
5
MDS and Facet Theory

Regional interpretations of MDS solutions are very general and particu-
larly successful approaches for linking MDS configurations and substantive
knowledge about the represented objects. Facet theory (FT) provides a sys-
tematic framework for regional interpretations. FT structures a domain of
interest by partitioning it into types. The typology is generated by coding
the objects of interest on some facets of their content. The logic is simi-
lar to stratifying a sample of persons or constructing stimuli in a factorial
design. What is then tested by MDS is whether the distinctions made on
the conceptual (design) side are mirrored in the MDS representation of the
objects’ similarity coefficients such that different types of objects fall into
different regions of the MDS space.

5.1 Facets and Regions in MDS Space

Interpreting an MDS solution means linking geometric properties of the
configuration to substantive features of the represented objects. A very
general approach is to interpret regions of an MDS space. Regional inter-
pretations are put into a systematic framework in facet theory (Guttman,
1959, 1991; Borg & Shye, 1995).



88 5. MDS and Facet Theory

Elements of Facet Theory
The central notion of facet theory (FT) is that of a facet. A facet is a scheme
used to classify the elements of a domain of interest into types. The facet
“gender”, for example, classifies persons into males and females. Similarly,
the facet “behavior modality” classifies attitudinal behavior into emotional,
cognitive, and actional behavior. Using several facets at the same time par-
titions a domain of interest into multifaceted types. Consider the tasks
contained in an intelligence test, for example. In FT, such tasks are intel-
ligence items, defined as questions that ask about an individual’s behavior
and assess it on a scale from “very right” to “very wrong” according to an
objective rule (Guttman, 1965). A particular case of intelligence items are
the tests in paper-and-pencil intelligence test batteries. Such tests require
the testee to find verbal analogies, solve arithmetic problems, and iden-
tify patterns that complete series of figures, for example. Hence, they can
be classified by the facet “language of presentation” into numerical, ver-
bal, and geometrical ones. At the same time, such tests relate to different
abilities, which gives rise to a second facet, “required mental operation”.
It classifies tests into those where the testee has to infer, apply, or learn
a rule, respectively (Guttman & Levy, 1991). In combination, these two
facets distinguish nine types of intelligence: numerical tests requiring the
testee to infer a rule, numerical tests requiring the testee to apply a rule,
. . ., geometrical tests requiring the testee to learn a rule.

In FT, facets are typically not just listed but rather expressed in the
framework of a mapping sentence. It shows the roles the facets play relative
to each other and relative to what is being observed, that is, the range of
the items. An example is the following.

Person {p} performs on a task presented in

language⎧⎨⎩
verbal

numerical
geometrical

⎫⎬⎭ language and requiring

requirement⎧⎨⎩
learning
applying
inferring

⎫⎬⎭ an

objective rule →

range⎧⎨⎩
very right

to
very wrong

⎫⎬⎭ according to that rule.

The terms enclosed in braces denote the facets.1 The set of persons, p, is
not stratified further in this example, whereas the questions are structured

1Instead of braces, one often uses vertical arrays of parentheses. Braces, however,
correspond to the usual mathematical notation for listing the elements of a set. Formally,
a facet is a set or, more precisely, a component set of a Cartesian product.
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by the two facets from above, “requirement” and “language”. The range of
the mapping sentence is the scale on the right-hand side of the arrow. The
arrow symbolizes an observational mapping of every person in p crossed
with every (doubly coded) test into the range (data). Each such mapping
specifies the response of a given person to a particular type of question. For
each question type, there are generally thousands of concrete items.

Facets are invented for a particular purpose, that is, for systematically
breaking up a domain of interest into subcategories or types in order to
conceptually structure this domain. Take plants, for example. Botanists,
painters, children, perfume makers, and the like, all invented category sys-
tems that allow them to order plants in some way that is meaningful for
them. Good classification systems allow the user to unambiguously place
each and every object into one and only one category. But good classifi-
cation systems also serve a particular purpose beyond providing concep-
tual control: the different types distinguished by the classification system
should, in one way or another, “behave” differently in real life. Whether
this is true can be tested empirically and, hence, implies a hypothesis.

Facet Theory and Regions in MDS Spaces
A traditional specification of the hypothesis of empirical usefulness of a
facet is that it should explain the data in some way. One way of testing
this is to check whether the distinctions made by the facets are mirrored,
facet by facet, in corresponding differences of the data. For example, tests
that require the testee to infer, apply, or learn a rule, should lead to different
responses of the testee. One particular specification of what is meant by
“different” is that inferential tests are most difficult, in general, and learning
tests are least difficult, with application tests in between. Another form of
hypothesis is that different item types fall into different regions of an MDS
representation of the item intercorrelations.

A regional hypothesis thus links content facets to regions of the empirical
MDS space. The hypothesis is that the MDS space can be partitioned such
that each region represents a different facet element.2 That is, all points
within a particular region should be associated with the same facet element,
and points in different regions should be associated with different facet
elements.

Consider an example. Table 5.1 shows the intercorrelations of eight in-
telligence test items, together with structuples, that is, codings of the items
on the facets “language” and “requirement” discussed above. Item 1 in Ta-

2In a plane, a region is defined as a connected set of points such as the inside of a
rectangle or a circle. More generally, a set of points is connected if each pair of its points
can be joined by a curve all of whose points are in the set. Partitioning a set of points
into regions means to split the set into classes such that each point belongs to exactly
one class.
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TABLE 5.1. Intercorrelations of eight intelligence tests, together with content
codings on the facets “language” = {N = numerical, G = geometrical} and
“requirement” = {A = application, I = inference} (Guttman, 1965).

