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An Algorithm for Restricted Least Squares

RICHARD L. DYKSTRA*

Regression

A commonly occurring problem in statistics is that of
minimizing a least squares expression subject to side con-
straints. Here a simple iterative algorithm is presented
and shown to converge to the desired solution. Several
examples are presented, including finding the closest con-
cave (convex) function to a set of points and other general
quadratic programming problems. The dual problem to
the basic problem is also discussed and a solution for it
is given in terms of the algorithm. Finally, extensions to
expressions other than least squares are given.

KEY WORDS: Regression; Projections; Convex cones;
Dual convex cones; Least squares; Concave (convex)
functions; Mahalanobis distance; Linear constraints; Re-
stricted maximum likelihood.

1. INTRODUCTION

Many problems involve minimizing a sum of squares
expression subject to the restriction that the solution must
satisfy certain side conditions. We refer the reader to
Barlow et al. (1972) for numerous examples and an over-
view of a particular subset of this type of problem.

Some problems of this type have elegant closed-form
solutions as in Barlow and Brunk (1972), Shaked (1979),
and Dykstra and Robertson (1982), while others require
extensive numerical work to obtain solutions.

We propose here a simple iterative technique that will
apply to a wide subset of this type of problem. This
method is not based on search techniques and compli-
cated branching logic and hence is generally easy to pro-
gram and use on modern high-speed computers. We will
state our results in terms of closed convex cones and
projections and then give several examples to illustrate
the application of the proposed technique.

2. NOTATION AND BACKGROUND MATERIAL

Let R” denote R X R X -+ X R (n copies of the real
line) and let g and w (w; > 0) be fixed points in R”". We
denote the inner product of x and y (with respect to w)
as

n

(x, y) = E XiyiWi.

i=1
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The inner product norm of x is

n 12
x| =, 0" = (2 x,-zw,-) . 2.1
1

Of course, d(x, y) = || x — y || defines a metric on R".

We assume that K is a closed (in the metric) convex cone

in R”. That is, x, y € K; a, b = 0 implies ax + by € K.
The dual cone of K is given by

K* = {y; (y,x) = D yxiw; =0 forall x€ K} )
1

2.2)

Of course K* is also a closed convex cone with the prop-
erty that K** = K. A commonly occurring problem is

Minimize | g — x || 2.3)
x€K

A vector g* € K achieves the minimal value in (2.3) if

(i (g — g% g% = > (g — gMg*w; =0, and
1

(i) (g — g% f) =2 (g — g"fwi=0
1
forall f E€XK.

(See Theorem 7.8 of Barlow et al. 1972.)
Barlow and Brunk (1972) point out that if g* solves
(2.3), g — g* solves the dual problem

2.9

Minimize | g — x |- 2.5)
xEK*
3. THE GENERAL ALGORITHM
Many important problems are of the form
Minimize || g — x |, 3.1)
xeM Kk,

where K, K2, ... , K, are closed convex cones. We
assume that we can solve the problem (find the vector in
K; that will)

Minimize || f — x ||
x€K,

(3.2

for any f and any i, and we wish to use this knowledge
to solve the more involved problem (3.1). We now give
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a simple, iterative procedure based only on (3.2), which
will enable us to solve (3.1). We place no restrictions on
the K; other than that they be closed, convex cones, and
that r be finite.

We note that since K, ... , K, are closed convex
cones, so is K; N K, N - N K,, and hence the solution
to (3.1) can be characterized by (2.4). If the K; are suf-
ficiently nice (say finitely generated), the direct sum

K|+K2+“+K,

={x1+x2+ - +x;x,€EK;,i=1,...,r}

is also a closed, convex cone. However, in general the
closure property is not guaranteed (see Hestenes 1975,
pp. 196-198). Nevertheless, intersections and direct
sums of closed, convex cones are closely related because

(Ki+ -+ K)*=K*NKyn--nNK,* (3.3
is always true, and
KiNnK;N--NK,)*=K*+ - + K,* (3.4

if the latter cone is closed. This is guaranteed if the rel-
ative interiors of the K; have a point in common (see
Rockafeller 1970, p. 146) or, as we said, if the K;* are
finitely generated.

