
3
MDS Models and Measures of Fit

MDS models are defined by specifying how given similarity or dissimilarity
data, the proximities pij , are mapped into distances of an m-dimensional
MDS configuration X. The mapping is given by a representation func-
tion f(pij) that specifies how the proximities should be related to the dis-
tances dij(X). In practice, one usually does not attempt to strictly satisfy
f . Rather, what is sought is a configuration (in a given dimensionality)
whose distances satisfy f as closely as possible. The condition “as closely
as” is quantified by a badness-of-fit measure or loss function. The loss func-
tion is a mathematical expression that aggregates the representation errors,
eij = f(pij)−dij(X), over all pairs (i, j). A normed sum-of-squares of these
errors defines Stress, the most common loss function in MDS. How Stress
should be evaluated is a major issue in MDS. It is discussed at length in
this chapter, and various criteria are presented.

3.1 Basics of MDS Models

In this section, MDS models are defined and discussed on a level sufficient
for most practical applications. In later chapters, we revisit some of the
relevant issues in greater detail.

Assume that measures of similarity or dissimilarity, for which we use the
general term proximity, pij , are given for the pairs (i, j) of n objects. Some
examples for such proximities were discussed in Chapter 1: similarities of
crimes, assessed by the correlations of their frequencies over different U.S.
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FIGURE 3.1. A Cartesian plane with some points; the length of the line segment
connecting points i and j is the (Euclidean) distance of points i and j.

states; correlations among attitudes towards political protest behaviors;
direct ratings of the overall similarity of pairs of different countries; and
similarity judgments on one-spoked wheels. All of these cases are examples
of measures of similarity, because the higher a correlation (or a rating
of similarity), the more similar the objects i and j. However, instead of
asking for judgments of similarity, it is just as easy—or even easier—to
ask for judgments of dissimilarity, for example, by presenting a rating scale
ranging from 0 = no difference to 10 = very dissimilar.

Coordinates in the MDS Space
MDS attempts to represent proximities by distances among the points of
an m-dimensional configuration X, the MDS space. The distances can be
measured by a ruler, up to a certain level of precision, and if the MDS
space is at most three-dimensional. But distances can also be computed
with arbitrary precision, and this can be done in a space of arbitrarily high
dimensionality. Computation is made possible by coordinating the MDS
space. The most common such coordination is first to define a set of m di-
rected axes that are perpendicular to each other and intersect in one point,
the origin O. These axes—in the applied context often called dimensions—
are then divided up into intervals of equal length so that they represent, in
effect, a set of perpendicular “rulers”.

Each point i, then, is uniquely described by an m-tuple (xi1, xi2, . . . , xim),
where xia is i’s projection onto dimension a. This m-tuple is point i’s coor-
dinate vector. The origin O is given the coordinates (0, 0, . . . , 0). Figure 3.1
shows some points and their coordinate vectors in a Cartesian plane, that
is, in a plane coordinated by a set of perpendicular dimensions.
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Computing Distances
Given a Cartesian space, one can compute the distance between any two
of its points, i and j. The most frequently used and the most natural
distance function is the Euclidean distance. It corresponds to the length
of the straight line1 segment that connects the points i and j. Figure 3.1
shows an example.

The Euclidean distance of points i and j in a two-dimensional configu-
ration X is computed by the following formula:

dij(X) =
√

(xi1 − xj1)2 + (xi2 − xj2)2. (3.1)

Thus, dij(X) is equal to the square root of the sum of the intradimensional
differences xia − xja, which is simply the Pythagorean theorem for the
length of the hypotenuse of a right triangle. For Figure 3.1, thus, formula
(3.1) yields dij =

√
(3 − 1)2 + (3 − 2)2 =

√
5. Formula (3.1) can also be

written as

dij(X) =

[
2∑

a=1

(xia − xja)2
]1/2

, (3.2)

which can easily be generalized to the m-dimensional case as

dij(X) =

[
m∑

a=1

(xia − xja)2
]1/2

. (3.3)

MDS Models and Their Representation Functions
MDS maps proximities pij into corresponding distances dij(X) of an MDS
space X. That is, we have a representation function

f : pij → dij(X), (3.4)

where the particular choice of f specifies the MDS model. Thus, an MDS
model is a proposition that given proximities, after some transformation f ,
are equal to distances among points of a configuration X:

f(pij) = dij(X). (3.5)

1The term “straight” corresponds to what we mean by straight in everyday language.
In Euclidean geometry, a straight line can be drawn by tracing with a pen along a ruler.
More generally, a straight line is the shortest path (geodesic) between two points. The
notion of straightness, therefore, presupposes a distance measure. With different distance
measures, straight lines often do not look straight at all. An example is the straight line
between points 4 and 6 in Figure 1.7, which consists of the two dashed line segments
that look like a “corner” line.
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The distances dij(X) in (3.4) and (3.5) are always unknowns. That is,
MDS must find a configuration X of predetermined dimensionality m on
which the distances are computed. The function f , on the other hand, can
either be completely specified or it can be restricted to come from a particu-
lar class of functions. Shepard (1957), for example, collected similarities pij

for which he predicted, on theoretical grounds, that they should be related
to distances in an unknown two-dimensional space X by the exponential
function. That is, it was hypothesized that pij = exp[−dij(X)]. Similarly,
Thurstone (1927) predicted that choice probabilities pij should be equal
to unknown distances between points i and j on a line (“scale values”) af-
ter transforming the pijs by the inverse normal distribution function. This
choice of f , again, was theoretically justified.

In most applications of MDS, there is some looseness in specifying f .
That is, for example, f is only restricted to be “some” exponential function
or “some” linear function. The exact parameters of these functions are not
specified. An important case is interval MDS. It is defined by

pij → a + b · pij = dij(X), (3.6)

for all pairs (i, j). The parameters a and b are free and can be chosen such
that the equation holds. Another case is ordinal MDS, where f is restricted
to be a monotone function that preserves the order of the proximities.
That means—assuming, for simplicity, that the proximities are dissimilarity
scores—that

if pij < pkl, then dij(X) ≤ dkl(X). (3.7)

If pij = pkl, (3.7) requires no particular relation of the corresponding dis-
tances. This is known as the primary approach to tied proximities, where
ties can be “broken” in the corresponding distances. The secondary ap-
proach to ties requires that if pij = pkl, then also dij = dkl. The primary
approach is the default in most ordinal MDS programs. A slight modifica-
tion of (3.7) is to replace the relation ≤ by <. The first relation specifies
a weak monotone function f , the second one a strong monotone function.
Most often, ordinal MDS is used with a weak monotone function.