Language Requirement Test 1 2 3 4 5 6 7 8
N A 1 1.00 .67 .40 .19 .12 .25 .26 .39
N A 2 .67 1.00 .50 .26 .20 .28 .26 .38
N I 3 .40 .50 1.00 .52 .39 .31 .18 .24
G I 4 .19 .26 .52 1.00 .55 .49 .25 .22
G I 5 .12 .20 .39 .55 1.00 .46 .29 .14
G A 6 .25 .28 .31 .49 .46 1.00 .42 .38
G A 7 .26 .26 .18 .25 .29 .42 1.00 .40
G A 8 .39 .38 .24 .22 .14 .38 .40 1.00

3=NI

2=NA

1=NA

8=GA

7=GA

6=GA

5=GI

4=GI

FIGURE 5.1. 2D MDS of correlations
in Table 5.1.
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FIGURE 5.2. MDS space with four re-
gions resulting from G- vs. N-, and A-
vs. I-distinctions, respectively.

ble 5.1 is coded as numeric (on the facet “language”) and as application
(on the facet “requirement”), whereas item 5 is geometrical and inference.
Rather than looking at these correlations directly, we represent them in a
2D MDS space (Figure 5.1). This can be done with the low Stress of .015.

Figure 5.2 demonstrates that the MDS configuration can indeed be cut
such that each partitioning line splits it into two regions containing only
points of one type: points of the N-type lie above the solid line, and points
of the G-type below that line. The dashed line separates I-type points from
A-type points. One notes in Figure 5.2 that there is considerable leeway
in choosing the partitioning lines. Why, then, was a curved line chosen for
separating I-type points from A-type points? The reason is that this line
yields a structure that looks like a slice from the universe of all possible
item types discriminated by the given two facets. If items of all nine types
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FIGURE 5.4. Cylindrex of intelligence
items (after Guttman & Levy, 1991).

had been observed, one can predict that the MDS configuration would
form a pattern similar to a dart board, or radex, shown schematically in
Figure 5.3. If, in addition, one adds another facet, “communication”, which
distinguishes among oral, manual, and paper-and-pencil items, one obtains
a 3D cylindrex, shown in Figure 5.4. In the cylindrex, “communication”
plays the role of an axis along which the radexes for items using a fixed
form of communication are stacked on top of each other.

Summarizing, we see that every facet contains additional information on
the items in MDS. In a way, a facet can be seen as a design variable of
the items: every item belongs to one of the categories of each and every
facet. The facets are combined into a mapping sentence so that every item
corresponds to one particular way of reading this mapping sentence. Some
combinations of the categories may not be expressed by items, whereas
other combinations may have more than one item. The facets and their
categories (elements) are chosen on substantive grounds. Given a set of
items classified by such facets, MDS tests whether the classification is re-
flected in a corresponding regionality of the representation space.

5.2 Regional Laws

The cylindrex structure has been confirmed so often for intelligence test
items that now it is considered a regional law (Guttman & Levy, 1991).
What Figure 5.2 shows, therefore, is a partial replication of the cylindrex
law.
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What does such a regional law mean? First of all, it reflects regularities in
the data. For example, restricting oneself to items formulated in a particular
language (such as paper-and-pencil tests) and, thus, to a radex as in Figure
5.3, one notes that inference items generally correlate higher among each
other than application items, and learning items are least correlated. Thus,
knowing that some person performs well on a given inference item allows
one to predict that he or she will most likely also perform well on other
inference items, whereas good performance on a given learning item says
little about the performance on other learning items. One can improve the
predictions, however, if one constrains them to learning tasks that use a
particular language of presentation such as numerical tasks.

One notes, moreover, that the MDS regions for inference, application,
and learning are ordered. This order cannot be predicted or explained from
the properties of the qualitative facet “requirement”, but it reliably shows
up in hundreds of replications (Guttman & Levy, 1991). Thus, it seems
unavoidable to ask for an explanation for this lawfulness. Ideally, what
one wants is a definitional system that allows one to formally derive such
ordered regions from its facets.

Snow, Kyllonen, and Marshalek (1984) proposed an explanation in this
direction. They report a factor analysis that suggests that items which re-
late to points in the center of the radex (i.e., inference tasks) are “complex”
items and those represented at the periphery (such as learning tasks) are
“specific” items. This repeats, to some extent, what the radex says: items
whose points are closer to the origin of the radex tend to be more highly
correlated with other items. Snow et al. (1984) add, however, that more
complex tasks show “increased involvement of one or more centrally impor-
tant components.” Hence, their explanation for the inference-application-
learning order seems to be that these facet elements are but discrete se-
mantic simplifications of a smooth gradient of complexity.

One can ask the complexity question in a different way and define a task
t1 as more complex than t2 if “it requires everything t1 does, and more”
(Guttman, 1954, p. 269). Formally, this implies an interlocking of content
structuples, which is analogous to the perfect Guttman scale. Specifying
such structuples requires one to identify basic content facets with a common
range, where the concepts “inference”, “application”, and “learning” then
become only global labels for comparable (hence ordered) content structu-
ples of these underlying facets. For a fixed element of the “language” facet,
such a system would allow one to predict a particular order of regions
(simplex).

But this leads to the question of what pulls the different simplexes—one
for each type of required mental operation, that is, one for items that require
application, learning, or inference of an objective rule, respectively—to a
common origin? To explain this empirical structure requires an additional
pattern in the structuples. Formally, for the three directions of the intelli-
gence radex, it would suffice to have an additional coding of the items in
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FIGURE 5.5. Radex partitionings of 13 work value items.

terms of the extent to which they require each of the three mental opera-
tions. In any case, with many points and/or differentiated facets, a simple
correspondence between regions and structuples is a remarkable finding.
Arbitrary assignments of structuples to the points do not, in general, lead
to such lawfulness. Partitionings with relatively smooth cutting lines are
generally also more reliable. Moreover, they help clarify the roles the var-
ious facets play with respect to the data. Such roles are reflected in the
particular ways in which they cut the space.

