
User’s Guide
Version 4

For Use with MATLAB® and Simulink®

Virtual Reality
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Virtual Reality Toolbox User’s Guide
© COPYRIGHT 2001-2004 by HUMUSOFT s.r.o. and The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 2001 First printing New for Version 2.0 (Release 12.1)
July 2002 Second printing Revised for Version 3.0 (Release 13)
October 2002 Online only Revised for Version 3.1 (Release 13)
June 2004 Third printing Revised for Version 4.0 (Release 14)
October 2004 Fourth printing Revised for Version 4.0.1 (Release 14SP1)

i

Contents

1
Getting Started

What Is the Virtual Reality Toolbox? 1-2
Expected Background . 1-3

Features of the Virtual Reality Toolbox 1-4
VRML Support . 1-4
MATLAB Interface . 1-5
Simulink Interface . 1-6
VRML Viewers . 1-6
VRML Editor . 1-7
Real-Time Workshop Support . 1-8
SimMechanics Support . 1-8
Hardware Support . 1-8
Client-Server Architecture . 1-8

VRML Overview . 1-10
VRML History . 1-10
VRML Coordinate System . 1-11
VRML File Format . 1-13

Examples Using the Virtual Reality Toolbox 1-16
Simulink Interface Examples . 1-16
MATLAB Interface Examples . 1-24

Virtual Reality Toolbox Texture File 1-27

Implementation Notes . 1-28
VRML Compatibility . 1-28
Virtual Reality Toolbox Server . 1-29

ii Contents

2
Installation

Required Products . 2-2
MATLAB . 2-2
VRML Viewer . 2-3

Recommended Product . 2-4
Simulink . 2-4

Related Products . 2-5

System Requirements . 2-6
Supported Computer Platforms . 2-6
Host Computer . 2-7
Client Computer . 2-10

Installing the Virtual Reality Toolbox on the Host
Computer . 2-12

Getting or Updating Your License . 2-12
Components on a Host Computer . 2-13
Installing from CD (Windows) . 2-14
Installing from CD (UNIX/Linux) . 2-15
Downloading from the Web . 2-16
LD_LIBRARY_PATH Environment Variable (UNIX) 2-17
Known Issue with the Virtual Reality Toolbox and Microsoft
Internet Explorer 6.0 (Windows) . 2-18

Installing the VRML Viewer on the Host Computer 2-19
Virtual Reality Toolbox Viewer . 2-19
Installing a VRML Plug-In (Windows) 2-20
Installing a VRML Plug-In (UNIX/Linux) 2-23
Setting the Default Viewer of Virtual Scenes 2-24

Installing the VRML Editor on the Host Computer 2-29
Installing the VRML Editor (Windows) 2-29
VRML Editor (UNIX/Linux) . 2-30
Setting the Default Editor of Virtual Scenes 2-30

iii

Removing Components (Windows) . 2-36
Removing the Virtual Reality Toolbox and V-Realm
Builder (Windows) . 2-36
Removing the blaxxun Contact Plug-In (Windows) 2-37

Installing on the Client Computer . 2-38
Installing a VRML Plug-In (Windows) 2-38

Testing the Installation . 2-39
Running a Simulink Interface Example 2-39
Running a MATLAB Interface Example 2-44

3
Simulink Interface

Associating a Virtual World with Simulink 3-2
Adding a Virtual Reality Toolbox Block 3-2
Changing the Virtual World Associated with a
 Simulink Block . 3-10

Using the Simulink Interface . 3-12
Displaying a Virtual World and Starting Simulation 3-12
Viewing a Virtual World with a Web Browser on the
Host Computer . 3-15
Viewing a Virtual World with a Web Browser on the
Client Computer . 3-19

iv Contents

4
MATLAB Interface

Using the MATLAB Interface . 4-2
Creating a vrworld Object . 4-2
Opening a Virtual World . 4-3
Interacting with a Virtual World . 4-5
Closing and Deleting a vrworld Object . 4-8

Recording Offline Animations . 4-10
Animation Recording File Tokens . 4-12
Manual 3-D VRML Animation Recording 4-14
Manual 2-D AVI Animation Recording 4-17
Scheduled 3-D VRML Animation Recording 4-19
Scheduled 2-D AVI Animation Recording 4-22
Viewing Animation Files . 4-24
MATLAB Animation Recording of Virtual Worlds Not
Associated with Simulink Models . 4-26

5
Virtual Worlds

VRML Editing Tools . 5-2
Editors for Virtual Worlds . 5-2
V-Realm Builder . 5-4

Deformation of a Sphere Example . 5-5
Defining the Problem . 5-5
Adding a Virtual Reality Toolbox Block 5-6
Creating a Sphere in a Virtual World . 5-8
Creating a Box in a Virtual World . 5-13
Connecting a Simulink Model to a Virtual World 5-16

VRML Data Types . 5-20
VRML Field Data Types . 5-20
VRML Data Class Types . 5-24

v

6
Viewing Virtual Worlds

Virtual Reality Toolbox Viewer . 6-2
Menu Bar . 6-4
Toolbar . 6-5
Navigation Panel . 6-5
Starting and Stopping Simulations . 6-9
Navigation . 6-10
Configuring Animation Recording Parameters 6-17
Recording Files in the VRML Format . 6-21
Recording Files in the Audio Video Interleave (AVI) Format . 6-22
Scheduling Files for Recording . 6-24
Interactively Starting and Stopping Animation Recording . . . 6-26
Viewing the Animation File . 6-27
Working with Viewpoints . 6-28
Rendering . 6-35

blaxxun Contact VRML Plug-In . 6-44
Viewpoint Control . 6-44
Control Menu . 6-45
Navigation . 6-45
Movement Modes . 6-46
blaxxun Contact Settings . 6-47
Stereoscopic Vision . 6-48

vi Contents

7
Block Reference

Blocks — Categorical List . 7-2
Control Input Devices . 7-2
Virtual Worlds . 7-2
VRML Related Signals . 7-2

Blocks — Alphabetical List . 7-3

8
Function Reference

Functions — Categorical List . 8-2
MATLAB Interface Functions . 8-3
vrworld Object Methods . 8-3
vrnode Object Methods . 8-4
vrfigure Object Methods . 8-4

Functions — Alphabetical List . 8-5

Glossary

Index

1

Getting Started

The Virtual Reality Toolbox allows you to connect an existing virtual world, defined with VRML, to
Simulink® and MATLAB®. Understanding the features of the Virtual Reality Toolbox and some basic
VRML concepts will help you to use this product more effectively.

What Is the Virtual Reality Toolbox?
(p. 1-2)

Solution for virtual interaction with models of dynamic
systems over time

Features of the Virtual Reality Toolbox
(p. 1-4)

Description of the many features available to create and
view dynamic systems

VRML Overview (p. 1-10) Brief history of VRML, differences between the VRML
and MATLAB coordinate systems, and the format of
VRML files

Examples Using the Virtual Reality
Toolbox (p. 1-16)

VRML worlds with an interface to Simulink block
diagrams and an interface to MATLAB objects and
functions

Virtual Reality Toolbox Texture File
(p. 1-27)

Virtual Reality Toolbox texture file usage
recommendations

Implementation Notes (p. 1-28) Outline of the Virtual Reality Toolbox server and VRML
compatibility

1 Getting Started

1-2

What Is the Virtual Reality Toolbox?
The Virtual Reality Toolbox is a solution for interacting with virtual reality
models of dynamic systems over time. It extends the capabilities of MATLAB
and Simulink into the world of virtual reality graphics.

• Virtual worlds — Create virtual worlds or three-dimensional scenes using
standard Virtual Reality Modeling Language (VRML) technology.

• Dynamic systems — Create and define dynamic systems with MATLAB and
Simulink.

• Animation — View moving three-dimensional scenes driven by signals from
the Simulink environment.

• Manipulation — Change the positions and properties of objects in a virtual
world while running a simulation.

To provide a complete working environment, the Virtual Reality Toolbox
includes additional components:

• VRML viewer — Use either the Virtual Reality Toolbox viewer or, for PC
platforms, the blaxxun Contact plug-in for Web browsers to display your
virtual worlds.

• VRML editor — For PC platforms, use V-Realm Builder to create and edit
VRML code. For UNIX or Linux platforms, use the MATLAB text editor to
write VRML code to create virtual worlds.

What Is the Virtual Reality Toolbox?

1-3

Expected Background
To help you effectively read and use this guide, here is a brief description of the
chapters and a suggested reading path. As a general rule, you can assume that
the Virtual Reality Toolbox on the Mac OS X platform works as described for
the UNIX/Linux platforms.

This guide assumes that you are already familiar with

• MATLAB, to write scripts and functions with M-code, and to use functions
with the command-line interface

• Simulink and Stateflow® to create models as block diagrams and simulate
those models

• VRML, to create or otherwise provide virtual worlds or three-dimensional
scenes to connect to Simulink or MATLAB

If You Are a New User — You might want to review

• Chapter 1, “Getting Started” — This chapter gives you an overview of the
Virtual Reality Toolbox features.

• Chapter 3, “Simulink Interface” — Interact with a virtual world from
Simulink.

• Chapter 4, “MATLAB Interface” — Interact with a virtual world from
MATLAB.

If You Are an Experienced Virtual Reality Toolbox User — You might want
to review

• Chapter 7, “Block Reference” — Additional functionality has been added to
the Virtual Reality Toolbox library.

• “vrworld Object Methods” in Chapter 8 — Description of vrworld object
properties and methods.

• “vrnode Object Methods” in Chapter 8 — Description of vrnode object
properties and methods.

• “vrfigure Object Methods” in Chapter 8 — Description of vrfigure object
properties and methods.

1 Getting Started

1-4

Features of the Virtual Reality Toolbox
The Virtual Reality Toolbox includes many features for you to create and
visualize virtual reality models of dynamic systems. It also provides real-time
virtual interaction with dynamic models.

This section includes the following topics that describe these features:

• “VRML Support” on page 1-4 — Use VRML to define a virtual world

• “MATLAB Interface” on page 1-5 — Control the virtual world from the
MATLAB interface

• “Simulink Interface” on page 1-6 — Use Virtual Reality Toolbox blocks to
connect your Simulink model to a virtual world

• “VRML Viewers” on page 1-6 — View your virtual world with the Virtual
Reality Toolbox viewer or your Web browser

• “VRML Editor” on page 1-7 — Create virtual worlds using a VRML
authoring tool or text editor

• “Real-Time Workshop Support” on page 1-8 — Support for simulations that
use code generated by Real-Time Workshop®

• “SimMechanics Support” on page 1-8 — View the behavior of your
SimMechanics model in a virtual world

• “Hardware Support” on page 1-8 — Functions for using special hardware
devices

• “Client-Server Architecture” on page 1-8 — Provide client-server
architecture for a single computer or network operation

VRML Support
The Virtual Reality Modeling Language (VRML) is an ISO standard that is
open, text-based, and uses a WWW-oriented format. You use VRML to define a
virtual world that you can display with a VRML viewer and connect to a
Simulink model.

The Virtual Reality Toolbox uses many of the advanced features defined in the
current VRML97 specification. The term VRML, in this guide, always refers to
VRML as defined in the VRML97 standard ISO/IEC 14772-1:1997, available
from http://www.web3d.org. This format includes a description of 3-D scenes,
sounds, internal actions, and WWW anchors.

Features of the Virtual Reality Toolbox

1-5

The Virtual Reality Toolbox analyzes the structure of the virtual world,
determines what signals are available, and makes them available from
MATLAB and Simulink.

The Virtual Reality Toolbox viewer supports the majority of VRML97 standard
nodes, allowing you almost complete control over associated virtual worlds.
The blaxxun Contact plug-in supports all VRML97 standard nodes.

The Virtual Reality Toolbox makes sure that the changes made to a virtual
world are reflected in MATLAB and Simulink. If you change the viewpoint in
your virtual world, this change occurs in the vrworld object properties in
MATLAB and Simulink.

The Virtual Reality Toolbox includes functions for retrieving and changing
virtual world properties.

Note Since some VRML worlds are automatically generated in VRML1.0,
and the Virtual Reality Toolbox does not support VRML1.0, you need to save
these worlds in the current standard for VRML, VRML97.

For PC platforms, you can convert VRML1.0 worlds to VRML97 worlds by
opening the worlds in V-Realm Builder and saving them. V-Realm Builder is
shipped with the PC version of the Virtual Reality Toolbox. Other
commercially available software programs can also perform the VRML1.0 to
VRML97 conversion.

MATLAB Interface
The Virtual Reality Toolbox provides a flexible MATLAB interface to virtual
reality worlds. After creating MATLAB objects and associating them with a
virtual world, you can control the virtual world by using functions and
methods.

From MATLAB, you can set positions and properties of VRML objects, create
callbacks from graphical user interfaces (GUIs), and map data to virtual
objects. You can also view the world with a VRML viewer, determine its
structure, and assign new values to all available nodes and their fields.

1 Getting Started

1-6

The Virtual Reality Toolbox includes functions for retrieving and changing the
virtual world properties and for saving the VRML files corresponding to the
actual structure of a virtual world.

MATLAB provides communication for control and manipulation of virtual
reality objects using MATLAB objects.

Simulink Interface
With a Simulink model, you can observe a simulation of your dynamic system
over time in a visually realistic 3-D model.

The Virtual Reality Toolbox provides blocks to directly connect Simulink
signals with virtual worlds. This connection lets you visualize your model as a
three-dimensional animation.

You can implement most of the Virtual Reality Toolbox features with Simulink
blocks. Once you include these blocks in a Simulink diagram, you can select a
virtual world and connect Simulink signals to the virtual world. The Virtual
Reality Toolbox automatically scans a virtual world for available VRML nodes
that Simulink can drive.

All the VRML node properties are listed in a hierarchical tree-style viewer. You
select the degrees of freedom to control from within Simulink. After you close
a Block Parameters dialog box, Simulink updates the block with the inputs
and outputs corresponding to selected nodes in the virtual world. After
connecting these inputs to appropriate Simulink signals, you can view the
simulation with a VRML viewer.

Simulink provides communication for control and manipulation of virtual
reality objects, using Virtual Reality Toolbox blocks.

VRML Viewers
The Virtual Reality Toolbox contains a viewer that is the default viewing
method for virtual worlds. This Virtual Reality Toolbox viewer is supported on
PC, UNIX, Mac OS X, and Linux platforms.

If you are on a PC platform, you can install a VRML plug-in and view a virtual
world in your preferred Web browser. For PC platforms, the Virtual Reality
Toolbox includes the VRML plug-in blaxxun Contact. This is the only
supported VRML plug-in.

Features of the Virtual Reality Toolbox

1-7

If you install the VRML plug-in, the Virtual Reality Toolbox connects MATLAB
and Simulink with the VRML-enabled browser to display a simulated process
using the TCP/IP protocol. This allows you to watch a simulated virtual world
not only on the computer where MATLAB and Simulink are running, but also
on other computers connected through the Internet.

VRML Editor
For PC platforms, the Virtual Reality Toolbox includes one of the classic VRML
authoring tools, V-Realm Builder by Ligos Corp. With the addition of this
VRML authoring tool, the Virtual Reality Toolbox provides a complete
authoring, development, and working environment for carrying out 3-D visual
simulations.

You use a VRML editor to create the virtual worlds you connect to Simulink
block diagrams:

• PC platforms — V-Realm Builder Version 2.0 is included with the Virtual
Reality Toolbox. If you do not want to use V-Realm Builder, you can use your
favorite VRML editor.

Use the command vrinstall to install the editor before editing a virtual
world. See “Installing the VRML Editor (Windows)” on page 2-29.

For information on using V-Realm Builder with the Virtual Reality Toolbox,
see Chapter 5, “Virtual Worlds.”

• UNIX/Linux platforms — The default VRML editor for UNIX/Linux
platforms is the MATLAB editor. If you do not want to use the MATLAB
editor, you can set the Editor preference to your favorite text editor.

V-Realm Builder is the only supported VRML editor. It is provided with the PC
version of the Virtual Reality Toolbox.

1 Getting Started

1-8

Real-Time Workshop Support
The Virtual Reality Toolbox seamlessly integrates with Real-Time Workshop
targets. It supports simulations that use code generated by Real-Time
Workshop and a third-party compiler on your desktop computer. The Virtual
Reality Toolbox also supports code executed in real time on external target
computers. It enables interaction with real-time code generated by Real-Time
Workshop and compiled with a third-party C/C++ compiler.

Real-Time Windows Target
The Simulink interface in the Virtual Reality Toolbox supports the Real-Time
Windows Target. Using the Simulink external mode, you can interact with
real-time code generated by Real-Time Workshop and compiled with a
third-party C/C++ compiler in the Real-Time Windows Target environment.
See the Real-Time Windows Target User’s Guide documentation for further
details.

