
13
Special Solutions, Degeneracies, and
Local Minima

In this chapter, we explain several technical peculiarities of MDS. First,
we discuss degenerate solutions in ordinal MDS, where Stress approaches
zero even though the MDS distances do not represent the data properly.
Then we consider MDS of a constant dissimilarity matrix (all dissimilar-
ities are equal) and indicate what configurations are found in this case.
Another problem in MDS is the existence of multiple local minima solu-
tions. This problem is especially severe for unidimensional scaling. For this
case, several strategies are discussed that are less prone to local minima.
For full-dimensional scaling, in contrast, it is shown that the majorization
algorithm always finds a globally optimal solution. For other dimensional-
ities, several methods for finding a global minimum exist, for example, the
tunneling method and distance smoothing.

13.1 A Degenerate Solution in Ordinal MDS

In the various MDS applications discussed so far in this book, we assumed
that the loss function employed to find the MDS configuration X would
actually work in the desired sense. In particular, a low Stress value was
interpreted as an index that the given proximities were well represented by
the distances of X. But is that always true? In Section 3.2, we noticed, for
example, that if one minimizes raw Stress, a trivial solution is possible: if X
is made smaller and smaller over the iterations, raw Stress can be arbitrar-
ily reduced, even though proximities and distances are not systematically
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TABLE 13.1. Correlations of some KIPT subtests of Guthrie (1973). The lower
triangular elements contain the correlations, the upper triangular the rank-order
of the correlations in decreasing order.

Subtest np lvp svp ccp nr slp ccr ilr
Nonsense word production (np) - 9 4 1 6 19 10 12
Long vowel production (lvp) .78 - 1 7 5 21 20 22
Short vowel production (svp) .87 .94 - 3 2 17 16 23
Consonant cluster production (ccp) .94 .83 .90 - 7 14 11 16
Nonsense word recognition (nr) .84 .85 .91 .83 - 17 15 18
Single letter production (slp) .53 .47 .56 .60 .56 - 13 16
Consonant cluster recognition(ccr) .72 .48 .57 .69 .59 .62 - 8
Initial letter recognition (ilr) .66 .45 .44 .57 .55 .57 .82 -

related. Therefore, one has to avoid this outcome (e.g., by using normal-
ized Stress as a loss criterion), because it may—and usually does—lead to
a pseudo solution that does not represent the data in the desired sense.

MDS configurations where the loss criterion can be made arbitrarily small
irrespective of the relationship of data and distances are called degenerate
solutions of the particular loss function. They can be avoided, in general,
by imposing additional constraints onto the loss function. One example was
shown above for raw Stress, where the constraint is a normalization of raw
Stress or the requirement that X must not shrink.

In ordinal MDS, there exist further degenerate solutions, even when using
normalized Stress. These solutions arise for particular data. Consider an
example. Table 13.1 presents a matrix of correlation coefficients on eight
subtests of the Kennedy Institute Phonics Test (KIPT), a reading skills
test (Guthrie, 1973). If we scale these data by ordinal MDS in a plane,
we obtain the configuration shown in Figure 13.1a. There are just three
groups of points. One contains the subtests NP, LVP, SVP, CCP, and NR
in a very tight cluster in the upper right-hand corner; a second contains
CCR and ILR, also very close together in the upper left-hand corner; finally,
point SLP is clearly separated from both of these clusters, with essentially
the same distance to either one of them. We find, furthermore, that the
MDS solution appears to be almost perfect, because its Stress value is
practically equal to zero (i.e., smaller than the stopping criterion for the
MDS algorithm).

The Shepard diagram in Figure 13.1b reveals, however, some peculiari-
ties. The data, which are relatively evenly distributed over an interval from
r = .44 to r = .94 (see Table 13.1), are not represented by distances with a
similar distribution but rather by two clearly distinct classes of distances.
In fact, the MDS procedure maps all correlations r ≥ .78 into almost the
same small distance, and all correlations r < .72 into almost the same
large distance. Even though the resulting step function is perfectly admis-
sible within ordinal MDS, we would probably be reluctant to accept it as a
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FIGURE 13.1. Ordinal MDS solution (a) and Shepard diagram (b) for correla-
tions in Table 13.1.

sensible transformation of the empirical data, because the transformation
simply dichotomizes our data. Using ordinal MDS does not mean that we
are indifferent to which monotonic function is chosen as being optimal for
the procedure. For our correlations in Table 13.1, it appears reasonable
to assume that their differences are also meaningful to some extent, even
though their order relations may be more reliable. Hence, we should in-
sist that the correlations be mapped into distances by a more smoothly
increasing monotone function. The regression line in the Shepard diagram
could then be approximated by a parametric function, for example, a power
function or a monotone spline. However, the exact type of the regression
function is not known a priori. Otherwise, we would simply choose it and
specify a metric MDS model.