5.3 Multiple Facetizations

A given object of interest can always be facetized in more than one way.
Every new facet offers a new alternative. But then one may ask whether
each such facetization is reflected in different statistical effects on the data
side. Consider work values, for example. Work value items ask the respon-
dent to assess the importance of different outcomes of his or her work. An
example is the questionnaire item: “How important is it to you personally
to make a lot of money?” with the range “very important . . . not important
at all.” Conceptually, two different kind of facets have been proposed for
organizing such items: one facet distinguishes the work outcomes in terms
of the need they satisfy, and the other facet is concerned with the allocation
criterion for rewarding such outcomes. Consider Table 5.2, in which Borg
and Staufenbiel (1993) coded 13 work value items in terms of seven facets.
The facets and the structuples were taken from the literature on organi-
zational behavior. Moorhead and Griffin (1989) argue, for example, that
security in Maslow’s sense interlocks with both Alderfer’s relatedness and
existence, but an item that is both Maslow-type security and Alderfer-type
relatedness (item 10 in Table 5.2) is missing in the given sample of items.
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TABLE 5.2. Work value items with various facet codings: H(erzberg) = {h =
hygiene, m = motivators}; M(aslow) = {p = physiological, s = security, b =
belongingness, r = recognition, a = self-actualization }; A(lderfer) = {e = ex-
istence, r = relations, g = growth}; E(lizur) = {i = instrumental-material, k =
cognitive, a = affective-social}; R(osenberg) = {e = extrinsic, i = intrinsic, s =
social}; L(evy-Guttman) = {i = independent of individual performance, g = de-
pends on group performance, n = not performance dependent}; B(org-Elizur) =
{1 = depends much on individual performance, 2 = depends more on individual
performance than on system, 3 = depends both on individual performance and
on system, 4 = depends on system only}.

Item H M A E R L B Work Value
1 m a g k i g 3 Interesting work
2 m a g k i g 3 Independence in work
3 m a g k i g 3 Work that requires much responsibility
4 m a g k i n 4 Job that is meaningful and sensible
5 m r g k e i 1 Good chances for advancement
6 m r r a s i 1 Job that is recognized and respected
7 h b r a s n 4 Job where one can help others
8 h b r a s n 4 Job useful for society
9 h b r a s n 4 Job with much contact with other people

10 - s r - - - - (No item of this type asked in study)
11 h s e i e i 2 Secure position
12 h s e i e i 1 High income
13 h p e i e n 4 Job that leaves much spare time
14 h p e i e n 4 Safe and healthy working conditions
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Figure 5.5 shows a 2D MDS representation for the correlations of the
13 work value items assessed in a representative German sample. The
radex partitioning is based on the facets “M(aslow)” (solid radial lines),
“R(osenberg)” (dashed radial lines), and “L(evy-Guttman)” (concentric
ellipses). It is easy to verify that the other facets also induce perfect and
simple partitionings of this configuration. These partitionings are, more-
over, quite similar: the respective regions turn out to be essentially congru-
ent, with more or fewer subdivisions. Differences of the various wedge-like
partitionings are primarily related to the outcome advancement, which is
most ambiguous in terms of the need that it satisfies. Hence, one can con-
clude that all of these theories are structurally quite similar in terms of
item intercorrelations. This suggests, for example, that Herzberg’s motiva-
tion and hygiene factors correspond empirically to Elizur’s cognitive and
affective/instrumental values, respectively.

We note, moreover, that such similar partitionings of the MDS space
into wedge-like regions—induced by different facets that are formally not
equivalent—give rise to a partial order of the induced sectors. The inter-
locking of the Herzberg and the Maslow facets implies, for example, that
the hygiene region contains the subregions “physiological”, “security”, and
“belongingness”, and the motivators’ region contains the subregions “es-
teem” and “self-actualization”. Hence, the subregions are forced into a
certain neighborhood relation that would not be required without the hier-
archical nesting. Similarly, the conceptual interlocking of the Maslow and
the Alderfer facet requires “esteem” to fall between “self-actualization” and
‘belongingness”.

Elizur, Borg, Hunt, and Magyari-Beck (1991) report further studies on
work values, conducted in different countries, which show essentially the
same radex lawfulness. Note that this does not imply similarity of MDS
configurations in the sense that these configurations can be brought, by
admissible transformations, to a complete match, point by point (for such
matchings; see Chapter 20). Rather, what is meant here is that several
configurations (which do not even have to have the same number of points)
exhibit the same law of formation: they can all be partitioned in essentially
the same way (i.e., in the sense of a radex) by just one fixed coding of the
items, thus showing similar contiguity patterns (Shye, 1981).

5.4 Partitioning MDS Spaces Using
Facet Diagrams

Partitioning an MDS space is facilitated by using facet diagrams. Facet
diagrams are simply subspaces—usually 2D projection planes—of the MDS
space where the points are labeled by their structuples or, better, by their
codings on just one facet (structs). This usually enables one to see the
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distribution of the points in terms of the particular typology articulated by
each facet.

Consider an example that also explicates further aspects of facet theory
(Galinat & Borg, 1987). In experimental investigations a number of prop-
erties of a situation have been shown, one by one, to have an effect on
judgments of duration of time. The following mapping sentence shows four
of these properties within a design meant to measure symbolic duration
judgments, that is, duration judgments on hypothetical situations.

Person {p} believes that the

positivity⎧⎨⎩
p1 = pleasant
p2 = neutral
p3 = unpleasant

⎫⎬⎭ situation with

number{
m1 = many
m2 = few

} variability{
v2 = monotonous
v1 = variable

}
events that are

difficulty{
s1 = difficult
s2 = easy

}
to handle is felt as →

reaction⎧⎨⎩
very short in duration

to
very long in duration

⎫⎬⎭ .