Our procedure can be concisely expressed with the aid
of the following notation: (a) Let P(f | K;) (the projection
of f onto K;) denote the vector that solves (3.2). (b) For
any positive integer n, we define n mod r = iif n = kr
+ i for integers k and i where 1 = i < r. (c) Initially, set
go=g1,=0,i=1,...,r,and n = 1. The procedure
is to

(1) Set 8&n = P(gn—] - In mod r I Kn mod r)’ and then
update I, moda - by letting it now be g, — (g.— —
In mod r)-

(i) Replace n by n + 1 and go to (i). 3.5)

We note that if K, . .., K, are actually subspaces,
then P(- | K;) is a linear operator. Moreover, the updated
—1I, moa r is the projection of g,_1 — I, moa » ONtO
K, moa »*, and hence

P(In mod r | Kn mod r) =0. (3-6)

Thus, for subspaces, our procedure reduces to exactly
the cyclic, iterated projections first discussed by von
Neumann (1950). Von Neumann established the conver-
gence of this procedure in the more general setting of
subspaces of Hilbert space. This result was also proven
independently by Wiener (1955), who used it in the area
of prediction theory for multivariate stochastic processes
(see Masani and Wiener 1958).

However, if the K; are not subspaces, P(: | K;) is not
a linear operator, nor does (3.6) necessarily hold.

For the purpose of clarification, and to introduce no-
tation needed for the proof of Theorem 3.1, we now re-
state the algorithm given in (3.5) in a step-by-step fashion
emphasizing the role played by the increments.
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Figure 1. Schematic Drawing of Suggested Algorithm.

1. Let g;,; denote the projection of g onto the cone

K,. Weletl,, = g1 — g denote the incremental
change incurred by the projection, so that g,; = g
+ I],] .

2. Let g, denote the projection of g + I,,; onto K,.
The incremental change is I = g12 — (g + I1,1)
so that 812 = & + I|,| + 11,2.

3. Let g,,3 be the projection of g + I, + I, onto
K;. The incremental change is I13 = g,3 — (g +
Iy + Liz)sothat g3 = g + Iy + 112 + I3.

4. Continue. After 81,r and I],r = g1, — (g + 11,1 +
-« + I,,-,) are found, we let g,,; denote the pro-
jectionof g + I, + - + I, onto K. Note that
we have removed the increment I, ; before the pro-

jection. Our new increment is I, = g>; — (g +
11,2 + e+ 11,,-), so that g21 =8 + 12,1 + 11,2 +
-+ I,
5. Continue.

Note that as we cyclically project onto the cones, g, ;
is the projection onto the ith cone during the nth cycle.
Note that the last increment for that cone is removed prior
to that projection and that a new increment is always
formed (see Figure 1). Thus, in general, g, ; is the pro-
jection of

gt Ilna+ - +Ilniy+In_yiur + o + 1y,
onto K; and

In;=gni— (g +In1+ -+ Lni—y+ Ln_y4q +
+ In—l,r)-
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The utility of the algorithm is based on the following theo-
rem.

Theorem 3.1. The vectors g, ; converge to the true so-
lution of (3.1), say g*asn—> o forj = 1,.. ., r. (Equiv-
alently, g, — g* as n — o« for the g, defined in (3.5).)
The proof is deferred to the Appendix.

By Barlow and Brunk’s (1972) duality results, we can
also use our procedure to solve the dual problem
Minimize
x€EK1+ K2+ -+ K,
where Ky, K>, . . ., K, are closed convex cones and K,
+ ++ 4+ K, is also closed. We do this by first using the
algorithm to solve the dual problem (see (3.3))

lg = xIl, (3.7

Minimize | g — x ||.
xeNiK*

(3.8)

Note that if we can project onto K;, we can also project
onto K;* since P(f | K*) = f — P(f | K;). Thus if g de-
notes the solution to (3.8), the solution to (3.7) is given
byg - &.

