.04 0.82 0.00 0.18
6 0.70 0.30 -0.29 0.15 -0.44 0.27 0.21 0.03 0.56 0.08 0.58
7 0.57 0.02 -0.61 -0.46 0.28 0.13 -0.02 -0.01 0.18 0.07 0.81
8 0.59 -0.31 -0.46 0.50 0.18 -0.25 0.01 0.00 0.01 0.38 0.72

λ2
a 3.37 1.35 1.05 0.59 0.51 0.45 0.37 0.31

Explained
variance (%) 42.1 16.9 13.1 7.4 6.4 5.59 4.7 3.9 26.4 25.1 20.7
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applications are ordinal ones, in particular those in exploratory data anal-
ysis where one wants data representations that are as simple as possible.
Moreover, the PCA solution is seldom studied geometrically. Rather, typ-
ically only the loadings of the vectors on the components are interpreted,
similar to traditional dimension-oriented MDS. In our illustrative applica-
tion, that means that one would interpret the values of the various tests on
the rotated components SS1, SS2, and SS3 but not the circular manifold
that we see in Figure 24.4.

Principal Coordinates Analysis
A closely related technique with the same algebraic results as PCA, called
principal coordinates analysis (PCO), emphasizes the representation of the
objects (Gower, 1966). Consider the rows of the data matrix Z with k
variables as points in the k-dimensional space. The aim is to approximate
the distances dij(Z) in a low-dimensional m < k space X. If this is done
with classical scaling, then we have to do the following computations. First,
compute the matrix of squared distances D(2)(Z) = 1c′ + c1′ − 2ZZ′, with
c the vector of the diagonal elements of ZZ′; see (7.5). Then pre- and
postmultiply D(2)(Z) with the centering matrix J and multiply the result
with − 1

2 . These operations lead to

− 1
2JD(2)(Z)J = − 1

2J(1c′ + c1′ − 2ZZ′)J
= − 1

2J(−2ZZ′)J = ZZ′.

Then, the eigendecomposition of ZZ′ = PΛ2P′ is computed. The config-
uration X for the object points obtained by classical scaling equals the
first m columns of PΛ. The configuration obtained from PCO is exactly
the same as K obtained by PCA. Thus, using the normalization PΛ, this
equivalence shows that PCA may be seen as MDS that tries to reconstruct
distances in a high-dimensional space by a low-dimensional representation.

Of course, instead of using the classical MDS criterion, the high-dimensional
distances can also be approximated by using the Stress function in MDS.
This approach has been advocated by Meulman (1986, 1992) and is called
distance-based PCA. It turns out that the Stress values at a minimum can
also be interpreted as a ratio of variances, similar to PCA (Groenen &
Meulman, 2004).

24.2 Correspondence Analysis

Correspondence analysis (CA) can be seen as an equivalent of PCA on a
contingency table of two categorical variables. In such a table, every entry
gives the frequency of each combination of categories of the two variables.
The objective of CA is to show the interaction in this table graphically.
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TABLE 24.3. A hypothetical contingency table of the distributions of seats by
country and political faction (Groenen & Gifi, 1989).

Political Faction
Christian

Country Democrats Socialists Other Total
Belgium 8 9 7 24
Germany 39 30 6 75
Italy 25 11 39 75
Luxembourg 3 2 1 6
The Netherlands 13 10 2 25
Total 88 62 55 205

Consider the following hypothetical example. Assume we are interested
in the political similarity of some European countries. One set of data that
speaks to this issue is the distribution of the seats of these countries in
the European Parliament over the political factions. Let Table 24.3 be the
hypothetical contingency table of sets for five countries and three politi-
cal factions. Figure 24.5 shows the result of the correspondence analysis
of Table 24.3. In the figure, both the row points (the countries) and the
column points (political factions) are plotted. The distance between row
points is a particular form of similarity of the countries. For example, The
Netherlands and Germany have the same relative distribution of seats over
the political factions (see Table 24.4). That is, they have the same data
“profile” (Greenacre, 1984, p. 55). Zero distances in CA always occur for
profiles that are exactly the same. The properties of these two countries
are similar to the profile of Luxembourg and thus are located close to each
other but not at zero distance. The centroid can be interpreted as the aver-
age country, so that the closer a country is located towards the centroid, the
more similar the country is to the average country. Italy and Belgium differ
from the other countries because they are not located close together. Note
that the scatter of the country points is almost exclusively along the first
dimension, indicating that the second dimension is of minor importance.
The distance between column points along each axis can be interpreted in a
similar way, but the distance between country points and party points has
to be interpreted with some care. We return to this later when discussing
the example at the end of this section.