How should one choose a particular representation function? If no par-
ticular f can be derived by theoretical reasoning, one often restricts f to
a particular class of functions on the basis of the scale level of the proxim-
ities. For example, if the proximities are direct similarity ratings on, say,
pairs of nations, one might feel that only their rank-order yields reliable in-
formation about the respondent’s true cognitions. Differences (“intervals”)
between any two ratings, in contrast, would not represent any correspond-
ing psychological quantities. Under these assumptions, there is no reason
to insist that these intervals be faithfully represented by distances in the
MDS space. Moreover, a weak scale level makes it easier to approximately
represent the essential information in an MDS space of low dimensionality.
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Conversely, starting from an MDS model, one can choose a representation
function g in the regression hypothesis g : dij(X) → pij . This hypothesis
needs to be tested against the data. One can pick any g: if it leads to a model
that is empirically satisfied—and provided that the model does not hold
for formal reasons only—one has shown a nontrivial empirical regularity.
No further justification is needed for picking a particular function g.

3.2 Errors, Loss Functions, and Stress

MDS models require that each proximity value be mapped exactly into its
corresponding distance. This leaves out any notion of error. But empirical
proximities always contain noise due to measurement imprecision, unreli-
ability, sampling effects, and so on. Even the distances used in Table 2.1
are not completely error-free, because reading off values from a ruler only
yields measures of limited precision. Hence, one should not insist, in prac-
tice, that f(pij) = dij(X), but rather that f(pij) ≈ dij(X), where ≈ can
be read as “as equal as possible”. Given that the proximities contain some
error, such approximate representations make even better representations—
more robust, reliable, replicable, and substantively meaningful ones—than
those that are formally perfect, because they may smooth out noise.

If one has a theory about the proximities, one would be interested to see
how well this theory is able to explain the data, and so a best-possible MDS
representation (of some sort) is sought. If the error of representation is “too
large,” one may reject or modify the theory, but obviously one first needs
to know how well the theory accounts for the data. Any representation that
is precise enough to check the validity of this theory is sufficiently exact. A
perfect representation is not required.

Further arguments can be made for abandoning the equality requirement
in f(pij) = dij(X). Computerized procedures for finding an MDS represen-
tation usually start with some initial configuration and improve this con-
figuration by moving around its points in small steps (“iteratively”) to ap-
proximate the ideal model relation f(pij) = dij(X) more and more closely.
As long as the representation is not perfect, one only has f(pij) ≈ dij(X),
where ≈ means “equal except for some small discrepancy”.

The Stress Function
To make such notions as “almost”, “nearly”, and so on, more precise, we
employ the often used statistical concept of error. A (squared) error of
representation is defined by

e2
ij = [f(pij) − dij(X)]2. (3.8)
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Summing e2
ij over all pairs (i, j) yields a badness-of-fit measure for the

entire MDS representation, raw Stress,

σr = σr(X) =
∑
(i,j)

[f(pij) − dij(X)]2. (3.9)

The raw Stress value itself is not very informative. A large value does
not necessarily indicate bad fit. For example, suppose that the dissimilari-
ties are road distances between cities in kilometers. Suppose that an MDS
analysis on these data yields σr(X1) = .043. Redoing the analysis with
dissimilarities expressed in meters yields the same solution, but on a scale
that is 1000 times as large, and so one gets σr(X2) = 43, 000. This does not
mean that X2 fits the data worse than X1; it merely reflects the different
calibration of the dissimilarities. To avoid this scale dependency, σr can,
for example, be normed as follows,

σ2
1 = σ2

1(X) =
σr(X)∑
d2

ij(X)
=

∑
[f(pij) − dij(X)]2∑

d2
ij(X)

. (3.10)

Taking the square root of σ2
1 yields a value known as Stress-1 (Kruskal,

1964a). The reason for using σ1 rather than σ2
1 is that σ2

1 is almost always
very small in practice, so σ1 values are easier to discriminate. Thus, more
explicitly,

Stress-1 = σ1 =

√∑
[f(pij) − dij(X)]2∑

d2
ij(X)

. (3.11)

The summations extend over all pij for which there are observations. Miss-
ing data are skipped. In the typical case of symmetric proximities, where
pij = pji (for all i, j), it suffices to sum over one half of the data-distance
pairs only. Obviously, σ1 = 0 only if dij(X) = f(pij).

Minimizing Stress-1 always requires finding an optimal X in a given
dimensionality m. Moreover, if f is only specified up to certain free param-
eters, then optimal values for these parameters must also be found. This
problem typically is solved by regressing the proximities onto the distances
computed on X. In interval MDS, one uses linear regression, in ordinal
MDS monotone regression (see Section 9.2). The regression yields trans-
formed proximities, f(pij)s, that are “approximated distances” or “d-hats”
(d̂ijs) also referred to as disparities in the MDS-literature.

3.3 Stress Diagrams

Loss functions such as Stress are indices that assess the mismatch of (admis-
sibly transformed) proximities and corresponding distances. Stress is, in a
way, similar to a correlation coefficient, except that it measures the badness-
of-fit rather than the goodness-of-fit. Experienced researchers know that
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FIGURE 3.2. Shepard diagram for MDS solution shown in Fig. 1.5.

correlations can be high or low for various reasons. For example, a correla-
tion can be artificially high because of outliers. It can also be misleadingly
low because the regression trend is not linear. What one usually does to
study such questions is to take a look at the scatter diagram.

Exactly the same approach is also customary in MDS. The most infor-
mative scatter diagram plots proximities on the X-axis against the cor-
responding MDS distances on the Y -axis. Typically, a regression line that
shows how proximities and approximated distances (d̂ijs) are related is also
shown. This plot is known as a Shepard diagram.