On closer analysis, one finds that the solution in Figure 13.1 does not
only have an odd transformation function, but it also possesses a pecu-
liar relationship to the data. We can see this as follows. Table 13.1 has
been arranged so that the subtests are lumped together into three blocks,
where one cluster consists of only one element, SLP. This reveals that: (1)
the five subtests in the block {NP, . . . , NR} correlate higher with each
other than with any subtest in the other blocks, CCR, ILR, or SLP; the
lowest within-block correlation is r(NR,LVP) = .78, but the highest corre-
lation with any other subtest is r(NR,CCR) = .72; (2) for the block {CCR,
ILR}, the within-block correlation is r(CCR, ILR) = .82, which is higher
than any of the between-block correlations; (3) the same holds trivially
for the block {SLP}, where r(SLP, SLP) = 1.00. Because all correlations
r ≥ .78 are mapped into (almost) the same very small distance and all
r < .78 into (almost) the same much larger distance, the MDS procedure
shrinks all within-block distances to almost zero and makes all between-
block distances almost equally large. This represents a formal solution to
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TABLE 13.2. The rank-order of KIPT subtests in the upper half, the optimal
disparities in ordinal MDS in the lower half.

Subtest np lvp svp ccp nr slp ccr ilr
np - 9 4 1 6 19 10 12
lvp 0 - 1 7 5 21 20 22
svp 0 0 - 3 2 17 16 23
ccp 0 0 0 - 7 14 11 16
nr 0 0 0 0 - 17 15 18
slp 1 1 1 1 1 - 13 16
ccr 1 1 1 1 1 1 - 8
ilr 1 1 1 1 1 1 0 -

the MDS problem, because it reduces the loss function to a very small value
indeed—whether or not the within-block and the between-block distances,
respectively, are ordered as the data are! The only aspect of the data that
is properly represented, therefore, is that between-block distances are all
larger than within-block distances.

It is not difficult to see why Stress is so small in the example above. The
lower half of Table 13.2 shows the optimal disparities. One notes that as
long as the ranking number in the upper half of the matrix is 9 or smaller,
the disparities are all zero, and for rank-order 10 or larger, the disparities
are all one. These disparities perfectly match the rank-order information of
the data. Ordinal MDS assigns the subtests to three clusters. The within-
cluster disparities are zero, so that all points within the cluster have the
same coordinates and thus zero distance. Between the cluster points, the
distances should be one.

This type of degeneracy can be expected with ordinal MDS when the
dimensionality is high compared to the number of objects. It all depends,
though, on how many within-blocks of zero exist. In our example, we have
three blocks of zero disparities (counting SLP as one cluster). With four
within-blocks of zeros, one obtains four clusters for which a perfect solution
exists in three dimensions, and so on. The only information that this ordinal
MDS solution correctly represents is the partitioning of items in clusters.

13.2 Avoiding Degenerate Solutions

The general solution to degeneracy is to impose stronger restrictions onto
the function that maps data into distances. In many instances, a degenerate
solution occurs because there are not enough constraints to avoid it. In
Table 9.1, we ordered the transformations from strong to weak. Because
an ordinal transformation is the weakest possible form of transformation,
we can choose any of the stronger transformations as an alternative. We
have applied two stronger transformations to the data in Table 13.1, a
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FIGURE 13.2. Solution of linear MDS with intercept (a) on correlations
(σn = .0065) in Table 13.1 and the transformation plot (b), and the solution
of MDS with monotonic spline (one interior knot, of order 2, σn = .0054).

linear transformation (with intercept) and a spline transformation (with
one interior knot and order 2). The results are in Figure 13.2. Both MDS
solutions fit well (interval MDS σn = .0065, monotone spline σn = .0054),
and both, of course, map the correlations smoothly into distances.

Interval scaling of the data is not the only possibility for arriving at a
reasonable MDS configuration when the data possess the peculiar block
pattern discussed above. Indeed, any kind of metric representation of the
data prevents degenerate solutions. The transformation could also be de-
fined, for example, by d̂ij = a + b · exp(δij). Depending on the context,
such a model may be more attractive a priori, because it specifies a theory
about the relation of data and distances that is more precise than to admit
just any monotone mapping.
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13.3 Special Solutions: Almost Equal
Dissimilarities

An interesting special case of MDS is concerned with equal dissimilarities.
By the constant dissimilarity case we mean that δij = c, for all i, j, with
c > 0.1 We may regard these data as null-data: the differences between all
pairs of objects are the same.2 If we do a ratio MDS on these dissimilarities,
the solution has a particular pattern. Consider a simple example of a 3× 3
dissimilarity matrix with all dissimilarities equal to 1. An MDS solution
with σn = 0 in two dimensions is obtained by placing the points on the
corners of an equilateral triangle. It is not hard to extend this result to a
solution of a 4×4 constant dissimilarity matrix in three dimensions, where
a perfect solution consists of the corner points of a regular tetrahedron (a
three-sided pyramid, all sides of equal length). Such a figure is called a
simplex .3 The perfect solution for a general n × n constant dissimilarity
matrix is a simplex in n − 1 dimensions.

But what happens in lower dimensionality? The optimal MDS solu-
tion for constant dissimilarities in one dimension consists of points equally
spread on a line. In two dimensions, the points lie on concentric circles
(De Leeuw & Stoop, 1984). In three dimensions (or higher), the points lie
equally spaced on the surface of a sphere (Buja, Logan, Reeds, & Shepp,
1994). Any permutation of these points gives an equally good fit. Examples
of these solutions are shown in Figure 13.3.