The mapping sentence first shows a placeholder for the population of re-
spondents {p}. In each particular way of reading the mapping sentence, one
element of {p} is picked and crossed with one particular combination of the
elements of the content facets. The content facets distinguish among dif-
ferent situations by considering four properties of its events: “positivity of
events”, “number of events”, “variability of events”, and “difficulty to han-
dle events”. With the number of facet elements we have specified here—3
on “positivity”, 2 on “number”, 2 on “variability”, and 2 on “difficulty”—
we have 3 · 2 · 2 · 2 = 24 different situation types. For example, a situation
with structuple (p3, m2, v1, s2) or, for short, 3212 is defined to be an un-
pleasant one, where few things are happening, with much variability, and
no problems to cope with what is going on.

What we are interested in is how persons judge the duration of these 24
situation types. The mapping sentence identifies the characteristics of these
situations in a relatively abstract way. For each type of situation, concrete
examples must be constructed in order to have items that can be presented
to respondents for assessment. The following story illustrates a concrete
item for a situation of type p1m1v1s2. “You are playing a simple card game
with your children. It is quite easy for you to win this game because your
kids are no serious opponents. The game requires you to exchange many
different cards. The game is fun throughout the three minutes that it lasts.”
This description is supplemented by the question, “What do you think; how
long would this card game seem to last? Would it seem longer or shorter
than three minutes?”
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A sample of persons rated this and 23 other hypothetical situations on
a 7-point scale from “a lot shorter” (coded as 1) to “a lot longer.” This
bipolar scale, together with the question, “What do you think: how long
. . .?”, is a concrete specification for the generic response range “very long
. . . very short in duration” in the above mapping sentence.

The intercorrelations of the 24 items are mapped into a 4D MDS space
(with Stress = .13). Four dimensions are chosen because we assume that
each facet can be completely crossed with any other. We now look at this
space in terms of two projection planes. Figure 5.6 shows the plane spanned
by the first two principal axes of the MDS configuration. Its points are
labeled by the structs of each point on the facet “positivity”. That is,
points labeled as – in this facet diagram represent situations defined as p3
= unpleasant. (Instead of –, one could also have chosen p3, “unpleasant”,
“neg”, “3”, or any other symbolism, of course.) The facet diagram shows
immediately that the points marked as +, o, and – are not distributed
randomly. Rather, the plane can be partitioned into regions so that each
region contains only or almost only points of one particular type. Figure
5.7 shows such a partitioning. It contains two minor errors: the two solid
arrows indicate where these points “should” lie to be in the appropriate
regions. Obviously, they are not far from the boundaries of these regions.
There is also one further, and gross, error: a “positive” point located in the
“negative” region. The dashed arrow attached to this point indicates the
direction of required shifting.

Figure 5.8 represents an alternative partitioning that is error-free. This
partitioning depends, however, very much on the position of the one point
marked by an arrow. Thus, it may be less reliable in further replications.
Moreover, the two partitionings imply different things. The concentric re-
gions of Figure 5.8 predict that the duration ratings on unpleasant situa-



98 5. MDS and Facet Theory

+ +

+

+
+o

o

o

o

o

o

o

o

–

–

–

–

–

–

–

–

++
+

neutral

positive

negative

FIGURE 5.8. Facet diagram with mod-
ular partitioning.

1720

143
5

1624
22

10723

19
821

9
4

13
6

18

11

12

2

151

few many

va
ria

bl
e

m
on

ot
on

ou
s

FIGURE 5.9. MDS projection plane
of 24 duration situations, spanned by
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tions should correlate higher among each other, on the average, than those
for pleasant situations. The parallel regions of Figure 5.7 do not thus re-
strict the correlations. Nevertheless, both partitions are similar in splitting
the plane into ordered regions, where the neutral region lies in between the
positive and the negative regions. Hence, the regions are ordered as the
facet “positivity” itself. Neither the spatial organization induced by the
straight lines nor that induced by concentric circular lines would therefore
have problems in accommodating a “positivity” facet, which distinguishes
many more than just three levels. This is important because what we want,
eventually, is not a theory about some particular sample of stimuli but one
about the universe of such situation types. We thus see that the facet “pos-
itivity” is reflected in the structure of the duration ratings. The decision on
which of the two partitionings is ultimately correct requires further data.

Figure 5.9 shows another plane of the 4D MDS space. It is spanned by
principal axes 3 and 4 of the space and is therefore orthogonal to the plane
in Figures 5.6–5.8. That is, each of its axes is perpendicular to both axes
used in Figures 5.6–5.8. One recognizes from the respective facet diagrams
(not shown here) that the configuration in this plane can be partitioned by
the facet “number”—without error—and also by “variability”—with two
errors.

The facet “difficulty” does not appear to show up in the MDS config-
uration; that is, the points representing easy and difficult situations, re-
spectively, seem to be so scrambled that they can be discriminated only
by very “irregular” partitionings. Such partitionings are, however, rarely
useful. Note, though, that just looking at various orthogonal planes does
not guarantee that one will detect existing regional patterns because such
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FIGURE 5.10. Three prototypical roles of facets in partitioning a facet diagram:
axial (left panel), modular (center), and polar (right).

patterns may be positioned obliquely in space. This remains an unsolved
problem that is particularly relevant in higher-dimensional spaces. In any
case, using various spatial rotations and projections, we at least could not
identify any simple regions related to the facet “difficulty” (Galinat & Borg,
1987).

MDS thus shows that the structure of the duration ratings can, in a way,
be explained by three of the four facets of the design. This explanation is,
moreover, compatible with considerations that extend beyond the sample
of the given 24 concrete situations and that relate to their universe.

5.5 Prototypical Roles of Facets

With the partitionings shown in Figures 5.7 and 5.9, one arrives at an em-
bryonic Cartesian coordinate system spanned by the three facets “positiv-
ity”, “number”, and “variability”. Another coordinate system is suggested
if we accept the circular partitioning shown in Figure 5.8. In this case, we
have some evidence for a polar coordinate system of these facets.