The usefulness of the algorithm is greatly enhanced by
the fact that solutions to least squares problems solve
many other types of optimization problems.

For example, if ®:R — R is an appropriate convex
function with derivative ¢ such that x € N} K; implies

(d)(xl)’ ) ¢(xn)) € Q Kl"

then g* solves the problem

Maximize D, {®(x;) + (g: — x)dx)w; (3.9)
xENIK; i=1
(see Theorem 1.10 of Barlow et al.).
Along somewhat similar lines, Theorem 3.1 of Barlow
and Brunk (1972) guarantees that the problem

Minimize > (P(xi) — gixw; (3.10)

xeEN1K; i=1

is solved by (¢ ~'(g*)) providing ® is an appropriate
convex function with derivative ¢ and (¢ ~'(g1*), . . .,
d)_l(gn*)) € nq Ki-

Many constrained maximum likelihood problems can
be handled by appropriate use of (3.9) and (3.10).

4. EXAMPLES AND APPLICATIONS
41 Concave Restrictions

A problem that has received considerable attention (see
Hildreth 1954, Hanson and Pledger 1976, and Wu 1982)
is that of finding the closest (in the sense of least squares)
concave (convex) function to a set n dependent variable
values gi, . . ., g, corresponding to the specified inde-
pendent variable values y, <y, < --- <y,. To my knowl-
edge, no closed-form solution to this problem exists.

Thus we want to minimize D7 (g; — x;)*w; subject to
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the concavity restrictions; that is,

Xi+2 — Xi+1
Yi+2 = Yi+1 Yiv1 — Yi ’
If we define K; to be those vectors that satisfy (4.1) for
afixedi,i=1,...,n — 2),then K;is a closed convex
cone in R”, and our goal is to

x. — x
- i+1 i

i=12,...,n—-2. (4.1

Mininzlize > (gi — xi)*wi.
xe"@ ki 1

The key point is that projection of any g onto K is very
easy since it only involves three points, while projection
onto N} ~2 K; is very difficult. It is easily shown that if
g satisfies (4.1) for the fixed i, the projection of g onto
K is just g. If g does not satisfy (4.1) for this i, the pro-
jection onto K; is the appropriate straight line fitting the
points g;, gi+1, and g;,», and just g; elsewhere. Explic-
itly, in this case

P(g|K); =g+ By, — ¥, j=ii+1,i+2
= gj, JFELI+ 1,0+ 2,
where
i+2 i+2
gi= D &wW) > Wi,
J=i Jj=i
i+2 i+2
yi= 2 YW > Wi
j=i j=i
and

i+2
> (g — &) yw,

j=i

i+2 ‘
> =y w
j=i

A

Bi =

This projection onto K; is of course very easy to pro-
gram on a computer. We then need only proceed ac-
cording to the algorithm. The convergence to the solution
is quite rapid using the computer since each projection
is so simple. Even for large values of n, the solution is
obtained very quickly.

4.2 Linear Restrictions

A more general quadratic programming problem than
that considered in Example 4.1) can be handled in es-
sentially the same way. Suppose we wish to

n
Minimize Y, (g; — x:)* w;
1
subject to
Ea,-jijO for i=1,‘--’r'

Jj=1

Ifwelet K; = {x; >,/ a;;x; < 0}, the problem is precisely
of the form discussed in Section 3. The projection of g
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onto K; is very easy since it involves only the ith con-
straint. A closed form for the projection that can easily
be programmed is

n
P(g|K) = g, if > a;8,=0
J=1
=(g,...,8), If X aig;>0,
j=1
where

n n
' —1 2 -1
g = & — (2 81 a,-,) aij wWj / 2 aiir Wi .
=1 =1

We then proceed according to our algorithm. Note that
no derivatives need be found and that the only checking
procedure we need do is ascertain whether >,/ a;; h;
= 0 for appropriate h.