For ordinal MDS, we allowed that pij ≤ pkl can be admissibly trans-
formed by a weak monotone function into d̂ij = d̂kl. Yet, this means that if
we choose all disparities equal, then the disparities satisfy any rank-order
of the proximities, and equal disparities, in turn, ask for an MDS configu-
ration with equal distances. Generally, though, monotone regression should
find disparities with a stronger relation to the order of the data (see Section
9.2 and Table 9.4 for an example). However, the equal-disparities scenario
can be used to compute a particular upper bound for Stress values in ordi-
nal MDS. Such bounds were determined as follows. We entered a matrix of
constant dissimilarities into an MDS program and let the program deter-
mine the local minimum Stress. This was done for a range of different ns in
one to six dimensions. The Stress values are given in Table 13.3 and can be

1The dissimilarities do not have to be exactly equal; they may also be approximately
equal; that is, c − ε ≤ δij ≤ c + ε for some small ε (0 ≤ ε ≤ c).

2We may regard the constant dissimilarity case as one variety of a formal null hypoth-
esis. Another, more common, form of such a null hypothesis is the assumption that the
dissimilarities are “random” (see Chapter 3). A substantively motivated null hypothesis,
in contrast, is derived from the incumbent theory on the domain of interest, whereas the
alternative hypothesis relates to the challenging theory.

3Note that this simplex (of points) is not equivalent to the simplex of ordered regions
discussed in Chapter 5.
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FIGURE 13.3. Solutions for constant dissimilarities with n = 30. The left plot
shows the unidimensional solution and the right plot a 2D solution.

used as a reference. For example, the Stress found for ordinal MDS on the
Morse code data in Chapter 4 was .18 (n = 36, 2D). In Table 13.3, we find
that for n = 35 in 2D the worst expected Stress under the equal-disparity
scenario is .3957. Thus, from the Stress value alone, we can safely assume
that the 2D solution of the Morse code data shows more structure than the
constant dissimilarities case, which was verified by the interpretation.

De Leeuw and Stoop (1984) proved, using theoretical arguments, that for
unidimensional scaling Stress could never be larger than [(n − 2)/3n]1/2,
which for large n becomes 1/

√
3 = .5774. In 2D, they derive the upper

bound of Stress by assuming that the points lie equally spaced on a circle
(which need not be the optimal solution for constant dissimilarities; see,
e.g., the panel on the right-hand side of Figure 13.3). Then, Stress is smaller
than [1 − 2 cot2(π/2n)/(n2 − n)]1/2, with the limit [1 − 8/π2]1/2 = .4352
for large n.

The all-disparities-being-equal degenerate solution seems uncommon in
practice. In any case, if it occurs it can be most easily detected by checking
the Shepard diagram for numerically highly similar dissimilarities or d-
hats. For example, if ratio MDS is used on dissimilarities that fall into the
interval [.85, .95] and, thus, have quite similar ratios, a solution is found that
is close to the one obtained for constant dissimilarities. Thus, the strong
ratio MDS model is not always optimal for showing the data structure.
Rather, in such a case we advise redoing the analysis with interval MDS
or by using monotone splines. The intercept estimates the constant part
of the dissimilarities, and the varying part of the dissimilarities is shown
by the MDS configuration. In other words: if the Shepard diagram shows
signs of constant dissimilarities or d-hats, the MDS user’s strategy should
not consist in mechanically choosing a stronger transformation, but rather
one that has at least an intercept.



276 13. Special Solutions, Degeneracies, and Local Minima

TABLE 13.3. Upper bound values of Stress for ordinal MDS based on MDS of
constant dissimilarities.

n 1D 2D 3D 4D 5D 6D
2 .0000 .0000 .0000 .0000 .0000 .0000
3 .3333 .0000 .0000 .0000 .0000 .0000
4 .4083 .1691 .0000 .0000 .0000 .0000
5 .4472 .2598 .1277 .0000 .0000 .0000
6 .4714 .2674 .1513 .1005 .0000 .0000
7 .4880 .2933 .1838 .1265 .0843 .0000
8 .5000 .3084 .2027 .1356 .1091 .0728
9 .5092 .3209 .2145 .1568 .1192 .0949

10 .5164 .3315 .2280 .1688 .1237 .1072
12 .5271 .3473 .2423 .1847 .1473 .1140
14 .5345 .3579 .2555 .1977 .1612 .1334
16 .5401 .3658 .2648 .2069 .1691 .1442
18 .5443 .3719 .2718 .2145 .1780 .1520
20 .5477 .3767 .2777 .2200 .1838 .1572
25 .5538 .3855 .2883 .2311 .1949 .1694
30 .5578 .3914 .2955 .2387 .2022 .1766
35 .5606 .3957 .3007 .2439 .2078 .1822
40 .5628 .3987 .3045 .2480 .2121 .1868
45 .5644 .4012 .3076 .2512 .2154 .1900
50 .5657 .4032 .3100 .2538 .2179 .1926

13.4 Local Minima

MDS algorithms usually end up in a local minimum. This property guar-
antees that any small change of the configuration leads to a higher Stress.
In contrast, for a global minimum MDS configuration, there is no other
configuration with lower Stress. A simplified view of the Stress function is
shown in Figure 13.4 for an MDS analysis with two local minima, X∗ and
X∗∗, where X∗∗ is a global minimum. The solution found by MDS algo-
rithms is sometimes a global minimum, sometimes only a local minimum.4

Note that more than one global minimum configuration may exist. Those
configurations all have the same global minimum Stress, although the con-
figurations are different (even when the freedom of rotation, translation,
and reflection are taken into account). For this reason, we refer to a global
minimum instead of the global minimum.

