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PREFACE 

 

This book arose from a course for senior students in Psychometrics and 

Sociometrics. It is aimed at students who have been exposed to an introductory 

course in Matrix Algebra, and are acquainted with concepts like the rank of a 

matrix, linear (in)dependence of sets of vectors, matrix inversion, matrix 

partitioning, orthogonality, and eigenvectors of (real) symmetric matrices. Also, 

at least a superficial familiarity with Multivariate Analysis methods is deemed 

necessary. The methods discussed in this book are Multiple Regression 

Analysis, Principal Components Analysis, Simultaneous Components Analysis, 

MINRES Factor Analysis, Canonical Correlation Analysis, Redundancy 

Analysis, CANDECOMP/PARAFAC, INDSCAL, and Homogeneity Analysis. 

Although the purpose of each of these methods is explained in the text, 

previous exposure to at least some of them is recommended. 

This book has a narrowly defined goal. Each of the nine methods 

mentioned involves a least squares minimization problem. The purpose of this 

book is to treat these minimum problems in a unified framework. It is this 

framework that matters, rather than the nine methods. The framework should 

provide the student with a thorough understanding of a large number of existing 

(alternating) least squares techniques, and may serve as a tool for dealing with 

novel least squares problems as they come about. 

An eminent feature of the framework is that it does not rely on differential 

calculus. Partial derivatives play no role in it. Instead, the method of 

completing-the-squares is generalized to vector functions and matrix functions, 

to yield global minima for a variety of constrained and unconstrained least 

squares problems that have closed-form solutions, or serve as ingredients for 

monotonically convergent alternating least squares algorithms when closed-

form solutions are not available. The versatility of the resulting solutions 

extends far beyond the specific nine methods. 

Another characteristic of the book is that references are only included to 

the extent that they are considered helpful to the student. A full historic account 

of the methods has not been attempted, because that would detract from the 

main purpose, which is the explanation of the underlying principles of the 

methods. For similar reasons, examples of how the methods work in practice 

have been omitted. This text is meant to offer insight into the underlying 



 

(construction) principles of least squares methods, rather than explaining how 

to use these methods in practical applications. However, in cases where the 

nature of the least squares problem on which a method is based has important 

practical implications that are not generally known, these will be discussed. 

I am obliged to Willem Heiser, Wim Krijnen, René van der Heijden, Jan 

Niesing, and Lidia Arends for helpful suggestions. However, a special debt of 

gratitude is owed to Henk Kiers for his continuous efforts to improve the 

exposition and organization of this book. 
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INTRODUCTION 

 

A wide variety of Multivariate Analysis methods are based on least 

squares problems. The standard approach has been to use partial derivatives to 

obtain necessary conditions for a minimum, and then solving the equations 

involved. In the present book, a calculus-free point of departure is taken.  

First, a number of least squares problems that have closed-form solutions are 

solved by deriving lower bounds to the function to be minimized, and showing 

how these lower bounds can be attained. The method used to derive the lower 

bounds is essentially equivalent to completing the squares. The resulting 

solutions are globally optimal by definition. 

Although unconstrained least squares problems are treated, they are 

outnumbered by the constrained least squares problems. Constraints of 

orthonormality and of limited rank play a key role in the developments. More 

often than not, constrained least squares problems can be transformed into 

equivalent constrained trace maximization problems. This explains why 

attainable upper bounds rather than lower bounds can be encountered quite 

often in this book which is, after all, devoted to least squares minimization 

problems. 

The book is made up of four chapters. Chapter 1 deals with some results 

from matrix algebra that play a key role in this book, but may have received 

little or no attention in the matrix algebra course the readers have gone through. 

Chapter 2 starts with the well-known method of completing the squares to 

minimize a quadratic function. The theory is expanded by considering 

constrained quadratic functions, and functions of vectors or vector pairs. 

Explicit optima are derived for the unconstrained regression function, and for 

the linear, the quadratic, and the bilinear form, subject to unit length 

constraints, which can be seen as special cases of orthonormality constraints. 

In Chapter 3 the vector functions are generalized to matrix functions, and 

explicit optima are derived without constraints or under constraints of 

orthonormality and of low rank. The resulting least squares solutions are 

summarized in a table at the end of Chapter 3. Global optima for three trace 

maximization functions are to be found in section 3.3. The matrix theory that is 

used to derive these optima is treated in section 3.2, although this topic 

 

 



 

may also be considered as an extension of Chapter 1. The results of section  

3.3 and the table at the end of Chapter 3 constitute the framework of the book. 

It can be consulted without further consideration of the matrix theory from 

which it was derived. 

In Chapter 4 the versatility of the framework is demonstrated in terms of 

nine methods from Multivariate Analysis. The framework provides global 

optima at once for the optimization problems of Multiple Linear Regression 

Analysis, Principal Components Analysis, Canonical Correlation Analysis, 

Redundancy Analysis, and Homogeneity Analysis. For the remaining 

applications, alternating least squares methods are given. None of the solutions 

given in Chapter 4 are new, but the unified treatment is. Also, important 

practical implications that follow from the underlying least squares problems 

are discussed, when they are not generally known. 

Alternating least squares methods are typically applied when globally 

optimal solutions are not available. The minimization problem is then split in a 

series of subproblems that do have (conditional) globally optimal solutions, that 

can be used to construct an iterative algorithm. In cases where even the latter 

approach fails, one may resort to Alternating Lower Squares methods or 

Majorization. This topic is briefly touched upon in the Epilogue. The book is 

concluded with 49 exercises and answers. 



CHAPTER 1 

 

SOME BASIC RESULTS FROM MATRIX ALGEBRA 

 

1.1. THE EIGENDECOMPOSITION OF A SYMMETRIC MATRIX 

 

Let S be a symmetric q×q matrix of rank r (r ≤ q). Then S has the 

eigendecomposition 

 

          S = KΛK' (1) 

 

with K'K = KK' = Iq and Λ diagonal. This means that, for any symmetric S, an 

orthonormal matrix K and a diagonal matrix Λ can be found that satisfy (1). 

If S is singular, that is, if r < q, then a parsimonious expression exists in 

addition to (1). We define the r×r matrix Λr as the diagonal matrix containing 

the nonzero eigenvalues of S on the diagonal, and Kr as the q×r matrix 

containing the associated eigenvectors of S. Then instead of (1) we can write 

 

                S = KrΛrKr′ (2) 
 

with Kr'Kr = Ir and Λr diagonal and nonsingular. Properties of partitioned 

matrices guarantee that (2) follows from (1). Conversely, (1) follows from (2): 

That is, expanding Kr to a square orthonormal matrix K, by adding orthonormal 

columns, and expanding Λr with zeros to a diagonal q×q matrix Λ, we obtain 

that S = KΛK'. If S is nonsingular (r = q) then (1) and (2) coincide, because then 

Kr equals K, and Λr equals Λ. 

Gramian (or positive semidefinite) matrices are matrices that are the 

product of a matrix and its transpose. They have the special feature that none of 

their eigenvalues are negative. Conversely, every symmetric matrix without 

negative eigenvalues is Gramian. A Gramian matrix S always has a square root 

S1/2
 defined as KΛ1/2K', where Λ1/2 is the diagonal matrix containing the square 

roots of the diagonal elements of Λ on the diagonal. Clearly, S1/2S1/2=S. 

When a Gramian matrix S has an inverse, S is called positive definite. In 

that case the inverse KΛ-1K' of S is also Gramian, and the square root of that 

inverse equals KΛ-1/2K'. The latter matrix is the inverse of S1/2 and it is 
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denoted by S-1/2. Note that S-1/2S-1/2 = S-1 and S1/2S-1/2=I. 

 Asymmetric matrices do not have an eigendecomposition of the form (1) 

or (2). This is immediate because (1) and (2) already imply that S is symmetric. 

 

 

1.2. THE SINGULAR VALUE DECOMPOSITION OF AN ARBITRARY 

MATRIX 

 

Whereas the existence of an eigendecomposition of the form (1) or (2) is 

limited to symmetric matrices, every matrix has some sort of generalized 

eigendecomposition, namely a singular value decomposition (SVD), also 

referred to as Eckart-Young decomposition or basic structure. 

 

Definition. Let A be an arbitrary p×q matrix p ≥ q of rank r (r ≤ q). Then the 

SVD of A is the decomposition 

 

        A = PDQ' (3) 

 
with P'P = Iq, Q'Q = QQ' = Iq, and D diagonal, with nonnegative diagonal 

elements arranged from high (upper left) to low (lower right). So for any p×q 

matrix A ( )qp ≥  there is a triple of matrices P, D, and Q satisfying (3). The 

diagonal elements in D are the singular values of A and they are nonnegative by 

convention. The number of positive singular values of A equals the rank of A, 

because rank(A)=rank(A'A)=rank(QD2Q')=rank(D2)=rank(D). The columns of P 

and Q are called the left and right hand singular vectors of A, respectively. 

A SVD for horizontal matrices (with more columns than rows, that is) 

also exists, but it requires no special treatment. Upon transposing such a matrix 

one can already use (3). 

When A does not have full column rank, that is, when r < q, then again a 

parsimonious variant is available in addition to (3). Let Pr be defined as the p×r 

matrix containing the first r columns of P, Qr as the q×r matrix containing the 

first r columns of Q, and Dr as the diagonal r×r matrix with 
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diagonal elements equal to those singular values of A that are positive. Then 

instead of (3) one can also use the expression 

 

      A=PrDrQr' (4) 

 
with Pr and Qr columnwise orthonormal, and Dr diagonal with positive 

diagonal elements. Conversely, matrices Pr, Dr, and Qr which satisfy (4) can be 

expanded to a triple P, D, and Q that satisfy (3). 

The existence of a decomposition of the form (4) will now be proven 

constructively. That is, it will be shown how to obtain, for any given matrix A 

of rank r, a triple of matrices Pr, Dr, and Qr that satisfy ( 4 ). First we note that 

A'A is a Gramian matrix, so we may use (2) to express it as 

 
 A'A=KrΛrKr'  (5) 

 

with Kr'Kr=Ir and Λr diagonal, with positive diagonal elements. Next we define 

 
        Qr = Kr, Dr =

2/1
rΛ , and 1−= rrr DAQP , (6) 

 

where 2/1
rΛ  is the diagonal matrix having the square roots of the diagonal 

elements of Λ on the diagonal. Now it can be shown that the constructed 

matrices satisfy all requirements of (4), as follows. 

Columnwise orthonormality of Qr and Pr is immediate from (6) and Dr is 

clearly a diagonal matrix with positive diagonal elements. Also, we have 

 

           PrDrQr′ = AQrDr
-1DrQr′  = AQrQr′ = AKrKr′. (7) 

 
This does not yet yield (4) because, when r<q, KrKr' ≠ I, owing to the fact that a 

columnwise orthonormal matrix cannot be rowwise orthonormal unless it is a 
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square matrix. So the solution has to be found elsewhere, that is, in (5). From 

(5) we have 

 

 A'AKrKr' = KΛrKr'KrKr' = KΛrKr' = A'A                                    (8 ) 

 
and so A'A(I−KrKr') = 0. Premultiplying by (I−KrKr') is very effective, and 

yields (I−KrKr')A'A(I−KrKr') = 0, which in turn implies that 

 

         A(I−KrKr')=0                                                      (9) 

 
so AKrKr' = A. Using this and (7) jointly we have found (4) to be satisfied. 

It is often believed that, for symmetric matrices, the SVD coincides with 

the eigendecomposition. This is not generally true, because eigenvalues can be 

negative, whereas singular values are defined to be nonnegative. Only in the 

case of Gramian matrices (symmetric, without negative eigenvalues) do SVD 

and eigendecomposition coincide. 

When the eigendecomposition of a symmetric matrix is known, then the 

SVD can be obtained from it at once. If S=KΛK' and Λ contains no negative 

elements, then this expression is both an eigendecomposition and a SVD, with 

P=K, Q=K, and D=Λ. When, on the other hand, Λ does contain negative 

elements, then define a sign matrix T (diagonal, with diagonal elements 1 or −1) 

such that TΛ has all elements nonnegative. Now S=(KT)(TΛ)K', which is a SVD 

of S. 

 

An example: The SVD of a 4×3 matrix A of rank 2. Let 
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Some basic results from matrix algebra 7 

 

The eigenvalues of A'A are 25, 1, and 0, and the matrix containing the first two 

eigenvectors of A'A is 
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Now define Q2 = K2, define 
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222 ADAQP . 

 
It is readily verified that AQDP ='

222 , and that (4) is satisfied. Next, one may 

expand P2 to obtain P, by adding (.6   0   0  −.8)' or (0   .6  −.8   0)' as a third 

column, and Q2 can be expanded to Q, by taking (.6   0  −.8)' as a third column.  

 

Finally, upon constructing 















=

000

010

005

D , we have A=PDQ' and the SVD (3) 

has been obtained. 

 

 

1.3. THE SCHWARZ INEQUALITY 

 
Below, inequalities will play a key role in the treatment of functions. A 

particularly useful inequality for the inner product of two vectors x and y is the 

inequality −(x'x)1/2(y'y)1/2 ≤ x'y ≤ (x'x)1/2(y'y)1/2, known as the Schwarz 

inequality or the Cauchy-Schwarz inequality. A proof for this inequality is as 

follows: 
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From the inequality 

 

                       [x(x'x)-1/2 − y(y'y)-1/2] ' [x(x'x)-1/2 − y(y'y)-1/2] ≥ 0                 (10) 

 

we have that 1+1−2x'y/{(x'x)1/2(y'y)1/2} ≥ 0, and hence 

 

                     x'y ≤ (x'x)1/2(y'y)1/2.                                       (11) 

 
Upon replacing subtraction in (10) by addition, a similar inequality shows that 

 

                                                 x'y ≥ −(x'x)1/2(y'y)1/2.                                      (12) 

 

Combining (11) and (12) yields the Schwarz inequality: 

 

                   −(x'x)1/2(y'y)1/2 ≤ x'y ≤ (x'x)1/2(y'y)1/2.                            (13) 
 

 

The Schwarz inequality holds as an equality when x is proportional to y or 

−y. That is, if x = λy (for some positive scalar λ), then x'y = (x'x)1/2(y'y)1/2, and 

if x = −λy then x'y = −(x'x)1/2(y'y)1/2. The Schwarz inequality can be used, for 

instance, to prove that a correlation coefficient must always be in between −1 

and 1. 

 

1.4. HADAMARD PRODUCT, KRONECKER PRODUCT AND VEC  

       NOTATION 

 
The Hadamard product * of two matrices of the same order is defined as 

the elementwise product. So (A*B) has as its ij-th element aijbij. An example: 



Some basic results from matrix algebra 9 

 

When 
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 then (A*B) = 
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  (14 ) 

 
The Kronecker product A⊗ B of a p×q matrix A and a k×l matrix B is the 

pk×ql matrix consisting of pq submatrices aijB, i=l,...,p; j=l,...,q.  

For example, if 

 

 A = 
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 and B = 
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whereas, on the other hand, 
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By Vec(A) we mean the vector containing all columns of A, one below another. 

Accordingly, if. 
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A , then Vec(A) = 
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 and Vec(A') = 
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.                         (18) 

 

The following result makes it possible to express the elements of a matrix 

product of the form ABC as a function of Vec(B): 

 

                  Vec(ABC) = (C′⊗ A)Vec(B).                                    (19) 

 

A proof can be found in Magnus and Neudecker (1991, pp. 30-31) and will not 

be given here. Instead, the result will be demonstrated in an example. 