SimMechanics Support
You can use the Virtual Reality Toolbox to view the behavior of a model created
with SimMechanics. First, you build a model of a machine in Simulink using
SimMechanics blocks. Then, create a detailed picture of your machine in a
virtual world, connect this world to the SimMechanics body sensor outputs,
and view the behavior of the bodies in a VRML viewer.

Hardware Support
The Virtual Reality Toolbox contains functions for using special hardware
devices, including Joystick and SpaceMouse. It can also connect to common
hardware devices, including joysticks and Magellan SpaceMouse, using
Simulink blocks.

Client-Server Architecture
The Virtual Reality Toolbox connects MATLAB and Simulink to a
VRML-enabled Web browser using the TCP/IP protocol. The toolbox can be
used in two configurations:

• Single computer — MATLAB, Simulink, and the virtual reality
representations run on the same host computer.

Features of the Virtual Reality Toolbox

1-9

• Network computer — You can view an animated virtual world on a
computer separate from the computer with the Virtual Reality Toolbox
server. Multiple clients can be connected to one server. You can adjust
parameters to tune network performance.

1 Getting Started

1-10

VRML Overview
The Virtual Reality Modeling Language (VRML) is the language you use to
display three-dimensional objects with a VRML viewer.

This section includes the following topics:

• “VRML History” on page 1-10 — Events leading up to the creation of the
VRML97 standard.

• “VRML Coordinate System” on page 1-11 — The VRML coordinate system is
different from the MATLAB coordinate system.

• “VRML File Format” on page 1-13 — VRML files use a hierarchical structure
to describe three-dimensional objects and their movements.

VRML History
Since people started to publish their documents on the World Wide Web
(WWW), there has been an effort to enhance the content of Web pages with
advanced three-dimensional graphics and interaction with those graphics.

The term Virtual Reality Markup Language (VRML) was first used by Tim
Berners-Lee at a European Web conference in 1994 when he talked about a
need for a 3-D Web standard. Soon afterward, an active group of artists and
engineers formed around a mailing list called www-vrml. They changed the
name of the standard to Virtual Reality Modeling Language to emphasize the
role of graphics. The result of their effort was to produce the VRML 1
specification. As a basis for this specification, they used a subset of the Inventor
file format from Silicon Graphics.

The VRML 1 standard was implemented in several VRML browsers, but it
allowed you to create only static virtual worlds. This limitation reduced the
possibility of its widespread use. Quickly it became clear that the language
needed a robust extension to add animation and interactivity, and bring life to
a virtual world. The VRML 2 standard was developed, and in the year 1997 it
was adopted as International Standard ISO/IEC 14772-1:1997. Since then it is
referred to as VRML97.

VRML Overview

1-11

VRML97 represents an open and flexible platform for creating interactive
three-dimensional scenes (virtual worlds). As computers improve in
computational power and graphic capability, and communication lines become
faster, the use of 3-D graphics becomes more popular outside the traditional
domain of art and games. There are now a number of VRML97-enabled
browsers available on several platforms. Also, there are an increasing number
of VRML authoring tools from which to choose. In addition, many traditional
graphical software packages (CAD, visual art, and so on) offer VRML97
import/export features.

The Virtual Reality Toolbox uses VRML97 technology to deliver a unique, open
3-D visualization solution for MATLAB users. It is a useful contribution to a
wide use of VRML97 in the field of technical and scientific computation and
interactive 3-D animation.

The VRML97 standard continues to be improved by the Web 3D Consortium.
The newly released X3D (eXtensible 3D) standard is the successor to VRML97.
X3D is an extensible standard that provides compatibility with existing VRML
content and browsers. For more information, see http://www.web3d.org.

VRML Coordinate System
VRML uses the right-handed Cartesian coordinate system. If your thumb,
index finger, and middle finger of the right hand are held so that they form
three right angles, then your thumb symbolizes the x-axis, your index finger
the y-axis (pointing up), and your middle finger the z-axis.

MATLAB graphics coordinate system VRML coordinate system

1 Getting Started

1-12

The VRML coordinate system is different from the MATLAB and Aerospace
Blockset coordinate systems. VRML uses the world coordinate system in which
the y-axis points upward and the z-axis places objects nearer or farther from
the front of the screen. It is important to realize this fact in situations involving
the interaction of these different coordinate systems. SimMechanics uses the
VRML coordinate system.

Rotation angles — In VRML, rotation angles are defined using the right-hand
rule. Imagine your right hand holding an axis while your thumb points in the
direction of the axis toward its positive end. Your four remaining fingers point
in a counterclockwise direction. This counterclockwise direction is the positive
rotation angle of an object moving around that axis.

Child objects — In the hierarchical structure of a VRML file, the position and
orientation of child objects are specified relative to the parent object. The
parent object has its local coordinate space defined by its own position and
orientation. Moving the parent object also moves the child objects relative to
the parent object.

Measurement units — All lengths and distances are measured in meters, and
all angles are measured in radians.

VRML Overview

1-13

VRML File Format
You need not have any substantial knowledge of the VRML format to use the
VRML authoring tools to create virtual worlds. However, it is useful to have a
basic knowledge of VRML scene description. This helps you to create virtual
worlds more effectively, and gives you a good understanding of how the virtual
world elements can be controlled using the Virtual Reality Toolbox.

This section introduces VRML. For more information, see the VRML97
Reference. This reference is available online at http://www.web3d.org. Many
specialized VRML books can help you understand VRML concepts and create
your own virtual worlds. For more information about the VRML, refer to an
appropriate third-party VRML book.

In VRML, a 3-D scene is described by a hierarchical tree structure of objects
(nodes). Every node in the tree represents some functionality of the scene.
There are 54 different types of nodes. Some of them are shape nodes
(representing real 3-D objects), and some of them are grouping nodes used for
holding child nodes. Here are some examples:

• Box node — Represents a box in a scene.

• Transform node — Defines position, scale, scale orientation, rotation,
translation, and children of its subtree (grouping node).

• Material node — Corresponds to material in a scene.

• DirectionalLight node — Represents lighting in a scene.

• Fog node — Allows you to modify the environment optical properties.

• ProximitySensor node — Brings interactivity to VRML97. This node
generates events when the user enters, exits, and moves within the defined
region in space.

Each node contains a list of fields that hold values defining parameters for its
function.

Nodes can be placed in the top level of a tree or as children of other nodes in the
tree hierarchy. When you change a value in the field of a certain node, all nodes
in its subtree are affected. This feature allows you to define relative positions
inside complicated compound objects.

1 Getting Started

1-14

You can mark every node with a specific name by using the keyword DEF in the
VRML scene code. For example, the statement DEF MyNodeName Box sets the
name for this box node to MyNodeName. You can access the fields of only those
nodes that you name in a virtual world.

In the following example of a simple VRML file, two graphical objects are
modeled in a 3-D scene: A floor is represented by a flat box with a red ball above
it. Note that the VRML file is a readable text file that you can write in any text
editor.

#VRML V2.0 utf8
This is a comment line
WorldInfo {
title "Bouncing Ball"

}
Viewpoint {
position 0 5 30
description"Side View"

}
DEF Floor Box {
size 6 0.2 6

}
DEF Ball Transform {
translation 0 10 0
children Shape {
appearance Appearance {

material Material {
diffuseColor 1 0 0

}
}
geometry Sphere {
}

}
}

The first line is the VRML header line. Every VRML file must start with this
header line. It indicates that this is a VRML 2 file and that the text objects in
the file are encoded according to the UTF8 standard. You use the number sign
(#) to comment VRML worlds. Everything on a line after the # sign is ignored
by a VRML viewer, with the exception of the first header line.

VRML Overview

1-15

Most of the box properties are left at their default values—distance from the
center of the coordinate system, material, color, and so on. Only the name
Floor and the dimensions are assigned to the box. To be able to control the
position and other properties of the ball, it is defined as a child node of a
Transform type node. Here, the default unit sphere is assigned a red color and
a position 10 m above the floor. In addition, the virtual world title is used by
VRML viewers to distinguish between virtual worlds. A suitable initial
viewpoint is defined in the virtual world VRML file.

When displayed in V-Realm Builder, the floor and red ball look like

1 Getting Started

1-16

Examples Using the Virtual Reality Toolbox
The Virtual Reality Toolbox includes examples using both the Simulink and
MATLAB interfaces. You can use these examples to learn what you can do with
the Virtual Reality Toolbox.

This section includes the following topics:

• “Simulink Interface Examples” on page 1-16 — Examples that use the VR
Sink block in Simulink block diagrams

• “MATLAB Interface Examples” on page 1-24 — Examples that use MATLAB
objects to interact with a virtual world

Simulink Interface Examples
For all the examples that have a Simulink model, use the following procedure
to view a virtual world:

1 In the MATLAB Command Window, enter the name of a Simulink model.
For example, enter

vrbounce

A Simulink window opens with the block diagram for the model. By default,
a virtual world opens in the Virtual Reality Toolbox viewer or your
VRML-enabled Web browser. If the viewer does not appear, double-click the
VR Sink block in the Simulink model.

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Block Parameters.

A Block Parameters dialog box opens. Note that the Open VRML viewer
automatically check box is selected by default for all Virtual Reality
Toolbox demos.

If you close the virtual world window, you can display it again by
double-clicking on the VR Sink block.

Examples Using the Virtual Reality Toolbox

1-17

3 In the Simulink window, from the Simulation menu, click Start.
(Alternatively, in the Virtual Reality Toolbox viewer, from the Simulation
menu, click Start.)

A simulation starts running, and the virtual world is animated using signal
data from the simulation.

The following table lists the Simulink examples provided with the Virtual
Reality Toolbox. Descriptions of the examples follow the table.

Bouncing Ball Example (vrbounce)
The vrbounce example represents a ball bouncing from a floor. The ball
deforms as it hits the floor, keeping the volume of the ball constant. The
deformation is achieved by modifying the scale field of the ball.

Example RTW Ready VR Sink Joystick SpaceMouse

vrbounce X X

vrcrane_joystick X X

vrcrane_traj X

vrlights X

vrmaglev X X

vrmaglev_rtwin X X

vrmanipul X X

vrmemb1 X

vr_octavia X X

vrpend X X

vrplanets X X

vrtkoff X

1 Getting Started

1-18

Portal Crane with Joystick Control (vrcrane_joystick)
The vrcrane_joystick example illustrates how a Simulink model can interact
with a virtual world. The portal crane dynamics are modeled in Simulink and
visualized in virtual reality. The model uses the Joystick Input block to control
the setpoint. Joystick 3 axes control the setpoint position and button 1 starts
the crane. This example requires a standard Joystick with at least three
independent axes connected to the PC.

To minimize the number of signals transferred between the Simulink model
and the virtual reality world, and to keep the model as simple and flexible as
possible, only the minimum set of moving objects properties are sent from the
model to the VR Sink block. All other values that are necessary to describe the
virtual reality objects movement are computed from this minimum set using
VRMLScript in the associated VRML file.

For details on how the crane model hierarchy and scripting logic is
implemented, see the associated commented VRML file portal_crane.wrl.

Portal Crane with Predefined Trajectory Example (vrcrane_traj)
The vrcrane_traj example is based on the vrcrane_joystick demo, but
instead of interactive control, it has a predefined load trajectory. The
vrcrane_traj model illustrates a technique to create the visual impression of
joining and splitting moving objects in the VRML world.

A crane magnet attaches the load box, moves it to a different location, then
releases the box and returns to the initial position. This effect is achieved using
an additional, geometrically identical shadow object that is placed as an
independent object outside of the crane objects hierarchy. At any time, only one
of the Load or Shadow objects is displayed, using two VRML Switch nodes
connected by the ROUTE statement.

After the crane moves the load to a new position, at the time of the load release,
a VRMLScript script assigns the new shadow object position according to the
current Load position. The Shadow object becomes visible. Because it is
independent from the rest of the crane moving parts hierarchy, it stays at its
position as the crane moves away.

Examples Using the Virtual Reality Toolbox

1-19

Lighting Example (vrlights)
The vrlights example demonstrates light sources. In the scene, you can move
Sun (modeled as DirectionalLight) and Lamp (modeled as PointLight)
objects around the Simulink model. This creates the illusion of changes
between day and night, and night terrain illumination. The associated VRML
file defines several viewpoints that allow you to observe gradual changes in
light from various perspectives.

Magnetic Levitation Model Example (vrmaglev)
The vrmaglev example shows the interaction between dynamic models in
Simulink and virtual worlds. The Simulink model represents the HUMUSOFT
CE 152 Magnetic Levitation educational/presentation scale model. The plant
model is controlled by a PID controller with feed-forward to cope with the
nonlinearity of the magnetic levitation system.

The position of the ball responds to the changing value of the set point. You can
observe this change not only in the Scope window, but also with a VRML viewer
displaying the virtual world. To display the virtual world, double-click the VR
Sink block, then click the View button in the dialog box.

1 Getting Started

1-20

Magnetic Levitation Model for Real-Time Windows Target Example
(vrmaglev_rtwin)
In addition to the vrmaglev example, the vrmaglev_rtwin example works
directly with the actual CE 152 scale model hardware in real time. The
MathWorks created this model to work with Real-Time Workshop, Real-Time
Windows Target, and the HUMUSOFT MF 614 data acquisition board.
However, you can adapt this model for other targets and acquisition boards. A
digital IIR filter, from the Signal Processing Blockset, filters the physical
system output. You can bypass the physical system by using the built-in plant
model.

Running this model in real time is an example showing the capabilities of
Simulink in control systems design and rapid prototyping.

Note that after enabling the remote view in the VR Sink block dialog box, you
can control the Simulink model even from another (remote) client computer.
This can be useful for distributing the computing power between a real-time
Simulink model running on one machine and the rendering of a virtual reality
world on another machine.

To work with this model, use as powerful a machine as possible or split the
computing/rendering over two machines.

Manipulator with SpaceMouse Example (vrmanipul)
The vrmanipul example illustrates the use of the Virtual Reality Toolbox for
virtual reality prototyping and testing the viability of designs before the
implementation phase. Also, this example illustrates the use of the Magellan
SpaceMouse for manipulating objects in a virtual world. Note that you must
have the Magellan SpaceMouse to run this demo.

Examples Using the Virtual Reality Toolbox

1-21

The VRML model represents a nuclear hot chamber manipulator. It is
manipulated by a simple Simulink model containing the Magellan Space
Mouse input block. This model uses all six degrees of freedom of the
SpaceMouse for manipulating the mechanical arm, and this model uses mouse
button 1 to close the grip of the manipulator jaws.

Magellan SpaceMouse is an input device with six degrees of freedom. It is
useful for navigating and manipulating objects in a virtual world. SpaceMouse
is also suitable as a general input device for Simulink models. This professional
device greatly facilitates all the previously mentioned tasks. You can use the
SpaceMouse for higher performance applications and user comfort.
SpaceMouse is supported through the Magellan Space Mouse input block,
which is included in the Virtual Reality Toolbox block library for Simulink.

The Magellan Space Mouse input block can operate in three modes to cover the
most typical use of such a device in a three-dimensional context:

• Speeds

• Positions

• Viewpoint coordinates

1 Getting Started

1-22

Rotating Membrane Example (vrmemb1)
The vrmemb1 example is similar to the vrmemb example, but this time the
associated virtual world is driven from a Simulink model.

Vehicle Dynamics Visualization (vr_octavia)
The vr_octavia example illustrates the benefits of the visualization of complex
dynamic model in the virtual reality environment. It also demonstrates the
Virtual Reality Toolbox 3-D off-line animation recording functionality.

Inverted Pendulum Example (vrpend)
The vrpend example illustrates the various ways a dynamic model in Simulink
can interact with a virtual reality scene. It is the model of a two-dimensional
inverted pendulum controlled by a PID controller. What distinguishes this
model from common inverted pendulum models are the methods for setting the
set point. You visualize and interact with a virtual world by using a Trajectory
Graph and VR Sink blocks. The Trajectory Graph block allows you to track the
history of the pendulum position and change the set point in three ways:

• Mouse — Click and drag a mouse pointer in the Trajectory Graph
two-dimensional window

• Input Signal — External Trajectory Graph input in this model (driven by a
random number generator)

• VR Sensor — Activates the input from a VRML TouchSensor

When the pointing device in the VRML viewer moves over an active
TouchSensor area, the cursor shape changes. The triggering logic in this model
is set to apply the new set point value with a left mouse button click.

