
6
How to Obtain Proximities

Proximities are either collected by directly judging the (dis-)similarity of
pairs of objects, or they are derived from score or attribute vectors asso-
ciated with each of these objects. Direct proximities typically result from
similarity ratings on object pairs, from rankings, or from card-sorting tasks.
Another method, called the anchor stimulus method, leads to conditional
proximities that have a restricted comparability and require special MDS
procedures. Derived proximities are, in practice, most often correlations of
item scores over individuals. Because there is so much work involved in
building a complete proximity matrix, it is important to know about the
performance of incomplete proximity matrices (with missing data) in MDS.
It turns out that MDS is quite robust against randomly distributed missing
data. MDS is also robust when used with coarse proximities, for example,
dichotomous proximities.

6.1 Types of Proximities

MDS procedures assume that proximities are given. How one collects these
proximities is a problem that is largely external to the MDS procedures
discussed in this book.1 However, because proximities are obviously needed,

1Some authors (e.g., Müller, 1984) approach MDS axiomatically. They formulate
relational systems that, if satisfied, guarantee the existence of certain forms of MDS
representations. Ideally, these axioms can be directly assessed empirically by asking the
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and because the way these proximities are generated has implications for
the choice of an MDS model, we devote some space to this topic.

In the previous chapters, we encountered different forms of proximities.
For example, the proximities in Table 2.1 were distances generated by di-
rect measurement on an atlas. In all other cases, the proximities were but
distance estimates related to distances by some MDS model. The color
similarity data in Table 4.1 were collected by averaging similarity ratings
(0 = no similarity, . . ., 4 = identical) for all different pairs of colors over all
subjects. The Morse code proximities in Table 4.2 were obtained by com-
puting the relative frequencies of “same” and “different” judgments for all
pairs of Morse codes over different subjects. The data in Table 4.4 that
indicate the similarity of facial expressions are based on scaling dissimi-
larity assessments for all pairs of faces over all subjects by the method of
successive intervals.

These examples all involve some form of direct (dis-)similarity assess-
ment for its object pairs, be it ratings on a scale from “no similarity” to
“identical”, judgments of “same” or “different”, or orderings of object pairs
on a similarity scale.

In practice, such direct approaches are rather atypical. Proximities usu-
ally are not based on direct similarity judgments, but rather are indices
derived from other information. The most prominent ones are correlation
coefficients, such as the product-moment correlations in Table 5.1 that as-
sess the similarity of intelligence test items.

6.2 Collecting Direct Proximities

Direct proximities arise from directly assessing a binary relation of simi-
larity or dissimilarity among the objects.2 There are many possible ways
to collect such data. The most obvious method is to ask respondents for a
similarity judgment.

Some Varieties of Collecting Direct Proximities
The most popular method for collecting direct proximities is to rate the
object pairs with respect to their overall similarity or dissimilarity. Krantz

subjects for simple judgments, such as partitioning every subset of at least three stimuli
into two groups of relatively similar stimuli. In such an approach, the data collection is
intimately related to the axiomatization of the MDS model.

2In order to keep the discussion uncluttered, we skip the case of dominance data
in this section. Dominance data assess which object in a pair of objects dominates the
other one in some sense, such as, for example, preference. They are treated later when
discussing unfolding models in Part III.
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and Tversky (1975), for example, wanted proximities for pairs of rectangles.
They read the following instruction to their subjects (p. 14).

In this experiment we will show you pairs of rectangles and we’ll
ask you to mark an X in the appropriate cell on the scale from 1
to 20 [answer booklet was before subject] according to the degree
of dissimilarity between rectangles.

For example: if the rectangles are almost identical, that is, the
dissimilarity between them is very small, mark X in a low-
numbered cell. In the same fashion, for all intermediate levels of
dissimilarity between the rectangles, mark X in an intermediate-
numbered cell.

We are interested in your subjective impression of degree of dis-
similarity. Different people are likely to have different impres-
sions. Hence, there are no correct or incorrect answers. Simply
look at the rectangles for a short time, and mark X in the cell
whose number appears to correspond to the degree of dissimi-
larity between the rectangles.

This method of gathering proximities is called pairwise comparison. The
subject rates every pair of objects on a dissimilarity scale.

Instead of ratings, market researchers often use some method of ranking
the object pairs in terms of their overall similarity. For that purpose, each
object pair is typically presented on a card. The subject is then asked to
sort these cards so that the most similar object pair is on top of the card
stack and the most dissimilar one at the bottom.

A complete ranking often may be too demanding a task or too time-
consuming. Indeed, respondents often have difficulty ranking nonextreme
objects. Thus, the “intermediate” ranks may be unreliable. It therefore
makes sense to soften the ranking procedure as follows. The respondent is
asked first to sort the cards into two stacks (not necessarily of equal size)
one containing “similar” pairs and the other containing “dissimilar” pairs.
For each stack, this sorting can be repeated until the respondent feels that
it becomes too difficult to further partition a given stack into similar and
dissimilar objects. The stack with the most similar objects is then scored
as 1, the stack containing the next most similar objects as 2, and so on.
The object pairs are given as proximities the score of the stack to which
they belong. This usually leads to a weak rank-order (i.e., one containing
ties), but that is no problem for MDS.

In Q-sort techniques (Stephenson, 1953), the respondents are asked to
sort the cards with the object pairs into the categories of a scale that ranges,
for example, from “very similar” to “not similar at all”. The sorting must
be done so that the stack on each scale category contains a preassigned
number of cards. Typically, these numbers are chosen such that the card
stacks are approximately normally distributed over the scale, with few cards
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at the extremes and many cards in the middle. Computer programs exist
that support this type of data collection.