There are differences between the various MDS algorithms in the effec-
tiveness of locating a global minimum. We limit our discussion of local
minima to absolute MDS because for this MDS model the local minimum
problem is complicated enough. The local minimum problem can be worse

4Local minima in MDS are not necessarily bad. A configuration with a slightly worse
fit is acceptable if it has a clearer interpretation than a configuration with a better fit
(see also Chapter 10).
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X* X° X** X°°

σ(X)

FIGURE 13.4. Example of local minima of a simplified Stress function σr(X).
X∗ is a local minimum, whereas X∗∗ is also a global minimum. X◦ and X◦◦ have
Stress σr(X∗).

for nonmetric MDS, or, in the case of nonmetric unidimensional scaling, be
less severe.

A simulation study of Groenen and Heiser (1996) showed that local min-
ima are more likely to occur in low dimensionality and hardly occur or
are absent in high dimensionality. Below, two special cases are discussed,
unidimensional scaling and full-dimensional scaling, for which theoretical
results exist concerning local and global optima.

The start configuration of the searching process is of crucial importance
for the determination of the final minimum. A random configuration X is
most likely not ideal for finding the lowest-Stress solution by the gradient
method, because it does not pay any attention to the data. Therefore, all
modern MDS programs use, by default, a rational starting configuration
derived by some variant of the metric methods discussed in Chapter 12,
usually the classical scaling solution of Torgerson (1958) and Gower (1966).
Naturally, rationality in the above sense does not guarantee that the start-
ing configuration is best for the particular purpose of an MDS analysis;
we may therefore sometimes choose to construct a starting configuration
according to given substantive expectations.

Several different methods exist for finding the global minimum. The
method of dimension reduction repeats the MDS analysis, starting from
a high dimensionality (say, 10) and then reducing the dimensionality of
the solution space stepwise (down to 2, say). The local minimum config-
uration of the higher-dimensional analysis is used as a start configuration
for the MDS analysis in one dimension lower by dropping the dimension
that accounts for the least variance (i.e., the last principal component).
Proceeding in this manner, one hopes that the low-dimensional solution is
a global minimum.

A different method, called multiple random starts, or multistart, consists
of running the MDS analysis from many (say, 100) different random starting
configurations and choosing the one with the lowest Stress. Using multistart
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and making some mild assumptions (see Boender, 1984), an estimate for
the expected total number of local minima can be given. Let ns be the
number of multistart start configurations and nm the number of different
local minima obtained. Then, the total expected number of local minima
nt is

nt =
nm(ns − 1)
ns − nm − 2

. (13.1)

If ns is approximately equal to nt, then we may assume that all local min-
ima are found. The one with the lowest Stress is the candidate global min-
imum. Multistart usually gives satisfactory results but is computationally
intensive.

Yet another approach is the tunneling method, discussed in Section 13.7.
For an overview of other global minimization methods, we refer to Groenen
(1993). For a comparison of various global optimization methods on a large
empirical data set, see Groenen, Mathar, and Trejos (2000).

13.5 Unidimensional Scaling

It has been noted by De Leeuw and Heiser (1977), Defays (1978), Hubert
and Arabie (1986), and Pliner (1996) that minimizing the Stress function
with equal weights changes to a combinatorial problem when m = 1. It
turns out that Stress has many local minima. Therefore, when doing (ab-
solute) MDS in one dimension, one always has to be concerned about the
local minimum problem. If, however, transformations of the proximities are
allowed, then the local minimum problem in unidimensional scaling may
be less severe. What follows is a technical discussion of the local minimum
problem in unidimensional absolute MDS.

Unidimensional Scaling: A Combinatorial Problem
Inasmuch we are dealing with one dimension, the matrix of coordinates
X has one column and is presented by the n × 1 column vector x in this
section. The distance between two points in one dimension is equal to
dij(x) = |xi −xj |. This can be expressed as dij(x) = (xi −xj)sign(xi −xj),
where sign(xi − xj) = 1 for xi > xj , sign(xi − xj) = 0 for xi = xj , and
sign(xi − xj) = −1 for xi < xj . An important observation is that only the
rank-order of x determines the sign(xi − xj). In this case, Stress can be
expressed as

σr(x) = η2
δ + η2(x) − 2ρ(x)

=
∑
i<j

wijδ
2
ij +

∑
i<j

wij(xi − xj)2 − 2
∑
i<j

wijδij |xi − xj |
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= η2
δ + x′Vx − 2

∑
i<j

wijδij(xi − xj)sign(xi − xj). (13.2)

This shows that the cross-product term of Stress, ρ(x), can be factored
into a term that is linear in x and a term that depends only on the rank-
order of the elements of x. Therefore, ρ(x) is a piecewise linear function,
its pieces being linear within each rank-order of x. For each rank-order, the
Stress is consequently quadratic in x. This suggests that the unidimensional
scaling problem can be solved by minimizing Stress over all permutations, a
combinatorial problem. We show that at a local optimum of a function that
is only dependent on the rank-order of x, the Guttman transform yields
an x that has the same rank-order. For that rank-order, Stress has a local
minimum.