4.3 Mahalanobis Distance

The problem of isotonic regression has received much
attention over the years (see Brunk 1955,1965, and Bar-
low et al. 1972). Basically the problem is to

Minimize { lg = x> =3 (g: — x.)? Wi} )
xEK 1

where K consists of those vectors that are isotonic (order
preserving) with respect to a particular partial ordering.
Elegant closed-form solutions have been found for this
problem (see Brunk 1955 and Barlow et al. 1972). This is
of course a special case of the problem considered in 4.2.
A natural extension of the isotonic regression problem
would be to use a Mahalanobis distance concept in our
objective function rather than a weighted sum of squares.
Thus our new problem would be expressible as

Minimize (g — x)'F(g — x)

subject to constraints of the form % a;ix; = a/x < 0,
i=1,...,r where F is a given, symmetric, positive
definitive matrix. :

However, in this case there exists an orthogonal matrix
P such that F = P’ A P, where A is the diagonal matrix
consisting of the eigenvalues of F. In this case, the prob-
lem can be rephrased as

Minimize 3, (Pg): — y:)* \;
1

subject to
((Pa)'y) =0, i=1,...

where y = Px. We can now use the algorithm to solve
for y, and then obtain the desired solution as x = P'y.

7r’

4.4 Binomial Parameters

As a final example, let us consider the case of finding
MLE’s for the parameters p;;,i = 1,...,a;j=1,.. .,

Joumal of the American Statistical Association, December 1983

b subject to

Pij =< pij+1 foralli,j

and

pij < pisr,; foralli, j, 4.2)

where x;; are independent binomial (#;;, p;;) random var-
iables.
The likelihood function to be maximized is of course

b a
Lip) =1 I1 (n,,) pi/" (1 = pi))"™*,0=py = 1.

j=t1i=1 \Xij

This is equivalent to minimizing
b a
> > (xylng — pi) i, 0=pi=<1
Jj=1i=1 .

subject to the constraints (4.2) (see Barlow and Brunk
1972 for a verification of this). If we depict our constraints
as requiring that our estimates fall in the following cones:

K1 = {(pij); pij = Pij+1,
j=1...,b-1i=1,...,a}

and

K> = {(pij); Pij = Pi+1,j

i=1,...,a-1j=1,...,b},

then the problem fits into the framework described for
our algorithm. (We note that since 0 < x;;/n;; = 1 for all
i, j, the solution obtained by our algorithm will aatomat-
ically fall between 0 and 1.) Moreover, since projection
onto K, (or K3) is just a one-dimensional smoothing, it
is well known how to accomplish these projections (see
Barlow et al. 1972). This seems to provide an efficient
method of obtaining these constrained MLE'’s even for
large values of a and b.

APPENDIX

Lemma A.l. Suppose a sequence of real numbers
{an}n=1is such that 2,7 a,> = M < «. Then there exists
a subsequent {a,,};-:” such that

2 lamllan|—>0 as j—o.

m=1

Proof. The result is clearly true if {a,},-,” contains an
infinite number of zeros, so assume otherwise.

Let n; be chosen such that
| an | = min{|an,|; m=n;,|a.|> 0}
Clearly such a sequence exists since | a, | — 0. Now, for
a given € > 0, choose n; such that

Sal>M - €.
. ,

Choose n;» = n; such that
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| an- |

= e2M.
| an |
Then, for n; = n;-,
% l = S Ia".ll
am || an| = 2 |a,,,||a I|anj,|
m=1 m=1 nj
nj nj , |anjl
+ 2 |am||amlszam Ia I
m=n;+1 m=1 nj
2 —_ -_— =
P2 ams<Moggtase

which concludes the proof.

Proof of Theorem 3.1. First note that the key relation-
ships

gni-1 — Eni=1ln_1i—I,;, 1=2,. s 1y
and
gn—1r = &n1 = In_11 — Ipn; (A.1)

hold among the projections and increments. Since Nj_,
K; is a closed convex cone (nonempty since it contains
the origin), the unique true projection of g onto N} K;,
say g*, exists. Then from (A.1), we may write (Ip; = 0)

I gni-1 — g*I?
= | (gni — &%) + Un-1: — LD I?
=llgni— &*I> + I Ln—1,i = Lnil?
+ 208%, Ini — In—1,0) + 208nis In—1,0 — In,0)

for i = 2. Note that the last term is nonnegative since
(gn.i» I..;) = 0 by the properties of projections onto con-
vex cones, and (g,.:, I,-1:;) = 0 since g,; € K; and
=I,-1; € K/*.