The coordination of the MDS configuration in these examples is not
chosen arbitrarily. Rather, it relates naturally to content. We stress this
point here because the data determine only the distances among the points,
not any dimensions. Dimensions are either superimposed onto the distance
geometry in order to be able to replace ruler-and-compass construction
methods by computation, or they may result from projecting content onto
the geometry, as we saw earlier.

The content facets often play one of three prototypical roles in this con-
text. This is shown in the three panels of Figure 5.10. The panels exhibit
schematic facet diagrams, whose points are labeled as a, b, and c. In the
panel on the left-hand side, the space is partitioned in an axial way. The
panel in the center shows a modular partitioning. The panel on the right-
hand side shows a polar facet. An axial facet is one that corresponds to
a dimension; that is, the partitioning lines cut the space into subspaces
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that look like parallel stripes of the plane (axial simplex of regions; see also
Figure 5.7). A modular facet leads to a pattern that looks like a set of
concentric bands (radial simplex of regions; see also Figure 5.8). Finally, a
polar facet cuts the space, by rays emanating from a common origin, into
sectors, similar to cutting a pie into pieces (circumplex of regions; see also
Figure 5.3).

A number of particular combinations of facets that play such roles lead
to structures that were given special names because they are encountered
frequently in practice. For example, the combination of a polar facet and
a modular facet in a plane, having a common center, constitutes a radex
(see Figure 5.3). Adding an axial facet in the third dimension renders a
cylindrex. Another interesting structure is a multiplex, a conjunction of at
least two axial partitionings (see Figure 5.9). Special cases of the multi-
plex are called duplex (two axial facets), triplex (three axial facets), and so
on. The multiplex corresponds to the usual (Cartesian) coordinate system
(“dimensions”) as a special case if the facets are (densely) ordered and the
partitioning lines are straight, parallel, and orthogonal to each other.

There is also a variety of structures that are found less frequently in
practice, for example, the spherex (polar facets in three-dimensional space)
or the conex (similar to the cylindrex, but with radexes that shrink as one
moves along its axial facet).

5.6 Criteria for Choosing Regions

Partitionings of geometric configurations that consist of only a few points
are relatively easy to find. However, there is often so much leeway for
choosing the partitioning lines that their exact shape remains quite in-
determinate. More determinacy and greater falsifiability are brought in
by increasing the number of items. Another principle for restricting the
choice of partitioning lines is to think beyond the sample. In Figure 5.2,
the partitioning lines were chosen, in part, by considering the universe of
all intelligence items, a cylindrex.

Thinking beyond what was observed is always desirable, although it is,
of course, impossible to say in general how this could be done. Most re-
searchers typically are interested in generalizing their findings to the entire
content universe, to additional populations, and over replications. The sys-
tem of partitioning lines therefore should be robust in this respect, and
not attend too much to the particular sample. Simple partitionings with
relatively smooth cutting lines are typically more robust. But what is sim-
ple? Surely, a regionalization consisting of simply connected regions as in
an axial or an angular system is simple, but so are the concentric bands
of a circumplex. Hence, simple means, above all, that the partitioning is
simple to characterize in terms of the roles of the facets that induce the



5.6 Criteria for Choosing Regions 101

regions. Naturally, if one admits greater irregularities (i.e., not requiring
the lines to be so stiff locally), then the number of errors of classification
can generally be reduced or even eliminated. However, such error reduc-
tion typically makes it more difficult to describe the structure and, as a
consequence, makes it harder to express how the facets act on the MDS
space. Moreover, irregular ad hoc partitionings also reduce the likelihood
of finding similar structures in replications and in the universe of items.
One thus faces a trade-off decision of the following kind. Should one use
relatively simple partitionings at the expense of more errors? Or should one
choose more irregular lines to avoid classification errors, and then leave it
to the reader to simplify these patterns? Obviously, one has to decide what
seems most appropriate in the given context.

Irregular lines cast doubts on the falsifiability of regional hypotheses.
Partitionings become less likely to result from chance the more points they
classify correctly, the more differentiated the system of facets is, the sim-
pler the partitioning lines are, and the greater the stability of the pattern
is over replications. For arbitrary structuples, one should not expect to
find regional correspondences in the data. To see this, we simulate this
case by randomly permuting the structuples in Table 5.1. Assume that this
has led to the assignments 1 = GA, 2 = NI, 3 = GA, 4 = NA, 5 = GI,
6 = NA, 7 = GI, and 8 = GA. If we label the points in Figure 5.2 by
these structuples, we find that the plane can be partitioned in a modular
way by the facet {A, I}, but that the A-points are now in the center in
between the I-points. That does not correspond to the structure of the con-
tent universe, the cylindrex, which was replicated in hundreds of data sets
(Guttman & Levy, 1991). The second facet, {G, N}, leads to a partitioning
line that winds itself snake-like through the circular MDS configuration.
It thus shows that separating the G- from the N-points with a reasonably
regular line is only possible because we have so few points. It can hardly
be expected that such an artificial partitioning can be replicated in other
and richer data sets.

In addition to these formal criteria, one must request that the pattern of
regions also ultimately makes sense. Yet, irregular lines are already difficult
to describe as such and, as a consequence, complicate the search for explain-
ing the way in which the regions are related to the facets. Moreover, in the
given case, the radial order of inference, application, and learning is not
only replicable, but also seems to point to an ordered facet “complexity”,
where inference is the most complex task (see above). If application items,
then, come to lie in the radex center, such further search for substantive
meaning is thwarted.