Notice the pseudoorthographic view defined in the associated VRML file. You
achieve this effect by creating a viewpoint that is located far from the object of
interest with a very narrow view defined by the VRML FieldOfView
parameter. An orthographic view is useful for eliminating the panoramic
distortion that occurs when you are using a wide-angle lens. The disadvantage
of this technique is that locating the viewpoint at a distance makes the
standard viewer navigation tricky or difficult in some navigation modes, such
as the Examine mode. If you want to navigate around the virtual pendulum
bench, you should use some other viewpoint.

Examples Using the Virtual Reality Toolbox

1-23

Solar System Example (vrplanets)
The vrplanets example shows the dynamic representation of the first four
planets of the solar system, Moon orbiting around Earth, and Sun itself. The
model uses the real properties of the celestial bodies. Only the relative planet
sizes and the distance between the Earth and the Moon are adjusted, to provide
an interesting view.

Several viewpoints are defined in the virtual scene, both static and attached to
an observer on Earth. You can see that the planet bodies are not represented
as perfect spheres. Using the VRML Sphere graphic primitive, which is
rendered this way, simplified the model. If you want to make the planets more
realistic, you could use the more complex IndexedFaceSet node type.

Mutual gravity accelerations of the bodies are computed using Simulink
matrix-type data support.

Plane Takeoff Example (vrtkoff)
The vrtkoff example represents a simplified aircraft taking off from a runway.
Several viewpoints are defined in this model, both static and attached to the
plane, allowing you to see the takeoff from various perspectives.

The model demonstrates the technique of combining several objects imported
or obtained from different sources (CAD packages, general 3-D modelers, and
so on) into a virtual reality scene. Usually it is necessary for you to wrap such
imported objects with an additional VRML Transform node. This wrapper
allows you to set appropriately the scaling, position, and orientation of the
objects to fit in the scene. In this example, the aircraft model from the V-Realm
Builder Object Library is incorporated into the scene. The file vrtkoff2.wrl
uses the same scene with a different type of aircraft.

1 Getting Started

1-24

MATLAB Interface Examples
The following table is a list of the MATLAB interface examples provided with
the Virtual Reality Toolbox. Descriptions of the examples follow the table.

Car in the Mountains Example (vrcar)
This demonstration illustrates the use of the Virtual Reality Toolbox with the
MATLAB interface. In a step-by-step tutorial, it shows commands for
navigating a virtual car along a path through the mountains.

1 In the MATLAB Command Window, type

vrcar

A tutorial script starts running. Follow the instructions in the MATLAB
Command Window.

Heat Transfer Example (vrheat)
This demonstration illustrates the use of the Virtual Reality Toolbox with the
MATLAB interface for manipulating complex objects.

In this demonstration, matrix-type data is transferred between MATLAB and
a virtual reality world. Using this feature, you can achieve massive color
changes or morphing. This is useful for representing various physical
processes. Precalculated data of time-based temperature distribution in an
L-shaped metal block is used. The data is then sent to the virtual world. This
forms an animation with relatively large changes.

Example Moving
Objects

Morphing
Objects

Text Recording vrml()
Function Use

vrcar X

vrheat X X

vrheat_anim X X X

vrmemb X X X

Examples Using the Virtual Reality Toolbox

1-25

This is a step-by-step demonstration. Shown are the following features:

• Reshaping the object

• Applying the color palette to represent distributed parameters across an
object shape

• Working with VRML text objects

• Animating a scene using the MATLAB interface

• Synchronization of multiple scene properties

At the end of this example, you can preserve the virtual world object in the
MATLAB workspace, then save the resulting scene to a corresponding VRML
file or carry out other subsequent operations on it.

Heat Transfer Visualization with 2-D Animation (vrheat_anim)
This demonstration illustrates the use of the Virtual Reality Toolbox MATLAB
interface to create 2-D offline animation files.

You can control the offline animation recording mechanism by setting the
relevant vrworld and vrfigure object properties. Note that you should use the
Virtual Reality Toolbox viewer to record animations. However, direct control of
the recording is also possible.

This example uses the heat distribution data from the vrheat example to
create an animation file. You can later distribute this animation file to be
independently viewed by others. For this kind of visualization, where the static
geometry represented by VRML IndexedFaceSet is colored based on the
simulation of some physical phenomenon, it is suitable to create 2-D .avi
animation files. The Virtual Reality Toolbox uses the avifile function to
record 2-D animation exactly as it appears in the viewer figure.

There are several methods you can use to record animations. In this example,
we use the scheduled recording. When scheduled recording is active, a time
frame is recorded into the animation file with each setting of the virtual world
Time property. Recording is completed when you set the scene time at the end
or outside the predefined recording interval.

When using the Virtual Reality Toolbox MATLAB interface, you set the scene
time as desired. This is typically from the point of view of the simulated
phenomenon equidistant times. This is the most important difference from
recording the animations for virtual worlds that are associated with Simulink
models, where scene time corresponds directly to the Simulink time.

1 Getting Started

1-26

Note that the scene time can represent any independent quantity along which
you want to animate the computed solution.

This is a step-by-step demonstration. Shown are the following features:

• Recording 2-D offline animations using the MATLAB interface

• Applying the color palette to visualize distributed parameters across an
object shape

• Animating a scene

• Playing the created 2-D animation file using the system AVI player

At the end of this example, the resulting file vrheat_anim.avi remains in the
working directory for later use.

Rotating Membrane with MATLAB GUI Example (vrmemb)
The vrmemb example shows how to use a MATLAB-generated 3-D graphic
object with the Virtual Reality Toolbox. The membrane was generated by the
logo function and saved in the VRML format using the standard vrml function.
You can save all Handle Graphics® objects this way and use them with the
Virtual Reality Toolbox as components of associated virtual worlds.

After starting the demo, you see a control panel with two sliders and three
check boxes. Use the sliders to rotate and zoom the membrane while you use
the check boxes to determine the axis to rotate around.

In the VRML scene, notice the text object. It is a child of the VRML Billboard
node. You can configure this node so that its local z-axis turns to point to the
viewer at all times. This can be useful for modeling virtual control panels and
head-up displays (HUDs).

Virtual Reality Toolbox Texture File

1-27

Virtual Reality Toolbox Texture File
The following are texture file recommendations for the Virtual Reality Toolbox:

• Where possible, scale source texture files to a size equal to the power of 2 in
both dimensions. Doing so ensures optimal performance for the Virtual
Reality Toolbox viewer. If you do not perform this scaling, the Virtual Reality
Toolbox viewer might attempt to descale the image or create textures with
undesired resolutions.

• Use source texture files whose size and detail are no more than what you
need for your application.

• Where possible, use the Portable Network Graphics (PNG) format as the
static texture format. VRML also supports the GIF and JPG graphic formats.

• For movie textures, use the MPEG format. For optimal performance, be sure
to scale source texture files to a size equal to the power of 2 in both
dimensions.

1 Getting Started

1-28

Implementation Notes
This section includes the following topics:

• “VRML Compatibility” on page 1-28 — Limitations on support for VRML97
features

• “Virtual Reality Toolbox Server” on page 1-29 — Accesses information about
VRML scenes, provides an interface between MATLAB and Simulink, and
communicates with clients

VRML Compatibility
The Virtual Reality Toolbox currently supports most features of VRML97, with
the following limitations:

• The Virtual Reality Toolbox server ignores the VRML Script node, but it
passes the node to the VRML viewer. This allows you to run VRML scripts
on the viewer side. You cannot run them on the Virtual Reality Toolbox
server.

• The Virtual Reality Toolbox server ignores the Inline node, but it passes the
node to the viewer. Therefore, the viewer sees the complete virtual world
with all included substructures, but the included parts are not accessible
from the toolbox. In some rare cases, this limitation can render the virtual
world unusable with the Virtual Reality Toolbox. This happens under either
of the following conditions:

- The virtual world contains a USE name reference to a node that is in the
included part.

- The virtual world contains an included part with a PROTO or
EXTERNPROTO declaration that is referenced in the main virtual world
file.

• In keeping with the VRML97 specification, the Virtual Reality Toolbox
Viewer ignores BMP files. As a result, VRML scene textures might not
display properly in the Virtual Reality Toolbox Viewer. To properly display
scene textures, replace all BMP texture files in a VRML scene with PNG,
JPG, or GIF equivalents. Note that blaxxun Contact supports BMP files in
addition to the standard VRML texture file formats.

For a complete list of VRML97 nodes, refer to the VRML97 specification.

Implementation Notes

1-29

Virtual Reality Toolbox Server
This note is applicable only if you are using blaxxun Contact as your VRML
viewer.

The Virtual Reality Toolbox uses a Virtual Reality Toolbox HTTP server for
communication between a VRML-enabled Web browser and the
MATLAB/Simulink environment. It generates the main Virtual Reality
Toolbox HTML page with the list of currently available virtual worlds and
sends VRML and other requested files and data to clients (VRML viewers).

The server is started when the Virtual Reality Toolbox is loaded into MATLAB.
This happens whenever you use a Virtual Reality Toolbox block in a Simulink
block diagram, or whenever you open a vrworld object in the MATLAB
interface. The HTTP server is shut down when you close all Simulink models
that contain Virtual Reality Toolbox blocks, or use the vrclear command.

When the HTTP server is running, your browser can see a list of available
virtual worlds at the following address, where 8123 is the default port number:

http://localhost:8123

Remote users can connect to the following address, where 8123 is the default
port number:

http://your_machine:8123

You can set the port number of the server in the Virtual Reality Toolbox
Preferences dialog box from the Simulink interface, or use vrsetpref in the
MATLAB Command Window.

Depending on the status of served vrworld objects, the list of available virtual
worlds can be empty.

1 Getting Started

1-30

2

Installation

The Virtual Reality Toolbox provides the files you need for installation on both your host computer
and client computer.

Required Products (p. 2-2) MATLAB, Web browser with VRML plug-in (optional)

Recommended Product (p. 2-4) Simulink (optional) to use the Virtual Reality Toolbox

Related Products (p. 2-5) Where to find information about other MathWorks
products for use with the Virtual Reality Toolbox

System Requirements (p. 2-6) Minimum hardware and software requirements to run the
Virtual Reality Toolbox with MATLAB and Simulink

Installing the Virtual Reality Toolbox
on the Host Computer (p. 2-12)

Install the Virtual Reality Toolbox on your desktop
computer

Installing the VRML Viewer on the
Host Computer (p. 2-19)

Install a viewer to view virtual worlds

Installing the VRML Editor on the
Host Computer (p. 2-29)

Install VRML authoring tools to create virtual worlds

Removing Components (Windows)
(p. 2-36)

Uninstall the Virtual Reality Toolbox and its components

Installing on the Client Computer
(p. 2-38)

Install a viewer on another computer to view virtual
worlds remotely

Testing the Installation (p. 2-39) Open a Simulink model, display a virtual world, and run a
simulation

2 Installation

2-2

Required Products
The Virtual Reality Toolbox is part of a family of products from The
MathWorks. You need to install some of these products and other third-party
products to use the Virtual Reality Toolbox.

This section includes the following topics:

• MATLAB — Create objects in the MATLAB workspace, connect these objects
to a virtual world, and then use a command-line interface to control and
make changes to the virtual world.

• VRML Viewer — View virtual worlds described with VRML.

MATLAB
MATLAB provides the tools you use to write scripts and functions in M-code.
You can use your M-code scripts to set positions and properties of VRML
objects, create callbacks from GUIs, and map data to virtual objects.

Note Version 4.0.1 of the Virtual Reality Toolbox requires MATLAB Version
7.0.1. The product is also available for Web download.

MATLAB documentation — For information on using MATLAB, see the
MATLAB documentation. It explains how to work with data and how to use the
functions supplied with MATLAB. For a reference describing the functions
specific to the Virtual Reality Toolbox, see “Functions — Categorical List” in
Chapter 8 of this guide.

Required Products

2-3

VRML Viewer
You use a VRML viewer to visualize and explore virtual worlds described with
VRML. The following are descriptions of VRML viewers:

• Virtual Reality Toolbox viewer — This viewer is installed with the Virtual
Reality Toolbox and is the default viewer for virtual worlds. You can access
this viewer from either a Virtual Reality Toolbox block in your Simulink
model, or by using the vrview and vrfigure functions with MATLAB.

The Virtual Reality Toolbox viewer is a client to the Virtual Reality Toolbox
server. It does not require a Web browser and it is available on more
platforms than any other VRML97 viewer. It is supported on PC, Mac OS X,
UNIX, and Linux platforms. The viewer is the recommended method for
viewing virtual worlds on a host computer.

• blaxxun Contact Version 4.4 — VRML plug-in shipped with the PC version
of the Virtual Reality Toolbox. This VRML plug-in allows you to view virtual
worlds in your Web browser. The blaxxun Contact plug-in is the only
supported VRML plug-in.

You can view a virtual world in the Virtual Reality Toolbox viewer as soon as
you install the Virtual Reality Toolbox. If you want to view the virtual world in
your Web browser, you need to use the vrinstall command to install the
blaxxun Contact plug-in. See “Installing a VRML Plug-In (Windows)” on
page 2-20.

For information on using a Web browser to view virtual worlds, see “Testing
the Installation” on page 2-39. The blaxxun Contact installation executable
files are located at C:\<MATLAB root>\toolbox\vr\blaxxun.

Note Every VRML plug-in installs Java classes into the Web browser. Limit
the number of plug-ins you use to avoid Java errors and conflicts. For this
reason, use only the Virtual Reality Toolbox viewer or the blaxxun Contact
VRML plug-in on PC platforms. On UNIX and Linux platforms, use only the
Virtual Reality Toolbox viewer.

2 Installation

2-4

Recommended Product
Optionally, you can install Simulink to use the Virtual Reality Toolbox.

This section includes the following topic:

Simulink — Create a model of your physical system and controller using a
block diagram, connect your block diagram to a virtual world, and then use the
block diagram to make changes to your model and view those changes in the
virtual world.

Simulink
Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters.

With the Virtual Reality Toolbox, you can interact with the VR representation
of the model you created with Simulink blocks. You can visualize the
simulation of your dynamic system over time.

Note Version 4.0.1 of the Virtual Reality Toolbox requires Simulink Version
6.1.

Simulink documentation — For information on using Simulink, see the
Simulink documentation. It explains how to connect blocks, build models, and
change block parameters. For a reference describing the Virtual Reality
Toolbox blocks, see Chapter 7, “Block Reference,” in this guide.

Related Products

2-5

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Virtual Reality Toolbox.

For more information about any of these products, see either the

• Online documentation for that product if it is installed on your system

• MathWorks Web site, at
http://www.mathworks.com/products/virtualreality/related.jsp.

2 Installation

2-6

System Requirements
The Virtual Reality Toolbox has the same hardware requirements as
MATLAB. It is a multiplatform product that runs on PC-compatible computers
with Windows or Linux. It runs on Solaris hardware running UNIX, and also
on Apple Power Macintosh hardware running Mac OS X. For a list of supported
operating systems, see “Supported Computer Platforms” on page 2-6.

This section includes the following topics:

• “Supported Computer Platforms” on page 2-6 — Summary of the supported
computer platforms and the viewer and editor that are provided for each of
them.

• “Host Computer” on page 2-7 — Run MATLAB, Simulink, the Virtual
Reality Toolbox, VRML editor, and VRML viewer (the Virtual Reality
Toolbox viewer or Web browser with VRML plug-in).

• “Client Computer” on page 2-10 — Run a Web browser with a VRML plug-in.

Supported Computer Platforms
The VR server is the part of the Virtual Reality Toolbox that interfaces with
your Simulink models. It stores information about the current state of virtual
worlds and manages connections to VR clients. The VR client is a VRML viewer
that displays a virtual world. The VR client can be either the Virtual Reality
Toolbox viewer or a Web browser with a VRML plug-in.

System Requirements

2-7

The following table summarizes the supported computer platforms and the
viewer and editor that are provided for each of them.

* Distributed with the Virtual Reality Toolbox product.

Host Computer
The host computer is a desktop computer where you install MATLAB,
Simulink, the Virtual Reality Toolbox, a VRML editor and, optionally, a Web
browser with a VRML plug-in. You can also install Real-Time Workshop with
Real-Time Windows Target or xPC Target to run and view a real-time
application.

Platform/Product VR
Server

Virtual
Reality
Toolbox
Viewer

VRML
Editor

VRML
Browser
Plug-In

Microsoft
Windows NT 4.0,
Windows XP, or
Windows 2000

Yes Yes V-Realm
Builder*

blaxxun
Contact*

Linux 2.4.x
kernels

Yes Yes MATLAB
editor*

No

Sun Solaris 2.8,
2.9

Yes Yes MATLAB
editor*

No

HP-UX 11.00 Yes Yes MATLAB
editor*

No

Power Macintosh
G3 or G4 running
OS X (10.2 or
later)

Yes Yes MATLAB
editor*

No

2 Installation

2-8

The following table lists the minimum resources the Virtual Reality Toolbox
requires on the host computer.