In similar fashion,

I gn-1, — &*I? =1l gn1 — g* I
+  Luoig = Tua P + 2(8%, Lny — Inzi0).

Noting the ‘‘telescoping property’’ of the term (g*, I,
— I,,-,,:), we may write

~

lg —g*IP=lgnr — &*IP+ X X 1 kc1s — Lt |2
k=1 1=1

+ 2g*, I, + - + 1,,) (A.2)

for every n. Since g* € N} K;and — I,,; € K;*, the last
term is nonnegative and

2 2 | Tx—1 — Ty |* < co. (A.3)
k=11=1
Thus
Il Ln—1i = Lngll = || @ni=1 — &nall 1 =2)
and (A.4)
”In—l,l _In,1|| = ” gn—1,r — g,.,|||—>0 as n — o,
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Note that (A.2) implies that g,,, and g — g,, = I, +
I,, + -+ + I,, are uniformly bounded. However, we
cannot guarantee that the /,,; are uniformly bounded and
this complicates the proof.

From (A.4), it will suffice to show g, — g* as n —
o, First we show that there exists a subsequence such
that

(1) (Inj.l + e

and

+ 1., 8%)— 0,

(A.S)
(i) gn,r— g* as j— .
Now note that

|(In,1 + o+ In,ra gn,l)l

= | > Unis g1 — &ni) | (since (L, gni) = 0)

i=1

IA

2 ” In.i ” ” 8n1 — &nii ”

i=2

2 E ” Im,i - Im—l,i || an

i=2 m=1

IA

~

n n
= 2 E | L = Im—rill @n = 2 aAmQn,
m=1i=2 m=1

where
an = |l gn1 = Gn2ll + I gn2 = &nsll
+ oot g1 — &nrll
= |In2 = In-i12|l + || In3
+ ot [ Ly = L—ar |-

Note that a,?> = 2772 > /_2 | In; — I.—1. | Thus from
(A.2),

- In—1,3 ||

2al=2"%g - g¥|P <.
1

While this does not imply >.7 a,na, — 0 unless the a,
are nonincreasing, it does imply (see Lemma A.1) that
there exists a subsequence such that

> ama,,— 0 as j— .

m=1

(A.6)

Moreover, since the g,,, are uniformly bounded, we may
assume that we have chosen a subsequence such that
(A.6) holds and g, , converges, say to h. Of course, by
(A.4), g,,1also converges to 4, and hence we may write
(g — h, h) = lim

oo

- (In,,l + Inj,l + e+ Inj,r, gn,',l) = 0- (A7)

Note also that (A.4) implies that 4 € N K; since g,
which is in K;, becomes arbitrarily chose to 4 and X; is
closed. Also, for f € N} K,
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(g - h! f) = lim - (Inj,l + oo
Jjm»oo
since I,,,;;€ — K;*. Thus h = g* by (2.4).
Finally, noting that I, + + 1, is uniformly
bounded and that g,,; — g*, (A.7) will imply (A.5 (i)).
Now we need only show that g, ,— g*. However, for
n > n;, we have (in a manner similar to (A.2)),

”gnj,r_g* ”2”gn,r_g* “2
n r
+ E 2 ” Im,[ - Im'—l,l ”2
m=nj+1 I=1

+ 2(g%, Iny + - + 1,,) — 208%, Iy + = + In0).

Then, since the last. term can be made arbitrarily small
by (A.5 (i)), the next to the last term is nonnegative, and
the left side goes to zero as j — «, it must follow that

linl ” gnr — &F ” = 0.

+ Inj,r, .f) =0

[Received April 1982. Revised February 1983.]
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