Figure 3.2 gives an example. The Shepard diagram exhibits, as open
circles, the similarities of Table 1.3 plotted against the corresponding dis-
tances of Figure 1.5. The filled circles represent the (pij , d̂ij) pairs. They
all lie on a monotonically descending line, as requested by the ordinal MDS
model used to scale these data. The vertical distance of each (pij , dij) point
(open circle) from the (pij , d̂ij) point (filled circle) represents the error of
representation for this particular proximity, eij . The Y -axis of the Shepard
diagram has two labels: distances (dijs) and approximated distances (d̂ijs).

What can be learned from this Shepard diagram? First, it gives an overall
impression of the scatter around the representation function. In Figure 3.2,
one notes that there is quite a bit of scatter around the monotone regression
curve. The vertical distances of the points from the step function (eijs)
are generally quite large, and thus σ1 = .186. Then, one notes that there
are no real outliers, although some points contribute relatively much to
Stress. The most prominent case is the point with coordinates (3.44, 0.82).
Its error or “residual,” which enters the Stress function quadratically, is
−0.877, and the second greatest residual is only 0.636. One finds in Table
1.3 that there are two dissimilarity estimates of 3.44, one for India vs.
France and one for Brazil vs. Egypt. The MDS program keeps track of
each and every proximity and informs us that the large residual is related
to the pair India–France. Hence, this observation is explained worst by
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FIGURE 3.4. A residual plot (scatter
diagram of d-hats vs. distances) for the
MDS solution shown in Fig. 1.5.

the MDS space in Figure 1.5, possibly because it brings in an additional
dimension.

A Shepard diagram is particularly informative in the case of ordinal
MDS. This model requires a monotone representation function f , but its
particular shape is left open. It is often interesting to see which shape it
acquires in scaling real data. [Indeed, this question motivated the invention
of ordinal MDS (see Chapter 17).] In Figures 3.2 and 3.3, we note that the
regression curve is roughly linear, although it shows a number of marked
steps.

Some MDS programs also provide scatter plots of the d̂ijs vs. the corre-
sponding dijs. Figure 3.4 gives an example for the data in Table 1.3. The
points in such a plot scatter around the bisector from the lower left-hand
corner to the upper right-hand corner. If Stress is zero, they all lie on this
bisector; otherwise, they do not. The vertical distance of the points from
the bisector corresponds to the error of approximation, but the horizontal
distances have the same magnitude, |eij |. The outlier discussed above, the
proximity for France vs. India, has coordinates 0.815 on the vertical axis
and 1.69 on the horizontal axis. It lies farthest from the bisector. Generally,
what one studies in such plots is the distribution of the points around this
bisector for possible outliers, anomalies, gaps, and so on.

3.4 Stress per Point

In the previous section, we have looked at how well each proximity pij or
its transformation d̂ij is fitted by the corresponding distance dij . The error
for one particular proximity is the vertical distance between d̂ij and the dij
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TABLE 3.1. Squared error for the solution in Figure 1.5 of the similarity ratings
for 12 nations (Wish, 1971). The last row (and column) contains the average per
row (or column) and is called Stress per point.

Nation 1 2 3 4 5 6 7 8 9 10 11 12 SPP
Brazil 1 – .02 .24 .09 .00 .08 .08 .02 .00 .00 .07 .00 .05
Congo 2 .02 – .01 .07 .00 .03 .00 .04 .01 .00 .00 .05 .02
Cuba 3 .24 .01 – .09 .01 .05 .05 .02 .01 .00 .00 .00 .04
Egypt 4 .09 .07 .09 – .01 .02 .07 .01 .01 .00 .08 .00 .04
France 5 .00 .00 .01 .01 – .23 .21 .17 .01 .02 .01 .01 .06
India 6 .08 .03 .05 .02 .23 – .00 .04 .03 .01 .01 .00 .04
Israel 7 .08 .00 .05 .07 .21 .00 – .04 .00 .00 .00 .02 .04
Japan 8 .02 .04 .02 .01 .17 .04 .04 – .10 .01 .00 .02 .04
China 9 .00 .01 .01 .01 .01 .03 .00 .10 – .00 .00 .06 .02
USSR 10 .00 .00 .00 .00 .02 .01 .00 .01 .00 – .04 .00 .01
U.S.A 11 .07 .00 .00 .08 .01 .01 .00 .00 .00 .04 – .00 .02
Yugoslavia 12 .00 .05 .00 .00 .01 .00 .02 .02 .06 .00 .00 – .01
Stress per point .05 .02 .04 .04 .06 .04 .04 .04 .02 .01 .02 .01 .03

in the Shepard diagram. Instead of looking at a single error only, it may
be more interesting to consider all errors of one object to all others. We
examine the definition of raw Stress in (3.9) more closely. Clearly, raw Stress
is a sum of the squared errors over all pairs of objects. Table 3.1 contains
the squared error for the solution in Figure 1.5 of the similarity ratings for
twelve nations (Wish, 1971). Note that for convenience, this table shows
the squared errors below and above the diagonal, although because of the
symmetry the errors below (or above) the diagonal would suffice. Now, a
simple measure to indicate how badly each individual point is fitted can be
obtained by averaging the squared errors between the current object and
all other objects. We call this measure Stress per point and it is shown in
the last column (and the last row) of Table 3.1. For example, the Stress
per point for France can be obtained by averaging all the squared errors in
the row of France in Table 3.1. Equivalently, the same value is obtained by
averaging column 5 for France in this table. An additional feature of Stress
per point is that their average equals the total Stress. Because Stress per
point is defined on the squared errors, we must square σ1 to compare it
with the average Stress per point. In the previous section, we found that
σ1 = .186, so that σ2

1 = .0346 ≈ .03 is the same value indeed as the element
in the lower right-hand corner of Table 3.1.