Although CA is often applied to contingency tables, the method can
in principle be used on any rectangular table with nonnegative similarity
values. For example, CA can be used on preference rankings and could be
used as an alternative to unfolding. (If used this way, the entries in the
table should be similarities, though.)

CA is known under different names, such as reciprocal averaging, dual
scaling, canonical correlation analysis (applied to qualitative data), and si-
multaneous regression, because it has been discovered independently in dif-
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FIGURE 24.5. The correspondence analysis solution of Table 24.3. Note that the
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TABLE 24.4. Row profiles of Table 24.3.

Political Faction
Christian

Country Democrats Socialists Other Total
Belgium .333 .375 .292 1
Germany .520 .400 .080 1
Italy .333 .147 .520 1
Luxembourg .500 .333 .167 1
The Netherlands .520 .400 .080 1
Mean row profile .429 .302 .268
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ferent areas (Hotelling, 1933; Richardson & Kuder, 1933; Hirschfeld, 1935).
Guttman (1941) presented a comprehensive treatment of the algebra of
CA. The graphical and geometric emphasis in CA has been largely due
to Benzécri et al. (1973), a book that also contains a historical overview.1

There is a wide literature on CA, and standard textbooks are: Nishisato
(1980, 1994), Lebart, Morineau, and Warwick (1984), Greenacre (1984,
1994), and Gifi (1990). Developments on CA can be found in Greenacre
and Blasius (1994) and Blasius and Greenacre (1998). For a discussion of
the relation of CA with MDS, we refer to Heiser and Meulman (1983a).
Groenen and Van de Velden (2004) discuss the inverse CA problem, that
is, given a CA solution what data sets would have produced the same CA
solution.

The remainder of this section is organized as follows. First, we consider
the geometry of CA following the example of Groenen and Gifi (1989), also
discussed in SPSS (1990). Then, it is shown how the CA solution can be
computed. Also, several algebraic properties of CA are discussed such as
the inertia, the contribution of a point to the inertia of a dimension, and
the proportion of total distance of a point shown in a dimension. Next, we
apply CA to crime rates in 10 US states. Finally, we end with some remarks
on the relation of CA and MDS.

Geometry of Correspondence Analysis
To measure the similarity between two countries, correspondence analysis
uses (row) profiles normed to sum to one in each row. For example, the
Christian Democrats occupy 52% (39/75 = .520) of Germany’s seats in the
European Parliament. Table 24.4 contains the row profiles of Table 24.3.
From the row profiles, we see that the Netherlands and Germany have the
same relative distribution of seats over the factions, irrespective of their
difference in the total number of seats. Now, we discuss how to reconstruct
geometrically the CA solution of Figure 24.5 in three steps.

1. Consider Table 24.4 as coordinates in a 3D space (Figure 24.6). The
mean row profile is represented as the centroid. Because the profiles
sum to one, all of the points lie in the 2D subspace spanned by the
points representing the political factions: point (1, 0, 0) for Christian
Democrats, point (0, 1, 0) for Socialist, and point (0, 0, 1) for Other.
This 2D triangle is shown in Figure 24.7.

2. The next step in correspondence analysis is to assign weights to the
dimensions. Let F = (fij) be the contingency table, such as Table
24.3. In CA, a weighted Euclidean distance is used, where the dimen-

1Other historical overviews can be found in Nishisato (1980), Van Rijckevoorsel and
Tijssen (1987), Van Rijckevoorsel (1987), and Gifi (1990).
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sion weights are equal to (
∑

j fij/
∑

ij fij)−1/2, that is, the inverse
of the square root of the column means of Table 24.4. In CA, the
columns with small means are considered to be more discriminating
than the columns with large means. Hence, the weight for column 1 is
1/

√
.429 = 1.527, for column 2 it is 1/

√
.302 = 1.820, and for column

3 it is
√

.268 = 1.932. The weighted configuration is shown in Figure
24.8. This configuration is the same as the solution obtained by CA
in Figure 24.5, apart from the rotation.