Let ψ denote the rank-order of the vector x, such that xψ(1) denotes the
smallest element of x, and xψ(i) the element of x with rank i, so that xψ(1) ≤
xψ(2) ≤ · · · ≤ xψ(i) ≤ · · · ≤ xψ(n). Let R be the corresponding permutation
matrix, so that Rx is the vector with the elements ordered nondecreasingly.
Define li =

∑
j<i wψ(i)ψ(j)δψ(i)ψ(j) and ui =

∑
j>i wψ(i)ψ(j)δψ(i)ψ(j), which

are, respectively, the row sum up to the main diagonal and the row sum
from the main diagonal of the matrix with values wψ(i)ψ(j)δψ(i)ψ(j). Using
this notation, (13.2) can be written as

σr(x) = η2
δ + x′Vx − 2x′R′(l − u). (13.3)

For a given rank-order ψ, (13.3) is quadratic in x and has its minimum when
x is equal to the Guttman transform V+R′(l−u). The Guttman transform
of the majorization approach only uses the rank-order information of the
previous configuration, because R, l, and u only depend on the permutation
of x. Therefore, the majorizing algorithm stops if the rank-order of x does
not change, which usually happens in a few iterations. At this point, Stress
has a local minimum. Function (13.3) can also be expressed as

σr(x) = η2
δ + ‖x − V+R′(l − u)‖2

V − ‖l − u‖2
RV+R′ , (13.4)

where the term t(ψ) = ‖l−u‖2
RV+R′ is a function of the permutation only.

Thus, if t(ψ) is maximized, the second term of (13.4) vanishes if x is chosen
equal to the Guttman transform V+R′(l − u).

Defays (1978) minimizes (13.4) by maximizing t(ψ). Suppose that we
have found a permutation ψ that is locally optimal with respect to adja-
cent pairwise interchanges. That is, any local change of ψ, interchanging
ψ(i) and ψ(i+1), does not increase the value of t(ψ). We say that t(ψ) has
a local maximum if permutation ψ satisfies this condition. Note that this
is a stronger formulation for a local minimum than we used for Stress, be-
cause Stress has a local minimum whenever the Guttman transform cannot
change the order of x. Groenen (1993) proves that, even for nonconstant
wij , Stress has a local minimum whenever t(ψ) has a local maximum. Sup-
pose that we know how to find a ψ that makes t(ψ) attain the highest
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possible value. Then ψ defines the order of x for a global minimum of
Stress.

Pliner (1996) gives a 100(1 − α)% confidence interval for the number of
local minima in unidimensional scaling. Let ns be the number of (random)
sample configurations ψ and nm be the number of those permutations for
which σr(x) is a local minimum. Then, the confidence interval is given by[

n!
nm

nm + (ns − nm + 1)XF (2(ns − nm + 1), 2nm)
,

n!
(nm + 1)XF (2(nm + 1), 2(ns − nm))

(ns − nm) + (nm + 1)XF (2(nm + 1), 2(ns − nm))

]
,

where XF (ν1, ν2) is the critical point of an F distribution with (ν1, ν2)
degrees of freedom such that the probability equals α/2 for a similarly
distributed t to have t larger or equal to the critical point. Pliner showed
that for an 8 × 8 example (13.5) gave the exact number of local minima of
12770. For another (random data) example, he obtained a 95% confidence
interval of [2.6 · 109, 3.4 · 109] for the number of local minima.

Some Algorithms for Unidimensional Scaling
A whole variety of combinatorial optimization strategies is available for
maximizing t(ψ) over ψ. One obvious strategy is simply to try all different
orders ψ of n objects, and choose the one for which t(ψ) is maximal. This
strategy of complete search guarantees a global maximum of t(ψ) and thus
a global minimum of Stress. However, because there are n! different per-
mutations, a complete search becomes impractical for n ≥ 10. Other, more
efficient strategies are available. For equal weights, the strategy of dynamic
programming of Hubert and Golledge (1981) and Hubert and Arabie (1986)
is very efficient for moderate n. Their strategy reduces the order of compu-
tation from n! to 2n while still finding a globally optimal solution. Groenen
(1993) extended their approach to the case of nonidentical weights but
loses the guarantee of reaching a global optimum and some of the compu-
tational efficiency. The strategy of local pairwise interchange (LOPI) does
not guarantee global optimality, but it is very efficient and yields good re-
sults. LOPI strategies amount to choosing a pair of objects, interchanging
them, and evaluating t(ψ) for the changed rank-order. If t(ψ) is higher
than any rank-order we have found so far, then we accept the pairwise in-
terchange. The search is stopped if the pairwise interchanges do not yield
a higher t(ψ). The resulting ψ defines a local minimum of Stress. The vari-
ous implementations of the LOPI strategy result in better local minima of
Stress compared to applying the Smacof algorithm. In a simulation study
of Groenen (1993), the LOPI strategies found a global maximum of t(ψ) in
the majority of the cases. Poole (1984, 1990) obtained good results in lo-
cating the global optimum for unidimensional unfolding. De Soete, Hubert,
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and Arabie (1988) found that LOPI performed better than an alternative
method called simulated annealing. Brusco (2001) studied the use of an-
other implementation of simulated annealing in unidimensional scaling and
reported that often a good candidate global minimum was found. Brusco
and Stahl (2000) focused on good initial configurations for unidimensional
scaling. They proposed to use the results of a related quadratic assignment
problem as a start for unidimensional scaling. Their study showed that such
an approach can indeed provide effective and efficient initial solutions for
large-scale unidimensional scaling problems. A review of unidimensional
scaling algorithms minimizing the sum of absolute errors instead of the
usual squared errors can be found in Brusco (2002).