Free sorting, in contrast, imposes a minimum number of constraints onto
the respondents. They are simply asked to sort the cards onto different
stacks so that cards showing object pairs that appear similar in some sense
are in the same stack. The number of stacks is not specified. It can range
from just one stack for all cards to the case where each stack contains
only one card. To pairs of objects that are on the same stack, we assign a
dissimilarity of 0, and for pairs of objects on different stacks, a 1 (see below,
Section 6.5 on co-occurrence data). The advantage of this method is that
the subject’s task is not demanding, even for a large number of objects,
and subjects report to enjoy the task.

Another technique for collecting direct proximities is the anchor stimulus
method. Given n objects, one object is picked as a fixed comparison A, and
the subject is asked to judge the similarity of all other n − 1 objects to
A. Each and every object serves, in turn, as an anchor. This leads to n
sets with n−1 proximities each. The proximities resulting from the anchor
stimulus method are conditional ones. Two proximities resulting from the
anchor stimulus method have a meaningful relation only if they have the
anchor stimulus as a common element. Thus, for example, the proximity
for A and X and the proximity for A and Y can be compared because
they share the anchor stimulus A. However, comparing the proximity for
A and X with the proximity for B and Y (with A and B anchor stimuli)
does not make sense, because the anchor stimuli are different. Hence, such
data require particular MDS methods, with weaker loss functions that only
assess, point after point, how well the distances of each anchor point to all
other points represent the respective proximities. The relations of distance
pairs that involve four different points are irrelevant.

Conditional data have the advantage that less data have to be ranked at
the same time. Instead of ranking

(
n
2

)
different pairs of objects, the anchor

method only needs to rank n − 1 pairs of objects at one time. The task
of conditional ranking relative to fixed anchors is easier and yields more
reliable data. These data, however, require more judgments altogether and
are less comparable.

A systematic comparison among several methods for collecting direct
proximities was done by Bijmolt and Wedel (1995). They found that free
sorting and pairwise comparisons rate positively with respondents whereas
collecting conditional data was considered to be boring and fatiguing. In
terms of the data quality and the quality of the MDS solution, pairwise
comparisons ranked best followed by free sorting.

On Ordering Object Pairs for Collecting Direct Proximities
The perceived similarity of two objects may depend on the order in which
they are presented. For example, we note in Table 4.2 that the Morse code



6.2 Collecting Direct Proximities 115

signal for I is more frequently confused with a subsequent A (64%) than A is
with a subsequent I (46%). Tversky (1977) gives another example: it seems
likely that North Korea is assessed as similar to Red China, but unlikely
that someone feels that Red China is similar to North Korea. Other order
effects may arise if certain objects are presented relatively often in a given
section of the data collection. For example, if the Morse code for A appears
in the first 20 comparisons, it is most likely to have some anchoring effect.

Position effects can be reduced by randomly picking which of the objects
of a pair will be in first position. This method avoids that a given object is
always first or second in those pairs where it appears. Timing effects can
be balanced by picking a random order for the object pairs.

An alternative approach is to balance position and timing effects by
explicit planning. Ross (1934) developed a method for that purpose. It
generally should be superior to the random method if the number of objects
is relatively small. A computer program for Ross ordering was written by
Cohen and Davison (1973).

Planned Incomplete Data Designs
One of the more obvious obstacles for doing an MDS analysis is that one
needs many proximities, which are expensive to collect. The cheapest way
to reduce the labor involved in data collection is to replace data by assump-
tions. Two assumptions are typical in MDS applications. First, it is taken
for granted that the proximities are essentially symmetric. This obviates
the need to collect both pij and pji. Second, the proximity of an object to
itself, pii, is also not assessed empirically, because it seems even more jus-
tified to consider this information trivial: the dissimilarity of an object to
itself is assumed to be essentially zero. For an MDS program, it is sufficient
to have the proximities for one half-matrix.

However, even with a half-matrix, one needs to assess
(
n
2

)
= n(n − 1)/2

proximities. The quantity
(
n
2

)
grows rapidly with n. For example, for n = 10

one needs to collect 45 proximities, whereas for n = 20 one needs 190 prox-
imities. Few subjects would be willing or able to rank 190 pairs of objects
with respect to their global similarity. Hence, the need for incomplete data
collection becomes obvious. Some structured incomplete designs are dis-
played in Table 6.1 (after Spence, 1983).

How should one plan an incomplete data design? A good solution is to
randomly eliminate a certain proportion of cells in the proximity matrix
and define them as missing data. Spence and Domoney (1974) studied this
question in detail. They computed the distances in a given MDS space
with dimensionality t, and then took these distances as input to MDS in
order to see how well they would be reconstructed by MDS in t dimensions
under a variety of conditions. One of these conditions was to add random
error to the distances. Another one was to define some of the proximities as
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FIGURE 6.1. Recovery of MDS distances (Y -axis) among 48, 40, and 32 points,
respectively, under different error levels (upper curves = no error, lower curves
= high error) and percentages of nonmissing data (X-axis) (after Spence &
Domoney, 1974).
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TABLE 6.1. Examples of some incomplete designs (after Spence, 1983). A 0
indicates absence of a proximity, a 1 presence of the proximity.

(a) Cyclic design (b) Random design (c) Block design
1 2 3 4 5 6 7 8

1 -
2 1 -
3 0 1 -
4 0 0 1 -
5 1 0 0 1 -
6 0 1 0 0 1 -
7 1 0 1 0 0 1 -
8 1 1 0 1 0 0 1 -

1 2 3 4 5 6 7 8
1 -
2 1 -
3 0 1 -
4 0 1 0 -
5 1 0 1 0 -
6 1 1 0 0 1 -
7 0 0 1 0 1 0 -
8 1 0 1 1 0 0 1 -

1 2 3 4 5 6 7 8
1 -
2 1 -
3 1 1 -
4 1 1 1 -
5 0 0 1 1 -
6 0 0 1 1 1 -
7 0 0 0 1 1 1 -
8 0 0 0 1 1 1 1 -

missing data. It was found that the MDS-reconstructed distances remain
highly correlated (r2 = .95) with the original distances if one-third of the
proximities are randomly eliminated (i.e., defined as missing data) and the
error component in the proximities is about 15%. For high error (30%),
r2 is still .75, which compares well with r2 = .83 for complete data. A
significantly greater loss is incurred if two-thirds of the data are missing.
However, if the error level is low, excellent recovery is possible even with
80% (!) missing data, given that we scale in the “true” dimensionality t, and
given that the number of points is high relative to the dimensionality of the
MDS space (see Figure 6.1, upper panels, curves for “no” and “medium”
error).