3. The final step is to rotate to principal axes such that maximum vari-
ance is shown in the first dimension, the second dimension maximizing
the remaining variance, and so on.

These three steps show geometrically how a correspondence analysis solu-
tion is obtained. The emphasis in these steps was on the row points. The
role of the rows and columns can be reversed by simply transposing the
correspondence table. Next, we discuss some of the algebraic properties of
correspondence analysis.

Algebraic Properties
The weighted Euclidean distance used in CA has a close relation with the
χ2-statistic and so-called χ2-distances, provided the entries in the corre-
spondence table are frequencies. Let fi+ =

∑
j fij be the row sum of F,

f+j =
∑

i fij the column sum, and n =
∑

ij fij the total sum. The weighted
Euclidean distance of row profiles k and l (the distances between the points
in Figure 24.8) is given by

dkl =

⎛⎝∑
j

(fkj/fk+ − flj/fl+)2

f+j/n

⎞⎠1/2

, (24.3)
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and the weighted Euclidean distance of row profile k to the average profile
z by

dkz =

⎛⎝∑
j

(fkj/fk+ − f+j/n)2

f+j/n

⎞⎠1/2

. (24.4)

These distances are called χ2-distances because

∑
i

fi+

n
d2

iz =

⎛⎝∑
i,j

(fi+/n)(fij/fi+ − f+j/n)2

f+j/n

⎞⎠
= n−1

⎛⎝∑
i,j

(fij − fi+f+j/n)2

fi+f+j/n

⎞⎠ =
χ2

n
.

Thus, n times the weighted sum of the squared distances of the row points to
their centroid (in full dimensionality) is equal to the χ2-statistic. Expression
(24.5) is called total inertia.

We continue discussing how the coordinates in correspondence analysis
are obtained. Let Dr be the diagonal matrix of row marginals (with diag-
onal elements fi+) and Dc the diagonal matrix of column marginals (with
diagonal elements f+j). Let matrix E be the matrix of expected values
under the independence model, which has elements eij = fi+f+j/n. Then,
correspondence analysis requires the singular value decomposition of

D−1/2
r (F − E)D−1/2

c = PΦQ′, (24.5)
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with the usual properties P′P = Q′Q = I and Φ the diagonal matrix of
singular values. The rank of the decomposed matrix in (24.5) is at most
M = min(number of row points, number of column points) − 1. The row
scores R and column scores C are given by

R = n1/2D−1/2
r PΦ and C = n1/2D−1/2

c Q. (24.6)

This normalization implies R′DrR = Φ2, C′DcC = nI, and is called
the row principal by SPSS (1990), because the squared singular values
are the weighted sum of the squared row coordinates (after the principal
coordinates normalization of Greenacre, 1984, p. 88). For a discussion of
other normalizations, we refer to Greenacre (1984) and Gifi (1990).

Properties of this decomposition are:

• The weighted sum of the row scores (weights Dr) and the weighted
sum of the column scores (weights Dc) are equal to zero. The origin
is the average row (and column) profile.

• The term
∑

a φ2
a is called the inertia. In our example, we have perfect

fit, so that all of the inertia is shown in 2D. Inertia is related to the χ2-
statistic by χ2/n =

∑
a φ2

a. Therefore, the proportion of total inertia
recovered in m dimensions equals (

∑m
a=1 φ2

a)/(χ2/n).

• The contribution of row point i in recovering the inertia in dimension
a is (fi+/n)r2

ia/φ2
a. For column points, this contribution is (f+j/n)c2

ja.
The difference in formulas for row and column points stems from the
row principal normalization that is used. These relative contributions
are important to find those points that are important on dimension
a.

• Another interesting measure is the proportion of the χ2-distance of
row i to the centroid that is represented by the coordinate in dimen-
sion a. This proportion is given by r2

ia/d2
iz for the row objects, and

c2
jaφ2

a/(
∑

l c
2
jlφ

2
l ) for the column objects.

• Using the normalization above, the row scores are the weighted cen-
troid of the column scores, which is called the barycentric principle
(Benzécri et al., 1973). The transition formulas allow the transfor-
mation of the column scores into row scores and the row scores into
column scores by

R = D−1
r FC, (24.7)

C = D−1
c F′RΦ−2. (24.8)

Note that (24.7) computes the weighted centroid of the column points.
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• Because (24.5) is a dimensionwise decomposition, the elements of F
can be reconstituted in m dimensions by

f̂ij = (fi+f+j/n)

[
1 +

m∑
a=1

riacja

]
. (24.9)

If m = M (full dimensionality), then (24.9) reconstitutes F perfectly.