Several conclusions can be drawn from this table. First, most points are
fitted rather well by this solution, because their Stress per point is rea-
sonably low. Second, the best fitting points are Yugoslavia and the USSR,
followed by U.S.A., China, and Congo. Third, the worst fitting points are
France and Brazil. When interpreting the solution, this information should
be kept in mind. Apparently, the MDS solution in Figure 1.5 is not very
well able to represent the points for France and Brazil. Their Stress per
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FIGURE 3.5. Bubble plot of fit per point derived from Stress per point of the
similarity nations data of Wish (1971). Big bubbles indicate points with good fit,
small bubbles indicate points with poor fit.

point is relatively high because there is quite some difference between the
distances and the transformed data with all other countries. It can be ver-
ified in Table 3.1 that the high Stress per point for France is caused, in
particular, by high errors of France with India, Israel, and Japan. A high
Stress per point indicates that we cannot be certain about the exact loca-
tion of this point. It may be an indication that an additional dimension is
needed for these points to reduce the error.

To inspect the Stress per point graphically, it is simpler to switch to the
fit per point that is defined as one minus the Stress per point. Generally,
the fit per point is a value between zero and one. Usually, the fit per point
is close to one. In our example, the fit per point varies between .99 for
Yugoslavia and USSR and .94 for France. In Figure 3.5, the fit per point is
expressed by the radius of the bubble representing the point. The centers of
the bubbles are the locations of the points, just as in Figure 1.5. To avoid
too little discrimination in the size of the bubbles, we linearly transformed
the radii such that the worst fitting point (France) has a radius twice as
small as the best fitting point (Yugoslavia). It can be seen in Figure 3.5
that the best fitting points (with the largest bubble) are mostly located
around the edges (with the exception of Brazil) and that the worst fitting
points are located towards the center (such as, for example, France). To
interpret the solution, Figure 3.5 shows immediately which points should
be emphasized in the interpretation because of their good fit per point, and
which points should not be emphasized because of their bad fit.
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3.5 Evaluating Stress

How should one evaluate the Stress of a given MDS solution? One approach
is to study the Shepard diagram. It shows the number of points that have
to be fitted, the optimal regression line, the size of the deviations, possible
outliers, and systematic deviations from the requested regression line. Thus,
Shepard diagrams are highly informative. Nevertheless, it is customary to
condense all of this information into a single number, Stress.

In ordinal MDS, any matrix of proximities pij (i < j) can be represented,
with zero Stress, in m = n− 2 dimensions (see Chapter 19). However, such
perfect solutions are not desired, as we saw above. Therefore, one seeks an
MDS representation with considerably fewer dimensions. The problem is
how to choose the “proper” dimensionality. Scaling with too few dimensions
may distort the true (reliable) MDS structure due to over-compression or
may lead to technical problems (see Chapter 13). Being too generous on
dimensions may, on the other hand, blur the MDS structure due to over-
fitting noise components. If information is available about the reliability of
the data, one should choose a dimensionality whose Stress corresponds to
the random component of the data. Inasmuch as this information is rarely
given, one has to resort to other criteria.

Simple Norms for Stress
Beginners in multivariate data analysis typically ask for simple (often overly
so) norms. In MDS, a number is requested so that whenever Stress is less
than that benchmark value, the MDS solution should be considered ac-
ceptable. Guttman (in Porrat, 1974) proposes such a norm for a coefficient
closely related to Stress: he required that the coefficient of alienation K
should be less than 0.15 for an acceptably precise MDS solution. He later
added that what he had in mind when he made this proposal were “the
usual circumstances”(Guttman, personal communication). [Note that here
and in the following, we are considering ordinal MDS only.]

It is easy to see that such circumstances are important. Any global fit
measure will be low, for example, when the number of points n is small
relative to the dimensionality of the space, m. Guttman thus assumed for
the K < 0.15 rule that n “clearly” exceeds m (as another rule of thumb, at
least fourfold: Rabinowitz, 1975; Kruskal & Wish, 1978). Conversely, if n is
much larger than m (more than 10 times as large, say), higher badness-of-fit
values might also be acceptable.

Another rough criterion is to pick that solution “for which further in-
crease in [m] does not significantly reduce Stress” (Kruskal, 1964a, p. 16).
To find that m, one should first compute MDS solutions for different di-
mensionalities (e.g., for m = 1, 2, . . . , 5) and then plot the resulting Stress
values (on the Y -axis) against the m-values (on the X-axis). If the points
in this diagram are connected by a line, starting at m = 1 and ending at
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m = max, one obtains a scree plot. (An example of a scree plot is given in
Figure 4.5.)

The curve in a scree plot is generally monotonically decreasing, but at an
increasingly slower rate with more and more dimensions (convex curve).2

What one looks for is an elbow in this curve, a point where the decrements
in Stress begin to be less pronounced. That point corresponds to the di-
mensionality that should be chosen. The rationale of this choice is that the
elbow marks the point where MDS uses additional dimensions to essentially
only scale the noise in the data, after having succeeded in representing the
systematic structure in the given dimensionality m.

For the Stress-1 coefficient σ1 using ordinal MDS, Kruskal (1964a), on
the basis of his “experience with experimental and synthetic data” (p. 16),
suggests the following benchmarks: .20 = poor, .10 = fair, .05 = good,
.025 = excellent, and .00 = perfect.3 Unfortunately, such criteria almost
inevitably lead to misuse by suggesting that only solutions whose Stress
is less than .20 are acceptable, or that all solutions with a Stress of less
than .05 are good in more than just a formal sense. Neither conclusion is
correct. An MDS solution may have high Stress simply as a consequence
of high error in the data, and finding a precise representation for the data
does not imply anything about its scientific value.

Obviously, one needs more systematic insights into how Stress depends
on the number of points, the dimensionality of the MDS solution, the kind
and amount of error in the proximities, the type of the underlying true
configuration, and so on. Computer simulation studies can help to answer
such questions. In the following, we consider some such studies.

Stress for Random Data
The most extreme case that can be studied is concerned with the “nullest
of all null hypotheses” (Cliff, 1973), that is, with the question of whether
the Stress for some given data is significantly lower than for random data.
Stenson and Knoll (1969) and Klahr (1969) compute the distribution of
Stress values for ordinal MDS under H0 as follows: (a) pick some values
for n, the number of the points, and m, the dimensionality of the MDS
space; (b) randomly insert the numbers 1, 2, 3, . . . ,

(
n
2

)
into the cells of a

lower-half proximity matrix; (c) use ordinal MDS on these proximities and

2An exception to that rule can result, for example, when the MDS computer program
does not succeed in finding the optimal solution for some dimensionality. The scree test
can, therefore, occasionally be useful to identify such suboptimal solutions.