Graef and Spence (1979) showed, moreover, that MDS configurations
are poorly recovered if the proximities for the largest distances are miss-
ing, whereas missing data for intermediate or short distances are not that
crucial. Hence, a missing data design could be improved by making sure
that missing data are rare among the proximities for the most dissimilar
objects.

These simulation studies show that robust MDS is possible even with
many missing data. The user is well advised, nevertheless, to make sure
that the missing cells do not form clusters in the proximity matrix.

One should keep in mind, however, that the above simulation results
rest on some conditions (many points, reasonable error in the data, known
“true” dimensionality, etc.) which are, in practice, often rather difficult to
assess. It may be easiest to determine the error level of the data. For di-
rect proximities, it could be estimated by replicating the data collection for
some subjects; for correlations, one could consider statistical confidence in-
tervals. Other conditions, however, are less easily diagnosed. For example,
the very notion of “true” dimensionality remains obscure in most appli-
cations, except in rare cases such as, for example, perceptual studies in a
psychophysical context (see Chapter 17). This makes it impossible to come
up with a simple answer to the question of how many missing data can be
accommodated in MDS.
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FIGURE 6.2. Synthetic configuration (after Green & Wind, 1973).

Collecting Coarse Data
Another possibility to make the task of collecting proximities simpler in
case of direct proximities is to ask the respondents for simpler judgments.
One extreme case is the “same” and “different” judgments on the Morse
codes (see Chapter 4). Rothkopf (1957) aggregated these judgments over
respondents and then analyzed the confusion probabilities as proximities.
But is aggregation necessary? Would it make sense to do an MDS on the
same–different data of a single individual? At first sight, such data seem
“too coarse,” but are they?

Green and Wind (1973) report a simulation study that throws some light
on this question. They measure the distances of a 2D MDS configuration
consisting of 25 points (Figure 6.2). These distances are classified into a
small set of intervals. The same ranking number is substituted for all dis-
tances within the same interval. The resulting “degraded” distances are
taken as proximities in MDS. Using the primary approach to ties (see Sec-
tions 3.1, p. 40, and 9.4), it is found that degrading distances into nine
ranking numbers still allows one to recover almost perfectly the original
configuration (Figure 6.3, Panel b). Even under the most extreme degra-
dation, where the distances are mapped into only two ranking numbers,
the original configuration is roughly recovered. One can conclude, there-
fore, that data that only represent the true distances in terms of distance
groupings or blocks can be sufficient for recovering an underlying MDS
configuration.

Of course, the granularity of the data may also be too fine in the sense
that the data are not reliable to the same extent. For example, in the case
of the above 21-point similarity scale employed by Krantz and Tversky
(1975), one may well question that the respondents are able to make such
fine-grained distinctions. If they are not, then they may not use all of
the 21 categories; or if they do, their ratings may not be very reliable.
One should not expect that persons are able to reliably distinguish more
than 7 ± 2 categories (Miller, 1956). Confronting the individual with a 21-
point similarity scale may then actually make his or her task unreasonably
difficult.
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FIGURE 6.3. Ordinal MDS representations of distances derived from Fig. 6.2,
with Shepard diagrams (after Green & Wind, 1973): (a) uses distances as prox-
imities; (b) uses distances degraded to nine values; (c) uses distances degraded
to two values.

Again, there is no rule by which the issue of an optimal granularity could
be decided in general. The issue lies outside of MDS, but it is comforting
to know that even coarse data allow one to do an MDS analysis. What is
important is the reliability of the data.

6.3 Deriving Proximities by Aggregating over
Other Measures

Derived proximities are typically correlations or distances computed for a
pair of variables, X and Y . A common way to organize the various coef-
ficients available in this context is to consider the scale levels of X and
Y . However, in the following, we do not intend to give an encyclopedic
overview, but rather present some of the coefficients found most often in
the MDS literature. We also discuss a few of the more exotic cases, be-
cause they help us to show some of the considerations involved in choosing
a proper proximity measure. The obvious scale-level issues are largely ig-
nored.
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Correlations over Individuals
Probably the most common case of derived proximities is the one illustrated
by the item intercorrelations in Table 5.1. The correlation between item X
and item Y is computed over N individuals; that is,

r =
∑N

i=1(xi − x̄)(yi − ȳ)

(
∑N

i=1(xi − x̄)2)1/2(
∑N

i=1(yi − ȳ)2)1/2
,

where x̄ (resp. ȳ) is the average over all xis (resp. yis). A correlation ex-
presses the extent to which the individuals’ responses to two items tend to
have a similar pattern of relatively high and low scores.

Correlation coefficients exist for assessing different types of trends. The
Pearson correlation measures the extent to which two items are linearly
related. Substituting ranks for the raw data yields a rank-linear coefficient,
Spearman’s ρ. It assesses the monotonic relationship of two items. An al-
ternative that responds more smoothly to small changes of the data is the
µ2 coefficient (Guttman, 1985). It is often used in combination with ordi-
nal MDS (see, e.g., Levy & Guttman, 1975; Elizur et al., 1991; Shye, 1985)
because (weak) monotonic coefficients are obviously more consistent with
ordinal MDS than linear ones. The formula for µ2 is

µ2 =

∑N
i=1

∑N
j=1(xi − xj)(yi − yj)∑N

i=1
∑N

j=1 |xi − xj ||yi − yj |
.