• In our example, we saw that the Netherlands and Germany have the
same row profile which gave yielding equal scores in CA. It turns
out that CA also gives the same results if these two rows are ag-
gregated. This principle is called distributional equivalence (Benzécri
et al., 1973). For our example, this principle implies that the matrix
with aggregated frequencies for the Netherlands and Germany,

F =

⎡⎢⎢⎣
8 9 7

52 40 8
25 11 39
3 2 1

⎤⎥⎥⎦ ,

yields exactly the same correspondence analysis solution as the one
obtained in Figure 24.5.

CA can be viewed as the residual analysis of the independence model
for a contingency table. If the χ2-value is significant (the independence
model does not hold), then the residuals contain more than noise alone, so
that it makes sense to analyze the remaining structure in the residuals by
CA. However, if the χ2-value of the independence model is not significant,
then the residuals are simply the result of noise, so that CA should be
avoided. The view of CA as residual analysis of loglinear models has been
advocated by Van der Heijden and De Leeuw (1985) and Van der Heijden,
De Falguerolles, and De Leeuw (1989). A maximum likelihood version of CA
was proposed by Goodman (1985, 1986), and Gilula and Haberman (1986).
For a comparison of these methods, see Van der Heijden, Mooijaart, and
Takane (1994).

Crime Rates
To illustrate how CA works, consider Table 24.5 with crime rates of seven
offenses of 10 U.S. states (U.S. Statistical Abstract 1970, Bureau of Census:
Crime rates per 100,000 people). The 50 states were used in an MDS anal-
ysis in Chapter 1, but here we restrict ourselves to the 10 states reported
in Table 24.5. The main question is how similar or different the states are
with respect to their crime statistics. What criminal offenses characterize
the states?

CA on Table 24.5 yields the inertia reported in Table 24.6. The first
two dimensions show 72% of the total inertia, 47% in the first dimension
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TABLE 24.5. Crime rates per 100,000 people for 10 U.S. states. The rows entries
are the criminal offenses and the column entries are the states.

State AK AL AR HI IL MA NE NY TN WY
Murder 12.2 11.7 10.1 3.6 9.6 3.5 3.0 7.9 8.8 5.7
Rape 26.1 18.5 17.1 11.8 20.4 12.0 9.3 15.5 15.5 12.3
Robbery 71.8 50.3 45.6 63.3 251.1 99.5 57.3 443.3 82.0 22.0
Assault 168.0 215.0 150.0 43.0 187.0 88.0 115.0 209.0 169.0 73.0
Burglary 790.0 763.0 885.0 1456.0 765.0 1134.0 505.0 1414.0 807.0 646.0
Larceny 2183.0 1125.0 1211.0 3106.0 2028.0 1531.0 1572.0 2025.0 1025.0 2049.0
Auto theft 551.0 223.0 109.0 581.0 518.0 878.0 292.0 682.0 289.0 165.0

TABLE 24.6. Singular values φa and percentage of reconstructed inertia of cor-
respondence analysis on crime rates in Table 24.5.

Inertia Perc. Cum.
Dim. φa φ2

a Inertia Inertia
1 .195 .038 46.8 46.8
2 .143 .020 25.1 72.0
3 .123 .015 18.6 90.6
4 .086 .007 9.1 99.7
5 .014 .000 0.3 100.0
6 .002 .000 0.0 100.0

Total .081 100.0

and 25% in the second dimension. The coordinates for the points are dis-
played in Figure 24.9. Because the row principal normalization is used, the
crimes are the weighted average of the points representing the states. The
predicted profile (or reconstructed profile) for a state consists of the projec-
tions of the criminal offenses points onto the line through the origin and a
state. For example, the projections on the line through the origin and MA
(Massachusetts) (see Figure 24.9) show that auto theft and robbery happen
more often than average. Because larceny and burglary project almost on
the origin, they occur at an average rate in Massachusetts, whereas mur-
der, rape, and assault are below average. Robbery (and to a lesser extent
assault) happens in New York (NY) more often than average, and larceny
less than average. In contrast, Nebraska (NE), Wyoming (WY), and Hawaii
(HI) have the opposite profile compared to NY. Murder happens more often
than average in the Southern states of Arkansas (AR), Alabama (AL), and
Tennessee (TN). The first dimension seems to be dominated by states with
robbery (on the right) versus states with more than average larceny. The
second axis shows crimes with physical violence (bottom) versus property
crimes (top).

