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Classical Scaling

Because the first practical method available for MDS was a technique due to
Torgerson (1952, 1958) and Gower (1966), classical scaling is also known un-
der the names Torgerson scaling and Torgerson–Gower scaling. It is based
on theorems by Eckart and Young (1936) and by Young and Householder
(1938). The basic idea of classical scaling is to assume that the dissimilar-
ities are distances and then find coordinates that explain them. In (7.5) a
simple matrix expression is given between the matrix of squared distances
D(2)(X) (we also write D(2) for short) and the coordinate matrix X, which
shows how to get squared Euclidean distances from a given matrix of coor-
dinates and then scalar products from these distances. In Section 7.9, the
reverse was discussed, that is, how to find the coordinate matrix given a
matrix of scalar products B = XX′. Classical scaling uses the same proce-
dure but operates on squared dissimilarities ∆(2) instead of D(2), because
the latter is unknown. This method is popular because it gives an analytical
solution, requiring no iterations.

12.1 Finding Coordinates in Classical Scaling

We now explain some fundamental issues in classical scaling. How do we
arrive at a scalar product matrix B, given a matrix of squared distances
D(2)? Because distances do not change under translations, we assume that
X has column means equal to 0. Remember from (7.5) that the squared
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distances are computed from X by

D(2) = c1′ + 1c′ − 2XX′ = c1′ + 1c′ − 2B, (12.1)

where c is the vector with the diagonal elements of XX′. Multiplying the
left and the right sides by the centering matrix J = I − n−111′ and by the
factor − 1

2 gives

− 1
2JD(2)J = − 1

2J(c1′ + 1c′ − 2XX′)J
= − 1

2Jc1′J − 1
2J1c′J + 1

2J(2B)J
= − 1

2Jc0′ − 1
20c′J + JBJ = B. (12.2)

The first two terms are zero, because centering a vector of ones yields a
vector of zeros (1′J = 0). The centering around B can be removed be-
cause X is column centered, and hence so is B. The operation in (12.2) is
called double centering. To find the MDS coordinates from B, we factor B
by eigendecomposition, QΛQ′ = (QΛ1/2)(QΛ1/2)′ = XX′. The method
of classical scaling only differs from this procedure in that the matrix of
squared distances D(2) is replaced by the squared dissimilarities ∆(2).

The procedure for classical scaling is summarized in the following steps.

1. Compute the matrix of squared dissimilarities ∆(2).

2. Apply double centering to this matrix:

B∆ = − 1
2J∆(2)J. (12.3)

3. Compute the eigendecomposition of B∆ = QΛQ′.

4. Let the matrix of the first m eigenvalues greater than zero be Λ+
and Q+ the first m columns of Q. Then, the coordinate matrix of
classical scaling is given by X = Q+Λ1/2

+ .

If ∆ happens to be a Euclidean distance matrix, then classical scaling
finds the coordinates up to a rotation. Note that the solution Q+Λ1/2

+ = X
is a principal axes solution (see Section 7.10). In step 4, negative eigen-
values can occur but not if ∆ is a Euclidean distance matrix (see Chapter
19). In classical scaling, the negative eigenvalues (and its eigenvectors) are
simply ignored as error.

Classical scaling minimizes the loss function

L(X) = || − 1
2J[D(2)(X) − ∆(2)]J||2

= ||XX′ + 1
2J∆(2)J||2

= ||XX′ − B∆||2, (12.4)
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sometimes called Strain (see Carroll & Chang, 1972). Gower (1966) proved
that choosing the classical scaling solution solves (12.4).1

A nice property of classical scaling is that the dimensions are nested.
This means that, for example, the first two dimensions of a 3D classical
scaling solution are the same as the two dimensions of a 2D classical scal-
ing solution. Note that MDS by minimizing Stress does not give nested
solutions.

It remains to be seen what dimensionality one should choose. Sibson
(1979) suggests that the sum of the eigenvalues in Λ+ should approximate
the sum of all eigenvalues in Λ, so that small negative eigenvalues cancel out
small positive eigenvalues. For a rationale of this proposal, see Chapter 19.

12.2 A Numerical Example for Classical Scaling

As an example, we use the faces data from Table 4.4. Here, we consider the
first four items only; that is,

∆ =

⎡⎢⎣ 0 4.05 8.25 5.57
4.05 0 2.54 2.69
8.25 2.54 0 2.11
5.57 2.69 2.11 0

⎤⎥⎦ , so that ∆(2) =

⎡⎢⎣ .00 16.40 68.06 31.02
16.40 .00 6.45 7.24
68.06 6.45 .00 4.45
31.02 7.24 4.45 .00

⎤⎥⎦ .