The relationship of µ2 to the usual product-moment coefficient r becomes
most transparent if we express r as

r =

∑N
i=1

∑N
j=1(xi − xj)(yi − yj)(∑N

i=1
∑N

j=1(xi − xj)2
)1/2 (∑N

i=1
∑N

j=1(yi − yj)2
)1/2

(Daniels, 1944). One notes that the denominator of r is never smaller than
the denominator of µ2, which follows from the Cauchy–Schwarz inequal-
ity for nonnegative arguments:

∑
k akbk ≤ (

∑
k a2

k)1/2(
∑

k b2
k)1/2. Hence,

|µ2| ≥ |r|. One obtains µ2 = r exactly if X and Y are linearly related
(Staufenbiel, 1987).

Proximities from Attribute Profiles
Correlations typically are computed over individuals; that is, the data in
the typical person × variables data matrix are correlated over the rows to
yield the intercorrelations of the variables.

Assume now that we want to assess the perceived similarities among a
number of cars. One way of doing this is to ask N respondents to assess each
of the cars with respect to, say, its attractiveness. Proximities could then be
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computed by correlating over the respondents’ scores. One notes, however,
that this approach completely hinges on the criterion of attractiveness. We
may get more meaningful proximities if we do not rely that much on just
one criterion but rather on a large selection of attributes on which cars
are differentiated. Thus, we could ask the respondents to scale each car
with respect to several criteria such as performance, economy, luxury, and
so on. (In order to avoid redundancy, one could first factor-analyze these
attributes and replace them by supposedly independent criteria or factors.)
This would yield a person × cars × attributes matrix. The similarities of
cars would then be derived as some function of how similar these cars are
over the various attributes.

One possibility is to correlate the attribute profiles of the cars, either for
each person in turn (yielding one similarity matrix per person) or over all
attributes and all persons (yielding but one global similarity matrix).

An alternative is to measure dissimilarity by computing distances among
attribute vectors. Assume, for example, that X is a cars × attributes matrix
that contains average attribute assessments of N persons for each car on
m attributes. For example, an element of X could be the average of the
subjective prestige ratings that N persons gave car i. A “simple” distance of
any two cars, i and j, in this m-dimensional attribute space is the city-block
distance,

d
(1)
ij (X) =

m∑
a=1

|xia − xja|,

where i and j are two objects of interest, and xia and xja are the scores of
these objects on attribute a. Other distances (e.g., the Euclidean distance)
are also conceivable but probably less attractive for deriving proximities
because they all involve some kind of weighting of the intraattribute differ-
ences xia − xja. For example, in the Euclidean distance,

d
(2)
ij (X) =

(
m∑

a=1

(xia − xja)2
)1/2

,

the difference terms xia − xja are weighted quadratically into the distance
function.

An overview of popular proximity measures is given in Table 6.2. To see
how the coefficients are related to the attributes, Figure 6.4 shows various
isoproximity contours for the case where point xj is fixed at position (1, 2)
and point xi takes on different positions in the attribute space. The con-
tour lines show the sets of positions where xi has the same proximity to
xj . In the case of the Euclidean distance, these contours correspond to the
usual notion of circles. In the case of the city-block distance, these circles
look unfamiliar (see Section 17.2 for more details). On the other hand, the
composition rule by which the differences of i and j are aggregated into
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TABLE 6.2. Summary of measures of proximities derived from attribute data.
The symbol δij denotes a dissimilarity and sij a similarity.

Measure Formula

P1 Euclidean distance δij =
(∑m

a=1(xia − xja)2
)1/2

P2 City-block distance δij =
∑m

a=1 |xia − xja|

P3 Dominance distance δij = maxm
a=1 |xia − xja|

P4 Minkowski distance δij =
(∑m

a=1(xia − xja)p
)1/p

with p ≥ 1

P5 Canberra distance δij =
m∑

a=1

|xia − xja|
|xia + xja|

P6 Bray–Curtis distance δij =

∑m

a=1 |xia − xja|∑m

a=1(xia + xja)

P7 Chord distance δij =
(∑m

a=1(x1/2
ia − x

1/2
ja )

)1/2

P8 Angular separation, con-
gruence coefficient

sij =

∑m

a=1 xiaxja(∑m

a=1 x2
ia

)1/2 (∑m

a=1 x2
ja

)1/2

P9 Correlation sij =

∑m

a=1(xia − x̄i)(xja − x̄j)(∑m

a=1(xia − x̄i)2
)1/2 (∑m

a=1(xja − x̄j)2
)1/2

P10 Monotonicity coefficient
µ2

sij =

∑N

i=1

∑N

j=1(xi − xj)(yi − yj)∑N

i=1

∑N

j=1 |xi − xj ||yi − yj |

the overall distance is extremely simple: the distance is just the sum of
the intradimensional differences. The dominance distance, in contrast, is
completely determined by just one intradimensional difference of i and j,
the largest one. Note that P1 to P3 are special cases of the Minkowski
distance P4: p = 1 gives the city-block distance P2, p = 2 the Euclidean
distance P1, and p = ∞ the dominance distance P3. The distances P1 to P4
combine dimensional differences directly. Consequently, if the dimensions
are attributes measured on different scales, the attributes with the largest
variance will dominate the distance measure. Therefore, it is usually bet-
ter to standardize the attributes so that their variances become equal by
converting each attribute to z-scores. Alternatively, each attribute can be
divided by another measure for dispersion such as the range (the difference
of maximum and minimum).