Let 

 

 A = 
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21

, B = 







43

21
 and C = 







 −
310

201
.                        (20) 

 

Then 

 

 ABC = 
















1064

422618

16107

                                                 (21) 

 

and Vec(ABC) = ( 7   18   4   10   26   6   16   42   10)'. 

 

On the other hand, (C′⊗ A)Vec(B) is 
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Vec(B),  (22) 

 

which demonstrates the validity of (19). 

An important reason for adopting the Vec notation is the property that the 

sum of squares of the elements of ABC equals the sum of squares of the 

elements of Vec(ABC), because these elements are the same. They are merely 

arranged differently. In addition, the following property will be used in the 

sequel: 

 
 Vec ∑

i
iii CBA )(  = ∑

i

Vec(AiBiCi). (23) 

 

That is, the ‘Vec of a sum is the sum of the Vecs’. 





CHAPTER 2 

 

FUNCTIONS OF VECTORS 

 

2.1. FUNCTIONS AND EXTREME VALUES 

 

A function is a rule by which an arbitrary number x is assigned a function 

value f(x). This general definition is rather abstract and hence not very helpful. 

It is easier to think of a function as some sort of a machine. Upon feeding an 

arbitrary number x into the machine (like dropping a coin), one obtains another 

number f(x) in return (like a bottle of coke). An example will be instructive. 

The function f, defined by the rule f(x) = x2 + 2, squares the number fed into the 

machine, and adds 2 to that square. If x=0 is inserted, you get 2 out of it; if 3 

goes in, 11 will come out, and so on. The number x that goes into the machine 

is called the argument of the function, and the number f(x) that comes out is 

called the associated function value. The symbol that is used to refer to the 

argument of a function is completely arbitrary. That is, when f(x) = x2+ 2 and 

g(a) = a2+2 then f and g are identical functions. 

Techniques of data analysis often are based on maxima or minima of 

functions. For instance, it may be desired to maximize the variance accounted 

for, or to minimize the amount of error. Typically, such problems are 

approached by formulating the desired state of affairs in terms of a utility 

function, and searching for an extreme value (maximum or minimum) of this 

function. 

A very familiar method of finding extreme values of a function is by 

differentiation. This method yields equations, the solutions of which produce 

values of x where the tangent to the function is in horizontal direction. Such 

values of x correspond to maxima, minima, or saddle points, which means that 

additional effort may be required to determine the precise location of a 

maximum or minimum. This is a first limitation of differentiation. Another 

limitation is that, even if it is known, for instance, that a function has a 

maximum for a certain x, it may still be unclear whether this maximum is local 

or global. The function depicted in Figure 1 has a local maximum for x=1.65, a 

local minimum for x= .73, and a global maximum for x = −.85. 
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  Figure 1. Graph of a function with local and global optima. 

 

 
Clearly, a local maximum is useless when the highest possible function value 

(global maximum) is desired. Similarly, a local minimum is useless when one is 

after the lowest possible function value (global minimum). 

Beside differentiating, there is another approach to determining maxima 

and minima of a function, namely, by deriving an upper or lower bound that 

can be attained. This will first be demonstrated in an example. Suppose that we 

want to find the global minimum of the function f(x)=x2−6x+11. Then we may 

write f(x)=(x−3)2+2, which shows that f(x) ≥ 2. As a result, 2 is a lower bound 

to the function f. In the graph, a lower bound is represented by a horizontal line 

below which the function never comes. When we make a graph of 

f(x)=(x−3)2+2, it can be seen that every function value is above the lower 

bound except at x = 3, where f(x) = 2. So there is a point (viz. x = 3), where the 

function attains its lower bound. It follows at once that this point yields the 

global minimum. We have found an attainable lower bound, and along with it, 

we get the global minimum in the bargain. Similarly, detecting an attainable 

upper bound gives the global maximum of the function at once. For instance, 

the global maximum of f(x) = −x2+8x−11 can be found by writing f(x) as 



Functions of vectors 15 

 

 

f(x) = −(x−4)2+5 ≤  5, an upper bound that is attained for x=4. Hence, 5 is the 

global maximum of f(x). 

The maximum and minimum problems to be treated in the present and the 

following chapters will be handled, whenever possible, by finding attainable 

upper or lower bounds. Differentiation will be avoided throughout. In the 

sequel, a global minimum or maximum will be referred to simply as minimum 

or maximum, respectively, unless stated otherwise. 

When dealing with upper or lower bounds to functions, two important 

facts should be borne in mind. First, it is of vital importance to realize that a 

bound that cannot be attained has no use whatsoever in tracing a maximum or 

minimum of a function. In the example f(x) = (x−3)2+ 2 we have f(x) ≥ 2 and 

hence also f(x) > 1. However, the lower bound 1 is never attained, so it is not 

the minimum of f. Only the highest lower bound can be of interest. In the same 

vein, amidst upper bounds only the lowest can be interesting. 

It is of even greater importance to see that a lower or upper bound must 

not depend on x. Writing f(x) = −x2+8x −11 as f(x) = −(x−3)2+(2x−2) ≤ (2x−2) 

does yield an inequality (with equality obtained for x=3), but (2x−2) is not an 

upper bound. It is just another function of x, which never attains a value below 

f(x). The graph of this other function is by no means a horizontal line. Also, the 

point x=3 is a point where f(x) = 2x−2, but that is anything but the maximum of 

f(x). A joint picture of f(x) and the function g(x) = 2x−2 will show this quite 

clearly. It can be concluded that, to find an upper bound, we are to search for an 

expression for f(x) of the form f(x) ≤ something that does not depend on x. 

 

2.2. CONSTRAINED MAXIMA AND MINIMA 

 

Above, a function has been described as a machine in which an arbitrary 

number (argument) is inserted, to obtain another number (function value). 

When the function is f(x) = (x−3)2+2, the number that is obtained is never less 

than 2, and it is 2 when x=3 is the number inserted. Therefore, 2 is the 

minimum of 
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f(x), and it is attained for x=3. However, this function does not have a 

maximum. As we choose x farther away from 3, f(x) will reach an increasingly 

high function value. There is no upper bound to f(x), let alone an upper bound 

that can be attained. 

The situation may change dramatically, when the argument of the 

function is constrained. For instance, if the requirement (constraint) is imposed 

that the x to be inserted in the machine has to be in the interval [−−−−1,  1], that is, 

if the constraint x2 ≤ 1 is imposed, then f(x) does have a maximum. This can be 

verified as follows: From x2 ≤ 1 we have f(x) = x2−6x+11 ≤ 1−6x+11 = −6x+12. 

This does not yet give an upper bound: We still need to lose the term −6x. That 

is not very difficult. It follows from x ≥ −1 that −x ≤ 1 so −6x ≤ 6, and f(x) ≤  

6+12=18. As a result, 18 is an upper bound to f(x) in the interval −1 ≤ x ≤ 1. 

Now the question is whether or not this bound can be attained in that interval. 

To answer that question, we need to verify if the inequalities that were used 

along the road can hold as equalities for a certain x in the interval. That is, we 

search for an x in the interval x2 ≤ 1 such that x2 = 1 and −x = 1. The answer (x 

= −1) is immediate. So f(−−−−1) = 18, and 18 is the maximum of f(x) subject to the 

constraint −1 ≤ x ≤ 1. 

Another example. Suppose that we want to minimize f(x) = −x2+3 over 

the interval x2 ≤ 4, see Figure 2. There is no unconstrained minimum, but the 

 

 
 

             Figure 2. Graph of the function f(x) = −x2+3. 
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constrained minimum does exist. Specifically, write f(x) = −x2+3 ≥ −4+3 = −1 

(using –x2 ≥ −4), so −1 is a lower bound to f(x) on the interval −2 ≤ x ≤ 2. In the 

graph of the unconstrained f(x) it should be clear that −1 is not a lower bound at 

all. However, for those x values admitted, −1 is an attainable lower bound and 

hence it is the constrained minimum of f(x). Incidentally, this minimum is not 

unique, because it is attained both for x = 2 and for x = −2. 

 

2.3. VECTOR FUNCTIONS AND EXTREME VALUES 

 

So far, a function has been viewed as some sort of machine in which a 

number x is inserted, upon which another number f(x) comes out. The theory is 

now generalized by considering vector functions. A vector function is a rule 

which assigns to any vector x (of a specified order) a number f(x). The 

argument of the function now is a vector x instead of a number x. The function 

value f(x) is a number as it was before. An example of a vector function is 

f(x)=3xl+4x2. The argument is the vector x=(x1  x2)'. If x=(1  2)' is inserted into 

the machine, the number 11 comes out; if x = (1  1)' is inserted, the number 7 

comes out, and so on. The function f given here has no maximum or minimum. 

However, if the constraint x'x=1 is imposed, there certainly are extreme values. 

This will be shown shortly. First, however, the reader is invited to guess what 

vector x with x'x=1 gives the highest possible value for f(x) = 3xl+4x2. 

 

 take some time to reflect ....... 

 

Have you come up with the answer x' = (0 1)? Then you are not the only one 

who did. Whether or not the answer is correct will be revealed shortly. First, an 

attainable upper bound will be determined. 

Upon defining the constant vector y=(3  4)', we can write f(x) as f(x)=x'y. 

The Schwarz inequality tells us that x'y ≤  (x'x)½(y'y)½. This does not yet 

provide an upper bound, because the right hand side of the inequality still 

depends on x. However, the constraint x'x=1 implies that, for those 
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vectors to be admitted, always (x'x)½ = 1. This allows us to use the inequality 

x'y ≤ (y'y)½ = √25 = 5. Therefore, 5 is an upper bound to x'y subject to the 

constraint x'x=1. This upper bound can be attained. To verify this, consider the 

derivation of the Schwarz inequality. The inequality x'y ≤ (x'x)½(y'y)½ holds as 

an equality if and only if (10) holds as an equality. That occurs only if the 

vector [x(x'x)-½ − y(y'y)-½] is a zero vector, that is, if x is proportional to y. So 

we choose x proportional to y=(3  4)' and such that x'x=1. As a result, x is the 

unit length rescaled version of y, that is, x = y(y'y)-½ = .2y = (.6  .8)'. Evaluating 

the value of x'y yields x'y = .6×3 +.8×4 = 1.8 + 3.2 = 5. It follows that 5 is an 

attainable upper bound, hence it is the desired maximum. Note that the 

maximum is attained for x = (.6  .8)', and that the solution x = (0  1)' is not 

optimal, yielding a function value as low as 4. Congratulations to those who 

came up with the right answer. 

In the example above, the vector y of constants was known in advance to 

be y = (3  4)'. It is of utmost importance, however, to see that the solution 

x=y(y'y)-½ is valid quite generally for any conceivable, unknown vector y, as 

long as it is independent of x : From x'x=1 it follows that x'y≤(x'x)½(y'y)½ 

=(y'y)½ (upper bound) and we have x'y=(y'y)½ (the upper bound is attained) if 

x=y(y'y)-½, as is easy to verify. From now on, extreme values of vector 

functions will always be determined in such general form. 

The function f(x) = x'y is called a linear form. Having dealt with maxima of 

linear forms, we now turn to extreme values of two different vector functions, 

namely the quadratic form, and the regression function. 

 

A vector function of the form 

 

 g(x) = x'Ax (24) 

 

where A is a known or unknown fixed (square) matrix, is called a quadratic 

form. The argument is again a vector x, and the function value is, of course, a 

number. For instance, if A= 







−13

02
, then g(x) is the function 
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 g(x) = 2

221
2
1 32 xxxx −+ . (25) 

 

Again, it is desired to find the maximum of the function subject to the 

constraint x'x = 1. First, assume that A=A'. This can be done without loss of 

generality. That is, if A ≠ A', we write 

 

 g(x) = x'Ax = ½x'Ax + ½x'Ax = ½x'Ax + ½x'A'x = x' 








 +
2

'AA
x (26) 

 

and define A* = ½(A+A'), the symmetric part of A. Upon replacing A by its 

symmetric part A*, we can continue with g(x) = x'A*x, which is the same 

function as before, except that the coefficient matrix is now symmetric. 

The next step is to find an attainable upper bound. Because A is 

symmetric (or has been replaced by its symmetric part, if needed), it has an 

eigendecomposition A=KΛK', with K orthonormal and Λ diagonal, with 

diagonal elements arranged in weakly descending order. The latter detail is 

often not relevant, but in this case it certainly is. Using the eigendecomposition 

we can write 

 
 g(x) = x'Ax = x'KΛK'x = y'Λy = 11

22 λλλ =Σ≤Σ iiiii yy , (27) 

 
where K'x has been denoted by y, and yi is the i-th element in the vector y. The 

step y'Λy = iiy λ2Σ  follows from the diagonal property of Λ, and the inequality 

λi≤λ1 for every i follows from the descending order of the eigenvalues. The 

constraint x'x=l is equivalent to the constraint y'y = x'KK'x = x'Ix = x'x = 1. 

Because A is constant, so are its eigenvalues. It follows that λ1 is an upper 

bound to g(x), see (27). This upper bound can be attained by taking x=kl, the 

first column of K. That yields 

 

 g(k1) = k1'Akl = k1'λ1k1 = λ1k1'k1 = λ1, (28) 
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owing to the fact that k1 is an eigenvector of A, that is, Ak1=λ1k1. We have thus 

found the maximum of the quadratic form x'Ax subject to the constraint x'x=1: 

The maximum is the largest eigenvalue of A, and it is attained when x is the 

associated unit length eigenvector. 

A third type of vector function to be considered is the regression function 

 

 h(x) = (Ax−y)'(Ax−y) = ||Ax−y||2  (29) 

 

where the notation ||…||2 indicates the sum of squared elements of a vector or 

matrix. The minimum of h plays a key role in linear regression analysis and a 

great many other techniques. Specifically, the problem is to find a vector x of 

weights that generate a linear combination Ax, which is as similar as possible to 

a given vector y, in terms of the least squares criterion. The vector (Ax−y) 

contains errors of prediction, and its sum of squares is (Ax−y)'(Ax−y) = h(x). 

Therefore, the minimum of h(x) corresponds to the smallest possible sum of 

squared prediction errors. This minimum can be found as follows. From the 

definition of h(x) we have 

 

      h(x) = x'A'Ax − 2x'A'y + y'y 

 = x'A'Ax − 2x'A'y + y'A(A'A)-1A'y + y'y − y'A(A'A)-1A'y 

 = ||Ax − A(A'A)-1A'y||2 + y'y − y'A(A'A)-1A'y ≥ y'y − y'A(A'A)-1A'y, (30) 

 

which yields the lower bound (y'y − y'A(A'A)-1A'y). It is evident that this lower 

bound can be attained. That is, if we choose 

 

 x = (A'A)-1A'y, (31) 

 

the term ||Ax – A(A'A)-1A'y||2 is zero, so h(x) = y'y − y'A(A'A)-1A'y. This is the 
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minimum of h(x). In (31) one may recognize the well-known vector of 

regression weights, to estimate a vector y by a linear combination Ax of the 

columns of a matrix A. 