Instead of a combinatorial technique, Pliner (1996) used a smoothing
approach to the local minimum problem in unidimensional scaling. The
Stress function is replaced by the function

σε(X) =
∑
i<j

δ2
ij +

∑
i<j

(xi − xj)2 − 2
∑
i<j

δijgε(xi − xj) with (13.5)

gε(t) =
{

t2(3ε − |t|)/3ε2 + ε/3, if |t| < ε
|t|, if |t| ≥ ε,

(13.6)

which smooths −dij(x). The only difference of (13.5) with Stress is that
for small distances (dij < ε) the distance in the last term of (13.5)
is replaced by a smooth function. Figure 13.5 shows how gε(xi − xj)
smooths dij(x) = |xi − xj |. Pliner recommends starting with the value
ε = 2 max1≤i≤n n−1 ∑n

j=1 δij , minimizing σε(X) over X, and using the
minimizer as a starting configuration for minimizing σε(X) again, but with
a smaller value of ε. This procedure is repeated until ε is very small. If we
assume that all distances are greater than 0, then there exists an ε for which
σε(X) reduces to raw Stress. Because −gε(t) is a concave function in t, it
can be linearly majorized, so that a convergent algorithm can be obtained
[as proved by Pliner (1996) using a different argumentation]. More impor-
tant, the smoothing algorithm turns out to yield global minima solutions
very often. Numerical experiments of Pliner suggest that in at least 60%
(sometimes even 100%) of the runs, a global minimum was found, which
makes this smoothing strategy an important aid for finding the global min-
imum in unidimensional scaling. Section 13.8 discusses an extension of this
smoothing strategy to higher dimensionality.

13.6 Full-Dimensional Scaling

To better understand the local minimum problem for Stress, we consider
full-dimensional scaling (absolute MDS), where the dimensionality is m =
n − 1. In full-dimensional scaling, there is only one minimum, a global one
(De Leeuw, 1993). This can be seen as follows. Consider the matrix of
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-|xi - xj|

-gε(xi - xj)

xi-ε ε xj

0

FIGURE 13.5. The function −dij(x) and the smoothed version −gε(x) in (13.5)
used by Pliner (1996).

squared distances D(2)(X) = 1c′ + c1′ − 2XX′, with X being column cen-
tered and where c contains the diagonal elements of XX′ (see also Section
7.3). Thus, the rank of XX′ can never exceed n − 1. For m = n − 1, the
cross-product term XX′ is simply a double-centered positive semidefinite
(p.s.d.) matrix B, so that the squared distances are equal to bii +bjj −2bij .
It can be verified that the set of p.s.d. matrices is convex, because for
B1,B2 p.s.d. and 0 ≤ α ≤ 1, αB1 +(1−α)B2 is p.s.d., too. This allows us
to express Stress as

σr(B) =
∑
i<j

wijδ
2
ij +

∑
i<j

wij(bii + bjj − 2bij)

−2
∑
i<j

wijδij(bii + bjj − 2bij)1/2. (13.7)

The first term of (13.7) does not depend on B, and the second term is a
linear function of B. The third term is minus the square root of the same
linear function of B, which is also a convex function in B. It may be verified
that the sum of a linear and a convex function is convex, so that σr(B)
is a convex function in B. Thus, minimizing Stress over B is minimizing
a convex function over a convex set, which has a local minimum that is a
global minimum. Note that this result does not hold in the case where B
is restricted to have m < n − 1, because the set of Bs restricted to have
rank m < n − 1 is not convex.

Although one would expect B to be of rank n − 1 at a minimum, this
usually is not the case. In fact, numerical experiments suggest that at a
minimum, the rank of B does not exceed the number of positive eigen-
values in classical scaling. Critchley (1986) and Bailey and Gower (1990)
proved this conjecture for S-Stress, but no proof exists for Stress. This re-
sult implies that an MDS analysis (with or without transformations) in
dimensionality n − 1 usually ends with a solution of lower rank. De Leeuw
and Groenen (1997) prove that at a minimum B has rank n−1 only in the
case of a perfect representation of Stress zero with ∆ a Euclidean distance
matrix. The converse is also true: at a minimum with nonzero Stress, B
has rank n − 2 or smaller.
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In confirmatory MDS, the linear constraint X = YC is used quite often
(see Chapter 10). If, without loss of generality, Y has r < n columns and is
of full rank r, and the dimensionality m of X equals r, then confirmatory
MDS with linear constraints has one minimum, which is global. The same
reasoning as above can be used to verify this statement, with the additional
constraint that B = YCC′Y′, which is also convex if C is square. In the
extreme case where Y has only one column, C becomes a scalar, for which
the global minimum solution was given in Section 11.1 by b∗.