The proximity measures P5 to P10 all have some provision for controlling
the dispersion either for each variable separately or for all variables simulta-
neously. The Canberra distance corrects the absolute difference along each
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FIGURE 6.4. Contour plots for the different proximity measures defined in Table
6.2, setting xj = (1, 2). Contour lines close to xj have low values, whereas further
away they have higher values. For the contour lines of the Minkowski distance,
the value p = 3 was used. Note that µ2 has no contour lines in this grossly
simplified example, because all values are exactly one. The grey areas correspond
to negative xi1 or xi2 which are usually excluded for these measures.
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dimension for the size of the coordinates along the axis. In addition, if neg-
ative values of xia are allowed, then δij reaches an asymptote of infinity, in
Figure 6.4 at xi1 = −1. Therefore, the Canberra distance is best used when
all xia are positive. The Bray–Curtis distance is often used in ecology and
corrects the sum of absolute differences along the axes by the sum of all
coordinates over which the differences are taken. Again, this measure seems
most useful for nonnegative xia. In this case, the Bray–Curtis distance cor-
rects large absolute differences when the coordinates are large, too. The
chord distance requires positive xia. Usually, xia equals the frequency, so
that it is positive by nature. Note that for drawing the contour lines in
Figure 6.4 for the chord distance, the absolute values of xia were used.
The angular separation is a similarity index between −1 and 1 because it
computes the cosine of the angle between the lines from the origin to xi

and the origin to xj . The contour lines for the correlation are exactly the
same as for the angular separation because we changed the axes to xia − x̄i.
Note that both the correlation and µ2 are best used when the number of
dimensions m is reasonably large, certainly larger than in the simplified
case of m = 2 in Figure 6.4. For µ2 this simplification leads to µ2 = 1 for
all xia which explains why there are no contour lines for µ2. Thus, µ2 is
only meaningful if m ≥ 3.

Another type of distance function often used in the literature is to count
the number of common elements in the data profiles and subtract this
sum from the total number of attributes on which observations were made.
This distance function could be employed, for example, where attributes
are coded as either present or absent. An example from archaeology is data
on sites where certain artifacts such as pottery, jewelry, bones, and the like,
are or are not found (e.g., Kendall, 1971). Sites are considered similar if
they share many artifacts.

Restle (1959) suggested this distance function in order to model the per-
ception of similarity: conceiving stimuli X and Y in terms of “feature” sets
(i.e., as collections of the things associated with them), we have the distance
dXY = m(X ∪Y )−m(X ∩Y ), where m is a measure function.3 Hence, the
dissimilarity of X and Y , dXY , is the number of their noncommon features,
m(Y − X) + m(X − Y ).

When collecting object × attribute data sets in real life, some attributes
may be binary; others may be numerical. The general similarity measure
of Gower (1971) is particularly suited for this situation. Let sija be the
similarity between objects i and j on variable a. For binary attributes, we
assume that only values xia = 0 and xia = 1 occur. In this case, sija = 1
if xia and xja fall in the same category and sija = 0 if they do not. If

3A simple measure function is, for example, the number of elements in the set. X ∪Y
is the union of X and Y ; X ∩Y is the intersection of X and Y ; X −Y is the set consisting
of the elements of X that are not elements of Y .
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the attribute is numerical, then we compute sija = 1 − |xia − xja|/rk

with rk being the range of attribute a. This definition ensures again that
0 ≤ sija ≤ 1 for all combinations of i, j, and a. The general similarity
measure can be defined by

sij =
∑

a wijasija∑
a wija

,

where the wija are given nonnegative weights. Usually wija is set to one
for all i, j, and a. However, if either xia or xja is missing (or both), then
wija should be set to zero so that the missing values do not influence the
similarity. Here, too, 0 ≤ sij ≤ 1 so that dissimilarities can be obtained
by taking 1 − sij . However, Gower (1971) suggests to use (1 − sij)1/2 as it
can be shown that these values can be perfectly represented in a Euclidean
space of high dimensionality.

6.4 Proximities from Converting Other Measures

Derived proximities are not always computed by aggregating over individ-
uals or from aggregating over attribute vectors associated with the objects
of interest. They can also be generated by appropriate conversion of given
scale values for the objects. The conversion is arrived at by theoretical
considerations.

Consider the following case. Glushko (1975) was interested in the “good-
ness” of patterns. He constructed a set of different dot patterns and printed
each possible pair on a separate card. Twenty subjects were then asked to
indicate which pattern in each pair was the “better” one. The pattern
judged better in a pair received a score of 1, the other one a 0. These
scores were summed over the subjects, and a dissimilarity measure was
constructed on the basis of the following logic. “Since dissimilar goodness
between two patterns is implied by frequent choice of either one over the
other, the absolute value of the difference between the observed and the
expected frequency of a goodness preference represents the dissimilarity of
the pattern of goodness of the two patterns . . .” (Glushko, 1975, p. 159).
Because there were 20 subjects, the expected (random) preference value is
10 for each pair. Hence, proximities were derived by subtracting 10 from
each summation score and taking its absolute value.

A similar conversion is the following. Thurstone (1927), Coombs (1967),
and Borg (1988) asked N students to indicate in a pair-comparison design
which of two offenses (such as murder, arson, or theft) was more “serious.”
Scoring the more serious one as 1 and the other one as 0, adding these
scores over individuals, and dividing by N , one obtains a matrix of dom-
inance probabilities (Pij). These data typically are scaled by Thurstone’s
Law of Comparative Judgment model, which relates the Pijs to scale val-
ues by a cumulative normal density function. However, one can also convert



126 6. How to Obtain Proximities

the probabilities into dissimilarities δij and then use ordinal MDS. [Ordi-
nal MDS does not assume a particular (monotonic) model function and,
thus, leaves it to the data to exhibit the exact shape of the transformation
function.] The conversion formula is δij = |Pij − 0.5|.

Tobler and Wineburg (1971) report another interesting proximity, a mea-
sure of social interaction between towns or “places” called the gravity model:
Iij = kPiPj/d2

ij , where “Iij is the interaction between places i and j; k is a
constant, depending on the phenomena; Pi is the population of i; Pj is the
population of j; and dij is the distance between places i and j. Distance
may be in hours, dollars, or kilometers; populations may be in income,
numbers of people, numbers of telephones, and so on; and the interaction
may be in numbers of letters exchanged, number of marriages, similarity of
artifacts or cultural traits, and so on.” (p. 2). With measures for Iij , Pi, and
Pj , the gravity model can be used to solve for the distance dij . Tobler and
Wineburg (1971) report an application from archaeology. Cuneiform tables
from Assyria were the database. The number of occurrences of a town’s
name on these tables was taken as Pi, the number of co-occurrences on
the tables as a measure of Iij . The resulting distance estimates were taken
as input for a 2D ordinal MDS in an effort to find the (largely unknown)
geographical map of these towns.