It is important to appreciate the particular way in which a function is 

specified. The very fact that the regression function (29) has been labeled h(x) 

rather than, for instance, h(y), tells us that h is a ‘machine’, in which the vector 

x is inserted as argument, whereas A and y are fixed but arbitrary constants. The 

lower bound y'y − y'A(A'A)-lA'y would not be constant if A or y would depend 

on (vary with) x. A completely different situation would arise if we were to 

minimize, for instance, 

 

 h*(y) = ||Ax−y||2 . (32) 

 

Now it is y that varies, while A and x are constant, and we can use the lower 

bound h*(y) ≥ 0. This lower bound follows trivially from the nonnegativity of a 

sum of squares, and can be attained by simply choosing y as y = Ax. 

Obviously, the nonnegativity of a sum of squares yields a lower bound 0 

for h(x) as well as it did for h*(y). However, for h(x) this lower bound is not 

attainable, because h(x) = ||Ax−y||2 is zero only if we choose x such that Ax = y. 

Such an x exists only if y happens to be in the column space of A. Therefore, 

the lower bound zero is not generally attainable for h(x). 

Above, three vector functions have been considered. Both for the linear 

and for the quadratic form, the maximum has been determined, subject to the 

constraint that the argument vector be of length 1, that is, x'x=1. For the 

regression function, the unconstrained minimum was determined. If we were to 

minimize this function subject to, e.g., the constraint x'x=1, the problem would 

be far more difficult. The solution to this ( complicated) constrained regression 

problem is not given here, but can be found in Ten Berge and Nevels (1977) or 

in Golub and Van Loan (1989, § 12.1.2). 



22 Chapter 2 

 

2.4. THE BILINEAR FORM, AND A RECAPITULATION 

 
The vector functions that have been treated so far assign a number 

(function value) to a single vector x (argument). We now expand the theory by 

considering a vector function for which the argument (what goes in) is a pair of 

vectors x and y, rather than a single vector x or y. One such function is the 

bilinear form, defined as 

 

             g(x,y) = x'Ay                                                (33) 

 
where A is a constant p×q matrix. The argument of this function is a pair of 

vectors x and y, as can be seen from its specification g(x,y). This function 

should not be confused with f*(x)=x'Ay, a linear form with A and y constant, or 

with f+(y) = x'Ay, which is another linear form, with x and A constant. 

We will now determine the maximum of g(x,y), subject to the constraint 

that both x and y be unit length vectors. Again, an attainable upper bound will 

be found, but this is slightly more complicated than in earlier problems. 

Let the constraint x'x = y'y = 1 be imposed on the vector pair x and y. 

Then the Schwarz inequality, applied to the vectors x and Ay, yields 

 

             g(x,y) = x'Ay ≤  (x'x)½(y'A'Ay)½ = (y'A'Ay)½.                         (34) 

 
This inequality is not an upper bound, because (y'A'Ay)½ depends on which y is 

inserted into the ‘machine’, and y is part of the argument. To get rid of y too, 

we need to take an additional step. In the present case, the step we need is to 

apply a result that has been obtained above. Specifically, consider the term 

y'A'Ay. This is a quadratic form, with y as argument, and A'A as constant 

matrix. Because y is constrained to be of unit length, this quadratic form has the 

largest eigenvalue of A'A as its maximum, see (28). It follows from (34) that 

g(x,y) has the square root of this eigenvalue as an upper bound. This upper 

bound is also the largest singular value of A. Express the SVD of A as
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                   A = PDQ'                                                (35) 

 
with P'P = Q'Q = Iq and D diagonal, with nonnegative ordered diagonal 

elements d1 ≥  d2 ≥ … ≥ dq ≥  0. Then A'A has the eigendecomposition 

 

                   A'A = QD2Q' .                                              (36) 

 
So the maximum of y'A'Ay is d 2

1 , whence 

  
                                        g(x,y) ≤  (y'A'Ay)½ ≤√d 2

1 = d1.                                (37) 

 
It can be concluded that the bilinear form has as an upper bound the largest 

singular value of its coefficient matrix (of A, that is), if a constraint of unit 

length for the argument vectors x and y is imposed. This upper bound is, in fact, 

the maximum, because it can be attained. That is, if we choose 

 

          x = p1   and   y = q1,                                              (38) 

 

the first columns of P and Q, respectively, then g attains the value 

 

                               g(x,y) = p1'Aq1 = p1'PDQ'q1 = e1'De1 = d1                       (39) 

 
where el is the first column of the identity matrix I. This completes the solution 

for the maximum of a bilinear form, subject to unit length constraints. 

In the derivation above, we have used a pair of inequalities jointly. The 

first inequality (34) yielded an expression dependent on y, but independent of x. 

In other words, the vector x was eliminated from the argument in the first step. 

This principle of argument reduction or elimination of variables will be used 

quite often in the sequel. 
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It should be noted that a quadratic form can be seen as a constrained 

version of a bilinear form. That is, the function g(x) = x'Ax can be considered as 

the bilinear form g(x,y)=x'Ay, subject to the equality constraint that x and y be 

equal. For this reason, the same symbol (g) has been used to denote either 

function. 

 

 The main results obtained so far can be summarized as follows: 

1. The maximum of the linear form f(u) = u'v subject to the constraint u'u = 1 

 is (v'v)½, and is attained for u = v(v'v)-½. 

2. The maximum of the quadratic form g(u) = u'Bu, subject to the constraint 

u'u = 1, is the largest eigenvalue of B, if B is symmetric. If B is not 

symmetric, it should be replaced by its symmetric part ½(B+B'). The 

maximum is attained when u is the first unit length eigenvector of B ( or its 

symmetric part). 

3. The maximum of the bilinear form g(u,v) = u'Cv, subject to the constraint 

u'u = v'v = 1, is the largest singular value of C, and is attained when u and v 

are the first left and right hand singular vectors of C, respectively. There is 

no need for C to be square, here. 

4. The minimum of the (unconstrained) regression function h(u) = ||Gu −−−− z||2 is 

z'z − z'G(G'G)-1G'z, and is attained for u = (G'G)-1G'z. If a length constraint 

for u is imposed, the problem is more complicated, and its solution is to be 

found in Ten Berge en Nevels (1977) and in Golub and Van Loan (1989). 

 

It should be noted that the symbols used here depart from earlier notation. 

This illustrates that it is the form of the function, rather than the symbols used, 

that determines what the maximum or minimum will be. 

It may come as a surprise that most of the optimization problems covered 

so far deal with maxima rather than minima. As will be explained later, 

constrained least squares problems can very often be transformed into 

equivalent maximization problems that are more manageable. In fact, every 

maximum treated in this book corresponds to a minimum for some least squares 

function.
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FUNCTIONS OF MATRICES 

 

3.1. MATRIX FUNCTIONS AS GENERALIZED VECTOR FUNCTIONS 

 
A matrix function is a rule which assigns a number to a matrix. After the 

introduction of the concept of a vector function, this does not come as a 

surprise. A matrix function can be viewed as a machine in which a matrix is 

inserted as argument, and a number (function value) comes out. In the next 

sections, attention will first be focused on three matrix functions which can be 

represented by the trace of a certain matrix. These functions are straightforward 

generalizations of the linear form, the quadratic form, and the bilinear form, 

respectively. The previously imposed constraint that the argument vectors have 

unit lengths now appears in a generalized form as the constraint that the 

argument matrix be columnwise orthonormal. That is, the columns of this 

matrix must each have unit length, and must be orthogonal (have scalar 

products zero). The three functions concerned are the generalized linear form 

 

 f(X) = trX'Y, (40) 

 

with Y constant;. the generalized quadratic form 

 

 g(X) = trX'AX ( 41) 

 

with A constant and square, and the generalized bilinear form 

 

 g(X1,X2) = trX1'AX2 (42) 

 

with A constant. For f(X) and g(X) the constraint X'X = I is imposed, and 
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g(Xl,X2) is constrained by both X1'Xl = I and X2'X2 = I. 

In addition to these trace functions, attention will also be paid to matrix 

generalizations of the regression function h(x). The most obvious one is the 

matrix regression function 

 

 h(X) = ||AX − Y||2. (43) 

 

In certain applications, an even more general regression function is considered, 

namely the Penrose regression function 

 

 h(X) = ||AXB' − Y||2,  (44) 

 
described by Penrose (1956). The function (43) is the special case of (44) where 

B = I. A function f1 is a special case of another function f2 if the two functions 

are of the same form, except that a certain complication, present in f2, is 

missing in f1. As a result, the solution for a minimum or maximum of f1 can be 

obtained at once from the corresponding solution for f2, but it is likely to have a 

simpler expression than that of f2. 

A special case should not be confused with a constraint. A constraint 

implies a limitation of the possible arguments of the function, and may, in fact, 

complicate the solution for a maximum or minimum. Solutions for constrained 

and unconstrained optima for the same function are generally unrelated. If they 

happen to coincide, the constraint is called inactive. 

Regression problems of various kinds will be treated. First, unconstrained 

regression problems will be dealt with. Next, regression problems with 

orthonormality restrictions will be examined. Finally, we shall deal with 

regression problems with the constraint that the argument matrix be of a certain 

low rank. That restriction has no meaningful counterpart for vector functions, 

because a vector has rank 1, unless it is the zero vector, which has rank zero. So 

rank restrictions will enter the treatment as a novel subject matter. 
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In the sections to follow, it will first be shown how to maximize trace 

functions of the form (40), (41), or (42), subject to orthonormality constraints. 

A general theorem will be used to find attainable upper bounds. That theorem 

will first be treated. The relevance of the trace maximization problems for least 

squares problems is explained in Exercise 39. 

 

3.2. KRISTOF UPPER BOUNDS FOR TRACE FUNCTIONS 

 
Kristof (1970) has given an upper bound for trace functions of the form 

f(G1,...,Gm) = trG1C1G2C2...GmCm, where C1,…,Cm are given diagonal n×n 

matrices, and G1 through Gm are constrained to be orthonormal. The cases m=1 

and m=2 of this upper bound date back to Von Neumann (1937). We shall use 

only the simplest case, where m=1. For that case Kristof's upper bound reads 

 

 f(G) = tr(GC) ≤ trC  (45) 
 

if G is constrained to be orthonormal, and C has no negative elements. This 

simple version of Kristof's bound can easily be proven. Because C is diagonal, 

we have trGC= .
1
∑

=

n

i
iiicg  The orthonormality of G implies gii ≤ 1. This, and the

fact that ci ≥ 0 for i = 1,...,n, yields trGC=∑
=

n

i
iiicg

1
∑

=

≤
n

i
ic

1

= trC. The upper bound 

is attained if we choose G=In. 

The range of possible applications is broadened considerably if the 

constraint is relaxed to the effect that G is merely required to be a submatrix of 

an orthonormal matrix. 

Definition. A matrix is suborthonormal (s.o.) if it can be completed to an 

orthonormal matrix, by appending rows or columns, or both. Every s.o. matrix 

can be viewed as a submatrix of some orthonormal matrix. 

 

Example 1: The matrix G = 







10

02.1
 is not s.o. because it has an element 

larger than 1. 
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Example 2: The matrix G = 







10

08.
 is s.o. because it is a submatrix of the 

 

orthonormal matrix G* = 
















− 8.06.

010

6.08.

. 

 

 

Example 3: The matrix G = 







− 4.6.

6.8.
 is not s.o. because, if it were, it would 

be a submatrix of some orthonormal matrix G*. Then the first column of G* 

would contain elements .8, −.6, and zeroes elsewhere, because the sum of 

squares of these elements must be 1. It follows that the inner product of the first 

two columns of G* would be .24, which would contradict the orthonormality of 

G*. Therefore, G is not s.o.. 

 

Property 1. Every columnwise or rowwise orthonormal matrix is s.o.. This is 

because it can readily be completed to be orthonormal. 

Property 2. The product of any two s.o. matrices is also s.o.. The proof can be 

found in Ten Berge (1983). 

Using the concept of suborthonormality allows us to generalize Kristof's 

upper bound (Ten Berge, 1983). Again, only the simplest case (m= 1), covered 

by the following theorem, will be needed. 

Theorem: If G is a n×n s.o. matrix of (limited) rank r ≤ n, and C is diagonal, 

nonnegative, with diagonal elements c1≥c2≥...≥cn≥0, then the trace of GC has 

the upper bound 

 

 f(G) = tr(GC) ≤ c1 + ... + cr,  (46) 

 

which is the sum of the r largest elements in C. This upper bound is usually 

smaller than tr(C), and is attained for the s.o. matrix 

 

 G = 







00

0rI
, (47) 
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which has visibly rank r. Two examples will be instructive to illustrate this 

generalized Kristof theorem. 

Example 4: If C = 
















100

020

005

and G is constrained to be s.o. of rank 2 or less, 

then the maximum of trGC is 7. If, on the other hand, the rank of G is to be 1, 

then the maximum of f(G) is 5. In that case 7 is still an upper bound to f, but it 

is not attainable for a G of rank 1. 

 

Example 5: Let C be as in the previous example, and let U of order 3×2 be 

constrained to be columnwise orthonormal. Then the function g(U) defined as 

g(U)=trU'CU has an upper bound 7. To verify this, write trU'CU 

=trUU'C=trGC, with G = UU'. Because U must have rank 2, so does G. 

Moreover, the product of s.o. matrices is s.o., hence G must be s.o., see 

properties 1 and 2 above. Applying the generalized Kristof theorem gives the 

upper bound 7. 

 

3.3. HOW TO MAXIMIZE TRACE FUNCTIONS USING KRISTOF BOUNDS 

 
The generalized Kristof theorem of the previous section is remarkably 

efficient in determining maxima of generalized linear, quadratic, and bilinear 

forms, subject to orthonormality constraints. 

An upper bound to the generalized linear form 

 

 f(X) = trX'Y (48) 

 

subject to the constraint X'X = Iq, where Y is a given p×q matrix, can be 

obtained from the SVD Y = PDQ'. Using this in (48) yields 

 

 f(X) = trX'Y = trX'PDQ' = trQ'X'PD = trGD ≤ trD, (49) 
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with G defined as the q×q matrix Q'X'P, with rank(G) ≤ q. Because G is the 

product of three s.o. matrices, G is also s.o.. This is why (49) can be derived 

from (46), with D taking the role of C. 

Clearly, trD does not depend on X. Therefore, (49) gives an upper bound 

to f(X) subject to X'X = I. The upper bound is attained for G = I, hence for 

 

 X = PQ', (50) 

 
with P and Q defined by the SVD of Y. We have thus found the maximum of 

the generalized linear form (48) subject to the constraint X'X=I. 

      Next, we turn to the maximum of the generalized quadratic form 

 

 g(X) = trX'AX  (51) 

 
subject to X'X = Iq, for a given matrix A of order p×p. When A is asymmetric, it 

is replaced by its symmetric part ½(A + A'), see section 2.3. This does not affect 

the function because tr(X'AX) = tr(X'A'X). So A can be taken symmetric, and has 

an eigendecomposition A = KΛK', with K'K = KK' = Ip and Λ diagonal and 

ordered. Let it be assumed that A is Gramian, so λ1 ≥ ... λp ≥ 0. When A is not 

Gramian, the solution will still be the same, but this is a detail to be ignored 

here. Next, defining G = K'XX'K, which is s.o. and of rank q, we have, 

 

       g(X) = trX'AX = trX'KΛK'X = trK'XX'KΛ = trGΛ ≤ λ1 + ... λq, (52) 

 

and an upper bound to g(X) has been found. The upper bound is attained for 

 

 G = 







00

0qI
. (53) 
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If we choose 

 

 X = KqN, (54) 

 
where Kq contains the first q columns of K, and N is an arbitrary orthonormal 

q×q matrix, then G = K'XX'K = K'KqNN'Kq'K = K'KqKq'K = 







0
qI

(I q  0), which 

has the form prescribed by (53). So (54) shows how to maximize the 

generalized quadratic form (51). 