13.7 The Tunneling Method for Avoiding
Local Minima

The problem of local minima is not limited to MDS but is also quite com-
mon in numerical optimization. There are many methods for finding a
configuration that is not only locally optimal but also has the overall best
minimum. One of these methods, called the tunneling method, was made
suitable for MDS by Groenen and Heiser (1991), Groenen (1993), and Groe-
nen and Heiser (1996). The basic idea of the tunneling method can be de-
scribed by the following analogy. Suppose that our objective is to find the
lowest spot in a mountainous area. First, we try to find the lowest spot in a
small area by pouring water and following the water until it forms a small
pool. Then, we start drilling a tunnel horizontally. If the tunnel gets out of
the mountain, then we are sure that the water flows to a spot that is lower
(or remains at the same height). Repeating these steps leads us eventually
to the global minimum.

The same idea can be applied for finding the global minimum of the
Stress function. Then, the tunneling method alternates over the following
two steps.

• Find a local minimum X∗ of the Stress function.

• Find another configuration that has the same Stress as X∗.

The second step is the crux of the method and is called the tunneling step.
It is performed by minimizing the tunneling function τ(X). Suppose that
the Stress function to be minimized is the one graphed in Figure 13.4. For
this Stress function, the tunneling function τ(X) is shown in Figure 13.6.
Near the local minimum X∗, the tunneling function τ(X) has a pole (peak)
to avoid finding X∗ as a solution of the tunneling step. Furthermore, τ(X)
becomes zero at X◦ and X◦◦, which are exactly those points in Figure
13.4 that have the same Stress as X∗. Thus, finding the minimum of τ(X)
gives the solution of the second step of the tunneling method. The precise
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1

X* X° X°°

τ(X)

FIGURE 13.6. The tunneling function τ (X). X∗ is a local minimum of Stress
(see also Figure 13.4), X◦ and X◦◦ are configurations with the same Stress as
X∗.

definition of the tunneling function is

τ(X) = |σr(X) − σr(X∗)|λ
(

1 +
ω∑

i<j wij [dij(X∗) − dij(X)]2

)
. (13.8)

Here λ is the pole strength parameter that determines how steep the peak
is near the local minimum X∗. The pole width parameter ω determines
the width of activity of the pole. Groenen and Heiser (1996) suggest that
λ ≤ 1/3 and ω ≈ n/2 are needed to have an effective pole, although the
latter seems to depend much on the particular data set.

The effectiveness of the tunneling method is determined by the success
of the tunneling step. Clearly, if we start the tunneling step from the global
minimum X∗, then τ(X) cannot become zero (assuming that there is no
other global minimum with the same global minimum Stress). Therefore, at
some point the tunneling step must be stopped. However, if the tunneling
step is stopped too early, then the global minimum can be missed. Exper-
iments of Groenen and Heiser (1996) showed that the tunneling method is
able to find the global minimum systematically. However, for some combi-
nations of λ and ω and for certain data sets, the tunneling method fails.

For more details about the tunneling method and the iterative majoriza-
tion algorithm used for minimizing τ(X), we refer to Groenen (1993) or
Groenen and Heiser (1996). The latter also contains an extension of the
tunneling method with Minkowski distances.

13.8 Distance Smoothing for Avoiding Local
Minima

In Section 13.5, we discussed the idea of Pliner (1996) to avoid local minima
by gradually introducing the rough edges of the Stress function. However,
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FIGURE 13.7. Surface of the error term (5 − d14(X))2 in panel (a) and of the
corresponding error term (5 − d14(X|ε))2 in distance smoothing with ε = 2.

he only implemented his idea for unidimensional scaling and no algorithm
was developed or tested for higher dimensionality. Groenen et al. (1999)
continued this line of research by extending this method to more than one
dimension. In addition, they also allowed for any Minkowski distance and
derived a majorizing algorithm. Their method for avoiding local minima in
MDS was called distance smoothing. Here, we explain the basic ideas.

Consider a toy example to visualize the raw Stress function in two di-
mensions. Suppose that we have n = 4 points in 2D, keeping point 1 fixed
at (0, 0), point 2 at (5, 0), and point 3 at (2,−1) and leaving the coordinates
(x41, x42) for point 4 free, so that

X =

⎡⎢⎢⎣
0 0
5 0
2 −1

x41 x42

⎤⎥⎥⎦ .

The only relevant dissimilarities are those that involve point 4. Assume
that δ14 = 5, δ24 = 3, and δ34 = 2. Then, minimizing Stress amounts to
finding the optimal coordinates x41 and x42. For this example, the Stress
function can be written as

σr(x41, x42) = (5 − d14(X))2 + (3 − d24(X))2 + (2 − d34(X))2 + c,
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where dij(X)) are Euclidean distances and c takes all constant terms. The
error term (5 − d14(X))2 is visualized in Figure 13.7a and shows a peak at
the origin.