6.5 Proximities from Co-Occurrence Data

An interesting type of proximities is co-occurrence data. Coxon and Jones
(1978), for example, studied the categories that people use to classify oc-
cupations. Their subjects were asked to sort a set of 32 occupational titles
(such as barman, statistician, and actor) into as many or as few groups as
they wished. The result of this sorting can be expressed, for each subject, as
a 32 × 32 incidence matrix, with an entry of 1 wherever its row and columns
entries are sorted into the same group, and 0 elsewhere. The incidence ma-
trix can be considered a proximity matrix of dichotomous (same–different)
data.4

Are such co-occurrence data direct proximities? The answer depends on
how one wants to define “direct”. In the above study on occupation titles,
the criterion of similarity should have been obvious to the respondents.
Hence, by sorting the occupation titles into groups, they were directly ex-

4Burton (1975) further suggests some forms of weighting such as replacing 1 by the
number of objects in the category to which a given object pair belongs, or by replacing 1
by the inverse of this number. The former is supposed to emphasize gross discrimination,
the latter fine discrimination. Such weightings of global and local discriminations are,
however, better introduced as part of the MDS modeling criteria, rather than building
them into the data.
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pressing their notions of pairwise similarity relations for these stimuli. But
consider another case.

England and Ruiz-Quintanilla (1994) asked respondents to check those
characteristics in a list that would define work for them. The characteristics
were “if it is not pleasant”, “if it is physically strenuous”, “if you have to
do it”, and so on. The co-occurrences of these characteristics were defined
as the characteristics’ proximities. Its seems that this definition is more
an interpretation of the researcher, because the respondents never directly
assessed the similarity of the characteristics in the context of work, but
their relevance with respect to the notion of work. Hence, these proximities
seem somewhat more derived than the former ones, which shows that the
direct-derived distinction denotes more a continuum than a dichotomy.

Studies that use co-occurrence data typically aggregate incidence matri-
ces over individuals. The most natural way to do this is simply to add these
matrices so that the aggregate proximity matrix contains in its cells the
frequencies with which two objects were sorted into the same group.

However, it is well worth the effort to consider whether it would be better
if these raw frequencies were normed. Let X and Y be two items of interest.
An item X can be empirically present or absent, denoted as X = 1 and
X = 0, respectively. With X and Y , there are four possible present–absent
combinations. Let z = f(X, Y ) be the frequency of an event (X, Y ). In
particular, let a = f(1, 1) be the frequency of the event where both X
and Y are present. Similarly, b = f(1, 0), c = f(0, 1), and d = f(0, 0) (see
also Table 6.3). Gower (1985) distinguishes a variety of possible similarity
coefficients, all of which vary between 0 and 1. One possibility is

s2 = a/(a + b + c + d),

the frequency of events where both X and Y occur relative to the total fre-
quency of all present–absent combinations of X and Y . Another possibility
is

s3 = a/(a + b + c),

the proportion of events where both X and Y occur, given at least one of
them occurs (Jaccard similarity measure).

To see the consequences of choosing s2 or s3, consider the following
example. Bilsky, Borg, and Wetzels (1994) studied forms of conflict tactics
among family members, ranging from calm debates over throwing things
to physical violence inflicting injuries to other persons. A survey asked
the respondents to indicate which forms of behavior had occurred among
members of their families in the last five years. If co-occurrence of behavior
forms is assessed by s3, MDS yields a one-dimensional solution where the
different behavior forms are simply arrayed in terms of their aggressiveness,
with a major gap between behaviors that involve shouting, throwing things,
and the like, and those that involve any form of physical violence. Using s2
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TABLE 6.3. Types of combinations of two events X and Y , together with their
frequencies (cells entries).

X = 1 X = 0 Total
Y = 1 a b a + b
Y = 0 c d c + d

Total a + c b + d a + b + c + d

coefficients, however, has the effect that the behaviors that involve physical
violence drop dramatically in similarity because they are so rare, that is,
because d is so great. This essentially wipes out the clear scale obtained for
s3 proximities.

There are amazingly many ways to combine the four frequencies a, . . . , d
into an overall proximity measure for each pair of objects (see, e.g., Gower,
1985; Gower & Legendre, 1986; Cox & Cox, 1994). However, most of these
proximities make sense only in highly specific contexts, so that it serves
no purpose to discuss all of them here. It may suffice to consider just one
further proximity, the simple matching coefficient,

s4 = (a + d)/(a + b + c + d),

which counts both co-occurrence and co-nonoccurrence as indices of simi-
larity. In the case of the forms of violent behaviors, s4 would bring up the
question of whether rare forms of behavior, in particular, should be con-
sidered very similar simply because of their high rate of co-nonoccurrence.
More details about many of the possible binary coefficients and their scal-
ability in MDS can be found in Gower and Legendre (1986).

An small overview of the most frequently used co-occurence measures is
presented in Table 6.4, together with the range for each of these indexes.
It is easy to convert these similarity measures into dissimilarities by com-
puting δij = 1 − sk, for k = 2, . . . , 6.

6.6 Choosing a Particular Proximity

The availability of so many varieties of proximities seems to make life con-
fusing for the user. Which proximity should be chosen? An answer to this
question depends on many considerations, but is typically not that difficult.