 

Next, we examine the maximum of the generalized bilinear form 

 

 g(X1, X2) = trX1'AX2 (55) 

 
subject to X1'X1 = X2'X2 = Iq, with X1 of order p1×q, and X2 of order p2×q, p1≥p2. 

Using the SVD A=PDQ' and defining G=Q'X2X1'P, an s.o. matrix, we have 

 

    g(X1, X2) = trX1'AX2 = trX1'PDQ'X2 = trQ'X2X1'PD ≤  d1+ ... + dq (56) 

 
due to the fact that rank (G) ≤ q. Thus, an upper bound to g has been found. 

Again, the upper bound is attained for a G as in (53), that is, for 

 

                                                X1 = PqN;  X2 = QqN,  (57) 

 
with Pq defined as the matrix of the first q columns of P, N an arbitrary 

orthonormal q×q matrix, and Qq defined analogously to Pq. This settles the 

maximum of the generalized bilinear form (55), subject to orthonormality 

constraints. 

It is instructive to consider, for each of the three maximum problems dealt 

with, the special case where the argument matrices have only one column. Then 

we are back to the corresponding vector function problems. Obviously, the 

general solutions derived here from the generalized Kristof theorem are also 
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valid for q=1, so in this case they must coincide with the previously derived 

solutions that were summarized at the end of section 2.4, see Exercise 30. 

The trace maximization problems treated in this section are indirectly 

related to least squares problems (see Exercise 39). The next three sections deal 

with problems that are least squares problems by definition. 

 

 

3.4. UNCONSTRAINED MATRIX REGRESSION PROBLEMS 

 

The most general type of matrix regression problem is the Penrose 

regression problem, already mentioned above. This problem is to minimize 

 

 h(X) = ||AXB' − Y||2 = tr(AXB' − Y)'(AXB' − Y) (58) 

 

with A, B, and Y fixed. Only the case where both (A'A) and (B'B) have an 

inverse will be treated. The major step toward a solution is to write 

 

   h(X) = ||(A'A)1/2X(B'B)1/2 − (A'A)-1/2A'YB(B'B)-1/2||2 + c  (59) 

 
where c = trY'Y−trA(A'A)-1A'YB(B'B)-1B'Y', a constant, independent of X. 

Although (59) is quite difficult to discover, its validity is easy to verify, by 

expanding (58) and (59) in single terms. 

Next, it can be seen from (59) that h(X) ≥ c, which is a lower bound to 

h(X). It is attained when the part of the function that depends on X vanishes, 

that is, if (A'A)1/2X(B'B)1/2=(A'A)-1/2A'YB(B'B)-1/2. The minimizing X is therefore 

 

 X = (A'A)-1A'YB(B'B)-1 , (60) 

 
as has been shown by Penrose (1956). 

 Now consider the special case where B = I. Because (60) is the solution 
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for any B, we are free to substitute B=I in (60), to find 

 

 X = (A'A)-1A'Y . (61) 

 

So (61) gives the minimizing X for the function 

 

 h*(X) = ||AX − Y||2. (62) 

 
It is a direct generalization of (29). 

 Finally, consider the yet simpler special case where both A=I and B=I. 

That is, consider the function 

 

 

 h**(X) = ||X − Y||2.  (63) 

 
This function, which can be called a matrix fitting function, is hardly 

interesting, because the minimum is 0 and is attained trivially when we take X = 

Y. The function h**(X) does become useful, however, once it is constrained by 

restrictions. Constrained regression problems will be taken up in the sections to 

follow. 

 

 

 

3.5. MATRIX REGRESSION SUBJECT TO ORTHONORMALITY 

       CONSTRAINTS 

 

This section deals with h, h* and h** subject to the constraint that the 

argument X (p×q) satisfies the constraint X'X = Iq. This time we start with the 

simple special case of matrix fitting, where A = I and B = I. We seek the 

minimum of 
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                  h**(X) = ||X − Y||2 = trX'X − 2trX'Y + trY'Y                        (64) 

 
subject to X'X=Iq. It should be noted that, for every X which satisfies the 

constraint, trX'X = trIq = q, a constant. Because tr(Y'Y) is also constant, we need 

the minimum of −2trX'Y, hence the maximum of trX'Y, subject to the constraint 

X'X = Iq. This is a trace function problem, that has been solved above, see (49) 

and (50). The SVD Y = PDQ' yields X = PQ' as the optimizing solution. This 

solution gives the best columnwise orthonormal approximation (X) to a given 

matrix (Y). 

Next, we consider the slightly more complicated case of matrix 

regression, and seek the minimum of  

 

                 h*(X) = ||AX −−−− Y||2= trX'A'AX −−−− 2 trX'A'Y + trY'Y,  (65) 

 

subject to X'X = Iq. This problem is well-known as the orthogonal Procrustes 

rotation problem. When A has the same number of columns as Y, then X is a 

q×q matrix, and hence XX' = Iq, whence trX'A'AX = trXX'A'A = trA'A, a constant. 

Clearly, so is trY'Y. The remaining problem is again of a familiar form. That is, 

we need the maximum of trX'A'Y subject to X'X = I. Again, the solution is X = 

PQ', but this time the relevant SVD reads A'Y = PDQ'. 

       When X is a vertical matrix, with p > q, there is no direct solution for the 

minimum of h*(X). An iterative solution for this problem has been given by 

Green and Gower (1979), and can be found in Gower (1984) and Ten Berge 

and Knol (1984). 

For the minimum of the Penrose function h(X) subject to X'X = I there is 

no explicit solution either. Iterative solutions for the minimum can be found in 

Mooijaart and Commandeur (1990) and Koschat and Swayne (1991). 
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3.6. MATRIX REGRESSION SUBJECT TO RANK CONSTRAINTS 

 
The constraints imposed so far have been concerned with columnwise 

orthonormality of the argument matrix. In the present section, regression 

problems will be treated where the argument matrix is constrained to have a 

(low) rank r. This constraint is first applied to the matrix fitting problem, where 

we seek the minimum of 

 

 h**(X) = ||X − Y||2 (66) 

 
subject to the constraint that X (p×q) be of rank r or less, with p≥ q>r. When X 

has rank r, there is an r-dimensional orthonormal basis for the column space of 

X. Let this basis be represented by the columns of a p×r matrix U, with U'U = 

Ir. Every column of X is a linear combination of the columns of U. Hence, there 

is an r×q matrix V such that 

 

 X = UV. (67) 

 

Because every X of rank r can be written as UV for some V and some V, the 

function h** can be transformed into the equivalent function 

 

         
~

h (U,V) = ||UV − Y||2. (68) 

 
This function has to be minimized over pairs of matrices U and V, where U is 

constrained by U'U = Ir, and V is unconstrained. The minimizing pair U, V for 

(68) will have a product of rank r or less that is the minimizing X for (66). We 

now have to find the minimizing pair U, V for (68). This will be done by means 

of argument reduction. 

        No matter what the optimal U is, the optimal V for 
~

h  can be expressed in 

terms of this U, and Y, as 
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 V = (U'U)-1U'Y = U'Y,   (69) 

 
see (61). Using this expression in (68) to eliminate V, all that remains to be 

done is finding the minimizing U for 

 

 
≈
h (U) = ||UU'Y −−−− Y||2 = trUU'YY'UU' −−−− 2trY'UU'Y + trY'Y 

 

 = trU'YY'U −−−− 2trU'YY'U + trY'Y = trY'Y −−−− trU'YY'U . (70) 

 
In (70), trY'Y is constant. Therefore, we seek the U which maximizes trU'YY'U 

subject to the constraint U'U = Ir. This is a generalized quadratic form problem, 

see (51), that was solved above, see (54). Accordingly, the optimal U is 

 

 U = PrN  (71) 

 
where Pr contains the first r columns of the left hand singular vectors matrix of 

Y = PDQ' (SVD), and N is an arbitrary orthonormal r×r matrix. From (69) it 

appears that V=N'Pr'Y. It follows that the minimum of (66) is attained for 

 

     X=UV=PrNN'Pr'Y =PrPr'PDQ'=Pr(Ir|0)DQ'=Pr(Dr|0)Q'=PrDrQr',  (72) 

 
a result that goes back to Eckart and Young (1936). 

It should be noted that Pr contains the first r columns of P, Qr contains the 

first r columns of Q, and that Dr is the upper left r×r submatrix of D, but 

nevertheless it is not allowed to write Y as Y =PrDrQr', as in (4). This is because 

r referred to the rank of Y in (4), whereas it now stands for the rank of the 

matrix that is the best rank-r approximation to Y. 

The solution (72) for the minimum of h** subject to a rank-r constraint 

can be used to minimize the Penrose regression function 
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 h(X) =||AXB' − Y||2 (73) 

 

subject to the same constraint. Assuming that both (A'A) and (B'B) have an 

inverse, we can write 

 
 h(X) = ||(A'A)-½A'YB(B'B)-½ − (A'A)½X(B'B)½||2 + c   

 = ||W − (A'A)½X(B'B)½||2 + c ,  (74) 

 
where W ≡(A'A)-½A'YB(B'B)-½ and c = tr Y'Y − tr W'W, both constant. Using the 

SVD W =PDQ', we know that the best rank r approximation to W is PrDrQr', 

see (72), and that the rank of the matrix (A'A)½X(B'B) ½ is at most r. Combining 

these two facts yields the lower bound 

 

 h(X) ≥ ||W − PrDrQr'||
2 + c . (75) 

 

This lower bound is attained for the rank r matrix 

 

 X = (A'A)-1/2PrDrQr'(B'B)-1/2  (76) 

 
which gives the minimum of h(X) subject to a rank r constraint. The same 

solution has been found by different means by Takane and Shibayama (1991). 

They also discuss a practical application. 

Once a general solution has been obtained, it can be used to handle all 

special cases of it. In the present context, we have not yet discussed the 

regression problem of minimizing the function h*(X) = ||AX − Y||2, subject to the 

constraint that X be of rank r at most. It is the special case of (73) where B=I. 

The solution can be found from (76) as 

 

 X = (A'A)-1/2PrDrQr', (77) 

 

where Pr, Dr and Qr' are defined by the SVD (A'A)-1/2A'Y = PDQ'. 
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The regression problems and their solutions are summarized in Table 1. A 

review of some of these problems can also be found in Rao (1980). The 

problems for which references are given have no closed-form solutions and 

require an iterative procedure. As before, a matrix is called vertical when it has 

more rows than columns. 

 

 

 

Table 1: Matrix regression problems and their solutions for X of order p×q; 

 p≥ q. 

Problem Unconstrained 

(see 3.4) 

X'X=Iq 

(see 3.5) 

rank (X) ≤ r 

(see 3.6) 

Minimize 

h(X)=||AXB'−Y||2 

              X= 

(A'A)-1A'YB(B'B)-1 

Koschat & Swayne or 

Mooijaart & 

Commandeur 

X=(A'A)-½PrDrQr'(B'B)-½ 

using the SVD 

(A'A)-½A'YB(B'B)-½ =  

PDQ' 

 The special case B = I 

Minimize 

h*(X)=||AX−Y||2 

(Regression 

X=(A'A)-1A'Y Green & Gower (X 

vertical) or by X=PQ' 

using the SVD 

A'Y=PDQ' (X square) 

X=(A'A)-½PrDrQr' 

using the SVD 

(A'A)-½A'Y=PDQ' 

 The special case A =I and B=I 

Minimize 

h**(X)=||X−Y||2 

X=Y X=PQ' using the SVD 

Y=PDQ' 

X=PrDrQr' using the  

SVD Y=PDQ' 
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Table 1 constitutes, together with the three trace maximizing solutions of 

3.3, the framework of this book. In Chapter 4, the solutions will be applied 

without any further concern with the proofs of Chapter 3. Instead, all efforts of 

Chapter 4 are directed at reformulating the least squares problems, inherent to 

nine methods of Multivariate Analysis, in a form that can be handled by means 

of the solutions from the framework. 





CHAPTER 4 

 

APPLICATIONS 

 

4.1. MULTIPLE REGRESSION ANALYSIS 

 
Multiple linear regression analysis is concerned with estimating a given 

vector y by a linear combination Ax of the columns of a given matrix A. The 

standard approach, which has already been discussed in previous sections, is 

based on minimizing the sum of squared errors 

 

                   h(x) = ||y – A||2 = (y – Ax)'(y – Ax)                             (78) 

 

as a function of x. The solution (see section 2.3) reads 

 

          x = (A'A)-1A'y.                                                  (79) 

 
Multiple regression is often applied to variables (columns of A, and y) with 

means zero, and afterwards the correlation between y and Ax, known as the 

multiple correlation, is inspected, as a measure of success of the estimation of y 

from A. This policy can be justified by the fact that the minimizing solution (79) 

for the least squares problem (78) also maximizes the multiple correlation. This 

can be proved as follows. 

First, express the correlation r(y, Ax), with both y and the columns of A in 

deviations from their means, as a function of x: 

 

                  f(x) = n-1y'Ax(n-1y'y)-1/2(n-1x'A'Ax)-1/2= 
2/12/1 )''()'(

''

xxyy
yx

AA

A
        (80) 

 

Next, an upper bound to f can be found. The numerator can be written as 
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                       x'A'y = (x'A)'(A(A'A)-1A'y) ≤ (x'A'Ax)1/2(y'A(A'A)-1A'y)1/2        (81) 

 

using Schwarz. Combining (80) and (81) yields 

 

f(x)=
2/12/1 )'()''(

''

yyxx
yx

AA

A
 ≤ 

2/12/1

2/112/1

)'()''(

)')'('()''(

yyxx
yyxx

AA

AAAAAA −

  

              =
2/1

2/11

)(

)')'('(

yy

yy

'

AAAA −
                                         (82) 

 

which is an upper bound to f(x). The upper bound is attained when Ax is 

proportional to A(A'A)-1A'y, that is, for instance, when 

 

               x = (A'A)-1A'y .                                                (83) 

 
This x, accordingly, does not only minimize the function h(x) of (78), but also 

maximizes the correlation f(x) between Ax and y. This justifies the use of the 

multiple correlation as a measure of success of the estimation of y by Ax. 

It is a well-known limitation of linear regression analysis that it is useless 

unless the number of persons (n) is far larger than the number of predictors (p), 

when A is a n×p matrix. Otherwise, using the optimal x from a first sample in 

another sample is likely to reveal shrinkage of the multiple correlation in the 

second sample. In other words, the multiple correlation has a positive sampling 

bias, and can be far too high when the sample size n is not much larger than p. 

The extreme case of n=p shows this quite clearly. When n=p, A is a square 

matrix, and will have an inverse, if the assumption of zero means is ignored for 

the moment. Therefore, the function (78) will have a trivial minimum of zero, 

which is attained for x = A-1y. Also, the multiple correlation will be 1, in that 

case. Compared to other techniques to be 
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discussed in the sequel, multiple linear regression analysis is excessively 

sensitive to chance capitalization. That is, the technique is highly liable to yield 

unduly favorable results when applied to small samples. 

So far, the multiple linear regression problem has been treated for the case 

of a single criterion variable y. The same principles, and, in fact, the same 

solution, apply when it is a matrix Y that is to be estimated by linear 

combinations of the columns of a matrix A. Every column of Y is independently 

estimated by the corresponding column of AX. For each column of X, we use 

(79) to find the optimal solution. As a result, the complete solution for X can be 

written as X = (A'A)-1A'Y, see section 3.4. This solution maximizes a whole set 

of multiple correlations independently. 