Detailed results for the row and column points are given in Table 24.7.
The second column gives the so-called mass (Dr/n and Dc/n for the rows
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FIGURE 24.9. The correspondence analysis solution of the crime data for 10 U.S.
states reported in Table 24.5.

and columns, respectively) weighting the importance of each point in the
CA solution. The next two columns give the row scores R and column scores
C. Then, column diz and djz shows how much of the each point contributes
to the total inertia of .018 in the full dimensional space. We see that the
crimes murder and rape and the states AK, IL, and NE hardly determine
the CA solution as their contributions to the total inertia are very low. The
next two columns show the contribution of each point to the total inertia
of a dimension. For example, the first dimension is mostly determined by
the crimes robbery and larceny in the states NY, WY, and to a lesser
extent in HI and MA. The second dimension is mainly determined by the
crimes assault and auto theft in the states AL, AR, and MA. Even though
points may not determine the dimension, it may still be that a reasonable
proportion of the inertia of a point is shown in that dimension. The last
column shows the proportion of the inertia diz and djz that is shown in
both dimensions. We see that the inertia of all crimes is reasonably well
recovered in these two CA dimensions, because their total proportion of
inertia diz and djz recovered in two dimensions is varying from 42.1% to
87.9%. The same is true for the states with the exception of IL of which
only 19.2% of its inertia is shown in these two dimensions. Therefore, IL
should be excluded from the interpretation of this CA solution.

The MDS analysis in Chapter 1 (Figure 1.1) yields similar results. In
both analyses, we find that violent crimes (rape, assault, murder) are close
together as opposed to the property crimes. These results seem more pro-
nounced in the ordinal MDS solution. We have to bear in mind, though,
that the MDS solution was based on the full data set, whereas the corre-
spondence analysis solution was based on 10 states only.
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TABLE 24.7. Results for row and column points of the correspondence analysis
on crime rates in Table 24.5.

Contr. to Dim. Prop. diz Shown
Crime Dr/n r1 r2 diz Dim 1 Dim 2 Dim 1 Dim 2 Total
Murder .002 .012 -.470 .001 .000 .024 .000 .642 .642
Rape .005 -.015 -.258 .001 .000 .015 .001 .420 .421
Robbery .035 .656 -.055 .023 .393 .005 .648 .005 .653
Assault .041 .157 -.421 .012 .027 .360 .086 .621 .708
Burglary .268 .077 -.101 .011 .042 .133 .150 .253 .403
Larceny .523 -.156 .029 .015 .333 .021 .848 .029 .876
Auto theft .126 .249 .268 .019 .205 .442 .408 .471 .879
Total 1.000 .081 1.000 1.000

Contr. to Dim. Prop. djz Shown
State Dc/n c1 c2 djz Dim 1 Dim 2 Dim 1 Dim 2 Total
AK .111 -.469 .561 .003 .024 .035 .273 .210 .483
AL .070 .068 -1.797 .006 .000 .227 .002 .740 .742
AR .071 -.427 -2.016 .008 .013 .289 .064 .772 .836
HI .154 -.886 .668 .008 .121 .069 .547 .167 .713
IL .111 .464 .228 .005 .024 .006 .170 .022 .192
MA .110 1.035 1.540 .015 .118 .260 .303 .360 .663
NE .075 -.794 .327 .003 .047 .008 .579 .053 .632
NY .140 1.578 -.220 .017 .350 .007 .785 .008 .793
TN .070 .606 -1.188 .004 .026 .099 .245 .507 .752
WY .087 -1.784 .001 .011 .277 .000 .930 .000 .930
Total 1.000 .081 1.000 1.000
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Comparing CA and MDS
Correspondence analysis has several properties in common with MDS but
differs on other aspects. Both techniques graphically display the objects as
points in a low-dimensional space. In its basic form, MDS is a one-mode
technique (only one set of objects is analyzed), whereas CA is a two-mode
technique (row and column objects are displayed, as in unfolding). The
data in CA are restricted to be nonnegative, whereas MDS can process
more types of data: nonnegative or negative, frequencies, correlations, rat-
ings, rankings, and so on. In addition, MDS can optimally transform the
data. For contingency tables (the most widely used type of data for CA)
the nonnegativity restriction does not pose a problem, because frequen-
cies between two categorical variables are always nonnegative. CA uses the
χ2-distance as a dissimilarity measure, whereas MDS can accept any dis-
similarity or similarity measures (see Chapter 6). In MDS (and unfolding),
the distances between all points can be directly interpreted, but in CA this
is so only for either the row or the column points. The relation between row
and column points can only be assessed by projection (as in Figure 24.9).
Therefore, a CA solution has to be interpreted with some care, analogous
to non-Euclidean MDS solutions.