An important decision criterion is usually the practical feasibility of a
particular data collection method. Consider surveys, for example, where re-
spondents are asked by questionnaires about their attitudes towards various
political issues. It would be inconceivable to replace the usual item-by-item
ratings by a task where the respondent has to compare the n(n−1)/2 pairs
of items, because this is simply too time consuming. Moreover, it would be
difficult to explain to the respondents what exactly they are supposed to
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TABLE 6.4. Overview of some popular co-occurrence measures.

Measure Bounds of sk

s2 s2 =
a

a + b + c + d
0 ≤ s2 ≤ 1

s3 Jacard similarity measure s3 =
a

a + b + c
0 ≤ s3 ≤ 1

s4 Simple matching coefficient s4 =
a + d

a + b + c + d
0 ≤ s4 ≤ 1

s5 Hamman s5 =
(a + d) − (b + c)

a + b + c + d
−1 ≤ s5 ≤ 1

s6 Yule s6 =
ad − bc

ad + bc
−1 ≤ s5 ≤ 1

do in such a task, that is, in which sense they are supposed to compare the
items.

Another case is the proximity of intelligence test items, assessed above
in terms of how similarly the testees perform on the items. Here, it remains
unclear how direct proximities could be defined at all without changing the
research question. Assume that we would ask test psychologists to evaluate
directly the global similarity of the test items. Such a question, obviously,
studies the perception of test psychologists and not the structure of the
test item performance of testees.

Direct proximities are more a task for laboratory studies on perceptual
structures than, for example, for survey studies. Most of the examples dis-
cussed earlier (e.g., Morse code confusions, color similarities) belong to this
category. The card-sorting procedures often used by market researchers is
another example.

In the context of such research questions, direct proximities typically are
collected to explain how they are generated. If the subjects were asked to
first assess the objects of interest on scales invented by the researcher, the
proximities would be based on these scales, not on criteria freely chosen
by subjects themselves. In the facial expressions study by Engen et al.
(1958), the direct proximities were, therefore, collected along with ratings
on certain dimensions in order to check whether the structure of the former
could be explained by the latter (see Section 4.3).

So, the question of what proximity to choose typically is decided to a
large extent by the research question and its context. However, this is more
true for direct proximities. If one decides to derive proximities, one has a
less substantive foothold for choosing a particular measure.

Deriving proximities requires one to decide, first of all, if one wants a
correlation coefficient or a distance measure on the observations on two
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variables, X and Y . The former assesses the similarity of X and Y in
terms of their “profiles”, the latter the (dis-)similarity in terms of their
element-by-element differences. That is, if X = 2 · Y , for example, then
rXY = 1, but the distance of X and Y is not zero. On the other hand, if
the distance of X and Y is zero, then rXY = 1 always.

However, the choice between these measures is not that important in
practice. The reason is that if proximities are computed by aggregating
over attribute scales, it usually makes sense to first standardize the differ-
ent attribute scales rather than using raw scores. In this case, Euclidean
distances are related to Pearson’s r by a monotonic function. This can be
seen as follows. Assume that we have two variables, X and Y , that are both
standardized so that their means are zero and their sum-of-squares is equal
to 1. As a result, rXY =

∑
i xiyi. Then, the Euclidean distance between X

and Y is

dXY =

(
N∑

i=1

(xi − yi)2
)1/2

=

(
N∑

i=1

x2
i +

N∑
i=1

y2
i − 2

N∑
i=1

xiyi

)1/2

= (2 − 2rXY )1/2
. (6.1)

Hence, when using ordinal MDS, it becomes irrelevant which proximity is
used, because both yield (inversely) equivalent rank-orders.

City-block distances, moreover, are typically highly correlated with Eu-
clidean distances, so that they, too, are monotonically closely related to r
in practice. It is also true that Pearson correlations and monotonic corre-
lations such as ρ or µ2 are highly correlated if the relationship of the items
is not extremely nonlinear. Moreover, the structural information contained
in a matrix of proximities is very robust against variations in the individ-
ual proximity coefficients. For that reason, Pearson rs are often chosen in
practice rather than the formally more attractive µ2s. In summary, then,
the user need not worry that much about the particular choice for com-
puting proximities from score vectors: the usual measures, such as r or the
Euclidean distance, are most often quite appropriate in an MDS context.

6.7 Exercises

Exercise 6.1 Consider the matrix of dominance probabilities Pij below
(Borg, 1988). It shows the relative frequencies with which a group of male
students judged that the crime/offense in row i is more serious than the
crime/offense in column j. Thurstone (1927) and Coombs (1967) report
similar data. They analyze them with the Law-of-Comparative-Judgment
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model. This model maps dominance probabilities Pij into scale value differ-
ences xi −xj by the inverse normal distribution ogive; that is, N−1(Pij) =
xi − xj , where N−1 denotes the function that maps probabilities into z-
scores.

Item 1 2 3 4 5 6 7 8 9 10
1 Abortion .50 .65 .32 .30 .42 .12 .20 .36 .45 .49
2 Adultery .35 .50 .20 .19 .25 .02 .11 .28 .31 .33
3 Arson .68 .80 .50 .41 .62 .13 .22 .45 .61 .67
4 Assault/battery .70 .81 .59 .50 .67 .16 .29 .51 .70 .72
5 Burglary .58 .75 .38 .33 .50 .09 .14 .40 .58 .58
6 Homicide .88 .98 .87 .84 .91 .50 .59 .74 .87 .90
7 Rape .80 .89 .78 .71 .86 .41 .50 .63 .83 .83
8 Seduction .64 .72 .55 .49 .60 .26 .37 .50 .66 .69
9 Theft .55 .69 .39 .30 .42 .13 .17 .34 .50 .53
10 Receiving stolen goods .51 .67 .33 .28 .42 .10 .17 .31 .47 .50

(a) Davison (1983) suggests that these data can be modeled by ordinal
MDS. In fact, he claims that one can solve for a more general class
of models called Fechner models. All Fechner models require that (1)
Pij = 0.5 �→ dij = |xi − xj | = 0 and that (2) dij = |xi − xj | grows
strictly monotonically as a function of δij = |Pij − 0.5|.] Thurstone’s
model is but one particular Fechner model that relies on the nor-
mal function. Use ordinal MDS to find one-dimensional scales for the
crime/offense data sets without relying on any particular monotonic
function.