 

 

4.2. PRINCIPAL COMPONENTS ANALYSIS (PCA) 

 
Principal Components Analysis (PCA) is a popular technique. For a given 

n×k matrix of standard scores Z, with correlation matrix R = n-1Z'Z, it is the 

purpose of PCA to find a k×q matrix of weights B (q<k), yielding linear 

combinations (columns of ZB) that optimally summarize the information 

contained in Z. Specifically, we search for those q linear combinations from 

which Z can be reconstructed as accurately as possible in terms of the least 

squares criterion. To refer to ZB, we use the symbol F (n×q). It is desired to 

minimize the function 

 

                     l (B,A') =||Z – ZBA'||2 = ||Z – FA'||2,                             (84) 

 
where B defines the linear combinations, and A' provides the optimal weights 

for estimating Z from ZB. Without loss of optimality, the constraint is imposed 

that F has standardized and uncorrelated columns. That is, F must satisfy the 

constraint n-1F'F = B'RB = Iq. This is a constraint on B rather than on F, because 

constraints always pertain to the argument of a function. 

         To minimize l , we use argument reduction, by eliminating A'. Regardless 
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of B, the associated A' must be optimal for (84), and therefore must be of the 

form A'=(F'F)-1F'Z, see (61). Using this expression for A leaves us with 

minimizing 

 

               
∧
l (B) = ||Z–ZB(F'F)-1F'Z||2 = ||Z–ZB(nB'RB)-1B'Z'Z||2                       (85) 

   = ||Z–ZBn-1B'Z'Z||2 = ||Z–ZBB'R||2 

 

where the constraint B'RB = Iq and the definition R = n-1Z'Z have been used. 

This function can be expanded as 

 

            
∧
l (B) = trZ'Z – 2trZ'ZBB'R + trRBB'Z'ZBB'R 

           = trZ'Z – 2ntrB'R2B + ntrB'R2B = nk – ntrB'R2B.                        (86) 

 

Clearly, the minimum of 
∧
l (B) subject to B'RB = Iq coincides with the 

maximum of trB'R2B, subject to the same constraint. Let X=R½B. Then we need 

the maximum of g(X) = trX'RX subject to X'X=B'RB=Iq. We have thus arrived 

at a well-known problem, with solution X = KqN, where Kq contains the first q 

columns of K, defined by the eigendecomposition R=KΛK', and N is an 

arbitrary orthonormal q×q matrix (see section 3.3). So the B wanted is R-1/2KqN 

= KqΛ 2/1−
q N, where Λq is the upper left submatrix (q×q) of Λ, and N an arbitrary 

rotation matrix. Here and elsewhere, the symbol R-1/2 reveals that R is assumed 

to be nonsingular. 

In addition to this derivation of principal components as those columns of 

F for which the optimal (least squares) reconstruction of Z is optimal, a second 

approach can be encountered in the literature. In that approach, the 

orthonormality constraint is not imposed on n-½F, with n-1F'F = Iq, but on B 

directly, and it is not the residual variance ||Z – FA'||2 that is minimized, but the 

sum of variances of the columns of F itself is maximized. Specifically, this 

approach is aimed at maximizing the function 
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           g(B) = trn-1F'F = n-1trB'Z'ZB = trB'RB                              (87) 

  

 
subject to the constraint B'B = Iq. 

This is again a well-known problem, with B = KqN as the optimal solution. 

If we disregard the rotation N, we arrive at components that are proportional to 

those obtained earlier from the first approach to PCA. This means that no harm 

is done by using the second approach. Nevertheless, it is undesirable to 

maximize the variance of the components rather than the variance explained by 

the components, because only the latter is relevant for the purpose of finding 

components that summarize the information contained in the variables. 

Above, we have derived the PCA solution by defining the components as 

linear combinations of the variables, see (84). In fact, this constraint is inactive, 

as can be seen from Exercise 43. 

 

 

4.3. SIMULTANEOUS COMPONENTS ANALYSIS IN TWO OR MORE 

POPULATIONS 

 
When the same variables have been administered in two or more groups 

of respondents from, for instance, different populations, the question may rise 

of how to generalize PCA. An elegant generalization of PCA is Simultaneous 

Components Analysis (SCA). The SCA method is aimed at finding one 

common k×q matrix B of weights, defining a matrix of components ZiB = Fi in 

each group, i=1,...,m. Because both variables and weights per component are 

the same across groups, so are the interpretations of the components. This 

leaves the importance of the components still free to vary across groups. In 

SCA, the optimal B is defined by the criterion that the sum of explained 

variances over groups should be as high as possible. In algebraic terms, SCA is 

aimed at minimizing the function 

 

            ∑
=

=
m

i
mPPB

1
1 ),...,,(l ||Zi – FiPi'||

2 = ∑
=

m

i 1

||Zi – ZiBPi'||
2                  (88) 
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where Pi' is the pattern matrix of regression weights that yields the best least 

squares reconstruction of Zi from Fi = ZiB. 

If we were to follow the same approach as in the derivation of PCA, we 

would start by eliminating Pi, by expressing it in terms of B and Ri as 

 

      Pi' = (Fi'Fi)
-1Fi'Zi = (B'RiB)-1B'Ri.                                     (89) 

Substituting this expression for Pi' in (88) would reduce the problem to that of 

maximizing 12

1

)'('tr −

=
∑ BRBBRB ii

m

i

, a function of B only. Unfortunately, the 

maximum of this function is unknown. Therefore, eliminating P1,...,Pm is of no 

avail here. Eliminating B does not help either. 

We are now facing a problem that has not been encountered so far. It is 

not possible to find an explicit minimum for the function l . 'To be sure, we do 

know how to choose Pi when B is known. In fact, it even appeared possible to 

express that choice explicitly in terms of B and R. But it is not clear how to 

minimize the resulting function of B. We shall have to settle for something less 

than an explicit globally minimal solution, resulting from an attainable lower 

bound. In the present case, we shall settle for an alternating least squares 

(ALS) algorithm. 

An ALS algorithm is an iterative procedure that starts by choosing 

arbitrary initial values for the complete set of argument parameters of the 

function. In the SCA context, we choose arbitrary values for B and P1,...,Pm. 

The next step is to treat a subset of the argument variables temporarily as 

constant, for instance, the elements of B, and minimize the function by 

choosing the optimal values for the remaining argument variables, i.e., the 

elements of P1 through Pm, given the current B. As a result, the function value 

will usually be lower than it was before. It will never be higher than before, 

because the optimal values for P1,...,Pm cannot do worse than their previous 

values. 

In the next step, the roles are reversed. The just updated P1,...,Pm are now 

treated as fixed, and B is replaced by the best B, given these P1,...,Pm. This step 

will also decrease the function value. This procedure can be 
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repeated as often as we like, and will decrease the function value by alternately 

optimizing B for fixed P1,...,Pm and vice versa. How long we continue this 

procedure depends on the resulting function values. Usually, the first updates 

give major improvements, after which the improvements gradually diminish. 

When the improvements of the function value become smaller than a previously 

determined threshold value, e.g., .0001, the iterations are terminated. More 

often than not, we will end up close to the (global) minimum. But this is not 

guaranteed. An ALS algorithm may get caught in a local minimum. This danger 

can be countered in two ways. When the initial estimates of the argument 

values are cleverly chosen, to the effect that the function value starts already 

close to the global minimum, then it is impossible to converge to those local 

minima for which the function value is above the current one. This is because 

an ALS algorithm always moves in the right direction, and can only decrease 

the function value. 

The second remedy against local minima is to try several (random) 

starting points, successively. The ALS procedure will yield as many solutions 

as starting points used, and the resulting function values (after convergence) 

can be compared. Only the solution associated with the lowest function value is 

maintained. The more starting points are used, the higher is the probability of 

finding the global minimum in this way. 

An ALS algorithm is comparable to a procedure one might use to choose 

a sofa and a carpet, to optimize the atmosphere of a living room. That is, we 

first buy a sofa. Next, we acquire the best carpet to go with this particular sofa. 

Having replaced the carpet, we buy the best sofa to go with this particular 

carpet, and so on. Each purchase improves the atmosphere. Although we cannot 

be sure to attain the optimal sofa-carpet combination, we are likely to do well if 

the very first sofa is a clever choice, or if we repeat the entire procedure for a 

variety of randomly chosen initial sofas. It may seem wasteful to buy so many 

carpets and sofas where only one pair is needed, but in computational problems 

such wasteful procedures are well worth their cost, being only a matter of 

computer time. 

At this point we return to the SCA problem, for which an ALS algorithm 

can be derived. We have already seen in (89) how to optimize P1,...,Pm for an 
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arbitrary fixed B. The remaining question is how to optimize B, for fixed values 

of P1,...,Pm. The answer comes from Vec notation (see section 1.4). 

 For fixed P1,...,Pm, the problem is to choose B such that 
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iii BPZZBl                                                (90) 

 

is a minimum. This function can also be written as 
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From this, the optimal Vec(B) can be found at once as a solution for a simple 

regression problem (see section 2.3). Hence it is clear how to find the optimal B 

for fixed P1,...,Pm. That is, if Vec(B) is known, then so is the k×q matrix B. All 

it takes to get B is to rearrange the elements of Vec(B) into a matrix of the 

proper order. 

Iteratively updating B by (91) and P1,…,Pm by (89) in an Alternating 

Least Squares algorithm reduces l (B,P1,...,Pm) monotonically. The algorithm 

converges to a stable function value because the function is bounded from 

below, for instance, by zero. Details of the present and other ALS algorithms 
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for SCA can be found in Kiers and Ten Berge (1989). The idea of SCA was 

introduced by Millsap and Meredith (1988). Sampling properties of SCA have 

been examined by Ten Berge, Kiers, and Van der Stel (1992). 

It is important to note that the resulting B and P1,...,Pm for SCA are not 

uniquely determined. That is, taking BT and P1(T
-1)',...,Pm(T-1)', where T is an 

arbitrary nonsingular matrix, yields, as an estimate of Zi in the i-th group, 

ZiBTT-1Pi' = ZiBPi'. This shows that the estimates, hence, the explained 

variance, remain the same, regardless of what transformation T is used. The 

freedom of transformation can be used in various ways. One way is to ensure 

that, in the i-th group, Fi is orthogonal and standardized. Alternatively, these 

properties can be implemented in 
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A third option is to transform B so as to satisfy certain ‘simple structure 

criteria’. A computer program for SCA, designed by Kiers (1990), allows for all 

of these transformations. 

Finally, it should be pointed out that the loss incurred for the matrices 

Z1…,Zm, respectively, can be weighted differentially by inserting weights into 

(88). For instance, one might weight the loss pro rato to the number of 

respondents involved. In the limiting case where B is determined on the basis of 

one group only, by giving zero weights to the residual variances for the other 

groups, SCA amounts to doing a PCA in one group, with cross-validation of the 

resulting components in the remaining groups, see Ten Berge (1986). 
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4.4. MINRES FACTOR ANALYSIS 

 

The classical formulation of factor analysis is as follows. Given a k×k 

correlation matrix R, a k×q matrix A is wanted such that the off-diagonal 

elements of AA' resemble those of R as much as possible in the least squares 

sense. Accordingly, it is desired to minimize the function 

 
       2' )()( ji

ji
ijrA aa∑

>

−=l ,                                             (93) 

 
where ai' is the i-th row of A. An ALS algorithm to minimize l  has been 

designed by Harman and Jones (1966). It starts with an arbitrary k×q matrix A, 

and alternately improves each row ai', for fixed values of the other rows. To do 

this, one needs to know how to update any single row of A. As a matter of 

convenience, the discussion will be limited to a1', the first row of A. We slice 

l (A) up into a part that depends on a1', and a part that does not vary with al and 

can be treated as fixed, for the time being. Specifically, define 
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where c1 is the sum of all terms of l (A) in which a1 does not occur. Let r1 be 

the first column of R, the diagonal element excluded, so r1' = (r21,...,rk1). Define 

A1 as the (k–1)×q matrix that is left when the first row of A (k×q) is deleted. 

Then l l(al) can also be written as 

 

 1

2

11111 )( cA +−= aral .                                              (95) 

 

Minimizing this is a standard regression problem, and has as solution 

 

      a1 = (A1'A1)
-1A1'r1.                                              (96) 
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This solution yields the best possible first row of A, given the other rows of A. 

When the previous version of that row is updated according to (96), l (A) will 

decrease. 

Similarly, for any arbitrary row ai' of A, the best update, given the other 

rows, is 

 

                                                    ai = (Ai'Ai)
-1Ai'ri,                                           (97) 

 
where Ai is what is left of the current A upon deleting its i-th row, and ri is the i-

th column of R, the diagonal element excluded. It has thus been shown how to 

decrease l (A) iteratively, by updating each row of A in turn. This ALS 

algorithm is called MINRES. A different algorithm, which also decreases (93) 

iteratively, is the ULS (unweighted least squares) algorithm, proposed by 

Jöreskog (1977). It will not be treated here. 

MINRES factor analysis has lost the popularity it once had. This is not 

only because many factor analysts nowadays prefer maximum likelihood 

methods, but also due to some technical deficiencies of MINRES itself. The 

first of these is that one or more rows of the matrix A that results from MINRES 

may have a sum of squares larger than one (a so-called Heywood case), which 

would imply that more than 100% of variance has been explained for the 

corresponding variable. This deficiency can easily be overcome by replacing 

the update (97) for ai, whenever ai'ai > 1, by that vector ai that minimizes a 

function of the form (95) subject to the constraint ai'ai = 1, see Harman and 

Fukuda (1966). The solution for this problem has been discussed in section 2.4. 

However, even when Heywood cases are absent, a more general problem 

with MINRES remains. It has to do with the separation of common variance in 

explained common variance, associated with those common factors that are 

maintained, and unexplained common variance, associated with those common 

factors that are discarded. When there is perfect fit, that is, when AA' equals the 

correlation matrix R (except for its diagonal elements), there is 100% explained 

common variance. In cases of imperfect fit, however, there is no meaningful 

way of evaluating the percentage of common variance that is explained by the 

factors which are maintained. This problem can also be 
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overcome, see Ten Berge and Kiers (1991), but the solution is too involved to 

be treated here. 

 

4.5. CANONICAL CORRELATION ANALYSIS 

 
The data to which SCA can be applied can be referred to as vertical data. 

That is, SCA is applied to scores of different groups of respondents (rows) on 

the same variables (columns), as a result of which these data matrices can be 

arranged one below the other in one supermatrix. When, on the other hand, 

scores are available from one group of respondents on different sets of 

variables, the data can be called horizontal: The data matrices for different sets 

of variables can now be arranged one next to the other in one supermatrix, for 

instance, (Z1|Z2) in the case of two sets of variables. 

Canonical Correlation Analysis (CCA) requires horizontal data. Only the 

case of two data sets will be treated here, although more general approaches are 

widely available. 

The purpose of CCA is to answer this question: Is it possible to construct 

certain linear combinations of the columns of Z1 (of order n×k1) and of Z2 

(n×k2), such that they correlate pair wise as highly as possible? Let B1 (k1×q) be 

the matrix of weights which defines q linear combinations of Z1, and let B2 

(k2×q) define q linear combinations of Z2, where q is the dimensionality of the 

solution, q1 ≤ k1 and q2 ≤ k2. Then we seek the maximum of the sum of the q 

correlations (canonical correlations) between the corresponding columns of 

Z1B1 and Z2B2. This is what CCA is about. The columns of Z1B1 and Z2B2 are 

called canonical variates of Z1 and Z2, respectively. 