Now, we show what happens if we smooth the peak of the distance.
Groenen et al. (1999) do this by using the smoothed distance

dij(X|ε) =

(
p∑

s=1

h2
ε(xis − xjs)

)1/2

, (13.9)

where

hε(t) =
{ 1

2 t2/ε + 1
2ε, if |t| < ε,

|t|, if |t| ≥ ε,
(13.10)

Note that hε(t) is slightly different from the definition of gε(t) in (13.5),
but has almost the same form. Now the smoothed Stress becomes

σε(x41, x42) = (5 − d14(X|ε))2 + (3 − d24(X|ε))2 + (2 − d34(X|ε))2 + c.

The effect of distance smoothing on a single error term is shown in Figure
13.7b for ε = 2. Clearly, the peak is replaced by a smoothed form. The
smoothing is governed by the parameter ε: for a large ε, there is much
smoothing and for ε approaching zero no smoothing occurs, so that the
error (5 − d14(X|ε))2 approaches (5 − d14(X))2.

The effect of the combined error terms for σr(x41, x42) and σε(x41, x42)
with ε = 2 and ε = 5 are shown in Figure 13.8. The irregularities in the
Stress function of Figure 13.8a are caused by the peaks that appear in each
of the error terms. Increasing ε smooths the irregularity as can be seen in
Figures 13.8b and 13.8c. Distance smoothing starts from a large ε so that σε

is very smooth. Then smaller values of ε gradually introduce the irregularity.
Eventually, for ε close to zero, σε(x41, x42) approaches σr(x41, x42) closely.

The distance smoothing strategy consists of the following steps. Start
with a large value of ε and minimize σε. Then reduce ε somewhat and
continue minimizing σε. Repeat these steps until ε is close to zero. Finally,
continue minimization σr.

Groenen et al. (1999) studied the effectiveness of distance smoothing in
comparison to the Smacof algorithm and Kyst. In a simulation study
on error-free data using 100 random starts, distance smoothing recovered
the true global minimum always for unidimensional scaling and almost al-
ways in 2D or 3D. Smacof and Kyst recovered the perfect data only in a
small percentage of the random starts. However, for MDS with Minkowski
distances close to the dominance distance, distance smoothing did not per-
form well and Kyst yielded the same or better results. Similar results were
obtained for error-perturbed data.

To be on the safe side, Groenen et al. (1999) recommend applying the
distance smoothing strategy with 10 random starts and choosing the lowest
local minimum as the candidate global minimum.
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FIGURE 13.8. The surface of the original Stress function σr(x41, x42) panel (a),
of the smoothed Stress function σε(x41, x42) for ε = 2 in panel (b) and ε = 5 in
panel (c).
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Note that throughout the discussion on global minima in this chapter,
we have assumed ratio MDS. It is not clear how severe the local minimum
problem is when we allow for optimal transformations of the d-hats.

13.9 Exercises

Exercise 13.1 Consider the multitrait-multimethod matrix in Exercise 1.6.
Do both an ordinal and an interval MDS with these data. Study the Shep-
ard diagrams of both solutions. What would you recommend to a user of
MDS, given these findings?

Exercise 13.2 Consider the data matrix in Exercise 1.6.

(a) Use the T - and M -codings of the nine variables to define a starting
configuration for MDS and then repeat Exercise 1.6 with this starting
configuration. Point 1, thus, gets starting coordinates (1,1); point 2
gets (2,1), and so on.

(b) Study the Shepard diagram of an ordinal MDS and compare it to the
Shepard diagram of a linear MDS. Discuss whether these data are
better scaled with an ordinal or with an interval MDS (see also Borg
& Groenen, 1997; Borg, 1999).

Exercise 13.3 Set up a data matrix (at least 5×5) with δij = 1 for all i �= j
and δij = 0 for all i = j.

(a) Use an interactive MDS program (such as the freeware program
Permap, see Appendix A) to find a 2D ratio MDS solution for these
data.

(b) Click on one point of the solution and move this point to a differ-
ent position. Then, rerun the MDS analysis with this new starting
configuration. Possibly repeat this process, trying to find a different
solution from the one obtained above. Compare your results to Figure
13.3.

(c) Find a 1D solution and compare it to Figure 13.3. Test the stabil-
ity of this solution by the procedure described above. What do you
conclude?

(d) Repeat the above analyses with ordinal MDS.

(e) Set up a new data matrix with “nearly equal” but all different dissim-
ilarities (i �= j) from the interval [.85, .95]. Run ratio, interval, and
ordinal MDS analyses for these data, using different MDS programs
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and forcing the program to do many iterations. Which approach rep-
resents the data best not just in terms of Stress, but in terms of
describing the structure of the data? Explain why.

Exercise 13.4 Use the data in Table 10.1 on p. 229.

(a) Scale these data with ordinal MDS and compare the solution to the
one in Figure 10.3.

(b) Redo the above scaling with two different starting configurations,
one that corresponds to Figure 10.2 and one that corresponds to
Figure 10.3. Does your MDS program lead to solutions similar to the
starting configurations? Can you generate radically different local-
minima solutions? How much do they differ in terms of Stress?

(c) Check whether the solutions generated with the different starting
configurations remain the same when you force the program to do
many (100, say) iterations. (Hint: You may also have to set a very
small Stress target value to force your program to actually do that
many iterations.)

(d) Use an interactive program (such as Permap) and test the stability
of the MDS solutions by moving some points and then rerunning
MDS from thereon.