(b) Study the empirical relation of dominance probabilities to the cor-
responding scale differences (=signed distances) and discuss whether
the normal mapping function used in the Law-of-Comparative-Judgment
model is empirically supported here.

(c) Repeat the MDS analysis with five different random starting config-
urations. Compare the five solutions. What does your finding imply
for unidimensional scaling?

Exercise 6.2 Consider Table A.1 on page 545 in Appendix A that compares
several properties of MDS programs. Drop the rows “max. number of ob-
jects”, “min. number of objects”, and “max. dimensionality” as computer
constraints that have little to do with the substance of the different MDS
programs described here. Turn the remaining matrix into a 1–0 incidence
matrix. Then compute at least three different types of similarity coefficients
for the set of MDS programs and discuss your choices. Finally, scale these
similarity data in 2D MDS spaces and compare the resulting solutions.

Exercise 6.3 Consider Table 1.5 used in Exercise 1.7.

(a) Derive proximity matrices for the row entries by using (1) monotone
correlations, (2) city-block distances, and (3) Euclidean distances.
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(b) For each set of proximities, find 2D ordinal and interval MDS solu-
tions.

(c) Compare the solutions: How similar are they? Give reasons for their
relative similarities or dissimilarities.

Exercise 6.4 Pick ten countries from at least four different continents. For
these countries, derive a proximity matrix by card sorting, where you are
the respondent yourself. Discuss which problems you encountered in sort-
ing the cards. Replicate the experiment with a different respondent and
compare the outcomes.

Exercise 6.5 Consider the data matrix below. It shows the results of a free
sorting experiment reported by Dunn-Rankin (1983, p.47). Fifteen persons
clustered 11 words that all begin with the letter “a”. The entries in the
data matrix are cluster numbers.

Ad- Al- Aim-
Person A mits Aged most ing And As At Areas Army Away

1 1 2 3 2 4 3 1 1 5 6 6
2 1 2 3 2 2 1 1 1 3 2 2
3 1 2 1 2 2 3 1 1 3 3 3
4 1 2 3 4 4 1 5 6 7 8 8
5 1 2 3 4 4 1 5 6 7 8 8
6 1 2 3 3 4 5 1 6 7 8 8
7 1 2 3 2 2 3 1 1 2 2 2
8 1 2 2 4 5 6 7 7 8 9 9
9 1 2 3 2 4 5 1 6 4 4 4
10 1 2 3 4 5 2 1 1 2 6 6
11 1 2 3 2 4 1 1 1 3 5 5
12 1 2 3 4 2 3 1 1 3 3 3
13 1 2 3 2 4 5 1 1 6 7 5
14 1 2 3 2 4 5 1 1 6 7 7
15 1 2 3 2 2 3 1 1 3 2 3

(a) Do the persons sort the words into the same number of clusters?
Which person makes the finest distinctions and which person the
coarsest?

(b) Compute a matrix of reasonable proximity indices for the 11 words.
Analyze the similarities by MDS.

(c) Compute proximity indices for the 15 persons and analyze the indices
by MDS. (Hint: Make a list of all pairs of words. If person x throws
word i and word j into the same cluster, assign a proximity score of
1. Else, score 0.)

Exercise 6.6 Merkle (1981) studied the frequencies with which product x
is bought together with product y, as measured by the sales registry in a
set of German clothing stores. He reports the following co-occurrence data.
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Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Expensive suit 28
2 Expensive trad. shirt 18 68
3 Expensive tie 13 17 0
4 Cheap tie 6 8 0 13
5 Imported shirt 10 25 10 0 20
6 Medium-priced shirt 2 23 0 15 3 0
7 Cheap suit 2 27 6 22 6 13 26
8 Cheap shirt 3 9 10 25 25 13 26 57
9 Cheap knitwear 17 46 22 24 5 109 222 275 487

10 Stylish shirt 10 0 4 8 1 48 146 88 57 109
11 Colored socks 24 21 3 18 7 281 197 117 178 8 273
12 Jeans 25 10 23 9 5 43 167 146 46 8 46 110
13 Modern jacket 1 14 3 33 0 3 12 21 87 42 15 14 508
14 Modern pants 0 0 0 46 16 0 18 67 12 19 20 24 45 88

(a) Discuss how the values on the main diagonal of this matrix are to be
interpreted. Are the data similarities or dissimilarities?

(b) Some products are bought more often than others. Discuss what ef-
fects this has if one were to submit these data to an MDS analysis.
In which ways would the result be influenced by buying frequencies?
Where in the MDS plot would a product move that people tend to
buy very often?

(c) Merkle (1981) suggests normalizing these data for their different basic
frequencies by using Yule’s coefficient of colligation: Yxy = [

√
ad −√

bc]/[
√

ad +
√

bc], where a denotes the frequency of all sales that
contain both x and y, d is the frequency of sales that contain neither
x nor y, b are sales of x but not y, and c are sales of y without x.
Compute the Yxy coefficients for co-sales of products 1 through 4.

(d) The coefficient Yxy is not easily interpretable. If, however, one skips
the square roots in the formula for Y , another coefficient due to Yule
results, called Q (see s6 in Table 6.4). What does Q assess? How can
this be expressed in words?

(e) Assume we wanted to do an ordinal MDS of the normalized data.
Would it make much, or any, difference whether we use Y or Q?

(f) Describe alternatives for normalizing the data matrix for different
overall sales frequencies of the different products.

(g) Compute MDS solutions for these data, both raw and normalized.
Discuss the solutions in terms of what features of these products
determine whether they tend to be bought jointly or not.

(h) Make a proposal of how the different values of the main diagonal
could be represented graphically in the MDS plots.