To avoid trivial results, the constraint is imposed that both the canonical 

variates of Z1 and those of Z2 are uncorrelated. For convenience, they are also 

standardized. Both constraints can be captured in the constraint 

B1'R1B1=B2'R2B2=Iq, where R1 = n-1Z1'Z1 and R2 = n-1Z2'Z2. Now the purpose of 

CCA can be expressed as maximizing the sum of the q canonical correlations, 

written as 
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           l (B1,B2) = tr(n-1B1'Z1'Z2B2) = trB1'R12B2,                             (98) 

 
subject to the constraint B1'R1B1=B2'R2B2=Iq, where RI2=n-1Z1'Z2 This 

maximum problem will now be transformed into an equivalent problem, with 

different argument matrices. Specifically, define 1
2/1

11 BRX = and 2
2/1

22 BRX = . 

Then we want the maximum of 
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2/1
212
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1

'
121 tr),g( XRRRXXX −−=                                          (99) 

 

 

subject to the constraint X1'X1 = X2'X2 = Iq. The solution can be obtained at 

once from section 3.3. Assume that k1 ≥ k2 (otherwise, switch Z1 and Z2) and 

define the SVD 

 
 '2/1

212
2/1

1 PDQRRR =−− .                                               (100) 

 

Then g attains its maximum subject to the constraint when we take 

 

 X1 = PqN  and  X2 = QqN                                             (101) 

 
where Pq and Qq contain the first q columns of P and Q, respectively, and N is 

an arbitrary orthonormal q×q matrix, see (57). Therefore, taking 

 
            NPRB q

2/1
11
−=  and NQRB q

2/1
22
−=                                (102) 

 
solves the CCA problem. 

Often, the orthonormal matrix N is chosen as Iq . Then the matrix of 

correlations between the canonical variates of Z1 and Z2 is diagonal. This 

follows from the expression 
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                                                                  (103) 
the diagonal q×q matrix containing the q largest singular values from D on the 

diagonal. Hence, each column of Z1B1 correlates zero with each column of 

Z2B2, the corresponding column excluded. The diagonal elements of Dq are the 

q canonical correlations. 

In quite a number of textbooks, the solution for the CCA problem is 

derived in terms of eigenvectors. This is rather inconvenient, because canonical 

correlations then may turn out negative, and reflections of certain columns of B1 

or B2 are needed to remedy this. 

An intriguing question is what use CCA has. It was introduced as a 

method to find the most valid predictor (column of Z1B1) for the most valid 

criterion (column of Z2B2). This is indeed what CCA does. It is, however, far 

from clear what purpose is served by this. Although taking linear combinations 

of predictors is absolutely legitimate and useful, combining criterion variables 

linearly (or otherwise) is suspicious. Criterion variables should be determined 

by the investigator, rather than by a method of data analysis. Replacing them by 

linear combinations reflects doubt as to what should be predicted. In practical 

applications, it is unnatural to allow for linear combinations of the criterion 

variables, which leaves no place for CCA. Once one or more criteria have been 

selected, multiple linear regression analysis is wanted. The matrix 12
1

11 RRB −= is 

computed as the matrix of weights that maximizes the sum of the (multiple, 

instead of canonical) correlations between the corresponding columns of Z1B1 

and Z2 (instead of Z2B2). 

Having discarded CCA as a prediction method, it may still seem possible 

to salvage it as a form of Components Analysis, yielding summarizers of two 

sets of variables. This is because the columns of Z1B1 and of Z2B2 are 

components of Z1 and Z2, respectively. Clearly, CCA produces maximally 

correlated summarizers of Zl and Z2. The problem with this interpretation of 

CCA is, that the summarizers obtained from CCA can be very poor 

summarizers of Z1 and Z2, respectively. They were derived as highly correlated 

components, which is totally different from variance explaining components. It 



Applications  

 

55 

 

can be concluded that, even from the Components Analysis point of view, it is 

not clear what the use of CCA is. This point will be revisited in section 4.6. 

A related issue is that CCA cannot be viewed as a generalization of PCA. 

That is, when Zl coincides with Z2, CCA does not necessarily yield principal 

components as canonical variates. In fact, in this case there is an infinite 

number of solutions for CCA, and the PCA solution is just one of them. 

Although CCA has no direct relevance for practical data analysis, it can 

sometimes be encountered as a subroutine of a different method of data 

analysis. In such cases, the legitimacy of using CCA stems from the latter 

method rather than from CCA itself. 

 

4.6. REDUNDANCY ANALYSIS 

 
The liability of CCA to explain only little variance has led to the 

construction of an alternative technique, called Redundancy Analysis (RA), see, 

for instance, Van den Wollenberg (1977). This technique is aimed at finding 

those linear combinations of the columns of Z1, that yield the best prediction of 

Z2, by means of multiple linear regression analysis. Accordingly, RA is aimed 

at minimizing the function 

 

                                          
2

21),( ZBWZWB −=l .                                     (104) 

 
Without loss of optimality, the constraint is imposed that the columns of Z1B 

are orthogonal and standardized, that is, B'R1B = Iq. Regardless of the choice of 

B, the optimal W depends on it by the relation 

 

                        W = (B'R1B)-1B'R12 = B'R12.                              (105) 

 

So the minimum of l (B,W) can be found as the minimum of 
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subject to the constraint B'R1B=Iq. Clearly, this problem has the same solution 

as the problem of maximizing 

 
     ( ) BRRBB 2112

'trg~ = ,                                               (107) 

 
subject to B'R1B=Iq. This constraint can be reformulated as the constraint that 

XBR =2/1
1 has to be columnwise orthonormal. Therefore, we may equivalently 

maximize the function 

 

                       XRRRRXX 2/1
12112

2/1
1

'tr)(g −−=                              (108) 

 
subject to X'X = Iq. This is a generalized quadratic form problem. Define the 

SVD '
12

2/1
1 PDQRR =− . Then 

 
                      '22/1

12112
2/1

1 PPDRRRR =−−                                   (109) 

 

is an eigendecomposition, and the solution is X = PqN, see (54). Hence 

 
 NPRB q

2/1
1
−=                                                      (110 ) 



Applications  

 

57 

 

is the solution for the RA problem. The resulting estimate of Z2 is 
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(111) 

an expression to be discussed later. 

It should be noted that the columns of Z1B, as defined in RA, are 

standardized linear combinations, and hence components of the columns of Z1. 

However, they should not be mistaken for the principal components of Z1. This 

is because they explain as much variance as possible in the external matrix Z2, 

rather than in the internal matrix Z1. For this reason, RA is sometimes called 

‘External PCA’. 

In the special case where Z2=Z1, RA and PCA coincide. Therefore, 

contrary to CCA, one may consider RA as a generalization of PCA. 

Interpreting RA as external PCA can also be justified in a different 

manner. Specifically, if we were to find a matrix B yielding the highest sum of 

squared correlations between all columns of Z1B and all columns of Z2, subject 

to the constraint B'R1B=Iq, we would end up with the same solution. To verify 

this, write the sum of squared correlations as 

 

                              )(g~tr 2112
'2

12
'2

2
'
1

'1 BBRRBRBZZBn ===− ,                 ( 112) 

 
and note the equality to (107). 

There are still other interpretations of RA. One of these will be explained 

here, namely, RA as a rank constrained version of regression analysis. It has 

been seen before that the best possible unconstrained (least squares) estimate of 

Z2 by a set of linear combinations of the columns of Zl is obtained when Zl is 

postmultiplied by the matrix of regression weights (Z1′Z1)
-1Z1′Z2 = 12

1
1 RR− . 

Suppose that the matrix of weights is constrained to have rank q (q < k1; q < k2). 

In that case the solution is different. Using the SVD '12
2/1

1 PDQRR =− , as we did 

above (109), it follows from (77) that the optimal 
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rank-q regression weights matrix is 

 
               '2/1

1 qqq QDPR− .                                               (113) 

 
If Z1 is postmultiplied by this matrix, the estimate of Z2 will be exactly the same 

as the RA estimate, see (111). As a result, RA can also be seen as rank 

constrained linear regression analysis. 

The interpretation of RA as rank constrained regression analysis reveals a 

severe limitation of the practical usefulness of RA. When, for instance, peer 

ratings of subjects on a set of traits (columns of Z2) are to be predicted on the 

basis of certain scales of a personality questionnaire (Z1), there is no point in 

adopting a rank constraint. It would result in a loss of predictive power, without 

any reason. However, there is a place for RA in prediction contexts when 

ordinary linear regression is very successful. In that case one may desire to 

replace the predictors (the k1 columns of Z1) by a parsimonious set of q linear 

combinations of them, contained in the matrix Z1B. It is conceivable that only a 

small loss of predictive power will be incurred when this procedure is adopted, 

and RA provides the best set of the linear combinations to replace the full set of 

predictors. 

Another application may arise when it is desired to understand what the 

major dimensions are in the predictable part of Z2. This is because RA provides 

a low rank approximation to the regression of Z2 on Z1. 

 

4.7. PARAFAC 

 

Above, it has been seen that SCA is a method for vertical data, and that 

Multiple Regression Analysis, CCA, and RA require horizontal data. We now 

turn to data that are both horizontal and vertical, for instance, scores of n 

persons on m variables, on p occasions. Such data can be represented in a three-

way data array X, similar to a loaf of bread, so to speak, consisting of p slices 

X1,...,Xp, each of order n×m. 
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Tucker (1966) has laid the foundations for three-way components 

analysis. Although efficient algorithms for this components analysis have been 

developed since, e.g., see Kroonenberg and De Leeuw (1980) or Kroonenberg 

(1983), the method has not become popular. The problem is that the method 

yields matrices of coefficients for persons, variables, and occasions, and a so-

called (three-way) core array, containing weights for joint contributions of 

person components, variable components, and occasion components. For the 

practitioner, this is often too much information. For this reason, three-way 

components analysis in the Tucker tradition will not be treated here. Instead, 

only a simple variant of three-way PCA, called PARAFAC, will be considered 

here. 

PARAFAC is an acronym for PARAllel FACtor Analysis, and has been 

designed by Harshman (1970). Let xijk be the score of person i on variable j at 

occasion k. Then the PARAFAC model reads 

 

        ∑
=

+=
r

h
ijkkhjhihijk ecbax

1

,                                           (114) 

 
where eijk is a residual term, aih is an element of an n×r matrix A, bjh is an 

element of an m×r matrix B, and ckh is an element of a p×r matrix C. Fitting the 

PARAFAC model amounts to minimizing the sum of squared residuals ∑ 2
ijke . 

Define Dk as the diagonal r×r matrix containing the elements of row k of C in 

the diagonal, (k=1,...,p), and define Xk as the k-th frontal slice of X, of order 

n×m. Then the PARAFAC model can be written as 

 

                                    Xk = ADkB′  + Ek    (k=1,…,p).                                   (115) 

 
The notation used may conceal the fact that (115) can be interpreted as a 

generalized form of PCA. However, upon writing F instead of A and Pk' instead 

of DkB', it appears that every Xk is decomposed as the product of a common 

component scores matrix F and a specific pattern matrix Pk', with Ek as a 

residual matrix. In the case p=1 we may set D1 = I, whence PARAFAC yields  
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an approximation of Xl of the form AIB'=AB', a job that might as well be done 

by PCA. In the case p>1, PARAFAC differs from PCA on X1,...,Xp separately, 

in two respects. First, the components matrix A in PARAFAC is the same 

across occasions. Second, the pattern matrices BD1,...,BDp of PARAFAC are 

essentially the same. Basically, there is only one pattern matrix B, the columns 

of which are scaled differentially across the occasions, by D1,...,Dp, 

respectively. This means that the overall contributions of components to the 

explained variance differs between and within occasions, but that the relative 

contributions of a specific component to the variables are the same across the 

occasions. 

As always, it is up to the user to determine the number r of components. 

The residual sum of squares will, obviously, decrease as r increases. On the 

other hand, any increase of r implies a loss of parsimony of PARAFAC. 

A computational solution for the matrices A, B, and D1,...,Dp in 

PARAFAC is obtained from least squares fitting. Specifically, PARAFAC is 

aimed at minimizing the function 
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An ALS algorithm, called CANDECOMP (Carroll & Chang, 1970) is available 

for this purpose. It is based on alternately updating A, B, and D1,...,Dp, keeping 

the other matrices fixed. First, initial values for A and B are chosen, and 

D1,...,Dp are updated independently. Updating Dk requires the minimum of that 

part of (116) that depends on it, that is, the minimum of 

 

                                             
2')( BADXD kkkk −=l                                     

(117) 

 
subject to the constraint that Dk be a diagonal matrix. This constraint implies 

that the Penrose solution of section 3.4 cannot be used. To find the minimum of 

kl , we write 
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where the subscript k has been omitted for simplicity. In (118), ai is the i-th 

column of A, bi the i-th column of B and di the i-th diagonal element of D. A 

sum of squared elements of a matrix does not change when these elements are 

rearranged in a vector. It follows that 
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              2||)(Vec|| ∑ ⊗−=

i
ii dX ab , 

 
where (19) and (23) have been used, as well as the fact that Vec(di) = di. Let U 

be the nm×r matrix, having the Kronecker products of the corresponding 

columns of B and A as columns, and collect d1,...,dr in a vector d. Then we have 

 

                                              2||)Vec(||)( dUXD −=l .                                 (120) 

 
Clearly, searching for the minimizing D of (118) is equivalent to searching for 

the minimizing d of (120), because the diagonal elements of D are the very 

elements of d. The optimal d can be found as d = (U'U)-1U'Vec(X), whence the 

optimal D has been determined. By subsequently using X1,...,Xp in (120), we 

obtain the optimal updates for D1,...,Dp, respectively, keeping A and B fixed.  

A next step in CANDECOMP is to update B', for fixed A and Dl,...,Dp. 

This is a straightforward application of multiple regression analysis. Upon 

writing 
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it is clear that B' is a regression weights matrix, and must be taken as 
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Analogously, it can be shown that, for fixed B and D1,...,Dp, the best choice for 

A is obtained from 
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This completes the basic ingredients for the CANDECOMP algorithm. 

Alternately, A, B, and D1,...,Dp are updated, and each update decreases (116). 

Clearly, CANDECOMP is an ALS algorithm, which decreases the functionl  

monotonically. 

The component matrix A in PARAFAC is not constrained to be 

orthogonal. When orthogonal components are desired for PARAFAC, then 

CANDECOMP must be adjusted to satisfy this constraint. It will now be shown 

how to handle this. Only the update for A needs to be adjusted, by imposing the 

constraint A'A = I. This constraint renders the regression solution (123) invalid. 