To avoid seemingly arbitrary partitionings or to aid in partitioning MDS
spaces, Shye (1991) proposed a computerized method for partitioning facet
diagrams in three ways: (1) in an axial way, by parallel and straight lines;
(2) in a modular way, by concentric circles; and (3) in a polar way, by
rays emanating from a common origin. The program yields graphical dis-
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plays of three optimal partitionings, and measurements of the goodness
of these partitionings by providing a facet separation index based on the
sum of distances of the “deviant” points from their respective regions
and normalized by the separability that can be expected for random data
(Borg & Shye, 1995). Using this procedure suggests, for example, that a
concentric-circles partitioning is best in terms of separability for the facet
E = {i = instrumental-material, k = cognitive, a = affective-social} for the
configuration in Figure 5.5. This finding conflicts with our previous decision
to use polar partitioning for the very similar facet suggested by Rosenberg.
On closer inspection, one notes, however, that it hinges on the location of
one point, that is “good chances for advancement.” This work value was
categorized by Elizur as cognitive, but for a representative sample it may
be better categorized as instrumental-material, because higher pay, more
job security, and better working conditions may be more what most people
have in mind when they assess the importance of advancement. Another
criterion that speaks against the concentric-circles partitioning is that it
induces ordered regions. The concentric circles that lead to the best sep-
arability index for facet E with respect to the given MDS configuration
place the affective region in between the instrumental region and the cog-
nitive region. Hence, the regions are ordered in this partitioning, while the
facet only makes nominal distinctions, and no rationale for this order seems
obvious a posteriori, except that affective values may be more highly inter-
correlated than cognitive or instrumental values, in general. Naturally, such
content considerations, as well as generalizability and replicability, must be
considered in addition to formal separability measures for a given sample
representation.

5.7 Regions and Theory Construction

Definitions and data are intimately linked through correspondence hypothe-
ses not only at a particular point in time, but they are also related to each
other over time in a “partnership” (Guttman, 1991) of mutual feedback.
The definitions serve to select and structure the observations. The data
then lead to modifications, refinements, extensions, and generalizations in
the definitional framework. There is no natural beginning of this partner-
ship between data and definitions. Hence, a correspondence between data
and definitions can also be established a posteriori. That is, one may rec-
ognize certain groupings or clusters of the points, and then think about a
rationale afterwards to formulate new hypotheses. When the definitional
framework is complex, one typically does not predict a full-fledged regional
system (such as a cylindrex) unless past experience leads one to expect such
a system. Rather, one uses a more modest strategy with exploratory char-
acteristics, and simply tries to partition the space, facet by facet, with mini-
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mum error and simple partitioning lines. Even more liberal and exploratory
is the attempt to identify space partitions according to new content facets
that were not conceived in advance. The stability of such partitions is then
tested in replications.

Replicating a regional correspondence, and thereby establishing an em-
pirical law, is not sufficient for science. Researchers typically also want
to understand the law. Why, for example, are work values organized in a
radex? An answer to this question can be derived, in part, from reason-
ing in Schwarz and Bilsky (1987). These authors studied general values.
One of the facets they used was “motivational domain” = {achievement,
self-direction, security, enjoyment, . . .}. These distinctions were considered
nominal ones, but there was an additional notion of substantive opposition.
Four such oppositions were discussed, for example, achievement vs. secu-
rity: “To strive for success by using one’s skills usually entails both causing
some change in the social or physical environment and taking some risks
that may be personally or socially unsettling. This contradicts the concern
for preserving the status quo and for remaining psychologically and physi-
cally secure that is inherent in placing high priority on security values” (p.
554). Hence, the region of achievement values was predicted to lie opposite
the security region. If we use this kind of reasoning post hoc on the work
value radex of Figure 5.5, we could explain the opposite position of the
sectors v and a (in Maslow’s sense) by a certain notion of “contrast” of
striving for self-actualization and for recognition, respectively. This notion
of contrast is derived from a basic facet analysis of action systems (Shye,
1985). The same facet analysis also explains the neighborhood of regions
like recognition and security, for example.

To predict regional patterns requires one to clarify the expected roles of
the facets in the definitional framework. This involves, first of all, classify-
ing the scale level of each facet. For ordered facets, one predicts a regional
structure whose regions are also ordered so that the statement that some
region R comes “before” another region R′ has meaning. The order of the
regions should correspond to the order specified for the elements of the
corresponding facet. For qualitative facets, any kind of simple partition-
ability of the point configuration into regions is interesting. The distinction
of facets into qualitative and ordinal ones represents a “role assignment”
(Velleman & Wilkinson, 1994) that is “not governed by something inherent
in the data, but by interrelations between the data and some substantive
problem” (Guttman, 1971, p. 339), that is, by certain correspondence hy-
potheses linking the observations and the definitional system. Hence, if one
can see a conceptual order among the facet’s elements and hypothesize
that this order is mirrored in the observations collected on corresponding
items, then the facet “is” ordered—for testing the hypothesis. Scale level
thus remains context-related.

Consider as an example the facet “color” = {red, yellow, green, blue,
purple}. One would be tempted to say, at first, that this “is” a nominal
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facet. Yet, with respect to similarity judgments on colors, “color” has been
shown to be ordered empirically in a circular way (see Chapter 4). Further-
more, with respect to the physical wavelength of colors, “color” is linearly
ordered.