3A Stress value of .20, say, is often written as 20%. Why this language became popular
is not entirely clear. However, if one replaces Stress by squared Stress, then one can show
that, for example, 20% (squared) Stress means that 80% of the variance of the d-hats is
explained by the distances (see Section 11.1).
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compute Stress; and (d) repeat the above for many permutations of the
data, so that a distribution of Stress values results.

These simulations show that if n grows, then expected Stress also grows
and its variance becomes smaller; if m grows, then expected Stress becomes
smaller. If the data contain ties, the primary approach leads to lower Stress
(because ties are optimally broken) than the secondary (where ties in the
data must be preserved in the distances); the more ties there are, the larger
the difference.

Spence and Ogilvie (1973) conduct a similar investigation for n =
12, 13, . . . , 48 points and m = 1, 2, . . . , 5 dimensions, a useful range for
many practical purposes. Figure 3.6 shows the average Stress curves for
various n values, using ordinal MDS. The curves indicate again that Stress
depends on n and m. One also notes that each additional dimension reduces
Stress increasingly less. The confidence intervals of the expected Stress val-
ues are quite narrow, as the standard deviations of the Stress distributions
in Figure 3.7 show. The standard deviations are so small that lowering the
curves by about 0.03 should result in reliable cutoff values for testing this
H0.

Spence (1979) has shown that one can closely approximate the curves
in Figure 3.6 and curves interpolated therein for n = 12, 13, . . . , 48 by the
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formula

σ1 = .001(a0 + a1m + a2n + a3 ln(m) + a4
√

ln(n)), (3.12)

where a0 = −524.25, a1 = 33.8, a2 = −2.54, a3 = −307.26, and a4 =
588.35. A comparison of the results with those from Stenson and Knoll
(1969) shows very good agreement, so that formula (3.12) can be used
to estimate expected “random” Stress for the range n = 10, . . . , 60 and
m = 1, . . . , 5.

We show that the Stress values in all real-data MDS applications dis-
cussed in this book lie definitely under the values expected for H0. This
also shows that this kind of null hypothesis represents a very small hurdle
indeed. On the other hand, if one does not even succeed in rejecting this
H0, then it seems unreasonable to study the MDS representation further.

The Hefner Model
Simulations that study the distribution of Stress for random data (of some
sort) are useful from a data-analytic point of view. They do not attempt
to simulate an MDS model in the sense of a psychological theory about
similarity judgments. If MDS is used in this way, then one also needs a
more explicit model for what is meant by the “random” component of the
data.

Consider the similarity-of-nations example in Section 1.3. We may want
to assume that a respondent arrives at his or her overall similarity judg-
ment by first computing the distance of two nations in his or her system
of dimensions or perceptual space, and then mapping this distance into the
response format provided by the researcher. Moreover, we could postulate
that the perceptual space is not static, but that its points “oscillate” about
their characteristic position over time. The oscillations could be due to un-
systematic variations in attention, fluctuating discrimination thresholds,
activation and decay processes on the memory traces, and so on. Under
these conditions, the respondent would compute a distance at each point in
time, but these distances would not fit together in a plane, because each dis-
tance depends on the particular positions of the points at time t, and these
positions are not constant over time. An observed proximity, after trans-
formation by f , is thus conceived as f(pij) = d

(e)
ij =

∑m
a=1[x

(e)
ia −x

(e)
ja )2]1/2,

where x
(e)
ia = xia + eia and eia is a value from the random distribution of

point i.
For the “error” terms eia, one can postulate a particular distribution

over time. A commonly used assumption is that the points oscillate sym-
metrically in all directions of the MDS space around their characteristic
(true) locations. It is usually assumed that these distributions are normal,
of equal size, and uncorrelated among each other, so that eia is modeled as
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FIGURE 3.8. Expected Stress for distances in evenly scattered 2D (left panel)
and 3D (right panel) configurations of 36 points with random error ranging from
.0 to ∞, when represented in 1D through 5D (Spence & Graef, 1974).

a value sampled randomly from N(0, σ2). These definitions constitute the
Hefner (1958) generalization of the Thurstone (1927) Case-V model.

Wagenaar and Padmos (1971) and Spence and Graef (1974) report sim-
ulation studies based on the Hefner model. They randomly pick n points
from within a unit (hyper-)square or (hyper-)disk, and add error com-
ponents sampled from N(0, σ2) to each of its coordinates. This leads to
error-affected distances that are subsequently taken as proximities.

In contrast to the study by Spence and Ogilvie (1973) described above,
this simulation allows one to specify the true (underlying) MDS space as
the point configuration used in computing the proximities. Wagenaar and
Padmos (1971) simulate this case for n = 12, 18, 26, 36; in m = 1, . . . , 4
dimensions; and with error variances of σ = 0.0, 0.0625, 0.125, 0.25, and
∞ (i.e., pure random data).

Figure 3.8 shows the Stress curves obtained for proximities computed
from 36 points in 2D and 3D MDS spaces, respectively, and represented
in MDS spaces of one to five dimensions. One notes that all Stress curves
are convex downwards. The upper curves in both diagrams almost have
the same shape: they result from the condition of pure error. For the other
conditions, we note elbows in the Stress curves for MDS dimensionalities of
2 and 3, respectively, that is, for the true dimensionalities of the underlying
MDS spaces. These elbows are most pronounced in the error-free case, but
are washed out with more and more error.
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How large is the error component in these studies? One can check, by
computer simulation, that the absolute difference of an error-affected dis-
tance (computed in an evenly scattered configuration of points within a unit
disk) and the corresponding true distance, |d(e)

ij −dij |, can be expected to be
somewhat larger than the σs utilized by Spence and Graef (1974). That is,
for example, for m = 2 and σ = 0.25, one finds that the expected absolute
difference is 0.27, whereas for σ = 0.0625 and m = 3 it is 0.07. An error
of judgment of about 25% does not seem excessive for many data in the
social sciences. This may explain why elbows in scree plots are virtually
never observed in practice, because, for σ = 0.25 or smaller σs, they are
not obvious in Figure 3.8 either.