There exists a close relation between CA and Classical Scaling. Let ∆
contain the χ2-distances between the rows. Let the centering matrix J be
replaced by the weighted centering matrix Jw = I − (1Dr1)−111′Dr, so
that JwX has weighted mean zero (see Section 12.3). Then, the eigende-
composition in classical scaling of −(1/2)Jw∆(2)J′

w yields exactly the same
solution for the row scores as does correspondence analysis.

Applying MDS to this ∆ gives an even higher proportion of explained
inertia than CA. Gifi (1990) discusses the decomposition of the χ2-distances
with Stress for binary F. For a general F, setting δik = dik as defined in
(24.3) and setting the weight wik = n/(fi+f+k) gives a decomposition of
the χ2-distances by MDS. If the MDS algorithm uses the CA solution as
a start configuration, then the final MDS solution always gives a better
reconstruction of the χ2-distances than CA. One drawback of using MDS
(on the matrix of χ2-distances) instead of CA is that the MDS solution only
displays the row points, not the column points. If X has weighted sum zero,
that is,

∑
i fi+xia = 0 for each dimension a, then the origin represents the

average row profile, just as in correspondence analysis.

24.3 Exercises

Exercise 24.1 Consider the matrix below. It shows correlations (multiplied
by 100) among 13 work value items described in Table 5.2. The lower
(upper) half of the matrix is based on a representative survey of the East
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(West) German workforce. Note that in this study, no data were gathered
on work value item 10.

No. Work Value 1 2 3 4 5 6 7 8 9 11 12 13 14
1 Interesting job 47 43 38 28 37 29 28 27 16 15 21 28
2 Independent work 51 53 31 27 34 23 25 28 25 16 15 26
3 Much responsibility 42 57 39 32 42 38 38 41 24 16 09 25
4 Meaningful job 37 30 33 20 33 38 44 29 24 13 08 33
5 Chances for advancement 28 29 33 18 43 19 25 15 39 52 27 34
6 Respected job 18 23 34 24 43 37 39 29 37 29 21 35
7 Can help others 20 19 31 33 17 32 48 49 16 10 14 26
8 Useful job 20 17 28 40 18 37 56 32 23 16 18 30
9 Contact with other people 31 34 39 31 21 24 43 34 16 11 10 19

11 Secure position 14 17 18 19 39 37 24 25 17 40 18 38
12 High income 20 26 25 05 54 32 05 08 11 32 27 29
13 Much spare time 25 22 13 09 19 30 13 18 19 16 30 25
14 Healthy working cond. 32 31 23 37 25 20 25 23 24 33 16 23

(a) Analyze both of these correlation matrices via PCA (varimax rota-
tion) and interpret the resulting component loadings. Do the compo-
nents correspond to any of the facets of Table 5.2?

(b) What type of facets—axial, modular, or polar facets—can or cannot
be seen in a PCA of item correlations?

(c) Take the facet “Alderfer” in Table 5.2, for example. Imagine we had
many “material” work values, but only very few “growth” and “rela-
tional” work values, respectively. How would this affect an attempt
to verify a facet classification via PCA and via MDS analysis with
regional interpretations, respectively? Which approach is less robust
against uneven item sampling, and why?

(d) Fit the two PCA solutions by Procrustean methods to each other.
Which transformations are admissible for PCA solutions and why
are they? Which ones are not and why not?

Exercise 24.2 Assume that it takes two abilities, AR = “ability to read
well” and AM = “ability for mathematics”, to perform well in the tasks
T1, . . . , T4. The table below shows the ability scores for five persons, their
respective performance in four tasks (Ti), and the measured performance
in these tests (T ∗

i ). The scores were constructed as follows: let Ti = a ·AR+
b · AM , where a + b = 1; let T ∗

i = Ti + error.