The following table lists the minimum software the Virtual Reality Toolbox
requires on your host computer. For a list of optional software products related
to the Virtual Reality Toolbox, see
http://www.mathworks.com/products/virtualreality/related.jsp.

Hardware Requirements

Hardware Description

CPU Pentium, Athlon or higher (PC)

Graphics card Graphics card with hardware 3-D acceleration

RAM 128 Mbytes or more

Peripherals Hard disk drive with 45 Mbytes of free space

CD-ROM drive

TCP/IP
communication

If you want to allow a connection from a client
computer, you need a network connection between the
host computer and the client computer.

Software Requirements

Software Description

Operating
system

Microsoft Windows NT 4.0, Windows XP, or Windows
2000
Sun Solaris 2.6, 2.7, 2.8
Linux 2.2.x or 2.4.x kernel
Mac OS X 10.2 or later
The TCP/IP protocol must be installed.

MATLAB Version 7.0.1.

Simulink Version 6.1. Simulink is not required, but we highly
recommend that you install it.

System Requirements

2-9

Virtual
Reality
Toolbox

Version 4.0.1.

VRML
editor

For Windows platforms, you can install the VRML editor
(V-Realm Builder 2.0) provided with the Virtual Reality
Toolbox. For UNIX/Linux, the default editor is the
MATLAB editor. When you create VRML worlds on these
operating systems, you can use any 3-D modeling tool
with the VRML97 export capability.

Web
browser

On PC platforms, you can use a Web browser and the
blaxxun Contact plug-in to view virtual worlds. This is an
alternative to using the Virtual Reality Toolbox viewer.

Use Microsoft Internet Explorer 4.0 or higher, or
Netscape Navigator 4.0 or higher with Java enabled.

VRML
plug-in

If you are using a Web browser instead of the Virtual
Reality Toolbox viewer, you need to install a VRML97
plug-in with External Authoring Interface (EAI) support.
If you have blaxxun Contact (Windows) on your computer,
you have already installed a VRML plug-in.

Windows platforms — You can install the blaxxun
Contact 4.4 plug-in provided with the Virtual Reality
Toolbox.

For information on how to install the blaxxun Contact
plug-in, see “Installing a VRML Plug-In (Windows)” on
page 2-20.

Software Requirements (Continued)

Software Description

2 Installation

2-10

Client Computer
You can use a client computer to view and control a virtual world. Because
MATLAB or Simulink does not run on this computer, you need to connect to a
host computer running a simulation or executable code. The host computer,
through the VR server, provides the values needed to animate a virtual world.

The client computer communicates with the host computer over TCP/IP, and it
displays the virtual world using a VR client. In this case, the VR client is a
VRML-enabled Web browser. You can verify the TCP/IP connection between
the host and client computers by using the ping command from a
command-line prompt. If there are problems, you must first fix the TCP/IP
protocol settings according to the documentation for your operating system.

The following table lists the minimum hardware resources the Virtual Reality
Toolbox needs on the client computer.

The following table lists the software the Virtual Reality Toolbox requires on
the client computer. You do not need to install the Virtual Reality Toolbox on
the client computer.

Hardware Requirements

Hardware Description

Graphics card Graphics card with hardware 3-D acceleration.

TCP/IP
communication

If you want to allow a connection from a client
computer, you need a network connection between the
host computer and the client computer.

System Requirements

2-11

Because the only component required for the client computer is standard
VRML97 viewing software, it is possible that different configurations will
work. For example, you might be able to run an operating system not listed in
the table “Supported Computer Platforms” on page 2-6. However, these
configurations have not been tested and they are not supported.

Software Requirements

Software Description

Operating
system

Microsoft Windows NT 4.0,Windows XP, or Windows
2000: the TCP/IP protocol must be installed.

Web browser Use Microsoft Internet Explorer 4.0 or higher, or
Netscape Navigator 4.0 or higher with Java enabled.

VRML plug-in VRML97 plug-in with External Authoring Interface
support. If you have blaxxun Contact (Windows) on
your computer, you have already installed a VRML
plug-in.

Windows platforms — You can install the blaxxun
Contact 4.4 plug-in provided with the Virtual Reality
Toolbox.

For information on how to install the blaxxun Contact
plug-in, see “Installing a VRML Plug-In (Windows)” on
page 2-20.

2 Installation

2-12

Installing the Virtual Reality Toolbox on the Host Computer
You might want to install the Virtual Reality Toolbox Version from a CD or
from the MathWorks Web site. For Web downloads, you need your Access Login
account. Before you install the Virtual Reality Toolbox, you need to get a valid
license file and/or personal license password. For detailed information about
the installation process, see the installation documentation for your platform.

This section contains the following topics:

• “Getting or Updating Your License” on page 2-12 — Valid license file and
personal license password (PLP)

• “Components on a Host Computer” on page 2-13 — Description of the
individual components used with the Virtual Reality Toolbox

• “Installing from CD (Windows)” on page 2-14 — PC installation procedure

• “Installing from CD (UNIX/Linux)” on page 2-15 — UNIX/Linux installation
procedure

• “Downloading from the Web” on page 2-16— Downloading the product from
the Web

• “LD_LIBRARY_PATH Environment Variable (UNIX)” on page 2-17 —
Setting the library path environment variable

• “Known Issue with the Virtual Reality Toolbox and Microsoft Internet
Explorer 6.0 (Windows)” on page 2-18 — Running the Virtual Reality
Toolbox viewer with Microsoft Internet Explorer 6.0

Getting or Updating Your License
Before you install the Virtual Reality Toolbox, you must have a valid license
file and/or personal license password (PLP). The license file and/or personal
license password identify the products you purchased from The MathWorks.
These are the products you are permitted to install and use.

When you purchase a product, The MathWorks sends you a license file and/or
personal license password (PLP) in an e-mail message. If you have not received
a PLP number, contact The MathWorks.

Installing the Virtual Reality Toolbox on the Host Computer

2-13

Components on a Host Computer
This section introduces you to the individual components of the Virtual Reality
Toolbox: what they are, what they are used for, and when they should or should
not be installed. If you are not interested, you can skip this section, or you can
simply accept the defaults at the component selection screen, and the
recommended default components are installed:

• Virtual Reality Toolbox — This component contains the core files that
interconnect MATLAB and Simulink to VRML. This component is required
for the Virtual Reality Toolbox to operate, and you must install it on the host
computer. This component is not used on a client computer.

• Virtual Reality Toolbox viewer — This is a multiplatform VRML viewer
that is included with the Virtual Reality Toolbox, and it is set as the default
viewer for displaying virtual worlds.

• VRML plug-in — Optionally, you can use a VRML plug-in for a Web browser
to view virtual reality worlds. The blaxxun Contact plug-in is included with
the Virtual Reality Toolbox for Windows platforms. However, you can also
use the Virtual Reality Toolbox viewer. A VRML plug-in is the only
component that you need to install on a client computer.

Internet http://www.mathworks.com/accesslogin

Log in to Access Login using your e-mail address and
password. Go to the My Licenses panel to determine your
PLP number.

E-mail mailto:service@mathworks.com. Include your license
number.

Telephone 508-647-7000. Ask for Customer Service.

Fax 508-647-7001. Include your license number.

2 Installation

2-14

• VRML editor — If you are going to create and modify virtual worlds, you
need a VRML97-compatible editor. V-Realm Builder is included with the
Virtual Reality Toolbox for Windows platforms. If you do not plan to edit
virtual reality worlds or if you prefer to use a different VRML editor, you do
not need to install it on your computer. For UNIX/Linux platforms, the
MATLAB editor is the default VRML editor. This component is not used on
a client computer.

• Example models — These are MATLAB and Simulink programs and models
connected to prebuilt virtual reality worlds. You can use these models and
virtual reality worlds both for discovering the capabilities of the Virtual
Reality Toolbox and as templates for building your own projects. This
component is not used on the client computer.

• Online documentation — This component contains the guide you are
reading now. You can access the online version through the MATLAB Help
browser. An Adobe Acrobat PDF file is available on the MathWorks Web site
at http://www.mathworks.com. Follow the links to product documentation.
This documentation can be read using the Adobe Acrobat Reader. If you do
not have this reader installed on your computer, you can download it from
http://www.adobe.com.

Installing from CD (Windows)
To install the Virtual Reality Toolbox from a CD on a Windows platform:

1 Insert the CD into your host CD-ROM drive.

The installation program should start automatically after a few seconds. If
the installation program does not start automatically, run setup.exe on the
CD.

During the installation process, a screen similar to the following allows you
to select the products to install.

2 Select the Virtual Reality Toolbox check box, then click Next.

Installing the Virtual Reality Toolbox on the Host Computer

2-15

3 Follow the instructions on each of the remaining screens.

Installation for the Virtual Reality Toolbox is complete.

The Virtual Reality Toolbox viewer is installed with the Virtual Reality
Toolbox. For PC platforms, you have the option of installing a VRML plug-in
for your browser as an alternative to the viewer. See “Installing a VRML
Plug-In (Windows)” on page 2-20.

If you are on a PC platform, you need to complete additional steps for installing
the VRML editor. See “Installing the VRML Editor (Windows)” on page 2-29.

Installing from CD (UNIX/Linux)
The following is an overview of how to install the Virtual Reality Toolbox on a
UNIX/Linux platform from the CD. If you have not installed any MathWorks
products before, consult the installation guide for your platform for a more
comprehensive explanation of the installation process:

1 Log in to your system.

2 Mount the CD-ROM drive.

3 Create a directory to be the mount point for the CD-ROM drive. For
example:

mkdir /cdrom

4 Create the installation directory and move into it using the cd command. For
example, to install into the location /usr/local/matlab7, use these
commands:

2 Installation

2-16

cd /usr/local
mkdir matlab7
cd matlab7

Subsequent instructions in this guide refer to this directory as $MATLAB.

Note This installation directory might already exist if you have installed
MATLAB on your system. In this case, move into the existing directory
using the cd command.

5 Move your license file, named license.dat, into the $MATLAB directory.

If you are upgrading an existing MATLAB installation, rename the license
file in $MATLAB/etc directory. The installer does not process the new license
file if it finds an existing license file in $MATLAB/etc.

6 Run the appropriate installation script for your platform.

/cdrom/install* & (Sun and Linux platforms)

7 During the installation process, a dialog box allows you to select the
products to install.

This dialog box lists all the products you are licensed to install in the Items
to Install box. Make sure the Virtual Reality Toolbox is listed in this box.

8 Follow the instructions on each of the remaining screens.

Installation for the Virtual Reality Toolbox is complete.

The Virtual Reality Toolbox viewer is the default viewer for UNIX platforms.
For more information, see “Virtual Reality Toolbox Viewer” on page 2-19.

If you are on a UNIX platform, the MATLAB editor is your default VRML
editor. For more information, see “VRML Editor (UNIX/Linux)” on page 2-30.

Downloading from the Web
The Virtual Reality Toolbox is available for Web download. You download
products from the Web when you want to obtain a demo, product update, or any
product available on a MATLAB installation CD:

1 Open your Web browser and navigate to http://www.mathworks.com.

Installing the Virtual Reality Toolbox on the Host Computer

2-17

2 From the list on the right side of the page, select Downloads.

3 Under Access Login Users, select download products.

The Access Login page appears.

4 Enter your E-mail Address and Password.

5 Click Log In.

The downloads page appears.

6 Select your platform and click Continue.

7 Select the Virtual Reality Toolbox and click Continue.

8 Follow the instructions on the Download and Install page to download and
install the Virtual Reality Toolbox successfully. For more specific
information relating to the installation of the Virtual Reality Toolbox, see
the installation guide for your platform.

Note To get the latest PDF file for a product, go to
http://www.mathworks.com and browse to the product’s name. The Roadmap
page for the selected product appears. This Roadmap page contains a link to
the latest version of the PDF documentation.

LD_LIBRARY_PATH Environment Variable (UNIX)
If your system does not have OpenGL properly installed when you run the
Virtual Reality Toolbox viewer, you might see an error message like the
following in the MATLAB window:

Invalid MEX-file 'matlab/toolbox/vr/vr/vrsfunc.mexglx':
libGL.so: cannot open shared object file

If you see an error like this, set the LD_LIBRARY_PATH environment variable.

If the LD_LIBRARY_PATH environment variable already exists, use a line like the
following to add the new path to the existing one:

2 Installation

2-18

setenv LD_LIBRARY_PATH
$MATLABROOT/sys/opengl/lib/<PLATFORM>:$LD_LIBRARY_PATH

If the LD_LIBRARY_PATH environment variable does not already exist, use a line
like the following:

setenv LD_LIBRARY_PATH $MATLABROOT/sys/opengl/lib/<PLATFORM>

In both cases, <PLATFORM> is the UNIX platform you are working in.

Known Issue with the Virtual Reality Toolbox and
Microsoft Internet Explorer 6.0 (Windows)
Microsoft Internet Explorer 6.0 might incorrectly interpret system Java library
paths, preventing Virtual Reality Toolbox components (such as those for the
Virtual Reality Toolbox viewer) from running properly. Netscape users do not
experience this problem.

If you are using Internet Explorer 6.0, you should manually edit the Java
library path for Microsoft Internet Explorer 6.0. Alternatively, you can also use
Microsoft Internet Explorer 5.5 with the Virtual Reality Toolbox.

Editing the Java Library Path
To manually edit the Java library path for Microsoft Internet Explorer 6.0,

1 Run the regedit command.

2 Go to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\JavaVM

A list of value names and their values appears.

3 Replace each instance of %systemroot% with the system root path. For
example,

C:\WINNT

4 Restart the computer.

Installing the VRML Viewer on the Host Computer

2-19

Installing the VRML Viewer on the Host Computer
You can use the Virtual Reality Toolbox viewer or VRML-enabled Web browser
to view virtual worlds. The Virtual Reality Toolbox viewer is the only viewer
that can be used on all supported platforms. The blaxxun Contact plug-in is
available for PC platforms only.

This section includes the following topics:

• “Virtual Reality Toolbox Viewer” on page 2-19 — Preferred method of
viewing virtual scenes.

• “Installing a VRML Plug-In (Windows)” on page 2-20 — Install the blaxxun
Contact plug-in.

• “Installing a VRML Plug-In (UNIX/Linux)” on page 2-23 — Install a
VRML97 plug-in with External Authoring Interface support.

• “Setting the Default Viewer of Virtual Scenes” on page 2-24 — View virtual
scenes with the Virtual Reality Toolbox viewer or your VRML-enabled Web
browser.

Virtual Reality Toolbox Viewer
The Virtual Reality Toolbox viewer is the preferred method of viewing a virtual
scene. The viewer can be used on any supported operating system. It is
installed and set as the default viewer when you install the Virtual Reality
Toolbox. You can view virtual scenes as soon as the Virtual Reality Toolbox is
installed on your machine.

Note It is possible to view virtual scenes with a Web browser that contains a
VRML plug-in. Every VRML plug-in installs Java classes into the Web
browser. It is best to limit the number of plug-ins you install on your machine
in order to avoid Java errors and conflicts. For this reason, use only the
Virtual Reality Toolbox viewer and the blaxxun Contact VRML plug-in on PC
platforms. On UNIX and Linux platforms, use only the Virtual Reality Toolbox
viewer.

2 Installation

2-20

Installing a VRML Plug-In (Windows)
When you install the Virtual Reality Toolbox, the Virtual Reality Toolbox
viewer is set as the default viewer. If you want to use a Web browser as a VRML
viewer, use the following procedure to install the blaxxun Contact plug-in. You
can use this plug-in with either Microsoft Internet Explorer or Netscape
Navigator. The blaxxun Contact plug-in is the only supported VRML plug-in.

Note The blaxxun Contact installer installs the plug-in for the current
default browser only. If you change the default browser, you need to complete
the install procedure a second time. The blaxxun Contact installation
executable files are located at C:\<MATLAB root>\toolbox\vr\blaxxun.

You must use blaxxun Contact 4.4 with the Virtual Reality Toolbox. This
version of the blaxxun Contact VRML plug-in is distributed with the Virtual
Reality Toolbox. The following procedure describes how to install the blaxxun
Contact VRML plug-in.

If you have the MATLAB Web Server installed on your machine, make sure
that the Web Server is stopped before you install the blaxxun Contact plug-in.
Also, verify that you are connected to the Internet before starting this
installation procedure:

1 Start MATLAB.

2 In the MATLAB Command Window, type

vrinstall -install viewer

MATLAB displays the message

Do you want to use OpenGL or Direct3d acceleration? (o/d)

3 Check the graphic card manual to determine the acceleration method to
select. If you are not sure, select Direct 3d by typing

d

The blaxxun installer starts running and displays the following dialog box.