For real data, Spence and Graef (1974) propose comparing the Stress
values for MDS solutions in different dimensionalities with their simulation
curves in order to determine both the portion of error as well as the true
dimensionality of the observations.

If one has an independent estimate of the error component in the data,
the true dimensionality may be found by identifying that simulation curve
among all those for the given error level that most closely matches the
Stress curve for the given data. If the true dimensionality is known, one can
proceed analogously for the error level. The conclusion depends, however,
on the validity of the simulated error model.

Taking a closer look at the Hefner model, one notes that the normal
error distribution is only a convenient approximation, because it puts no
restrictions on the range of the point oscillations. Apart from that, how-
ever, the Hefner model has some interesting properties. It implies that
error-affected distances tend to over-estimate true distances, because, by
expanding the definition of d

(e)
ij , E[(d(e)

ij )2] = d2
ij +2mσ2. Indeed, the error-

affected distances are distributed as the noncentral χ2 distribution (Suppes
& Zinnes, 1963; Ramsay, 1969). Thus, a true distance of zero will only be
over-estimated; small true distances can be expected to be more often over-
than under-estimated; and the larger the true distance, the more balanced
over- and under-estimation. This is a plausible model that prevents distance
estimates from becoming negative.

Empirically, however, one often finds that dissimilarity judgments for
very similar objects are more reliable than those for very dissimilar ob-
jects. Ramsay (1977), therefore, suggests making the error on the distances
proportional to their size. In one particular model, the true distances are
multiplied by a random factor whose logarithm has a normal distribution
with mean 0 and standard deviation σ. This leads to a log-normal distri-
bution for the error-affected distances where: (a) d

(e)
ij ≥ 0; (b) the larger

the true distance, the larger the noise; and (c) error-affected distances are
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more likely to be over-estimated than under-estimated.4 These properties
seem to hold for many empirical contexts. However, what remains less clear
is how this error model could be conceived in terms of what is going on in
the psychological space.

Recovering Distances Under Noise
Simulation studies with error-perturbed distances do not assess how pre-
cisely the true distances are recovered by ordinal MDS. This question is
investigated in the early days of MDS by Young (1970), Sherman (1972),
Isaac and Poor (1974), and Cohen and Jones (1973), among others. Young
(1970) proceeds as follows. (a) A true configuration with dimensionality t
is defined by randomly sampling point coordinates. This yields true dis-
tances and, after adding error to the point coordinates, error-perturbed
distances, as above. (b) The error-perturbed distances are monotonically
transformed. (c) The resulting values are taken as data for an ordinal MDS
procedure. (d) An MDS representation is then assessed with respect to the
degree to which it recovers the true distances.

Young’s simulations for different numbers of points, error levels, and
monotone transformations—always setting m = t, so that the MDS analysis
is in the true dimensionality—show that the precision of recovered distances
grows with the number of points, and decreases with a higher error level
in the data and with larger dimensionality of the solution space. This is
intuitively plausible, because the isotonic regions in ordinal MDS shrink
dramatically as a function of the number of points. Indeed, in the distances-
among-cities example of Chapter 2, we found that the distances of the
original map were almost perfectly reconstructed in a metric sense by the
ordinal 2D MDS solution.

The effect of error on recovery precision is also easy to understand. More
error simply reduces the correspondence of true distances and proximi-
ties. However, the harmful effect of error on recovery decreases with more
points, because, with many points, the error-affected distances randomly
over-estimate and under-estimate the true distances in so many ways that
the effect of error on the configuration is balanced out and the solution
essentially reconstructs the true distances. Stress, on the other hand, in-

4This error model, and related ones, is incorporated into the program Multiscale
(see Appendix A). Multiscale does not minimize a loss function such as Stress. Rather,
it tries to find that configuration X which, given a particular error model, maximizes
the likelihood to yield d

(e)
ij s that correspond to the observed dissimilarities (maximum

likelihood estimation). Given that the assumed error model holds, this allows one to
determine confidence regions for the points and to make a number of inferential decisions,
such as one on the proper dimensionality. Maximum likelihood MDS methods also exist
for the Hefner error model (Zinnes & MacKay, 1983) and for ordinal MDS (Takane &
Carroll, 1981).
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creases when the number of points goes up, other conditions being equal!
Cox and Cox (1990) even showed, by simulation, that Stress is an almost
perfectly linear function of noise, given some special circumstances such as
m = t = 2, but independently of the spatial pattern of points (ranging
from extremely regular patterns through complete spatial randomness to
cluster-like aggregations of points) and also independently of n. Cox and
Cox (1992) report similar results for m > 2, but without such a strong
linear relation between Stress and noise.

These findings have important practical implications. Global fit indices
such as Stress are closely related to the proportion of error in the data. They
are largely useless as measures of how well an MDS solution represents the
“true” structure of the data. Therefore, it is quite possible that one obtains
an MDS representation that has high Stress but that, nevertheless, is highly
reliable over replications of the data. This means that a given Stress value
should always be evaluated against some rough estimate of how much error
is contained in the data.

An interesting further investigation on recovering true MDS spaces by
means of ordinal MDS is presented by Sherman (1972), who studied, in par-
ticular, the effects of over- and under-compression. These notions refer to
the question of whether the MDS dimensionality (m) is smaller or greater
than the dimensionality of the space from which the proximities were de-
rived (t). Sherman finds that picking the wrong dimensionality (m �= t)
has a pronounced effect: although Stress goes down monotonically when m
goes up, the metric determinacy is best when m = t and decreases with
the extent of both over- and under-compression. There are slight differ-
ences though: under-compression, especially when there are many points
in a relatively low-dimensional space, is somewhat less serious. This again
shows that lower Stress (as a consequence of higher dimensionality) does
not imply better metric recovery.

Summary on Stress
Stress is a badness-of-fit measure that depends, as we saw, on many factors.
Some of them are:

• n, the number of points: the higher n, the higher Stress in general;

• m, the dimensionality of the MDS space: the higher m, the lower
Stress;

• the error in the data: more error means higher Stress;

• the number of ties in the data (for ordinal MDS with weak mono-
tonicity): more ties allow for lower Stress in general;

• the number of missing data: more missing data lead to lower Stress,
in general;
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TABLE 3.2. Average recovery coefficients, r2s, for proximities related to true
distances by pij = dk

ij , under choice of different MDS models (Green, 1974).