The second step in classical scaling is to compute

B∆ = − 1
2J∆(2)J

= − 1
2

⎡⎢⎣
3
4 - 1

4 - 1
4 - 1

4
- 1
4

3
4 - 1

4 - 1
4

- 1
4 - 1

4
3
4 - 1

4
- 1
4 - 1

4 - 1
4

3
4

⎤⎥⎦
⎡⎢⎣ .00 16.40 68.06 31.02

16.40 .00 6.45 7.24
68.06 6.45 .00 4.45
31.02 7.24 4.45 .00

⎤⎥⎦
⎡⎢⎣

3
4 - 1

4 - 1
4 - 1

4
- 1
4

3
4 - 1

4 - 1
4

- 1
4 - 1

4
3
4 - 1

4
- 1
4 - 1

4 - 1
4

3
4

⎤⎥⎦
=

⎡⎢⎣ 20.52 1.64 -18.08 -4.09
1.64 -.83 2.05 -2.87

-18.08 2.05 11.39 4.63
-4.09 -2.87 4.63 2.33

⎤⎥⎦ .

In the third step, we compute the eigendecomposition of B∆; that is, B∆ =
QΛQ′ with

Q =

⎡⎢⎣ .77 .04 .50 -.39
.01 -.61 .50 .61

-.61 -.19 .50 -.59
-.18 .76 .50 .37

⎤⎥⎦ and Λ =

⎡⎢⎣ 35.71 .00 .00 .00
.00 3.27 .00 .00
.00 .00 .00 .00
.00 .00 .00 -5.57

⎤⎥⎦ .

There are two positive eigenvalues, one zero eigenvalue due to the double
centering and one negative eigenvalue.2 For this example, we can construct

1Note that Kloek and Theil (1965) also derived the classical scaling solution, but
more in the sense of a how-to-do construction scheme than in terms of algebra.

2Double centering introduces a linear dependency, because if the columns of a matrix
add up to the zero vector, then any column can be expressed as a linear combination
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at most two dimensions in Euclidean space. Step 4 tells us that the config-
uration X is found by

X = Q+Λ1/2
+

=

⎡⎢⎣ .77 .04
.01 -.61

-.61 -.19
-.18 .76

⎤⎥⎦[
5.98 .00
.00 1.81

]
=

⎡⎢⎣ 4.62 .07
.09 -1.11

-3.63 -.34
-1.08 1.38

⎤⎥⎦ .

12.3 Choosing a Different Origin

Usually, X is constructed so that its columns sum to zero. This means
that the origin of configuration X coincides with the center of gravity of
its points (centroid). Choosing this origin is, however, not necessarily the
best choice. In psychological research, for example, some objects may be
less familiar to the respondents, and thus lead to less reliable distance
estimates than others. In such a case, it is wiser to pick as an origin a point
that is based more on the points associated with less error. How could this
be accomplished?

For a general solution, consider picking some arbitrary point s as the
new origin, with the restriction that s lies in the space of the other points.
That is, in terms of algebra, point s should lie in the row space of X; that
is, the coordinate vector of s is a weighted sum of the rows of X, s′ = w′X,
where w′ is an m-element row vector of weights. With s as the new origin,
the point coordinates become

Xs = X − 1s′ = X − 1w′X = (I − 1w′)X = PwX. (12.5)

If the weight vector w is chosen such that w′1 = 1, then Pw is a projector3.
If B = XX′, one obtains Bs = XsX′

s after projecting X to a new origin s.
In terms of the old origin, Bs = PwBP′

w.
If one chooses a particular object i as the origin, then w′ =

[0, . . . , 1, . . . , 0], where the 1 is in the ith position. If one picks the cen-
troid as the origin, then w′ = [1/n, . . . , 1/n]. Another choice is to pick
the weights in w so that they reflect the reliability of the objects. In this
case, unreliable elements should have a weight close to zero and reliable el-
ements a high value. In this way, the origin will be attracted more towards
the reliable points.

of the other columns. Hence, a doubly centered matrix does not have full rank, and,
therefore, it has at least one zero eigenvalue (see Chapter 7). The negative eigenvalue
shows that ∆ is not a matrix of Euclidean distances (see Section 19.1).

3For every projector matrix P it holds that PP = P (idempotency). In the given
case, it is also true that Ps1 = 0 (Schönemann, 1970).
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Instead of using J in the double-centering formula, we can also use
the projector Pw. Then, step 2 in classical scaling becomes B∆ =
− 1

2Pw∆(2)P′
w. The zero eigenvalue of B∆ has eigenvector w, so that the

weighted average (using weights w) of the classical scaling coordinate ma-
trix X is equal to zero.