To derive the constrained solution, write the part of (116) that depends on A as 
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where G and H denote the two supermatrices pictured. It is desired to find the 

minimizing A for h(A), subject to A'A=I. This problem departs from the 

problem of section 3.5, in that the regression weights matrix A' is now 

constrained to be rowwise rather than columnwise orthonormal. Nevertheless, 

the solution can readily be found. Expanding h(A) as 

 

 h(A) = tr(G – HA')'(G – HA') = trGG' – 2trG'HA' + trAH'HA'   

 = trGG' – 2trA'G'H + trH'H = –2trA'G'H' + c,                            (125) 

 
with c constant, shows that we need to maximize f(A) = trA'G'H subject to 

A'A=I. This is a familiar problem, see section 3.3. The solution is A = PQ', 

defined by the SVD G'H = PDQ'. It is clear from (124) that G'H can be 

computed as G'H = k

p

k
k BDX∑

=1

. The SVD of this known matrix provides us with 

the optimal columnwise orthonormal update for A, when B and D1,...,Dp are 

kept constant. 

PARAFAC is appropriate in cases where components are the same across 

occasions, but differ in importance. PARAFAC is a demanding model, that will 

more often than not be too restrictive for real life data. However, in those cases 

where it does fit nicely, it offers a highly elegant method of analyzing a three-

way array. 

 

4.8. INDSCAL 

 

When a three-way array X consists of symmetric slices Xl,…,Xp, that can 

be interpreted as similarity matrices, the INDSCAL model is often used. This 
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model decomposes the slices as 

 

          Xk = ADkA' + Ek                                                (126) 

 
with D1,...,Dp diagonal and nonnegative. A situation where INDSCAL applies 

is, for instance, that where Xk is a symmetric matrix of similarities between n 

stimuli, as viewed by a subject k, k=l,...,p. The INDSCAL model is based on the 

premise that the subjects use the same matrix A of coordinates of the stimuli on 

q dimensions, but differ in the idiosyncratic weights (saliences) they attach to 

these dimensions. These weights are the diagonal elements of D1,...,Dp. They 

should be nonnegative in most applications. 

 The problem of how to fit the INDSCAL model in the least squares sense 

amounts to minimizing ∑
=

p

k
kk EE

1

'tr , as defined implicitly in (126), as a function 

of A and D1,...,Dp. This problem has not been solved directly. The most popular 

approach, due to Carroll and Chang (1970), is based on a technique called 

splitting (De Leeuw & Heiser, 1982). That is, the two appearances of A in (126) 

are represented by different matrices, A and B, say, which are optimized 

independently, along with D1,...,Dp. Next, the CANDECOMP algorithm is 

applied to obtain estimates for the matrices A, B, and D1,...,Dp. After 

convergence of CANDECOMP, it is hoped that the A and B obtained happen to 

be equal. In practice, this always appears to be the case. Also, one must hope 

that the solutions obtained for D1,...,Dp have nonnegative diagonal elements 

throughout. That is not always the case in practice. It is possible to avoid 

negative saliences by imposing nonnegativity constraints, but the technical 

implementation of this is rather laborious, see Ten Berge, Kiers and Krijnen 

(1993). 

 

4.9. HOMOGENEITY ANALYSIS 

 
Homogeneity Analysis, also known as Multiple Correspondence Analysis, is a  
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generalization of PCA for qualitative variables. A qualitative variable can, in 

the present context, conveniently be represented by a matrix Gj, of order n×kj, 

where kj is the number of categories of the variable j. Each of the n respondents 

has a score 1 for the category to which he/she belongs, and a score of zero 

otherwise. For instance, when five respondents have scores a, b, a, b, c on a 

qualitative variable j, this can be portrayed in a 5×3 matrix Gj as 

 a b c 
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jG                                                     (127) 

 

A matrix of this kind is called an indicator matrix. In the case of m 

qualitative variables, there will be m indicator matrices involved. They can be 

collected in a supermatrix 

 

                                              G = (G1|G2|...|Gm)                                             (128) 

 
of order n×k, where k=k1+k2+...+km, the total number of categories of the m 

variables.  

Homogeneity Analysis is a technique which yields weights, collected in 

vectors yl,...,ym, to quantify the categories of the variables. As a result, 

quantified variables are constructed, of the form G1y1, G2y2,...,Gmym. The 

weights are chosen so as to render the quantified variables as homogeneous as 

possible. That means that the quantified variables deviate as little as possible 

from a certain vector x, in the least squares sense. Specifically, the weights and 

x are chosen to minimize 
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subject to the constraints x'x = n and 1'x = 0. Constraints have to be introduced, 

because without them, there would be trivial solutions x=0 and yj=0, or x=1n 

and yj=
jk1 , respectively, j=1,...,m. 

 One way to find the minimum of (129) subject to the constraint is as 

follows. Regardless of x, the associated yj (j=1,...,m) must satisfy 

 

                                        yj = (Gj'Gj)
-1Gj'x = Dj

-1Gj'x,                                   (130) 

 
where Dj is defined as the diagonal matrix Gj'Gj, containing the category 

frequencies for the j-th variable on the diagonal. Using (130), the problem of 

minimizing (129) can be simplified to that of minimizing 
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The problem that remains is to maximize the quadratic form 
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subject to the constraints x'x = n and 1'x = 0. Clearly, the constraint l'x = 0 is 

equivalent to the constraint Jx=x, where J= )(
'

n
I

11− .  Accordingly, we have 
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                    = n(x/√n)'W(x/√n) ≤ nλ1(W),                               (133) 
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where W is defined as ∑
=

−=
m

j
jjj JGDJGW

1

'1 , and λ1(W) is the largest eigenvalue 

of W. The upper bound of (133) is attained when we choose x as the first 

eigenvector of W, scaled to a sum of squares n. That eigenvector also satisfies 

both constraints. Clearly, we have thus found the minimum of (129). 

The explicit approach above, based on eliminating yj and then optimizing 

x, is not the most attractive from a computational point of view. The best 

known computer program for Homogeneity Analysis, called HOMALS (Gifi, 

1990), is an ALS algorithm. It proceeds by alternately updating y1,...,ym for 

fixed x using (130), and updating x for fixed y1,...,ym by minimizing the 

function 
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subject to the constraints x'x = n and Jx = x. Expanding (134) yields 
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which shows that we need to maximize the linear form 
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subject to the constraints Jx=x and x'x=n. The solution for x can be obtained by 

rescaling j

m

j
jJG y∑

=1

 to a sum of squares n. A proof, based on the Schwarz 

inequality, will not be given here. 

Once a solution for y1,...,ym and x has been obtained, another set of 

quantifications can be determined, with a second solution for x, orthogonal to 

the first. The resulting quantifications will of necessity differ from the first. 

This can be meaningful, when the categories differ in more than one respect. 

For instance, when four political parties, arranged on a left-right 
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dimension, have been given quantifications 1, 2, 3, 4, expressing this 

dimension, it may be meaningful to introduce another set of quantifications like 

1, 3, 1, 3, expressing the degree of religious affiliation of the parties. 

Algebraically, Homogeneity Analysis in two or more dimensions requires 

the minimum of the function 

 

                              ∑
=

−=
m

j
jjm XYGXYY

1

2
1 ||||),,...,(h                        (137) 

 

subject to the constraints X'X = nI and JX = X. The solution can be obtained 

explicitly in terms of eigenvectors of JGDJG jjjj
'1−∑ , or implicitly by an ALS 

procedure, see Gifi (1990). 



EPILOGUE 
 

Alternating least squares methods have performed a key role in the 

treatment of Simultaneous Components Analysis, MINRES factor analysis, 

PARAFAC, INDSCAL, and in many other techniques of Multivariate Analysis 

not treated here. They are based on the assumption that the variables of the 

argument of the function can be split into subsets that can be optimized 

conditionally, for fixed values of the remaining variables in the argument. By 

definition, such procedures converge monotonically to a stable function value 

(De Leeuw, Young & Takane, 1976, p.475). However, this property of 

monotonic convergence can also be obtained with less than conditional 

optimization: Conditional improvement of subsets of variables is already 

enough to have monotonic convergence. In other words, we may consider 

Alternating Lower Squares as a viable alternative when Alternating Least 

Squares is not feasible. 

Alternating Lower Squares methods would make a suitable topic for a 

Chapter 5 of this book, but they will not be treated here. Much of the theory of 

Alternating Lower Squares can be found in the literature on a method called 

Majorization. Reviews of this method can be found in De Leeuw (1984; 1988), 

Meulman (1986), Kiers (1990), Heiser (1991) and Kiers and Ten Berge (1992). 
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EXERCISES AND ANSWERS 

 

EXERCISES CHAPTER 1 

 

1. Let X=2aa', with a'=(.8  .6). Does the expression X=KΛK' satisfy the 

 definition of an eigendecomposition, when K= 







06.

08.
 and  Λ = 








00

02
? 

 

2. Let S=KΛK', with K= 







− 8.6.

6.8.
 and Λ= 








10

04
. 

a. Compute S1/2 and verify that S1/2S1/2= S. 

b. Compute S-1/2 and verify that S-1/2S-1/2= S-1. 

c. Simplify the product S-1/2SS-1/2.  

d. Simplify the product S-1/2S2S-1/2 .  

 

3. Let D be a diagonal 3×3 matrix with diagonal elements 4, –2, and 1. Find a matrix K 

and a diagonal matrix Λ, with λ1 ≥ λ2 ≥ λ3, such that the expression D=KΛK' is an 

eigendecomposition of D. 

 

4. Construct an example (a 2×2 matrix) of a Gramian matrix that has no inverse, and of 

a nonsingular matrix that is not Gramian. 

 

5. Give the SVD for an arbitrary vector x. 

 

6. Let A be a matrix such that A'A=C, a diagonal matrix with strictly positive elements 

in weakly descending order. Compute an SVD for A. 

 

7. Compute an SVD for X = 
















10

03

04

. 

 

8. Give an eigendecomposition of A'A and of AA', when A has the SVD A=PDQ'. 

 

9. Let X have the SVD X=PDQ', with D nonsingular. Prove that X(X'X)-1/2=PQ'. 

 

10. Let X=ADA', with A= 







− 8.6.

6.8.
 and D= 








−10

02
. Give an eigendecomposition 
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and an SVD of X. 

 

11.  Give the singular values of a columnwise orthonormal matrix H. 

 

12.   Does the Schwarz inequality imply that u'v ≤ 1 if both u and v are vectors of unit 

length? 

 

13. Prove that (x'R2x)(x'Rx)-1 ≥ (x'Rx)(x'x)-1, for R Gramian and nonsingular, by 

applying the Schwarz inequality to the vectors x and Rx. 

 

14. Let Y be a 3×2 matrix, with Vec(Y)=[2 1 1 0 3 2]'. Determine Y. 

 

15.  Let ||X||2 denote the sum of squared elements of X. Which of the following 

statements are correct? 

 a. ||Vec(A)||2 = trA'A 

b. trABCC'B'A' = ||(C' ⊗ A)Vec(B)||2 

c. Vec(AB) = B'Vec(A) 

d. (D' ⊗ A)Vec(BC) = (D'C' ⊗ A)Vec(B) 

e. ||Y–ABC'||2 = ||Vec(Y)–(C' ⊗ A)Vec(B)||2 

 

ANSWERS CHAPTER 1 

 

1. No, this is not an eigendecomposition, because K is not columnwise orthonormal. 

 

2. a. S1/2 = 







36.148.

48.64.1
 and S = 








08.244.1

44.192.2
. 

 

 

 b. S-1/2 = 







−

−
82.24.

24.68.
 and S-1 = 








−

−
73.36.

36.52.
. 

 

  c. The product is S0 which is the identity matrix. 

 d. The product is S1 which equals S. 

 

3. If we take I3 as eigenvector matrix K, and set Λ=D, the order of the second and third 

eigenvalues still needs to be reversed in Λ. So the last two columns in K need to be 

reversed. Accordingly, the solution becomes 
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 K = 
















010

100

001

 and Λ = 
















− 200

010

004

 . 

 

4. The matrix 







00

01
 is Gramian but has no inverse. The matrix 








−10

01
 has an 

inverse (itself) but is not Gramian. 

 

5. Write x as a unit length vector times the scalar (x'x)1/2. This yields the expression 

x=PDQ', with P the vector x(x'x)-1/2, D the 1×l matrix (x'x)1/2, and Q the l×l identity 

matrix. 

 

6. Note that AC-1/2 is columnwise orthonormal, define P as this matrix, and define D as 

C1/2. Taking Q=I, we have A=PDQ' as SVD of A.  

 

7. Take P = 
















10

06.

08.

, D = 







10

05
, and Q=I2, to obtain the SVD A=PDQ'. 

 

8. Saying that the expression A=PDQ' is an SVD means that P is columnwise 

orthonormal, D is diagonal, nonnegative and ordered, and that Q is at least 

columnwise orthonormal. It follows that the expression A'A=QDP'PDQ'=QD2Q' is 

an eigendecomposition, and so is the expression AA'=PDQ'QDP'=PD2P'. 

 

9. From the eigendecomposition X'X=QD2Q', we have (X'X)-1/2=QD-1Q'. It follows 

that X(X'X)-1/2= PDQ'(QD-1Q') = PDD-1Q' = PQ'. 

 

10. Because A is orthonormal and D is diagonal and ordered, the expression X=ADA' is 

already an eigendecomposition. It is not an SVD, because singular values cannot be 

negative. Define T = 







−10

01
. Then the expression X=(AT')(TD)(A') does satisfy 

the definition of an SVD. 

 

11. Because the expression H=HII' satisfies the definition of an SVD, it is  
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 clear that all singular values are 1. 

 

12. Yes, as follows from writing u'v ≤ (u'u)1/2(v'v)1/2 and noting that u'u = v'v = 1. 

 

13. Applying Schwarz to the vectors x and Rx yields (x'Rx)2 ≤ (x'x)(x'R2x). Next, divide 

both sides by (x'Rx)(x'x) and the inequality is obtained. 

 

14. Y = 
















21

31

02

. 

 

15. Statements a, b and d are correct. In d both sides equal Vec(ABCD). Statement c is 

false because a Kronecker product is missing in the right hand side; the trick is to 

write Vec(AB) as Vec(IAB) or as Vec(AIB) or as Vec(ABI). Statement e has one 

prime too many. 

 

 

 

 

EXERCISES CHAPTER 2 

 

16. Find an attainable lower bound to the function f(x)= x2 – 4x and specify for what 

value of x this bound is attained. 

 

17. Does the inequality f(x) = 4x2+2x–5 = (2x+1)2 – 2x – 6 ≥ –2x–6 represent a lower 

bound to the function f? 

 

18. Determine an upper bound and the maximum for the function f(x) = x2–4x+4 subject 

to the constraint x2 ≤ 1. 

 

19. Determine, for a fixed matrix A and a fixed vector v, the unit-length vector u which 

maximizes the linear form u'Av. 
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20. Consider the function w(x)=x'AA'y, where A is columnwise orthonormal.  

a. Which form do we have here? 

b. Find an attainable upper bound to w subject to the constraint that x have length 

one. 

c. Determine the x for which the upper bound (maximum) is attained. 

 

21. Consider the 4×3 matrix A of section 1.2, and its SVD. Determine the maximum of 

the quadratic form g(y)=y'A'Ay subject to the constraint y'y=1. Compute the optimal 

y. 

 

22. Determine, for the same A as in the previous case, the maximum of the bilinear form 

h(x,y) = x'Ay, subject to the constraints x'x = y'y = 1. Compute the optimal x and y. 

 

23.   Which vector y minimizes the function h(y)=||x–GHy||2, given that GH is of full 

column rank? 

 

24.  Which vector x minimizes the function h(x)=||x–GHy||2 ? 

 

25. Which vector z minimizes the function w(z)=||y' – z'X||2, given that (XX') has an 

inverse? 