5.8 Regions, Clusters, and Factors

As is often true with concepts used in FT relative to similar ones in data
analysis, the FT notion is more general. An important example is that re-
gions include clusters as a special case. Lingoes (1981) proposes a faceted
way to distinguish among different types of regions. He suggests that a
cluster is a particular region whose points are all closer to each other than
to any point in some other region. This makes the points in a cluster look
relatively densely packed, with “empty” space around the cluster. For re-
gions, such a requirement generally is not relevant. All they require is a
rule that allows one to decide whether a point lies within or outside the re-
gion. The points 5 and 6 in Figure 5.2 are in different regions, but complete
linkage clustering (a common type of cluster analysis), for example, puts
them into one cluster together with point 4, and assigns points 7 and 8 to
another cluster. For regions, the distance of two points—on which cluster-
ing is based—does not matter. Indeed, two points can be very close and
still be in different regions. Conversely, two points may be far apart and
still belong to the same region. As an analogy, consider Detroit (Michigan)
and Windsor (Ontario). These cities are much closer than Detroit and Los
Angeles, for example, but Detroit and Los Angeles are both in the same
country, whereas Detroit and Windsor are not. In regions, all that counts is
discriminability. Moreover, clusters are usually identified on purely formal
criteria, whereas regions are always based on substantive codings of the
represented objects. Guttman (1977) commented therefore as follows: “. . .
theories about non-physical spaces . . . generally call for continuity, with no
‘vacuum’ or no clear separation between regions. . . The varied data analy-
sis techniques going under the name of ‘cluster analysis’ generally have no
rationale as to why systematic ‘clusters’ should be expected at all... The
term ‘cluster’ is often used when ‘region’ is more appropriate, requiring an
outside criterion for delineation of boundaries” (p. 105).

Factors from factor analyses are not directly related to regions or to clus-
ters. However, it is often asked in practice what one would have found if one
had analyzed a correlation matrix by factor analysis rather than by MDS.
Factor analysis, like cluster analysis, is a procedure that is substantively
“blind” (Guttman, 1977) or that, if used in a confirmatory way, forces a
preconceived formal structure onto the data representation, namely “fac-
tors”. The factors are (rectilinear) dimensions that are run through point
clusters, usually under the additional constraint of mutual orthogonality.
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For Table 5.1, a factor analysis yields three factors with eigenvalues greater
than 1. After varimax rotation, one finds that these factors correspond to
three clusters in Figure 5.1, {1,2,3}, {4,5,6}, and {6,7,8}. Hence, in a way,
the factors correspond to a polar partitioning of the MDS configuration in
the given case, with three factors or “regions” in a 2D MDS space. With
positive correlation matrices, this finding is rather typical; that is, one can
expect m + 1 factor-induced regions in an m-dimensional MDS space. The
reason for this is that positive correlations are conceived of in factor analy-
sis as a vector bundle that lies in the positive hyperoctant of the Cartesian
representation space, whereas MDS—which does not fix the origin of the
space—looks only at the surface that contains the vector endpoints. Thus,
Figure 5.1 roughly shows the surface of a section of the sphere whose origin
lies somewhere in the center of the points but behind (or above) the plane
(Guttman, 1982). The factors then correspond to a tripod fixed to the ori-
gin and rotated such that its axes lie as close as possible to the points.
Hence, one notes that the location of this dimension system is highly de-
pendent on the distribution of the points in space, whereas this is irrelevant
for regions, although, of course, a very uneven distribution of the points in
space will influence the MDS solution through the Stress criterion.

5.9 Exercises

Exercise 5.1 Consider the multitrait-multimethod matrix below (Bagozzi,
1993). It shows the correlations among nine items. The items assess the
traits global self-esteem, social self-esteem, and need for order. Each trait
is measured by three methods: true–false, multipoint, and simple self-rating
scales.

Item No. 1 2 3 4 5 6 7 8 9
T1M1 1 (.83)
T2M1 2 .58 (.85)
T3M1 3 .17 .14 (.74)
T1M2 4 .75 .45 .23 (.93)
T2M2 5 .72 .74 .16 .65 (.91)
T2M2 6 .09 .06 .68 .25 .08 (.85)
T1M3 7 .58 .53 .14 .62 .68 .09 (.63)
T2M3 8 .47 .74 .10 .40 .69 .07 .58 (.74)
T3M3 9 .22 .18 .63 .34 .22 .56 .30 .23 (.82)

(a) Do an MDS of this data matrix and check the configuration for pos-
sible correspondences to the trait and the method facet, respectively.
Try both 2D and 3D solutions.

(b) What can you conclude about the relative weight of trait and method
in these data?
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(c) Characterize the roles of facets T and M in this MDS configuration.

(d) Compare the roles of facets T and M to the roles that T and M play
in Exercise 1.6.

Exercise 5.2 Consider the data matrix below based on a representative
survey in the U.S.A. It shows the intercorrelations of items asking about
satisfaction with different aspects of one’s life. According to Levy (1976),
one can classify these items by the following mapping sentence. The extent
of satisfaction of respondent x with the {a1 = state of, a2 = resources
for} his or her activities in area of life {b1 = education, b2 = economy, b3
= residence, b4 = spare time, b5 = family, b6 = health, b7 = work, b8 =
general} → {very positive . . . very negative} satisfaction with life.

Item A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 City as place to live 2 3
2 Neighborhood 2 3 54
3 Housing 2 3 44 49
4 Life in the U.S. 2 3 33 28 29
5 Amount of educat. 2 1 19 18 23 12
6 Useful education 2 1 14 14 19 15 54
7 Job 1 7 22 21 26 23 25 24
8 Spare time 1 4 22 19 27 23 26 23 33
9 Health 2 9 05 00 06 06 18 17 13 21
10 Standard of living 1 2 33 32 45 24 32 24 35 37 17
11 Savings, investmt. 2 2 25 23 29 19 28 20 27 32 17 59
12 Friendships 2 4 24 19 23 21 16 17 25 40 09 25 24
13 Marriage 2 5 14 13 21 13 09 12 25 30 12 25 23 21
14 Family life 1 5 24 19 23 21 18 18 27 40 14 32 25 31 48
15 Life in general 1 8 28 23 30 24 28 24 34 50 26 45 36 32 38 50

(a) According to Levy facets A and B establish a radex in a 2D MDS
representation of these data. Verify.

(b) Characterize the roles of facets A and B in the MDS space.

(c) What item lies at the origin of the radex? Can you give a substantive
explanation of why this makes sense?

(d) Items that lie more at the center of the radex are more similar to
each other. What does that mean in this particular context?