Installing the VRML Viewer on the Host Computer

2-21

4 Follow the instructions on the remaining screens.

5 In the MATLAB Command Window, type

vrinstall -check

If the viewer installation was successful, MATLAB displays the following
message:

VRML viewer: installed

If the viewer installation was unsuccessful, MATLAB displays the message

VRML viewer: not installed

2 Installation

2-22

Known Issue with the blaxxun Contact Plug-In
The blaxxun Contact VRML plug-in can fail to update the virtual scene when
used with the Virtual Reality Toolbox and Microsoft Internet Explorer 5.5 and
above. Netscape users do not experience this problem.

If you are using Internet Explorer 5.5 or above, you must manually change a
network security setting before you can use blaxxun Contact 4.4 with the
Virtual Reality Toolbox Version 3.0 or later. Upgrading your version of blaxxun
Contact does not resolve this problem.

Changing the Default Network Security Setting
You must change your default network security setting before using the
blaxxun Contact plug-in with Internet Explorer 5.5 and above to ensure that
the virtual scene is updated appropriately:

1 Open Internet Explorer.

2 From the Tools menu, choose Internet Options.

The Internet Options dialog box opens.

3 Click the Security tab.

4 Click the Custom Level button.

The Security Settings dialog box opens.

5 Scroll down until you see Microsoft VM. The first subheading is Java
permissions.

6 Select Custom.

The Java Custom Settings button appears in the lower left of the Security
Settings dialog box.

7 Click Java Custom Settings.

The Local intranet dialog box opens.

8 Click the Edit Permissions tab.

Installing the VRML Viewer on the Host Computer

2-23

9 Scan the main headings and subheadings (marked with a lock icon) until
you see Run Unsigned Content.

10 Under Run Unsigned Content, find Access to all Network Addresses.

11 Under Access to all Network Addresses, select Enable.

12 Click OK.

The Local intranet dialog box closes.

13 In the Security Settings dialog box, click OK.

You are asked if you want to change the security settings for this zone.

14 Select Yes.

15 In the Internet Options dialog box, click OK.

Installing a VRML Plug-In (UNIX/Linux)
If you want to use a Web browser instead of the Virtual Reality Toolbox viewer
to view virtual scenes, you need to install a VRML97 plug-in with External
Authoring Interface (EAI) support. This requirement is met by blaxxun
Contact for Windows platforms. If you are using any other operating system,
you need to use the Virtual Reality Toolbox viewer to view virtual worlds.

Note blaxxun Contact is the only supported VRML plug-in.

2 Installation

2-24

Setting the Default Viewer of Virtual Scenes
If you install a VRML plug-in in your Web browser, it is possible to view virtual
scenes with either the Virtual Reality Toolbox viewer or your Web browser. You
determine the viewer used to display your scene using the vrsetpref and
vrgetpref commands. The following procedure assumes that you are working
on a PC platform:

1 At the MATLAB command prompt, type

vrinstall -check

to determine whether blaxxun Contact is installed.

MATLAB displays

VRML viewer: installed
VRML editor: installed

The viewer and editor are installed. If the viewer is not installed, see
“Installing a VRML Plug-In (Windows)” on page 2-20.

2 Determine your default viewer by typing

vrgetpref

MATLAB displays

Installing the VRML Viewer on the Host Computer

2-25

ans =

 DataTypeBool: 'logical'
 DataTypeInt32: 'double'
 DataTypeFloat: 'double'
 DefaultFigureAntialiasing: 'off'
 DefaultFigureDeleteFcn: ''
 DefaultFigureLighting: 'on'
 DefaultFigureMaxTextureSize: 'auto'
 DefaultFigureNavPanel: 'halfbar'
 DefaultFigureNavZones: 'off'
 DefaultFigurePosition: [5 92 576 380]
 DefaultFigureRecord2DCompressMethod: 'auto'
 DefaultFigureRecord2DCompressQuality: 75
 DefaultFigureRecord2DFileName: '%f_anim_%n.avi'
 DefaultFigureStatusBar: 'on'
 DefaultFigureToolBar: 'on'
 DefaultFigureTransparency: 'on'
 DefaultFigureWireframe: 'off'
 DefaultViewer: 'internal'
 DefaultWorldRecord3DFileName: '%f_anim_%n.wrl'
 DefaultWorldRecordMode: 'manual'
 DefaultWorldRecordInterval: [0 0]
 DefaultWorldRemoteView: 'off'
 DefaultWorldTimeSource: 'external'
 Editor: [1x60 char]
 HttpPort: 8123
 TransportBuffer: 5
 TransportTimeout: 20
 VrPort: 8123

The DefaultViewer property is set to 'internal'. The Virtual Reality
Toolbox viewer is the default viewer for viewing virtual scenes. Any virtual
scenes that you open are displayed in the viewer.

3 For example, at the MATLAB command prompt, type

vrplanets

The Planets demo is loaded and the virtual scene is displayed in the Virtual
Reality Toolbox viewer.

2 Installation

2-26

4 Change the default viewer to your Web browser by typing

vrsetpref('DefaultViewer','web')

The default Windows system VRML plug-in is used. The blaxxun Contact
VRML plug-in sets itself as the default VRML plug-in during its
installation.

5 At the MATLAB command prompt, type

vrplanets

The Planets demo is loaded and the virtual scene is displayed in your Web
browser.

Installing the VRML Viewer on the Host Computer

2-27

6 Reset the Virtual Reality Toolbox viewer as your default viewer by typing

vrsetpref('DefaultViewer','factory')

7 In the Virtual Reality Toolbox viewer for vrplanets, from the Simulation
menu, select Block Parameters.

A Parameters: VR Sink dialog box opens.

2 Installation

2-28

The target of the View button is determined by the DefaultViewer property.
If the DefaultViewer property is set to 'internal', clicking the View
button opens the virtual world in the Virtual Reality Toolbox viewer. If the
DefaultViewer property is set to 'web', clicking the View button opens the
virtual world in your Web browser.

Installing the VRML Editor on the Host Computer

2-29

Installing the VRML Editor on the Host Computer
You can create virtual worlds with a VRML authoring tool or by writing VRML
code in a text editor.

This section contains the following topics:

• “Installing the VRML Editor (Windows)” on page 2-29 — Install V-Realm
Builder on your PC.

• “VRML Editor (UNIX/Linux)” on page 2-30 — The MATLAB editor is the
default VRML editor for UNIX platforms.

• “Setting the Default Editor of Virtual Scenes” on page 2-30 — Edit virtual
scenes with a VRML authoring tool or a text editor.

Installing the VRML Editor (Windows)
When you install the Virtual Reality Toolbox, files are copied to your hard drive
for V-Realm Builder, but the installation is not complete.

Installing the VRML editor writes a key to the Windows registry, making extra
library files in V-Realm Builder available for you to use, and it associates the
Edit button in Virtual Reality Toolbox blocks with this editor:

1 Start MATLAB.

2 In the MATLAB Command Window, type

vrinstall -install editor

or type

vrinstall('-install','editor')

MATLAB displays the following messages:

Starting editor installation...
Done.

2 Installation

2-30

3 Type

vrinstall -check

If the editor installation was successful, MATLAB displays the following
message:

VRML editor: installed

VRML Editor (UNIX/Linux)
The MATLAB editor is the default VRML editor for UNIX platforms and no
installation is required. To create your virtual worlds using the MATLAB
editor, you need to understand the virtual reality modeling language and the
VRML data types that are relevant to MATLAB. For information about the
modeling language, refer to an appropriate third-party VRML book. Also, see
“VRML Data Types” on page 5-20 for the data types to use with MATLAB.

Alternatively, you can use a general 3-D modeling tool with VRML97 export
capabilities. Currently, no VRML editor with the functionality of those
available for Window platforms is commercially available for UNIX platforms.
However, an open source VRML editor, white_dune, is under development for
UNIX systems. See http://www.csv.ica.uni-stuttgart.de/vrml/dune for
more information.

Setting the Default Editor of Virtual Scenes
You can edit virtual scenes with a VRML authoring tool, such as V-Realm
Builder, or with any text editor, as the VRML language is written in text files.
You determine the editor that is used to edit your scene by using the vrsetpref
and vrgetpref commands.

The following procedure demonstrates how to change your editor from V-Realm
Builder to a text editor. It assumes that you are working on a PC platform:

Installing the VRML Editor on the Host Computer

2-31

1 At the MATLAB command prompt, type

vrinstall -check

to determine whether V-Realm Builder is installed.

MATLAB displays

VRML viewer: installed
VRML editor: installed

The viewer and editor are installed. If the editor is not installed, see
“Installing the VRML Editor (Windows)” on page 2-29.

2 Determine your default editor by typing

a = vrgetpref

MATLAB displays

a =
 DataTypeBool: 'logical'
 DataTypeInt32: 'double'
 DataTypeFloat: 'double'
 DefaultFigureAntialiasing: 'off'
 DefaultFigureDeleteFcn: ''
 DefaultFigureLighting: 'on'
 DefaultFigureMaxTextureSize: 'auto'
 DefaultFigureNavPanel: 'halfbar'
 DefaultFigureNavZones: 'off'
 DefaultFigurePosition: [5 92 512 380]
 DefaultFigureRecord2DCompressMethod: 'auto'
 DefaultFigureRecord2DCompressQuality: 75
 DefaultFigureRecord2DFileName: '%f_anim_%n.avi'
 DefaultFigureStatusBar: 'on'
 DefaultFigureToolBar: 'on'
 DefaultFigureTransparency: 'on'
 DefaultFigureWireframe: 'off'
 DefaultViewer: 'internal'
 DefaultWorldRecord3DFileName: '%f_anim_%n.wrl'
 DefaultWorldRecordMode: 'manual'
 DefaultWorldRecordInterval: [0 0]
 DefaultWorldRemoteView: 'off'

2 Installation

2-32

 DefaultWorldTimeSource: 'external'
 Editor: [1x60 char]
 HttpPort: 8123
 TransportBuffer: 5
 VrPort: 8123

The variable a is a structure array. You need to index into it to determine
the Editor property.

3 To determine your default editor, type

a.Editor

MATLAB displays

ans =
"%matlabroot\toolbox\vr\vrealm\program\vrbuild2.exe" "%file"

This is the path to the V-Realm Builder executable file. V-Realm Builder is
the current VRML editor.

4 Verify that V-Realm Builder is your default editor. At the MATLAB
command prompt, type

vrpend

The Inverted Pendulum demo loads and the pendulum is visible in the
viewer.

5 In the Virtual Reality Toolbox viewer for vrpend, from the Simulation
menu, select Block Parameters.

The Parameters: VR Sink dialog box opens.

Installing the VRML Editor on the Host Computer

2-33

6 Click Edit.

The vrpend model opens in the V-Realm Builder authoring tool.

2 Installation

2-34

7 At the MATLAB window, change the default editor to the MATLAB editor
by typing

vrsetpref('Editor','%matlabroot\bin\win32\meditor.exe %file')

You can set your editor to any text editor you want to use by specifying the
path to the executable of the text editor.

8 In the Virtual Reality Toolbox viewer for vrpend, from the Simulation
menu, select Block Parameters.

The Parameters: VR Sink dialog box opens.

9 Click Edit.

The MATLAB editor opens and is now set as your default VRML editor.

Installing the VRML Editor on the Host Computer

2-35

10 To reset the V-Realm Builder authoring tool as your default VRML editor,
type

vrsetpref('Editor','factory')

Clicking the Edit button now launches V-Realm Builder.

2 Installation

2-36

Removing Components (Windows)
Normally, you should not have to uninstall the Virtual Reality Toolbox, the
blaxxun Contact plug-in, or V-Realm Builder. If you do, see the following topics
for the appropriate procedures:

• “Removing the Virtual Reality Toolbox and V-Realm Builder (Windows)” on
page 2-36 — Uninstalling the Virtual Reality Toolbox and V-Realm Builder

• “Removing the blaxxun Contact Plug-In (Windows)” in Chapter 2 —
Uninstalling the blaxxun Contact plug-in

Removing the Virtual Reality Toolbox and V-Realm
Builder (Windows)
Use the MathWorks uninstaller. Running this utility removes the Virtual
Reality Toolbox and V-Realm Builder from your system. It also restores your
previous system configuration:

1 On the Microsoft Windows task bar, click Start, point to MATLAB, and then
click R14 uninstaller.

The MathWorks uninstaller begins running.

2 Clear the Virtual Reality Toolbox check box.

3 Follow the remaining uninstall instructions.

Note The blaxxun Contact plug-in is not uninstalled during the Virtual
Reality Toolbox removal.

Removing Components (Windows)

2-37

Removing the blaxxun Contact Plug-In (Windows)
You can uninstall this VRML plug-in from the host computer by using the
following procedure:

1 From the Microsoft Windows task bar, click Start, point to Settings, and
click Control Panel.

2 In the Control Panel cascading menu, click Add/Remove Programs.

3 In the Add/Remove Programs dialog box, select blaxxun Contact, then
click the Change/Remove button.

2 Installation

2-38

Installing on the Client Computer
In most configurations, you do not need to install a viewer on a client computer
because you can perform all the tasks on a host computer. However, if you have
very large models that take considerable computational resources, you might
want to use a client computer to run and view the virtual world.

The client computer must have a VRML97 plug-in with External Authoring
Interface (EAI) support. This means that your client computer must be a PC
platform with the blaxxun Contact plug-in. Only blaxxun Contact is supported.

The section “Installing a VRML Plug-In (Windows)” on page 2-38 describes
how to install the blaxxun Contact VRML plug-in on a computer running
Microsoft Windows.

Installing a VRML Plug-In (Windows)
If you want to view a virtual world on a client computer, you need to use a Web
browser with a VRML plug-in.

The blaxxun Contact plug-in is provided with the Virtual Reality Toolbox, but
you cannot install the blaxxun Contact plug-in Version 4.4 on a client computer
with the MathWorks installer. If you do not have this plug-in installed:

• Copy the file blaxxuncontact44.exe from your host computer to the client
computer. This file is located at C:\<MATLAB root>\toolbox\vr\blaxxun.

Testing the Installation

2-39

Testing the Installation
The Virtual Reality Toolbox includes several Simulink models with the
associated virtual worlds. These models are examples of what you can do with
this toolbox. You can use one of these examples to test the installation of the
Virtual Reality Toolbox, the VRML viewer, and the VRML editor.

This section contains the following topics:

• “Running a Simulink Interface Example” on page 2-39 — Open a Simulink
model for an inverted pendulum, start a simulation, and view the pendulum
in a virtual world.

• “Running a MATLAB Interface Example” on page 2-44 — View a virtual
world of the MathWorks membrane.

Running a Simulink Interface Example
In the demo directory for the Virtual Reality Toolbox, there is a Simulink model
for a two-dimensional inverted pendulum. This model, which you can view in
three dimensions with the toolbox, has an interactive set point and trajectory
graph.

Before you can run this demo, you have to install MATLAB, Simulink, and the
Virtual Reality Toolbox:

1 In the MATLAB Command Window, type

vrpend

A Simulink window opens with the model for an inverted pendulum.

2 Installation

2-40

The Virtual Reality Toolbox viewer opens with a 3-D model of the pendulum.

Testing the Installation

2-41

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start. A Trajectory Graph window opens, and a simulation starts running.

2 Installation

2-42

3 In the Virtual Reality Toolbox viewer, point to a position on the blue surface
and left-click.

The pendulum set point, represented by the green cone, moves to a new
location. Next, the path is drawn on the trajectory graph, and then the
pendulum itself moves to the new location.

In the Virtual Reality Toolbox viewer, you see the animated movement of the
pendulum. Use the viewer controls to navigate through the virtual world,
change the viewpoints, and move the set point. For more information about
using the Virtual Reality Toolbox viewer controls, see “Virtual Reality
Toolbox Viewer” on page 6-2.

4 In the Simulink window, double-click the Trajectory Graph block.

The Block Parameters: Trajectory Graph dialog box opens.

5 From the Setpoint mode list, choose Mouse, then click OK.

You can now use the trajectory graph as a 2-D input device to set the position
of the pendulum.

Testing the Installation

2-43

6 Move the mouse pointer into the graph area and click.

The set point (red circle) for the pendulum position moves to a new location.

7 In the Simulink window, from the Simulation menu, click Stop.

The trajectory for the pendulum is displayed in the graph as a blue line.