Power k Ratio MDS Interval MDS
1.2 .99 .99
2.2 .94 .99
3.2 .85 .97
4.2 .78 .96
5.2 .72 .94

• the MDS model: interval MDS generally leads to higher Stress than
ordinal MDS, particularly if f is markedly nonlinear and/or has major
steps.

All of these criteria are mechanical ones. They are not sufficient for eval-
uating Stress, nor are they always important. Kruskal (1964a) writes: “A
second criterion lies in the interpretability of the coordinates. If the m-
dimensional solution provides a satisfying interpretation, but the (m + 1)-
dimensional solution reveals no further structure [our emphasis], it may be
well to use only the m-dimensional solution” (p. 16). It is in this sense
that Guttman (personal communication) called Stress a mere “technical
measure.” A measure of scientific significance, in contrast, would take into
account the degree to which an MDS solution can be brought into a mean-
ingful and replicable correspondence with prior knowledge or with theory
about the scaled objects.

3.6 Recovering True Distances by Metric MDS

So far, we have investigated the performance of ordinal MDS only. In metric
MDS, many of the above questions can be answered rather directly. For
example, for interval MDS and error-free proximities, increasing the number
of points has no effect on the goodness of recovery. If we scale under t = m,
we can expect that Stress is zero for any n. Moreover, the correlation of
the true and the recovered distances should be one. In ordinal MDS, in
contrast, we cannot easily infer from the obtained Stress value how high
the metric recovery is. This depends, among other things, on n, because the
number of points is related to the size of the isotonic regions. If the data
are not error-free, then interval MDS succeeds in representing somewhat
more error variance in general when n is small, so that the metric recovery
is likely to be less than perfect. If n grows, then both Stress and metric
recovery go up, just as in ordinal MDS. Thus, it can be seen that the
behavior of metric MDS is quite predictable without simulation studies.

The situation is not as easily diagnosed if we ask how well interval MDS
does if the true relation between proximities and distances is not linear.
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FIGURE 3.9. Recovery performance of MDS under choice of different models,
number of dimensions, and distortions on proximities (after Weeks & Bentler,
1979).

Some answers are given by Green (1974). He selects n = 10, 20, and 30
points in t = 2 and t = 3 dimensions. Distances were computed and trans-
formed into proximities by the function pij = dk

ij , with k = 1.2, 2.2, 3.2,
4.2, and 5.2. Interval and ratio MDS were used to recover the underlying
configurations from these proximities. The recovery coefficients in Table
3.2 show that ratio MDS is quite robust against such monotonic distor-
tions of the function relating distances and proximities, as long as they
are not extremely nonlinear. Interval MDS is almost unaffected by these
(appreciable) nonlinear transformations.

Green (1974) demonstrates further that if we first substitute ranking
numbers for the pij values, and then use ratio or interval MDS on these
numbers, recovery is even better. The idea of rank-interval MDS was stud-
ied in more detail by Weeks and Bentler (1979). They used the following
parameters for their simulations: n = 10, 20, 30; t = 1, 2, 3, 4; and e = 0.25,
0.75, 2.0, defined as the proportion of the error variance to the variance of
the true distances. The proximities were derived from the error-perturbed
distances by (a) pij = d

(e)
ij , (b) pij = [d(e)

ij ]4 , (c) pij = [d(e)
ij ]1/4, or (d)

pij = rank[d(e)
ij ]. Condition (d) is Green’s ranking number substitution,

and condition (a) simply means that the error-perturbed distances were
taken directly as data, without any further distortions. These data were
represented by both ordinal and interval MDS. The dimensionality of the
solution space, m, varied from 1 to 6.

Figure 3.9 shows the main result of the study. The various curves are
defined by the average values of the (squared) metric determinacy coeffi-
cient under the different conditions. As expected, all curves drop as t = m
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goes up, because the higher the dimensionality, the more error variance can
be represented by MDS, which negatively affects the metric determinacy
of the solution. Ordinal MDS leads to the same recovery curve under all
conditions. For (a), interval MDS does slightly better than ordinal MDS,
but its recovery performance is definitely worse than that of ordinal MDS
under the nonlinear distortions (b) and (c), as expected. However, with the
ranking number substitutions, interval MDS leads to virtually the same
recovery curve as ordinal MDS, as one can see from comparing the two
lines with the solid black points in Figure 3.9. (Note that ranking number
substitutions make all of the data sets used by Weeks and Bentler (1979)
equivalent.) This replicates the finding of Green (1974). The “linearizing”
effect of ranking number substitutions was also known to Lingoes (1965),
who used this method in constructing initial configurations for ordinal MDS
procedures.

Two conclusions can be derived from these results. (1) If proximities and
distances are related in a linear way, then the metric information contained
in the data is only marginally more powerful than the ordinal information
contained in the data for recovering the true distances. (2) If proximities
and data are related in a monotonic way, then ordinal and rank-interval
MDS can be expected to lead to essentially the same solutions. This is
important insofar as metric MDS methods are more robust in a numeri-
cal sense; that is, they generally are more likely to yield globally optimal
solutions and are less likely to produce degenerate solutions (see Chapter
13).

3.7 Further Variants of MDS Models

The generic model relation (3.4) leaves room for many variants of MDS
models not discussed so far. The most obvious way to generate such models
is to specify the representation function f in different ways. There are
many possibilities, and some of them are considered in Chapter 9. Further
possibilities arise out of considering particular patterns of missing data. A
whole model class, called unfolding, is discussed at length in Chapters 14
to 16. Then, one could partition the proximities into subsets, and specify
independent fs or even different fs for each such subset rather than just
one single f for all proximities as in (3.4).

At this point, we need not go into such models. We introduce, however,
one generalization of (3.4) that allows us to introduce some notions useful
for further classifying MDS models. Assume that we have more than one
proximity for each pair (i, j). Such a case can arise, for example, if the data
collection is replicated K times or if there are K persons, each giving rise
to one set of proximities. In such a case, the proximities can be given three
indices, pijk (i, j = 1, . . . , n; k = 1, . . . , K). This means that they can be
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FIGURE 3.10. Symbolic representation of a three-way proximity array; r = 1
indicates replication 1.

collected in a three-way data array, as illustrated in Figure 3.10. This array
can be conceived as a “deck” of K proximity matrices, where each “card”
comes from one replication or person.