Exercise 5.3 Consider the data matrix below. It shows the correlations for
12 intelligence tasks from the Wechsler test. The coefficients below the main
diagonal are based on 2200 U.S. children; the coefficients above the main
diagonal come from 1097 Israeli children. Following Guttman and Levy
(1991), the tasks can be described by the following mapping sentence. The
correctness of the response of testee x to a task that requires {I = inference,
A = application, L = learning} of an objective rule through {o = oral, m =
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manual manipulation, p = paper and pencil} expression → {high . . . low}
correctness.

Item Rule Exp 1 2 3 4 5 6 7 8 9 10 11 12
1 Information A o 51 52 58 46 36 40 38 42 34 31 30
2 Similarities I o 62 42 58 49 31 36 41 41 35 29 25
3 Arithmetic A o 54 47 44 36 43 34 33 44 33 33 32
4 Vocabulary A o 69 67 52 60 35 41 44 41 37 31 27
5 Comprehension I o 55 59 44 66 24 38 40 38 36 30 30
6 Digit span L o 36 34 45 38 26 28 28 32 23 29 26
7 Picture completion A o 40 46 34 43 41 21 45 47 45 25 31
8 Picture arrangement A m 42 41 30 44 40 22 40 45 48 28 35
9 Block design A m 48 50 46 48 44 31 52 46 57 32 39
10 Object assembly A m 40 41 29 39 37 21 48 42 60 27 40
11 Coding L p 28 28 32 32 26 29 19 25 33 24 23
12 Mazes L p 27 28 27 27 29 22 34 32 44 37 21

(a) Do an MDS analysis of both the U.S. and the Israeli correlation ma-
trices.

(b) Check whether the facets rule and expression allow you to structure
(“explain”) the MDS configurations.

(c) Characterize the roles these facets play in the MDS spaces.

(d) Which tasks are more central ones in terms of the spatial regions?
Discuss in substantive terms what it means that “the closer an in-
telligence item is to being a ‘rule inference’, the weaker its affinity is
to a single kind of material” (Shye, Elizur, & Hoffman, 1994)[p. 112].
(“Material” here corresponds to what Guttman calls “expression”.)

Exercise 5.4 Consider the MDS configuration in Figure 5.5. Its interpreta-
tion is based on regions induced by some of the facets exhibited in Table
5.2. A special case of a region is a cluster. Clusters may emerge “out of
substance” when one partitions an MDS space by facets defined for the en-
tities represented by the points. However, clusters sometimes are also used
in the MDS context in a purely exploratory way to help interpret MDS
solutions. For that purpose, the proximities are subjected to a hierarchi-
cal cluster analysis, and the emerging cluster hierarchy is superimposed
onto the MDS plane by expressing each cluster as a convex hull around
the points that belong to the cluster. With hierarchical clusters, this often
leads to families of such hulls that look like altitude or contour lines on a
geographic map. We now use this approach on the data on which Figure
5.5 is based. These data are shown in the table below.
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No. Work Value 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Interesting
2 Independence .44
3 Responsibility .61 .58
4 Meaningful work .49 .48 .53
5 Advancement .32 .44 .33 .39
6 Recognition .39 .34 .41 .47 .38
7 Help others .38 .35 .41 .45 .27 .65
8 Contribute society .36 .29 .44 .43 .16 .49 .64
9 Contact people .21 .10 .22 .21 .16 .29 .35 .45
10 Security .28 .18 .30 .39 .15 .36 .37 .49 .61
11 Income .37 .32 .36 .46 .21 .33 .45 .45 .43 .68
12 Spare time .32 .29 .35 .34 .23 .56 .49 .44 .40 .47 .49
13 Working cond. .50 .37 .39 .40 .30 .45 .44 .35 .26 .37 .37 .60

(a) Do a hierarchical cluster analysis on the work values correlations.
Plot the resulting clusters as nested “altitude” lines onto the MDS
plane for the same data.

(b) Compare the cluster structure to the regions in Figure 5.5. Discuss
where they agree and where they differ.

(c) Cluster analysis is sometimes used to check whether the clusters that
one sees in an MDS solution are but scaling artifacts. Green & Rao
write: “As a supplementary step, the . . . data . . . were submitted to
. . . [a] clustering program . . . the program was employed to determine
how well the low-dimensional scaling solutions preserved the original
relationships in the input data” (Green & Rao, 1972, p. 33). Discuss
what they mean by that statement.

(d) Superimpose hierarchical clusters onto the similarity of nations data
in Table 1.3.

(e) Test out different clustering criteria (in particular, single linkage and
average linkage) and check how they differ in clustering the points of
Figure 1.5. Discuss why they differ.

Exercise 5.5 Facets are often superimposed by the substantive researcher
on a theoretical basis. The facets, then, are typically not obtrusive ones,
and many alternative facetizations are possible using different theories.
Yet, facets can also be obtrusive features of the entities. That is true,
for example, for the items in factorial surveys (“vignettes”) or for stimuli
within a factorial design. In these cases, the objects possess a certain facet
profile by construction. It is also true for the following matrix which shows
rank-order correlations of favorite leisure activities for groups defined by
gender, race, and self-defined social class (Shinew, Floyd, McGuire, & Noe,
1995).
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No. Group 1 2 3 4 5 6 7 8
1 Lower-class black women –
2 Middle-class black women .71 –
3 Lower-class black men .54 .54 –
4 Middle-class black men .35 .45 .61 –
5 Lower-class white women .23 .52 .17 .55 –
6 Middle-class white women .29 .66 .20 .52 .77 –
7 Lower-class white men .20 .33 .51 .87 .54 .41 –
8 Middle-class white men .11 .07 .25 .81 .51 .26 .26 –

(a) Represent these data in an MDS plane.

(b) Partition the space by the facets gender, race, and class, respectively.

(c) Discuss the resulting regions. Which facets show up in simple regions;
which facets do not? What do you conclude about the leisure activi-
ties of these groups?