8 Close the Virtual Reality Toolbox viewer and close the Simulink window.

You can try other examples in “Simulink Interface Examples” on page 1-16, or
you can start working on your own projects.

2 Installation

2-44

Running a MATLAB Interface Example
This model, which can be viewed in three dimensions with the toolbox, has a
MATLAB interface to control the figure in a VRML viewer window.

Additional examples are listed in the table “MATLAB Interface Examples” on
page 1-24:

1 In the MATLAB window, type

vrmemb

MATLAB displays the following messages:

Loading...

This example shows you how to to use a MATLAB generated 3-D graphic
object in the Virtual Reality Toolbox.
. . .
Press Enter to start the demonstration.

2 Press the Enter key.

The Virtual Reality Toolbox viewer opens with a 3-D model.

Testing the Installation

2-45

3 Use the viewer controls to move within the virtual world, or use the demo
dialog box to rotate the membrane. Note that sometimes the Virtual Reality
Toolbox Demo dialog box is hidden behind the viewer window.

2 Installation

2-46

3

Simulink Interface

The Virtual Reality Toolbox works with both MATLAB and Simulink. However, the Simulink
interface is the preferred way of working with the toolbox. It is more straightforward to use and all
the toolbox features are easily accessible through a graphical user interface (GUI).

Associating a Virtual World with
Simulink (p. 3-2)

Associate a Simulink model with a virtual world, and
connect signals from the Simulink model to the virtual
world

Using the Simulink Interface (p. 3-12) Open a Simulink model, display the associated virtual
world on a host computer or on a client computer, and
observe the simulated process in the virtual world

3 Simulink Interface

3-2

Associating a Virtual World with Simulink
With the Virtual Reality Toolbox you can interface a Simulink block diagram
with a virtual world. The example in this section explains how to display a
simulated virtual world on a host computer. This is the recommended way to
view associated virtual worlds on the host computer.

This section includes the following topics:

• “Adding a Virtual Reality Toolbox Block” on page 3-2 — Connect a Simulink
model to a virtual world

• “Changing the Virtual World Associated with a Simulink Block” on
page 3-10 — Change the virtual world associated with a Simulink model,
and change the signals passed between Simulink and the virtual world

Adding a Virtual Reality Toolbox Block
Simulating a Simulink model generates signal data for a dynamic system. By
connecting the Simulink model to a virtual world, you can use this data to
control and animate the virtual world.

After you create a virtual world and a Simulink model, you can connect the two
with Virtual Reality Toolbox blocks. The example in this procedure simulates
a plane taking off and lets you view it in a virtual world.

Note The examples in this topic are based on the Virtual Reality Toolbox
default viewer. If you choose to use the blaxxun Contact VRML plug-in to view
virtual worlds, you must start and stop the model simulation from the
Simulink window. You cannot start and stop the model simulation from the
blaxxun Contact VRML plug-in.

1 In the MATLAB Command Window, type

vrtut2

A Simulink model opens without a Virtual Reality Toolbox block that
connects the model to a virtual world.

Associating a Virtual World with Simulink

3-3

2 From the Simulation menu, select Normal, then click Start.

Observe the results of the simulation in the scope windows.

3 In the MATLAB Command Window, type

vrlib

The Virtual Reality Toolbox library opens.

3 Simulink Interface

3-4

4 From the Library window, drag and drop the VR Sink block to the Simulink
diagram. The VR Sink block writes data from the Simulink model to the
virtual world. (For a description of all the Simulink blocks for the Virtual
Reality Toolbox, see Chapter 7, “Block Reference.”) You can then close the
Library: vrlib window.

Now you are ready to select a virtual world for the visualization of your
simulation. A simple virtual world with a runway and a plane is in the
VRML file vrtkoff.wrl, located in the vrdemos directory.

5 In the Simulink model, double-click the block labeled VR Sink.

The Parameters: VR Sink dialog box opens.

Associating a Virtual World with Simulink

3-5

6 In the Description text box, enter a brief description of the model. This
description appears on the list of available worlds served by the Virtual
Reality Toolbox server. For example, type

VR Plane taking off

7 Click the Browse button. The Select World dialog box opens. Find the
directory <matlab root>\toolbox\vr\vrdemos. Select the file vrtkoff.wrl
and click Open.

8 In the Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side, showing the structure of the
associated virtual reality scene.

3 Simulink Interface

3-6

9 On the left of the Plane (Transform) node, click the + square.

The Plane Transform tree expands. Now you can see what characteristics of
the plane can be driven from Simulink. This model computes the position
and the pitch of the plane.

10 In the Plane (Transform) tree, select the translation and rotation fields.

The selected fields are marked with checks. These fields represent the
position (translation) and the pitch (rotation) of the plane.

11 Click OK.

In the Simulink diagram, the VR Sink block is updated with two inputs.

Associating a Virtual World with Simulink

3-7

The first input is Plane rotation. The rotation is defined by a four-element
vector. The first three numbers define the axis of rotation. In this example,
it should be [1 0 0] for the x-axis (see the Pitch Axis of Rotation block in the
model). The pitch of the plane is expressed by the rotation about the x-axis.
The last number is the rotation angle around the x-axis, in radians.

12 In the Simulink model, connect the line going to the Scope block labeled
Display Pitch to the Plane rotation input.

The second input is Plane translation. This input describes the plane’s
position in the virtual world. This position consists of three coordinates, x,
y, z. The connected vector must have three values. In this example, the
runway is in the x-z plane (see the VR Signal Expander block). The y-axis
defines the altitude of the plane.

13 In the Simulink model, connect the line going to the Scope block labeled
Display Position to the Plane translation input.

After you connect the signals and remove the Scope blocks, your model
should look similar to the figure shown.

3 Simulink Interface

3-8

Note Virtual world degrees of freedom have different requested input vector
sizes depending on the associated VRML field types. If the vector size of the
connected signal does not match the associated VRML field size, an Incorrect
input vector size error is reported when you start the simulation.

14 Double-click the VR Sink block in the Simulink model. Select the View
button. A viewer window containing the plane’s virtual world opens.

Associating a Virtual World with Simulink

3-9

15 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start to run the simulation.

A plane, moving right to left, starts down the runway and takes off into the
air.

3 Simulink Interface

3-10

Changing the Virtual World Associated with a
Simulink Block
On occasion, you might want to associate a different virtual world with a
Simulink model or connect different signals.

After you associate a virtual world with a Simulink model, you can select
another virtual world or change signals connected to the virtual world. This
procedure assumes that you have connected the vrtut2 Simulink model with a
virtual world. See “Adding a Virtual Reality Toolbox Block” on page 3-2.

1 Double-click the VR Sink block in the model.

The viewer displays.

2 Select the Simulation menu Block Parameters option.

The Parameters: VR Sink dialog box opens.

Associating a Virtual World with Simulink

3-11

3 Click the Browse button. The Select World dialog box opens. Find the
directory <matlab root>\toolbox\vr\vrdemos. Select the file
vrtkoff2.wrl, and click Open.

4 In the Parameters: VR Sink dialog box, click Apply.

A VRML tree appears on the right side. Simulink associates a new virtual
world with the model.

5 On the left of the Plane (Transform) node, click the + square.

The Plane Transform tree expands. Now you can see what characteristics
of the plane you can drive from Simulink. This model computes the position.

6 In the Plane Transform tree, select the translation field check box. Clear
the rotation field check box. Click OK.

The VR Sink block is updated and changes to just one input, the Plane
translation. The Virtual Reality block is ready to use with the new
parameters defined.

7 Verify that the correct output is connected to your VR Sink block. The output
from the VR Signal Expander should be connected to the single input.

8 In the Virtual Reality Toolbox viewer, from the Simulation menu, run the
simulation again and observe the simulation.

3 Simulink Interface

3-12

Using the Simulink Interface
You can view a virtual world connected to a Simulink block diagram and make
parameter changes from Simulink or the virtual world.

This section includes the following topics:

• “Displaying a Virtual World and Starting Simulation” on page 3-12 —
Display and interact with a virtual world on your host computer using the
Virtual Reality Toolbox viewer.

• “Viewing a Virtual World with a Web Browser on the Host Computer” on
page 3-15 — Connect to the Virtual Reality Toolbox host to access and view
virtual worlds.

• “Viewing a Virtual World with a Web Browser on the Client Computer” on
page 3-19 — Display and interact with a virtual world on a client computer.

Displaying a Virtual World and Starting Simulation
This example explains how to display a simulated virtual world using the
Virtual Reality Toolbox viewer on your host computer. This is the default and
recommended method for viewing virtual worlds. A Simulink window opens
with the model of a simple automobile. Automobile trajectory (vehicle position
and angle) is viewed in virtual reality:

1 In the MATLAB Command Window, type

vrtut1

Using the Simulink Interface

3-13

A Simulink window opens with the model of an automobile.

3 Simulink Interface

3-14

A VRML viewer also opens with a 3-D model of the virtual world associated
with the model.

2 In the Virtual Reality Toolbox viewer, from the Simulation menu, click
Start.

The simulation starts. In the Virtual Reality Toolbox viewer, a car moves
along the mountain road.

3 Use the Virtual Reality Toolbox viewer controls to move the camera within
this virtual world while the simulation is running. For more information on
the Virtual Reality Toolbox viewer controls, see “Virtual Reality Toolbox
Viewer” on page 6-2.

4 In the Virtual Toolbox viewer, from the Simulation menu, click Stop.

Using the Simulink Interface

3-15

Opening a Viewer Window
If you close the viewer window, you might want to reopen it. In the Simulink
model window, double-click the VR Sink block.

Your default viewer opens and displays the virtual scene. For more information
on setting your default viewer, see “Setting the Default Viewer of Virtual
Scenes” on page 2-24.

Multiple instances of the viewer can exist on your screen. A viewer appears
each time you select the File menu New Window option in the Virtual Reality
Toolbox viewer. This feature is particularly useful if you want to view one scene
from many different viewpoints at the same time.

Viewing a Virtual World with a Web Browser on the
Host Computer
Normally, you view a virtual world by double-clicking the VR Sink in the
Simulink model. The virtual world opens in the Virtual Reality Toolbox viewer
or your VRML-enabled Web browser, depending on your DefaultViewer
setting. For more information on setting your default viewer, see “Setting the
Default Viewer of Virtual Scenes” on page 2-24.

Alternatively, you can view a virtual world in your Web browser by selecting
an open virtual world from a list in your Web browser. You can display the
HTML page that contains this list by connecting to the Virtual Reality Toolbox
host. This is the computer on which the toolbox is currently running. You do
not need a VRML-enabled Web browser to display this page.

The following procedure describes how to connect to the Virtual Reality
Toolbox host:

1 At the MATLAB command prompt, type

vrbounce

The VR Bouncing Ball demo is loaded and becomes active.

3 Simulink Interface

3-16

2 Open your VRML-enabled Web browser. In the address line of the browser,
type

http://localhost:8123

Note To connect to the main HTML page from a client computer, type
http://hostname:8123, where hostname is the name of the computer on
which the toolbox is currently running.

The following page is loaded and becomes active.

Using the Simulink Interface

3-17

The main HTML page for the Virtual Reality Toolbox lists the currently
available (active) virtual worlds. In this example, the VR Bouncing Ball
virtual world appears as a link.

3 Click VR Bouncing Ball.

The VR Bouncing Ball virtual world appears in your Web browser.

3 Simulink Interface

3-18

From the main HTML page, you can select one of the listed available worlds or
click the reload link to update the status of the virtual worlds supported by the
toolbox. This page does not require the VRML capabilities from the browser; it
is a standard HTML page. Nevertheless, when you click one of the virtual
world links in the list, the browser has to be VRML-enabled to display the
virtual world correctly and to communicate with the Virtual Reality Toolbox.

Using the Simulink Interface

3-19

Viewing a Virtual World with a Web Browser on the
Client Computer
The Virtual Reality Toolbox allows you to simulate a process on a host
computer while running the visualization of the process on a client computer.
You view the virtual world on the client computer using a Web browser. This
client computer is connected to the host computer through a network using the
TCP/IP protocol. This means you need to know the name or IP address of the
host computer you want to access from the client computer.

Viewing a virtual world on a client computer might be useful for remote
computing, presentation of the results over the Web, or in situations where it
is desirable to distribute computing and graphical power.

This example explains how to display a simulated virtual world on a client
computer. In this case, the client computer is a PC platform with the blaxxun
Contact plug-in. In this example, a Simulink window opens with the model of
a simple automobile. The automobile trajectory (vehicle position and angle) is
viewed in virtual reality:

1 On the host computer, in the MATLAB Command Window, type

vrtut1

A Simulink window opens with the model of an automobile.

3 Simulink Interface

3-20

2 Double-click the VR Sink block. This block is in the right part of the model
window.

A VRML viewer also opens with a 3-D model of the virtual world associated
with the model.

3 In the VRML viewer, select the Simulation menu Block Parameters
option.

A Parameters: VR Sink dialog box opens.

Using the Simulink Interface

3-21

4 Select the Allow viewing from the Internet check box.

Note This option allows any computer connected to the network to view your
model. You should never select this box when you want your model to be
private or confidential.

5 Click OK.

6 On the client computer, open your VRML-enabled Web browser. In the
Address line, enter the address and Virtual Reality Toolbox port number for
the host computer running Simulink. For example, if the IP address of the
host computer is 192.168.0.1, enter

http://192.168.0.1:8123

3 Simulink Interface

3-22

To determine your IP address on a Windows system,

- Click Start, click Run, type cmd, and enter ipconfig (Windows 2000).

- Click Start, click Run, in the Open box enter wntipcfg (Windows NT).

To determine your IP address on a UNIX system, type the command

ifconfig device_name

Click OK. An IP Configuration dialog box opens with a list of your IP,
mask, and gateway addresses.

Alternatively, for Windows platforms, you can open a DOS shell and type
ipconfig.

The Web browser displays the main Virtual Reality Toolbox HTML page.
Only one virtual world is in the list because you have only one Simulink
model open.

Using the Simulink Interface

3-23

3 Simulink Interface

3-24

7 Click Car in the Mountains.

The Web browser displays a 3-D model of the virtual world associated with
the model.

Using the Simulink Interface

3-25

8 On the host computer, in the Simulink window, from the Simulation menu,
click Start.

On the client computer, the animation of the scene reflects the process
simulated in the Simulink diagram on the host computer.

You can tune communication between the host and the client computer by
setting the Sample time and Transport buffer size parameters.

9 Use the Web browser controls to move within this virtual world while the
simulation is running.

10 On the host computer, in the Simulink window, from the Simulation menu,
click Stop. On the client computer, close the Web browser window.

3 Simulink Interface

3-26

4

MATLAB Interface

Although using the Virtual Reality Toolbox with the Simulink interface is the preferred way of
working with the toolbox, you can also use the MATLAB interface. Enter commands directly in the
MATLAB Command Window or use M-files to control virtual worlds.

Using the MATLAB Interface (p. 4-2) Control virtual worlds by entering commands directly in
the MATLAB Command Window or by using M-files

Recording Offline Animations (p. 4-10) Record simulations and object movement into animation
files for later offline viewing.

4 MATLAB Interface

4-2

Using the MATLAB Interface
This section includes the following topics:

• “Creating a vrworld Object” on page 4-2 — Create a vrworld object to connect
MATLAB with a virtual world

• “Opening a Virtual World” in Chapter 4 — Open a virtual world and scan its
structure

• “Interacting with a Virtual World” on page 4-5 — Set new values for the
available virtual world nodes and their fields

• “Closing and Deleting a vrworld Object” on page 4-8 — Close open virtual
worlds and remove them from memory

Creating a vrworld Object
To connect MATLAB to a virtual world and to interact with that virtual world
through the MATLAB command-line interface, you need to create vrworld and
vrnode objects. You cannot directly interact with a virtual world. A virtual
world is defined by a VRML file with the extension .wrl. For a complete list of
virtual world methods, see “vrworld Object Methods” on page 8-3, “vrnode
Object Methods” on page 8-4, and “vrfigure Object Methods” on page 8-4.

Note The Simulink interface and the MATLAB interface share the same
virtual world objects. This enables you to use the MATLAB interface to
change the properties of vrworld objects originally created by Simulink with
Virtual Reality Toolbox blocks.

After you create a virtual world, you can create a vrworld object. This
procedure uses the virtual world vrmount.wrl as an example:

1 Open MATLAB. In the MATLAB Command Window, type

myworld = vrworld('vrmount.wrl')

Using the MATLAB Interface

4-3

MATLAB displays output like

myworld =
vrworld object: 1-by-1

VR Car in the Mountains
(<matlab-root>/toolbox/vr/vrdemos/vrmount.wrl)

2 Type

vrwhos

MATLAB displays the messages

Closed, associated with
'C:<matlab root>\toolbox\vr\vrdemos\vrmount.wrl'.
Visible for local viewers.
No clients are logged on.