One could analyze such data by scaling each replication separately and
then comparing or aggregating the different MDS solutions (see Chapter
20), or by first averaging the proximities over the replications and then
scaling the aggregated scores. Another possibility is the following model,

f : pijk → dij(X), (3.13)

for all pairs (i, j) and all ks, given that pijk is nonmissing. Note that this
model relation differs from (3.4) only with respect to the proximities: it
maps K proximities pijk (rather than just a single pij) into just one distance
dij .

The three-way proximity block in Figure 3.10 suggests further possibili-
ties for MDS models. Carroll and Arabie (1980) developed a taxonomy for
MDS models according to which the three-way data in Figure 3.10 would
also be characterized as two-mode data: “A mode is defined as a particular
class of entities. . . . Entities could be, for example, subjects, stimuli, test
items, occasions, experimental conditions, geographical areas, or compo-
nents of a ‘multiattribute stimulus’. . . . A K-way array is defined as the
Cartesian product of a number of modes, some of which may be repeated.
For example, an array associated with three-way multidimensional scaling
might be of the form A×B ×B, where A denotes subjects, and B stimuli”
(p. 610). Hence, the “ways” of a proximity array refer, in a sense, to the
number of subscripts of its proximities, whereas the “modes” distinguish
whether these ways are qualitatively different ones.

There exist particular MDS models for three-way two-mode proximities,
especially those where the “third” way denotes different individuals (see
Chapters 21 and 22). There are also special models for two-way two-mode
proximities, where one mode represents individuals and the other denotes
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choice objects (see Chapter 17). Typical MDS data are, however, two-way
one-mode proximities such as item intercorrelations or direct similarity
ratings.

3.8 Exercises

Exercise 3.1 Consider the configuration in Figure 3.1. Compute the Eu-
clidean distances among its n = 6 points.

(a) From these distances, generate dissimilarities by adding random error
to each value. That is, δij = dij +eij , where eij is a value taken from a
normal distribution N(0, σ). (Alternatively, add random error to the
point coordinates and then compute the distances. This may be easier
to do within your statistics package.) Use different σs to simulate data
with small, medium, and large error components. Run ordinal MDS
with these dissimilarities. Compare the MDS solutions to Figure 3.1
and check the ability of ordinal MDS to recover the dijs from the δijs.

(b) Repeat (a) using interval MDS.

(c) Repeat with n = 20 and n = 40 points that you choose at random
in the plane shown in Figure 3.1, that is, with points (x, y), where
x, y ∈ [−4,+4].

Exercise 3.2 Suppose that the solution of Exercise 2.4 is given by the co-
ordinates

Dim 1 Dim 2
Red 0 3
Orange 0 0
Green 4 0
Blue 6 6

(a) Make a scatter plot of these points. Compute the distances between
the points.

(b) Summarize the results in a table that has as its rows the six pairs of
colors. Then, add a column that contains the proximity data for these
pairs (see Exercise 2.4). Add a second column with the corresponding
distances, computed from the table above. Finally, order the rows so
that the row with the smallest proximity value is on top, and the
row with the largest proximity at the bottom. Does the rank-order of
the proximities match the rank-order of the distances? What do you
conclude about the quality of the MDS solution?
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Exercise 3.3 Consider data from 13 stock market indices of 784 daily mea-
sures from January 1, 1995, to December 31, 1997 (Groenen & Franses,
2000). From these data, the so-called return values are derived by tak-
ing the difference of the log of two subsequent index values. A correlation
matrix of these stock market indices is given below.

Stock
market 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Brus 1.00
2 CBS .62 1.00
3 DAX .64 .69 1.00
4 DJ .29 .36 .21 1.00
5 FTSE .52 .69 .54 .38 1.00
6 HS .43 .40 .50 .11 .35 1.00
7 Madrid .51 .61 .57 .31 .59 .33 1.00
8 Milan .49 .50 .60 .15 .41 .37 .47 1.00
9 Nikkei .25 .28 .29 .04 .24 .33 .24 .23 1.00

10 Sing .34 .26 .36 .05 .25 .67 .26 .29 .29 1.00
11 SP .28 .35 .20 .96 .37 .09 .29 .14 .05 .04 1.00
12 Taiwan .04 .05 .07 -.03 .03 .15 .05 .07 .10 .19 -.03 1.00
13 VEC .52 .71 .62 .33 .63 .37 .61 .45 .25 .27 .32 .04 1.00

Now, the question is how different (or similar) the fluctuations are among
the indices of the 13 stock markets.

(a) Use a computer program to do an interval MDS in 1 to 6 dimensions.
Make a scree plot of the Stress values. Motivate your choice for the
dimensionality of the solution.

(b) Can the Stress values be compared to the ones obtained for random
data (see Figure 3.6) and the Hefner model? Explain why.

(c) Inspect Stress diagrams of your solution. What can you say about
the fit? Do all points fit equally well?

(d) Interpret the solution. Can you distinguish groups of stock markets
that have similar fluctuations?

(e) In what stock markets should you invest your money, if you want to
spread the risks of your investment? Motivate.

(f) Redo the analysis with an ordinal transformation. Is the resulting
configuration different? Compare the Shepard plots or the transfor-
mation plots. Is the difference in Stress small or large? Explain why
this is so.

Exercise 3.4 Use the solution you like best from the previous exercise and
compute the Stress per point and the fit per point. Produce a bubble plot
that shows the fit per point either by hand or by a graphics program. Which
are the worst fitting points? Which are the best fitting points? Interpret
the solution again. Is it different from your first interpretation?
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Exercise 3.5 Run an ordinal MDS analysis with your MDS program on the
data from Table 2.3. The Stress of the resulting MDS solution is most likely
not equal to zero even though we know that the distances were measured
on a flat map.

(a) Explain why Stress is not zero.

(b) Try to get your MDS program to come up with a smaller Stress value.

(c) Compare the solution generated under the program’s default settings
with any one that has an even lower Stress. What do you conclude?