Person AR AM T1 T2 T3 T4 T ∗
1 T ∗

2 T ∗
3 T ∗

4
1 10 4 8.80 8.20 5.80 4.00 8.06 7.50 7.01 3.69
2 5 3 4.60 4.40 3.60 3.00 3.93 3.86 4.63 0.93
3 2 7 3.00 3.50 5.50 7.00 3.24 3.91 6.43 5.11
4 5 9 5.80 6.20 7.80 9.00 4.19 4.48 8.70 8.76
5 9 10 9.20 9.30 9.70 10.00 9.51 9.93 11.04 9.92



24.3 Exercises 539

(a) Take the observed task scores, T ∗
1 , . . . , T ∗

4 , intercorrelate them, and
find out by using PCA how these scores can best be explained through
(possibly rotated) latent factors.

(b) Compute the components and compare them with the true AR- and
AM-scores, respectively.

(c) Sketch the vector configuration of the four tasks in 2D, both in prin-
cipal axes orientation and in varimax orientation.

(d) Intercorrelate T ∗
1 , . . . , T ∗

4 and do an MDS analysis of these correla-
tions. Compare the result with the PCA solution.

Exercise 24.3 Bendixen (1996) reports frequencies of 14 statements on 8
breakfast items judged by a sample of 100 housewives (see the table below).
The breakfast items are Cereals (CER), Muesli (MUE), Porridge (POR),
Bacon and eggs (B&E), Toast and tea (T&T), Fresh fruit (FRF), Stewed
fruit (STF), and Yoghurt (YOG). Note that each respondent could choose
more than one statement for each breakfast item.

Breakfast Item
no. Statement CER MUE POR B&E T&T FRF STF YOG

1 Healthy 14 38 25 18 8 31 28 34
2 Nutritious 14 28 25 25 7 32 26 31
3 Good in summer 42 22 11 13 7 37 16 35
4 Good in winter 10 10 32 26 6 11 19 8
5 Expensive 6 33 5 27 3 9 18 10
6 Quick and easy 54 33 8 2 15 26 8 20
7 Tasty 24 21 16 34 11 33 26 26
8 Economical 24 3 20 3 16 7 3 7
9 For a treat 5 3 3 31 4 4 16 17

10 For weekdays 47 24 15 9 13 11 6 10
11 For weekends 12 5 8 56 16 10 23 18
12 Tasteless 8 6 2 2 0 0 2 1
13 Takes too long to prepare 0 0 9 35 1 0 10 0
14 Family favorite 14 4 10 31 5 7 2 5

(a) What items and statements do you expect to influence the CA solu-
tion most? Why do you think so?

(b) Apply CA to the matrix of frequencies above. (You can use, for exam-
ple, the correspondence program in SPSS.) How many dimensions
do you choose? How much of the total inertia is accounted for by these
dimensions?

(c) Interpret the most important relations in the CA solution. (Hint:
focus on a statement and look which breakfast items are more and
less than average characterized by this statement.)
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(d) What items and statements are not well represented in this CA solu-
tion? Do you need to revise your interpretation at (c)?

(e) Remove the bad fitting items and statements and redo CA. Interpret
the solution. Are the relations different from the CA solution in (b)?
If so, explain the differences.

Exercise 24.4 Consider the data on the interpretations of Rorschach inkblot
pictures reported in Exercise 15.3 on p. 332.

(a) Do CA on these data. How many dimensions do you choose?

(b) Identify good and bad fitting row and column points. What measures
do you use for doing so?

(c) Interpret the CA solution. What are the most important relations in
these data?

Exercise 24.5 PCA can also be attempted “by hand”.

(a) Consider the correlation matrix 5.1. Convert the correlations into
angles among pairs of vectors. [Hint: For example, for r12 = .67 in
Table 5.1, the angle of the corresponding geometric vectors for items
1 and 2 is arccos(.67) = 47.9◦.]

(b) With this angle information, construct a vector representation of the
correlations. First, take eight knitting needles, straws, sticks, or the
like. Then stick needle 1 into a styrofoam ball and then needle 2 such
that it forms an angle of 47.9◦ with 1. Then proceed with needle 3,
and so on.

(c) Compare your result to a solution arrived at by computation.