The vrworld object myworld is associated with the virtual world vrmount.wrl.
You can think of the variable myworld as a handle to the vrworld object stored
in the MATLAB workspace.

Your next step is to open a virtual world using the vrworld object. See
“Opening a Virtual World” on page 4-3.

Opening a Virtual World
Opening a virtual world lets you view the virtual world in a VRML viewer, scan
its structure, and change virtual world properties from the MATLAB
Command Window.

After you create a vrworld object, you can open the virtual world by using the
vrworld object associated with that virtual world. This procedure uses the
vrworld object myworld associated with the virtual world vrmount.wrl as an
example:

1 In the MATLAB Command Window, type

open(myworld);

MATLAB opens the virtual world vrmount.wrl.

4 MATLAB Interface

4-4

2 Type

set(myworld, 'Description', 'My first virtual world');

The Description property is changed to My first virtual world. This is
the description that is displayed in all Virtual Reality object listings, in the
title bar of the Virtual Reality Toolbox viewer, and in the list of virtual
worlds on the Virtual Reality Toolbox HTML page.

3 Display the virtual world vrmount.wrl. Type

view(myworld)

The viewer that is set as the default viewer displays the virtual scene. This
is typically the Virtual Reality Toolbox viewer unless you have a different
viewer set.

Alternatively, you can display the virtual world in a VRML-enabled Web
browser.

1 Repeat steps 1 and 2 of the preceding procedure.

2 Open a Web browser. In the Address box, type

http://localhost:8123

The browser displays the Virtual Reality Toolbox HTML page with a link to
My first virtual world. The number 8123 is the default Virtual Reality
Toolbox port number. If you set a different port number on your system,
enter that number in place of 8123. For more information on the Virtual
Reality Toolbox HTML page, see “Viewing a Virtual World with a Web
Browser on the Host Computer” on page 3-15.

3 If the Web browser has the VRML plug-in installed, in the browser window,
click My first virtual world.

4 Your default VRML-enabled Web browser displays the virtual world
vrmount.wrl.

Using the MATLAB Interface

4-5

Note If your Web browser is not VRML-enabled, clicking on a virtual world
link such as My first virtual world results in a broken link message. The
browser cannot display the virtual world. If you get such a message, ensure
that the Web browser is properly enabled for VRML with the blaxxun Contact
plug-in. For details, see Chapter 2, “Installation.”

For more information on changing your default viewer, see “Setting the Default
Viewer of Virtual Scenes” on page 2-24.

Interacting with a Virtual World
In the life cycle of a vrworld object you can set new values for all the available
virtual world nodes and their fields using vrnode object methods. This way, you
can change and control the degrees of freedom for the virtual world from within
the MATLAB environment.

An object of type vrworld contains nodes named in the VRML file using the
DEF statement. These nodes are of type vrnode. For more information, see
“vrworld Object Methods” on page 8-3 and “vrnode Object Methods” on
page 8-4 for a full description of these objects.

After you open a vrworld object, you can get a list of available nodes in the
virtual world. This procedure uses the vrworld object myworld and the virtual
world vrmount.wrl as an example:

1 In the MATLAB Command Window, type

nodes(myworld);

MATLAB displays a list of the vrnode objects and their fields that are
accessible from the Virtual Reality Toolbox.

4 MATLAB Interface

4-6

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]
Bridge (Shape) [My first virtual world]
River (Shape) [My first virtual world]
ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]
Wood (Group) [My first virtual world]
Tree1 (Group) [My first virtual world]
Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
View1 (Viewpoint) [My first virtual world]

2 Type

mynodes = get(myworld, 'Nodes')

MATLAB creates an array of vrnode objects corresponding to the virtual
world nodes and displays

mynodes =

vrnode object: 13-by-1

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]
Bridge (Shape) [My first virtual world]
River (Shape) [My first virtual world]
ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]
Wood (Group) [My first virtual world]
Tree1 (Group) [My first virtual world]
Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
View1 (Viewpoint) [My first virtual world]

Using the MATLAB Interface

4-7

3 Type

whos

MATLAB displays the messages

Name Size Bytes Class

 ans 1x1 132 vrfigure object
 mynodes 13x1 3564 vrnode object
 myworld 1x1 132 vrworld object

Now you can get node characteristics and set new values for certain node
properties. For example, you can change the position of the automobile by
using Automobile, which is the fourth node in the virtual world.

4 Access the fields of the Automobile node by typing

fields(myworld.Automobile)

or

fields(mynodes(10));

MATLAB displays information like the following table.

Field Access Type Sync

addChildren eventIn MFNode off
removeChildren eventIn MFNode off
children exposedField MFNode off
center exposedField SFVec3f off
rotation exposedField SFRotation off
scale exposedField SFVec3f off
scaleOrientation exposedField SFRotation off
translation exposedField SFVec3f off
bboxCenter field SFVec3f off
bboxSize field SFVec3f off

4 MATLAB Interface

4-8

The Automobile node is of type Transform. This VRML node allows you to
change its position by changing its translation field values. From the list,
you can see that translation requires three values, representing the [x y z]
coordinates of the object.

5 Type

view(myworld)

Your default viewer opens and displays the virtual world vrmount.wrl.

6 Move the MATLAB window and the browser window side by side so you can
view both at the same time. In the MATLAB Command Window, type

myworld.Automobile.translation = [15 0.25 20];

MATLAB sets a new position for the Automobile node, and you can observe
that the car is repositioned in the VRML browser window.

You can change the node fields listed by using the function vrnode/setfield.

Note The dot notation is the preferred method for accessing nodes.

Closing and Deleting a vrworld Object
After you are finished with a session, you must close all open virtual worlds and
remove them from memory:

1 In the MATLAB Command Window, type

close(myworld);
delete(myworld);

The virtual world representation of the vrworld object myworld is removed
from memory. All possible connections to the viewer and browser are closed
and the virtual world name is removed from the list of available worlds.

Using the MATLAB Interface

4-9

Note Closing and deleting a virtual world does not delete the vrworld object
handle myworld from the MATLAB workspace.

4 MATLAB Interface

4-10

Recording Offline Animations
The Virtual Reality Toolbox enables you to record animations of virtual scenes
that are controlled by Simulink or MATLAB. You can record simulations
through either the Virtual Reality Toolbox viewer (described in Chapter 6,
“Viewing Virtual Worlds”) or the MATLAB interface (described in this section).
You can then play back these animations offline, in other words, independent
of MATLAB, Simulink, or the Virtual Reality Toolbox. You might want to
generate such files for presentations, to distribute simulation results, or to
generate archives.

Note Optimally, use the Virtual Reality Toolbox viewer (Chapter 6, “Viewing
Virtual Worlds”) to record animations of virtual worlds associated with
Simulink models. This method ensures that all necessary virtual world and
vrfigure properties are properly set to record simulations. The Virtual
Reality Toolbox viewer is the recommended interface to record animations. If
you are working with virtual scenes controlled from MATLAB, you can still
record virtual scenes through the MATLAB interface.

You can save the virtual world offline animation data in the following formats:

• 3-D VRML file — The Virtual Reality Toolbox traces object movements and
saves that data into a VRML file using VRML97 standard interpolators. You
can then view these files with the Virtual Reality Toolbox viewer. 3-D VRML
files typically use much less disk space than Audio Video Interleave (AVI)
files. If you make any navigation movements in the Virtual Reality Toolbox
viewer while recording the animation, the Virtual Reality Toolbox does not
save any of these movements.

Note If you distribute VRML animation files, be sure to also distribute all
the inlined object and texture files referenced in the original VRML world file.

Recording Offline Animations

4-11

• 2-D Audio Video Interleave (AVI) file — The Virtual Reality Toolbox writes
animation data into an .avi file. The Virtual Reality Toolbox uses vrfigure
objects to record 2-D animation files. The recorded 2-D animation reflects
exactly what you see in the viewer window. It includes any navigation
movements you make during the recording.

Note While recording 2-D .avi animation data, always ensure that the
Virtual Reality Toolbox viewer is the topmost window and fully visible.
Graphics acceleration limitations might prevent the proper recording of 2-D
animation otherwise.

This section contains the following topics. These topics use the vrplanets demo
as the example.

• “Animation Recording File Tokens” on page 4-12 — Describes the filename
tokens you can use to direct the Virtual Reality Toolbox viewer to record an
animation.

• “Manual 3-D VRML Animation Recording” on page 4-14 — Describes how to
manually record animation files.

• “Scheduled 3-D VRML Animation Recording” on page 4-19 — Describes how
to perform scheduled animation recording.

• “Viewing Animation Files” on page 4-24 — Describes how to view recorded
animations.

• “MATLAB Animation Recording of Virtual Worlds Not Associated with
Simulink Models” on page 4-26 — Describes how you can record offline
animations for virtual worlds that are not associated with Simulink models.

4 MATLAB Interface

4-12

Animation Recording File Tokens
By default, the Virtual Reality Toolbox records animations in a file named
according to the following format:

%f_anim_%n.<extension>

This format creates a unique filename each time you record the animation. The
Virtual Reality Toolbox places the file in the current directory. %f and %n are
tokens, where %f is replaced with the name of the virtual world associated with
the model and %n is a number that is incremented each time you record an
animation for the same virtual world. If you do not change the default filename,
for example, if the name of the virtual world file is vrplanets and you record
the simulation for the first time, the animation file is:

vrplanets_anim_1.wrl

If you run and record the simulation a second time, the animation filename is
vrplanets_anim_2.wrl.

You can use a number of tokens to customize the automated generation of
animation files. This section describes how to use these tokens to create
varying animation filenames. The following tokens are the same for .wrl and
.avi files.

Token Description

%d The full path to the world VRML file replaces this token in
the filename string and creates files in directories relative
to the virtual world file location. For example, the format
%d/animdir/animfile.avi saves the animation into the
animdir subdirectory of the directory containing the virtual
world VRML file. This token is most helpful if you want to
ensure that the virtual world file and animation file are in
the same directory.

%D The current day in the month replaces this token in the
filename string. For example, the format %f_anim_%D.wrl
saves the animation to vrplanets_anim_29.wrl for the
29th day of the month.

Recording Offline Animations

4-13

%f The virtual world filename replaces this token in the
filename string and creates files whose root names are the
same as those of the virtual world. For example, the format
%f_anim_%D.wrl saves the animation to
vrplanets_anim_29.wrl. This token might be useful if you
use different virtual worlds for one model.

%h The current hour replaces this token in the filename string.
For example, the format %f_anim_%h.wrl saves the
animation to vrplanets_anim_14.wrl for any time between
14:00 and 15:00.

%m The current minute replaces this token in the filename
string. For example, the format %f_anim_%h%m.wrl saves
the animation to vrplanets_anim_1434.wrl for a start
record time of 14:34.

%M The current month replaces this token in the filename
string. For example, the format %f_anim_%M.wrl saves the
animation to vrplanets_anim_4.wrl for a start record time
in April.

%n The current incremental number replaces this token in the
filename string and creates rolling numbered filenames
such that subsequent runs of the model simulation create
incrementally numbered filenames. This feature allows you
to run a Simulink model multiple times but create a unique
file at each run. For example, the format %f_anim_%n.wrl
saves the animation to vrplanets_anim_1.wrl on the first
run, vrplanets_anim_2.wrl on the second run, and so
forth. This token is useful if you expect to create files of
different parts of the model simulation.

Token Description

4 MATLAB Interface

4-14

Manual 3-D VRML Animation Recording
This topic describes how to manually record a 3-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. In this example, the timing of the animation file derives from the
simulation time. One second of the recorded animation time corresponds to one
second of Simulink time. You create and record the animation file by
interactively starting and stopping the recording from the MATLAB Command
Window.

This procedure uses the vrplanets demo. It describes how to create a VRML
animation filename with the default name format.

%s The current second replaces this token in the filename
string. For example, the format %f_anim_%h%m%s.wrl saves
the animation to vrplanets_anim_150430.wrl for a start
record time of 15:04:30.

%Y The current four digit year replaces this token in the
filename string. For example, the format %f_anim_%Y.wrl
saves the animation to vrplanets_anim_2003.wrl for the
year 2003.

Token Description

Recording Offline Animations

4-15

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model displays. Also by default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer does not
display, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

If the result shows that only one vrworld object is in the workspace, assign
its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds,'Description')));

3 To have the Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set(myworld,'RecordMode','manual');

4 Direct the Virtual Reality Toolbox to record the animation to a VRML format
file. Type

set(myworld,'Record3D','on');

4 MATLAB Interface

4-16

5 Run the Simulink model. From the Simulation menu, select Normal, then
click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

- From the menu bar, select the Simulation menu Start option to start or
stop the simulation.

- From the toolbar, click Start/pause/continue simulation to start the
simulation.

- From the keyboard, press Ctrl+T to start the simulation.

6 As the simulation runs, start recording the animation by setting the virtual
world Recording property. Type

set(myworld,'Recording','on');

This turns on the recording state.

7 When you want to stop the recording operation, type

set(myworld,'Recording','off');

The Virtual Reality Toolbox stops recording the animation. The Virtual
Reality Toolbox creates the file vrplanets_anim_1.wrl in the current
working directory. If the simulation stops before you stop recording, the
recording operation stops and creates the animation file.

8 Stop the simulation. You can use one of the following from the viewer.

- From the menu bar, select the Simulation menu Stop option to stop the
simulation.

- From the toolbar, click Stop simulation to stop the simulation.

- From the keyboard, press Ctrl+T to stop the simulation.

You do not need to manually stop the recording before stopping the
simulation. If you do not manually stop the recording, the recording
operation does not stop and create the animation file when the simulation
stops.

9 Close and delete the objects if you do not want to continue using them.

Recording Offline Animations

4-17

Manual 2-D AVI Animation Recording
This topic describes how to manually record a 2-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. In this example, the timing of the animation file derives from the
simulation time. One second of the recorded animation time corresponds to one
second of Simulink time. You create and record the animation file by
interactively starting and stopping the recording from the MATLAB Command
Window.

This procedure uses the vrplanets demo. It describes how to create an .avi
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model displays. Also by default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer does not
display, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

3 If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;

4 MATLAB Interface

4-18

myworld =
worlds(strmatch('Planets',get(worlds,'Description')));

If the description string is unique, myworld is assigned the correct virtual
world.

4 To retrieve the handle to the currently displayed the Virtual Reality Toolbox
viewer figure, type

f=get(myworld,'Figures')

5 To have the Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set(myworld,'RecordMode','manual');

6 Direct the Virtual Reality Toolbox to record the animation as a .avi format
file. Type

set(f,'Record2D','on');

7 Disable the Navigation Panel. The Navigation Panel appears at the bottom
of the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Type

set(f,'PanelMode','off');

8 Run the Simulink model. From the Simulation menu, select Normal, then
click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

- From the menu bar, select the Simulation menu Start option to start or
stop the simulation.

- From the toolbar, click Start/pause/continue simulation to start the
simulation.

- From the keyboard, press Ctrl+T to start the simulation.

9 As the simulation runs, start recording the animation by setting the virtual
world Recording property. Type

set(myworld,'Recording','on');

This turns on the recording state.

Recording Offline Animations

4-19

10 To stop the recording operation, type

set(myworld,'Recording','off');

The Virtual Reality Toolbox stops recording the animation. The Virtual
Reality Toolbox creates the file vrplanets_anim_1.avi in the current
working directory. If the simulation stops before you stop recording, the
recording operation stops and creates the animation file.

11 Stop the simulation. You can use one of the following from the viewer.

- From the menu bar, select the Simulation menu Stop option to stop the
simulation.

- From the toolbar, click Stop simulation to stop the simulation.

- From the keyboard, press Ctrl+T to stop the simulation.

You do not need to manually stop the simulation. If you do not manually stop
the recording, the recording operation does not stop and create the
animation file until the simulation stops.

12 If you want to enable the Navigation Panel again, type

set(f,'PanelMode','on');

13 Close and delete the objects if you do not want to continue using them.

Scheduled 3-D VRML Animation Recording
This topic describes how to schedule the recording of a 3-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. You control the animation file recording by presetting a time interval.
The Virtual Reality Toolbox records the animation during this interval in the
simulation. In this example, the timing of the recorded animation file derives
from the simulation time. One second of the recorded animation time
corresponds to one second of Simulink time.

This procedure uses the vrplanets demo. It describes how to create a VRML
animation filename with the default name format.