12.4 Advanced Topics

A solution for classical scaling with linear constraints was discussed by
Carroll, Green, and Carmone (1976), De Leeuw and Heiser (1982), and
Ter Braak (1992). The linear constraints imposed on X require X = YC,
where Y is an n×r matrix of r external variables, and C are weights to be
optimized by classical scaling. (This type of constraint was also discussed
in Section 10.3 for constrained MDS with Stress.)

How can the weights in C be computed? Let Y = PΦQ′ be the singu-
lar value decomposition. Then X = YC = PΦQ′C = PC∗, where P is
orthonormal (P′P = I). The Strain loss function (12.4) used by classical
scaling can be written as

L(C) = ||B∆ − YCC′Y′||2 = ||B∆ − PC∗C′
∗P

′||2
= ||B∆||2 − ||P′B∆P||2 + ||P′B∆P − C∗C′

∗||2, (12.6)

which can be verified by writing out all of the terms in the equation. Only
the last term of (12.6) is dependent on C∗. L(C) is solved for C by the
eigendecomposition of P′B∆P = QΛQ′ and choosing C∗ = Q+Λ1/2

+ (as
in Step 4 in Section 12.1), so that C = QΦ−1C∗.

To illustrate constrained classical scaling, we reanalyze the constrained
MDS of the facial expression data in Section 10.3. The external constraint
matrix Y is defined as in Table 10.2. The total loss of the constrained
2D classical scaling solution is 8366.3, which explains 75% of the sum-of-
squares of B∆, against 92% for the unconstrained classical scaling solution
(with loss 2739.9). The corresponding solution is shown in Figure 12.1,
where the external variables are represented by lines. The optimal weight
matrix C obtained by constrained classical scaling is

C =

⎡⎣ 1.283 .482
−.219 .300
−.445 .782

⎤⎦ .

To get the coordinates X in Figure 12.1, we compute X = YC. This
solution does not differ much from the constrained MDS solution in Figure
10.4. The main difference lies in the location of point 8.

Even for loss functions other than L(X), classical scaling is optimal. Let
E = XX′−B∆, so that L(X) = ||E||2. The loss can also be expressed as the
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FIGURE 12.1. Constrained classical scaling of the facial expression data of Abel-
son and Sermat (1962).

sum of the squared eigenvalues of E; that is, if E = KΦK′, then ||E||2 =∑
i φ2

i . This loss function is an example of an orthonormal invariant norm,
because the value of the loss function remains invariant under pre- and
postmultiplication of the orthonormal matrix K. Mathar and Meyer (1993)
prove that the classical scaling solution is also optimal for the minimization
of any orthonormal invariant norm on E. For example, the classical scaling
solution is optimal if the loss is defined as L(X) =

∑
i |φi|.

In contrast to the MDS method discussed in Chapter 9, it is difficult
to incorporate transformations of the proximities in classical scaling. An
algorithm was proposed by Trosset (1993) that optimally transforms the
proximities for Strain.

Classical scaling can even be used to study or discover the “intrinsic
geometry” of highly nonlinear structures contained in high-dimensional
spaces. For example, a point configuration that forms a helix in 3D space is
intrinsically one-dimensional in the sense that if you move back and forth on
this helix, the distances along the helix are additive. As long as you stay on
the helix, Euclidean distances dij are only approximately correct measures
for the length of the path from point i to point j if i and j are close (or,
in the case of highly nonlinear structures, “very close”) to each other. For
points that are far apart, Euclidean distances can grossly underestimate
the intrinsic distance of i and j. To study such geometries and to unroll
them into low-dimensional Euclidean geometries, Tenenbaum, De Silva,
and Langford (2000) first define the radius of a small neighborhood, ε, and
then set δij = dij for all ij where dij < ε, and δij = ∞ otherwise. Then,
in a second cycle, these values are replaced by computing distances over
the network of point triples as follows: δij = mink(δij , δik + δjk), for all
k. If there are many points that are well spread out, this generates graph
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distances that approximate the lengths of the paths within the curved struc-
ture. Applying classical scaling to dissimilarities generated in such a way
from nonlinear structures allowed Tenenbaum et al. (2000) to unroll these
structures successfully.

12.5 Exercises

Exercise 12.1 Use classical scaling on the data in Table 4.1, p. 65. (Note:
You first have to transform the similarity data into reasonable dissimilar-
ities.) Compare the solution to the one obtained by ordinal MDS (Figure
4.1).

Exercise 12.2 Use matrix X computed in Section 12.2, p. 264, to recon-
struct both B∆ and ∆. Assess how well this X “explains” ∆.

Exercise 12.3 Take matrix ∆ from Section 12.2. Instead of centering this
matrix, choose one of its entries as the element serves as the origin of the
MDS space.

(a) Compute B∆ relative to this particular origin.

(b) Find the classical scaling representation for this B∆.

(c) Compare this solution to the solution X found in Section 12.2.