 

26. Let A= 






 −
21

11
. Which vector x of unit length maximizes the function w(x) = 

x'Ax? 

 

27. Which vector x minimizes the function h(x) = ||Ax–b||2 + x'Y'Yx ? Note that  

 x'Y'Yx = ||Yx–0||2. 

 

 

 

 

 

 

ANSWERS CHAPTER 2 

 

16. Writing f(x) = (x–2)2–4 ≥ –4 shows that –4 is a lower bound. It is attained 

 



80  

 

 for x=2.  

 

17.  No, because –2x–6 still depends on x, whence it is not constant. 

 

18. Writing f(x)= x2 –4x + 4 ≤ 1–4x+4 = –4x+5 ≤ 9 shows that 9 is an upper bound. It is 

attained for x = –1. So 9 is in fact the maximum. 

 

19. Apply Schwarz to the vectors u and Av. This yields u'Av ≤ (u'u)1/2(v'A'Av)1/2 which 

equals (v'A'Av)1/2 because u'u=1. So (v'A'Av)1/2 is an upper bound to u'Av, 

considered as a function of u. The bound is the maximum because it can be attained, 

namely for the unit length vector u=Av(v'A'Av)-1/2. 

 

20.  a. This is a linear form. 

  b. Apply Schwarz to the vectors x and AA'y. This yields the upper bound (y'AA'y)1/2. 

  c. The bound is attained when x is taken as AA'y, rescaled to unit length. That is,  

     when x = AA'y(y'AA'y)-1/2. 

 

21. The maximum is 25, and is attained when y= [.64  .60  .48]', the first unit length 

eigenvector of A'A. 

 

22. The maximum is 5, attained for x = [.8  0  0  .6]' and y = [.64  .60  .48]', the first left 

and right hand singular vector of A, respectively. 

 

23.  The optimal y is (H'G'GH)-1H'G'x. 

 

24.  The optimal x is simply GHy. 

 

25. The sum of squares of a vector does not change when the vector is transposed. The 

vector in point is (y–X'z)'. The optimal z is now easily found to be z=(XX')-1Xy.  

 

26. First, A is replaced by its symmetric part 







20

01
. The largest eigenvalue 
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of this matrix is 2, and the associated eigenvector is 







1

0
 or minus this vector. The 

upper bound 2 is attained for x=[0   1]' or x=[0  –1]'. 

 
27.  Stack Y below A in a supermatrix G and stack a zero vector below b in a vector w, 

such that h(x) is the sum of squared elements in (Gx–w). The minimizing x is  

 (G'G)-1G'w. Noting that (G'G)=(A'A+Y'Y) we arrive at the solution  

 x=(A'A+Y'Y)-1A'b. 

 

 

 

EXERCISES CHAPTER 3 

 

28.  Which of the following statements are true? 

a. Every columnwise orthogonal matrix is suborthonormal (s.o.).  

b. The product of any three s.o. matrices is s.o.. 

c. If a matrix contains no elements above 1, it is s.o.. 

 

29.  Consider the trace trX'AB'Y. 

  a. Maximize this trace as a function of X subject to the constraint  X'X=I. 

b. Maximize this trace as a function of X and Y subject to the constraint X'X=Y'Y=Iq, 

where q is a fixed number of dimensions. 

c. Maximize this trace as a function of X and Y subject to the constraints X=Y and 

X'X=Iq. 

 

30. Verify that the solutions to the three problems of the previous question coincide 

with those of section 2.4 in case X and Y are vectors (q=1). 

 

31.  Let A be a symmetric 3×3 matrix, with eigenvalues 4, 1, and –6. 

  a. What is the maximum of the generalized quadratic form g(X)=trX'AX subject to 

      the constraint X'X=I2 ? 

  b. What is the maximum of the generalized bilinear form g(X,Y) = trX'AY subject to  

the constraint X'X = Y'Y = I2 ? 
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32.  Determine the minimizing Y for the function ||Z–ZYP'||2, when Z'Z and P'P are 

nonsingular matrices. 

 

33. Let  

 

   A=



















11

11

21

32

, with (A'A)-1= 







−

−
4.12

23
, and let Y=



















− 01

01

11

11

. 

 

 

Find the minimum and the minimizing X for h(X) = ||AX – Y||2. Verify that the 

residual variables are orthogonal to the predictor variables, that is, A'(Y–AX) = 0. 

 

34. (deleted) 

 

 

35. Minimize the function h(V)= ||Z–UVW'||2, for U columnwise orthonormal and W'W 

nonsingular, subject to the constraint that V has rank 2 or less. Find the minimizing 

V. 

 

36.  Let A=UVW', with 

 

    U = 
















10

06.

08.

, V = 







20

05
, and W = 








− 8.6.

6.8.
. 

a. Find the minimum of h(X)=||A–X||2 subject to X'X=I2. 

b. Find the minimum of the same function, subject to the constraint that X have rank  

1. 

c. Find the maximizing x and y for the function g(x,y) = x'Ay subject to the  

constraint that x and y be of unit length. 

 

37.  Consider the least squares problem of minimizing l (X) = ||A–XX'||2 subject to the 

constraint X'X=Iq, when A is a symmetric matrix. Find the minimizing X by 

expanding the function in terms of traces. 
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38. Consider the least squares problem of minimizing the function l (X,Y)=||A–XY'||2, 

subject to X'X=Y'Y=Iq. Find the minimizing X and Y. 

 

39. The generalized linear, quadratic and bilinear forms are defined as trace functions. 

The maximum of each of these functions coincides with a minimum of a least 

squares function. Show this. 

 

 

 

ANSWERS CHAPTER 3 

 

28. Only b is true. Example 1 of section 3.2 is a counterexample to a, and Example 3 is 

a counterexample to c. 

 

29.  a. Compute the SVD AB'Y=PDQ' and take X=PQ'. 

 b. Compute the SVD AB'=PDQ' and let X and Y contain the first q columns 

     of P and Q, respectively. A joint rotation of this X and Y is also allowed. 

c. Compute the first q unit length eigenvectors of the symmetric part .5(AB'+BA') to 

obtain X and Y. A joint rotation is also permitted. The idea is to treat this function 

as a generalized quadratic form in X or Y. 

 

30. We now have x'AB'y to consider. 

  a. Define v=AB'y, with SVD v=(v(v'v)-1/2)(v'v)1/2(1)'. Then we must take  

 x=v(v'v)-1/2. This is in agreement with section 2.4. 

  b. For this bilinear form the agreement is obvious. The freedom of rotation is now  

  the freedom to change the signs in x and y jointly. 

 c. Obvious. 

 

31. a. The maximum is 5, the sum of the largest two eigenvalues. 

 b. The maximum is 10, the sum of the largest two singular values. 

 

32.  This is a Penrose problem, with solution Y=(Z'Z)-1Z'ZP(P'P)-1=P(P'P)-1. 
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33. The minimizing X is 






 −−
11

11
, and the minimum is 2. The residual matrix 

   is 



















− 01

01

00

00

, with columns orthogonal to those of A. 

 

34. (deleted) 

 

35. The solution is V=P2D2Q2'(W'W)-1/2, where P2, D2, and Q2 are submatrices of P, D 

and Q, obtained from the SVD U'ZW(W'W)-1/2=PDQ'. Specifically, P2 and Q2 

contain the first two columns of P and Q, respectively, and D2 is the upper left 2×2 

submatrix of D. 

36. a. The minimizing X is UW' = 















−
−

80.60.

36.48.

48.64.

 .The minimum can be written as  

 ||A−X||2 = ||UVW'−UW'||2 = ||U(V−I)W'||2= ||V−I||2 = 16+1 = 17.  

 

 b. The minimizing X is v1u1w1' = 















−
−

00

8.14.2

4.22.3

. The minimum can be written as  

||A−X||2 = ||UVW'−v1u1w1'||
2 = ||v1u1w1' + v2u2w2' − v1u1w1'||

2
 = ||v2u2w2'||

2 = v2
2= 4.  

 

 c. The maximum is 5, and is attained for x=u1 and y=w1. 

 

37. Writing l  as trA2–2trX'AX+trXX'XX' and using the constraint shows that the 

minimizing X for l  is the maximizing X for the quadratic form tr(X'AX). This X is 

found as the matrix of the first q eigenvectors of A, or a rotation thereof, see section 

3.3. 

 

38. Writing l  as trA'A–2trX'AY+trXY'YX' and using the constraints shows that the 

minimizing X and Y for l  are the maximizing X and Y for the bilinear 
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  form trX'AY. The X and Y are found from the SVD of A, see section 3.3. 

 

39. The quadratic form is related to the least squares problem of 37. The bilinear form is 

related to the least squares problem of 38. Finally, the linear form is related to the 

least squares problem of minimizing h(X)=||A–X||2 subject to X'X=I, see 36a. 

 

 

 

EXERCISES CHAPTER 4 

 

40.  Let A be a nonsingular p×p matrix, and y a p-vector. Prove that there is a vector x 

such that Ax=y. What practical implication does this result have for multiple 

regression analysis in relatively small samples? 

 

41. Compute the multiple correlation coefficient for the predictor matrix 

 A=
















−
−

02

10

12

 and the criterion vector y=
















− 2

1

1

. 

 

42. Consider the constraint X'GX=I on X, where G is a Gramian matrix. For which 

matrix can this constraint be seen as a columnwise orthonormality constraint? 

 

43. In the derivation of PCA (section 4.2) a matrix F was determined from which Z 

could be optimally reconstructed, subject to the constraint that each column of F be 

in the column space of Z. This constraint was implemented by writing F=ZB, for 

some matrix B. Show that this constraint is inactive, which means that it can be 

omitted without changing the solution. Specifically, express the F of rank q, that 

minimizes the function l (F,A)=||Z–FA'||2 for a fixed A of rank q, in terms of Z and 

A, and show that all columns of the resulting F must be in the column space of Z. 

 

44.  Find the minimum of h(X)=||A–BX||2 subject to the constraint that each row 
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 of X be in the column space of some matrix C, when it is given that both (B'B) and 

(C'C) are nonsingular. 

 

45.  In SCA, the function l (B1,...,Bm,P1,...,Pm) = ∑
=

m

i 1

||Zi–ZiBiPi'||
2 is minimized subject 

to the constraint that B1=B2=...=Bm, which means that the weight matrices Bi must be 

the same for all groups, and can be set equal to one matrix B. An alternative 

approach would be to minimize the same function subject to the constraint that 

P1=P2=...=Pm. Develop an explicit solution for the latter approach. 

a. Replace Pi in l  by P, and show that the optimal Bi, for fixed P, is 

 (Zi'Zi)
-1(Zi'Zi)P(P'P)-1 = P(P'P)-1, i=1,...,m. 

b. Next, eliminate Bi by writing P(P'P)-1 for Bi in l . The remaining problem is to 

minimize ∑
i

||Zi–ZiP(P' P)-1P'||2 as a function of P only. Define the columnwise 

orthonormal matrix U as U=P(P'P)-1/2 and find the minimizing U for  

∑
i

||Zi–ZiUU'||2 subject to U'U=Iq. Show that the minimizing U must contain the 

first q eigenvectors of ∑
m

i

Zi'Zi, or any orthogonal rotation of those. 

c. Suppose that one would wish to minimize l subject to the constraint that both the 

Bi and the Pi be equal across groups. Show that the optimal B and P for this case 

are the same as in the case where only the Pi are required to be equal. 

 

46.  Determine the maximum of the function g(X,Y)=trX'AY subject to the constraint that 

all columns of X and Y have unit lengths. 

 

47. Explain why CCA would yield trivial results if the orthogonality constraints for the 

canonical variates were omitted. 

 

48. Prove that the minimum of ∑
=

p

k 1

||Xk–ADkB'||2  as a function of A is attained 

 for A = (∑
=

p

k 1

XkBDk)(∑
=

p

l 1

DlB'BDl)
-1, when Dk is diagonal, k=1,...,p. 
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49. Let 1 be an n-vector of elements 1 and define J=(In–n-111'), an idempotent matrix 

(that is, J=JJ=JJJ=...). 

a. Prove that, for any matrix X of n rows, JX=X if and only if 1'X=0'.  

b. Let A be a vertical matrix of rank r, with SVD A=PrDrQr'. Prove that JA=A if and 

only if JPr=Pr. 

c. When Y is a vertical matrix of full column rank, which columnwise orthonormal 

matrix X with zero column means maximizes the function f(X)=trX'Y? 

 

ANSWERS CHAPTER 4 

40. Take x=A-1y. It follows that multiple regression analysis is trivial when the number 

of predictor variables equals (or is close to) the number of observation units 

(subjects). 

 

41. It is evident that y is the difference between column 1 and column 2 of A. Hence, 

y=Ax if we take x=[1  –1]'. Because y is in the column space of A, the multiple 

correlation is 1. 

 

42.  For the matrix G1/2X. The square root G1/2 exists because G is Gramian. 

 

43.  Regardless of A, the optimal F must minimize l , which can also be written as  

||Z'–AF'||2 . It follows that F'=(A'A)-1A'Z', hence F=ZA(A'A)-1 and each column of F 

is in the column space of Z. 

 

44. The constraint can be taken care of by writing X=EC', for some matrix E. The 

problem is to find the minimizing E for l (E)=||A–BEC'||2. This is a Penrose 

problem, with solution E=(B'B)-1B'AC(C'C)-1. The X wanted is therefore  

 X=(B'B)-1B'AC(C'C)-1C'. 

 

45.  a. This follows at once from Penrose, applied to each Bi separately. 

 b. Upon expanding  ∑
i

||Zi–ZiUU'||2 as ∑
i

trZi'Zi–2∑
i

trU'Zi'ZiU+∑
i

trU'Zi'ZiU it is 

     clear that we need the maximizing U for trU'∑
i

Zi'ZiU, subject to U'U=Iq. 
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 This is a generalized quadratic form problem, see section 3.3. Having determined U, 

we can take P=U, or any orthogonal rotation of U. 

c.  If only the Pi are constrained to be equal, as has been done above, it appears that the 

optimal Bi are also equal, because each of these matrices equals P(P'P)-1. In other 

words, once the constraint P1=P2=…=Pm is adopted, the further constraint 

B1=B2=...=Bm will be inactive. 

 

46. Let A=PDQ' be a SVD of A, and write g(X,Y)=x1'Ay1+...+xq'Ayq. Then each term 

can be maximized independently by taking x1=x2=...=xq=p1, the first column of P, 

and y1=y2=...=yq=ql, the first column of Q. 

 

47. Without orthogonality constraints, all canonical variates would be the same for the 

first set of variables, and also for the second set, see the previous exercise. 

 

48. This function can be written as a regression function, see (124), with A' as matrix of 

regression weights, and the solution is immediate from section 3.4. 

 

49. a.  Write JX=X–n-111'X. The second term vanishes if 1'X=0', and vice versa: If  

     n-111'X=0 then premultiplying by 1' gives 1'X=0'. 

b.  We have 1'A=0' ⇔ 1'PrDrQr'=0' ⇔ 1'Pr=0' because postmultiplying by QrD
1−

r  

and by DrQr', respectively, is permitted. Finally, use a. 

c.  Let JY have the SVD JY=PDQ'. Considering only those X for which X=JX we 

may write trX'Y=trX'JY=trX'PDQ' ≤ trD. This upper bound can be attained by 

taking X=PQ'. This satisfies the orthonormality constraint but also the constraint 

that JX=X, because the SVD of JY is involved, see b. 

 

 

 