4 MATLAB Interface

4-20

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model is displayed. Also by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

3 If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds,'Description')));

4 Set the Virtual Reality Toolbox to record the animation on a schedule by
setting the RecordMode property to scheduled. Type

set(myworld,'RecordMode','scheduled');

5 Direct the Virtual Reality Toolbox to record the animation in a VRML
format file.

set(myworld,'Record3D','on');

Recording Offline Animations

4-21

6 Select the start and stop times during which you want to record the
animation. For example, enter 5 as the start time and 15 as the stop time.

set(myworld,'RecordInterval',[5 15]);

Ensure that the recording start time value is not earlier than the start time
of the Simulink model; the recording operation cannot start in this instance.
If the stop time exceeds the stop time of the Simulink model, or if it is an out
of bounds value such as a negative number, the recording operation stops
when the simulation stops. Note that the recording can be slow.

7 Run the Simulink model. From the Simulation menu, select Normal, then
click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

- From the menu bar, select the Simulation menu Start option to start the
simulation.

- From the toolbar, click Start/pause/continue simulation to start the
simulation.

- From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. The Virtual Reality Toolbox starts recording when the
simulation time reaches the specified start time and creates the file
vrplanets_anim_N.wrl in the current working directory when finished,
where N is either 1 or more, depending on how many file iterations you have.

8 When you are done, stop the simulation. You can use one of the following
from the viewer.

- From the menu bar, select the Simulation menu Stop option to stop the
simulation.

- From the toolbar, click Stop simulation to stop the simulation.

- From the keyboard, press Ctrl+T to stop the simulation.

9 Close and delete the objects if you do not want to continue using them.

4 MATLAB Interface

4-22

Scheduled 2-D AVI Animation Recording
This topic describes how to schedule the recording of a 2-D animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. You control the animation file recording by presetting a time interval.
The Virtual Reality Toolbox records the animation during this interval in the
simulation. In this example, the timing of the recorded animation file derives
from the simulation time. One second of the recorded animation time
corresponds to one second of Simulink time.

This procedure uses the vrplanets demo. It describes how to create an .avi
animation filename with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model is displayed. Also by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the Virtual Reality block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the
MATLAB interface, retrieve the virtual world handle. Use the vrwhos
command. Type

vrwhos

If the result indicates that only one vrworld object is in the workspace,
assign its handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, you must select which of these virtual
worlds you want to manipulate. To select the virtual world, you can use
indexing or a selection method using a string comparison of virtual world
descriptions. For the indexing method, type

worlds = vrwho;
myworld = worlds(1);

Recording Offline Animations

4-23

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strmatch('Planets',get(worlds,'Description')));

3 To retrieve the handle to the currently displayed Virtual Reality Toolbox
viewer figure, type

f=get(myworld,'Figures')

4 To have Virtual Reality Toolbox manually record the animation, set the
RecordMode property to manual. Type

set(myworld,'RecordMode','scheduled');

5 Direct Virtual Reality Toolbox to record the animation as an .avi format
file. Type

set(f,'Record2D','on');

6 Select the start and stop times during which you want to record the
animation. For example, enter 5 as the start time and 15 as the stop time.

set(myworld,'RecordInterval',[5 15]);

Ensure that the recording start time value is not earlier than the start time
of the Simulink model; the recording operation cannot start in this instance.
If the stop time exceeds the stop time of the Simulink model, or if it is an out
of bounds value such as a negative number, the recording operation stops
when the simulation stops. Note that the recording can be slow.

7 Disable the Navigation Panel. The Navigation Panel appears at the bottom
of the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Type

set(f,'PanelMode','off');

8 Ensure that the virtual reality figure window is the topmost window.

9 Run the Simulink model. From the Simulation menu, select Normal, then
click Start. Alternatively, if you are using the Virtual Reality Toolbox
default viewer, you can run the Simulink model with one of the following
from the viewer.

4 MATLAB Interface

4-24

- From the menu bar, select the Simulation menu Start option to start the
simulation.

- From the toolbar, click Start/pause/continue simulation to start the
simulation.

- From the keyboard, press Ctrl+T to start the simulation.

The simulation runs. Virtual Reality Toolbox starts recording when the
simulation time reaches the specified start time and creates the file
vrplanets_anim_N.avi in the current working directory when finished,
where N is either 1 or more, depending on how many file iterations you have.

10 When you are done, stop the simulation. You can use one of the following
from the viewer.

- From the menu bar, select the Simulation menu Stop option to stop the
simulation.

- From the toolbar, click Stop simulation to stop the simulation.

- From the keyboard, press Ctrl+T to stop the simulation.

11 If you want to enable the Navigation Panel again, type

set(f,'PanelMode','on');

12 Close and delete the objects if you do not want to continue using them.

Viewing Animation Files
This topic assumes that you have a VRML or .avi animation file that you want
to view. If you do not have an animation file, see “Manual 3-D VRML
Animation Recording” on page 4-14 or “Scheduled 3-D VRML Animation
Recording” on page 4-19 for descriptions of how to create one.

Recording Offline Animations

4-25

To View VRML Files

1 Change directory to one that contains the VRML animation file.

2 View the file in one of the following ways:

- Double-click on the VRML file. A VRML-enabled Web browser opens with
the animation running. To view the resulting animation file, you must
have a VRML-enabled Web browser installed on your system. Also, ensure
that the .wrl extension is associated with the blaxxun Contact Web
browser.

- At the MATLAB window, type
w=vrview('vrplanets_anim_1.wrl');
set(w,'TimeSource','freerun');

The vrview command displays the default Virtual Reality Toolbox viewer
for the animation file. Setting the TimeSource property of the set method
to 'freerun' directs the viewer to advance its time independent of
MATLAB.

3 To stop the animation, type

set(w,'TimeSource','external');

Alternatively, to close the viewer and delete the world, you can get the
handle of the vrfigure object and close it, as follows:

f=get(w,'Figures')
close(f);
delete(w);

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

4 MATLAB Interface

4-26

To View AVI Files

1 Change directory to the one that contains the .avi animation file.

2 Double-click that file.

The program associated with .avi files in your system (for example,
Windows Media Player) opens for the .avi file. If your .avi file is not yet
running, start it now from the application. The animation file runs.

MATLAB Animation Recording of Virtual Worlds Not
Associated with Simulink Models
This topic describes how to programmatically record animation files for virtual
worlds that are not associated with Simulink models (in other words, from the
MATLAB interface). In this instance, you must specify the relationship
between the events that change the virtual world state and the time in the
animation file. This requirement is different from virtual worlds associated
with Simulink models. Virtual worlds that are controlled completely from the
MATLAB interface have no default, intuitive interpretation of time relation
between MATLAB environment models and virtual scenes.

Note Many engineering time-dependent problems are modeled and solved in
MATLAB. For those that have meaningful visual representation, you can
create virtual reality models and animate their solutions. In addition, the
offline animation time can represent any independent variable along which
you can observe and visualize a model solution. Using offline animation files
can bring the communication of such engineering problem resolutions to new
levels. The Virtual Reality Toolbox demo vrheat (heat transfer visualization)
is an example of a time-dependent problem modeled and solved in MATLAB.
Its modified version, vrheat_anim, shows the use of the programming
technique described in this topic.

To record animation files for virtual worlds that are not associated with
Simulink models, note the following guidelines. You should be an advanced
Virtual Reality Toolbox user.

Recording Offline Animations

4-27

• Retrieve the vrworld object handle of the virtual scene that you want to
record.

• To record 2-D animations,

- Retrieve the corresponding vrfigure object. For 2-D animations, Virtual
Reality Toolbox records exactly what you see in the viewer window.
Because 2-D animations record exactly what you see in the Virtual Reality
Toolbox viewer window, the properties that control 2-D file recording
belong to vrfigure objects.

- Set the Record2D vrfigure property.

- To override default filenames for animation files, set the vrfigure
Record2DFileName property.

• To create 3-D animation files,

- Retrieve the corresponding vrworld object.

- Set the Record3D vrworld property.

- To override default filenames for animation files, set the vrworld
Record3DFileName property.

• Set the RecordMode vrworld object property to manual or scheduled. For
optimal results, select scheduled.

• If you select scheduled for RecordMode, be sure to also set the vrworld
RecordInterval property to a desired time interval.

• To specify that the virtual world time source is an external one, set the
vrworld property TimeSource to external. This ensures that MATLAB
controls the virtual world scene time. Type

set(virtual_world,'TimeSource', 'external')

• To specify time values at which you want to save animation frames,
iteratively set the vrworld Time property. Note that for a smoother
animation, you should set the time at equal intervals, for example, every 5
seconds. Use a sequence like

set(virtual_world,'Time',time_value)

4 MATLAB Interface

4-28

For example, to set the Time property for vrworld, w, with values increasing
by 10, enter

set(w,'Time',10);
set(w,'Time',20);
set(w,'Time',30);
set(w,'Time',40);
set(w,'Time',50);
set(w,'Time',60);
set(w,'Time',70);
set(w,'Time',80);
set(w,'Time',90);
set(w,'Time',100);
set(w,'Time',110);
set(w,'Time',120);
set(w,'Time',130);
set(w,'Time',140);

If you select a start time of 60 and a stop time of 120 (as described in
“Scheduled 3-D VRML Animation Recording” on page 4-19), Virtual Reality
Toolbox starts recording at 60 and stops at 120.

Because of the repetitive nature of the time interval setting, set the Time
property in a loop from within a script or program.

• After you set the vrworld Time property, set the virtual scene object
properties as necessary. You should set these properties to values that
correspond to the given time frame to achieve the desired animation effect.

• In each time frame, issue the vrdrawnow command for scene changes. This
command renders and updates the scene.

Recording Offline Animations

4-29

The following code fragment contains a typical loop that iteratively sets the
Time property, changes a virtual scene object property, and calls vrdrawnow to
render the scene:

for time=StartTime:Step:StopTime
% advance the time in the virtual scene
set(myworld,'Time',time);
% here we change VRML nodes properties
myworld.Car.translation = [time*speed 0 0];
% render the changed position
vrdrawnow;

end

If you set the Time property at or outside the end boundary of RecordInterval,
Virtual Reality Toolbox stops recording. You can then view the resulting
animation file.

For a complete example of how to perform this kind of animation recording,
refer to the Virtual Reality Toolbox vrheat_anim demo.

4 MATLAB Interface

4-30

5

Virtual Worlds

Virtual Reality Toolbox includes tools that you can use to edit and create VRML virtual worlds. For
Microsoft Windows platforms, the Virtual Reality Toolbox includes a VRML editor (V-Realm Builder).
For UNIX/Linux platforms, the default VRML editor is the MATLAB editor. A basic understanding of
these tools and how to use them will help you to get started quickly.

VRML Editing Tools (p. 5-2) Description of the differences between general and native
editors

Deformation of a Sphere Example
(p. 5-5)

Tutorial for creating a simple virtual world with V-Realm
Builder and associating this virtual world with Simulink
blocks from the Virtual Reality Toolbox

VRML Data Types (p. 5-20) Description of VRML data types used by VRML nodes to
define objects and types of data that can appear in the
VRML node fields and events

5 Virtual Worlds

5-2

VRML Editing Tools
There is more than one way to create a virtual world described with the VRML
code. For example, you can use a text editor to write VRML code directly, or you
can use a VRML editor to create a virtual world without having to know
anything about the VRML language. However, you need to understand the
structure of a VRML tree to connect your virtual world to Simulink blocks and
signals.

This section includes the following topics:

• “Editors for Virtual Worlds” on page 5-2 — General 3-D and native VRML
editors

• “V-Realm Builder” on page 5-4 — Native VRML editor shipped with the PC
version of the Virtual Reality Toolbox

For a description of the tools to view virtual worlds, see Chapter 6, “Viewing
Virtual Worlds.”

Editors for Virtual Worlds
A VRML file uses a standard text format that you can read with any text editor.
Reading the text is useful for debugging, automated processing, and directly
changing VRML code. Also, if you use the correct VRML syntax, you can use
any common text editor to create virtual scenes in the same way you create
HTML pages.

Many people prefer to create simple virtual worlds using their favorite text
editor. However, the primary way for you to create a virtual world is with a 3-D
editing tool. These tools allow you to create complex virtual scenes without a
deep understanding of the VRML language.

These 3-D editing tools offer the power and versatility necessary for creating
many types of practical and technical models. For example, you can import 3-D
objects from some CAD packages to make the authoring process easier and
more efficient. For VRML authoring, there are basically two types of 3-D
editing tools:

• General 3-D authoring packages that can export into VRML format

• Native VRML authoring tools

VRML Editing Tools

5-3

General 3-D Editors — General 3-D editors do not use VRML as their native
format. They export their formats to VRML. There are many commercial
packages, such as 3D Studio, SolidWorks, or mantra4D, that can do this. These
tools have many features and are relatively easy to use. General 3-D editing
tools target specific types of work. For example, they can target visual art,
animation, games, or technical applications. They offer different working
environments depending on the application area for which they are designed.
Some of these general 3-D editing tools can be very powerful, expensive, and
complex to learn, but others are relatively inexpensive and might satisfy your
specific needs.

It is interesting to note that the graphical user interfaces for many of the
general commercial 3-D editors use features typical of the native VRML editing
tools. For example, in addition to displaying 3-D scenes in various graphical
ways, they also offer hierarchical tree styles that provide a good overview of the
model structure and a convenient shortcut to 3-D element definitions.

Native VRML Editors — Native VRML editors use VRML as their native
format. This guarantees that all the features in the editor are compatible with
VRML. Also, native VRML editors can use features that are unique for the
VRML format, like interpolators and sensors.

Unfortunately, there are currently few advanced VRML editors of commercial
quality. Most native VRML editors are in the development stage and are
harder to use than a general 3-D editor. V-Realm Builder by Ligos Corporation
is one of the exceptions. It is one of the most advanced VRML editing tools
currently available for personal computers. V-Realm Builder is available only
for Windows operating systems. You can access V-Realm Builder
documentation at
http://www.mathworks.com/support/product/VR/productnews/productnew
s.html.

For PCs, the Virtual Reality Toolbox includes V-Realm Builder as a native 3-D
editor. For more information, see “V-Realm Builder” on page 5-4 and
“Deformation of a Sphere Example” on page 5-5.

5 Virtual Worlds

5-4

V-Realm Builder
V-Realm Builder is a flexible, graphically oriented tool for 3-D editing and is
available for Windows operating systems only. It is a native VRML authoring
tool that provides a convenient interface to the VRML syntax. Its primary file
format is VRML. Its graphical user interface (GUI) offers not only the graphical
representation of a 3-D scene and tools for interactive creation of graphical
elements, but also a hierarchical tree style (tree viewer) of all the elements
present in the virtual world.

These structure elements are called nodes. V-Realm Builder lists the nodes and
their properties according to their respective VRML node types, and it supports
all 54 VRML97 types. For each type of node, there is a specific tool for
convenient modification of the node parameters. You can access node
properties in two ways:

• Using dialog boxes accessible from the tree viewer

• Directly, using a pointing device

In many cases, it is easier to use the tree viewer to access nodes because it can
be difficult to select a specific object in a 3-D scene. The tree also lets you easily
change the nesting levels of certain nodes to modify the virtual world according
to your ideas. In the tree viewer, you can give the nodes unique names — a
feature necessary for working with Virtual Reality Toolbox.

Deformation of a Sphere Example

5-5

Deformation of a Sphere Example
The example in this section shows you how to create a simple virtual world
using V-Realm Builder. It does not describe everything you can do with
V-Realm Builder, but it does describe the basics to get you started.

This example assumes you finished the installation of V-Realm Builder using
the function vrinstall. See “Installing the VRML Editor (Windows)” on
page 2-29.

This section includes the following topics:

• “Defining the Problem” on page 5-5

• “Adding a Virtual Reality Toolbox Block” on page 5-6

• “Creating a Sphere in a Virtual World” on page 5-8

• “Creating a Box in a Virtual World” on page 5-13

• “Connecting a Simulink Model to a Virtual World” on page 5-16

Defining the Problem
Suppose you want to simulate and visualize in virtual reality the deformation
of a sphere. In your virtual world, you want to have two boxes representing
rigid plates (B1, B2) and an elastic sphere (S) between them. All three of the
objects are center-aligned along the x-axis. The boxes B1 and B2 move toward
S with identical velocities, but they move in opposite directions. As they reach
the sphere S, they start to deform it by reducing its x dimension and stretching
it in both its y and z dimensions.

Positions and dimensions of the objects are listed in the following table.

Your first task is to open a Simulink model and add a Virtual Reality Toolbox
block to your model. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

Object Center Position Dimensions

B1 [3 0 0] [0.3 1 1]

B1 [3 0 0] [0.3 1 1]

S [0 0 0] r = 0.9

5 Virtual Worlds

5-6

Simulink model — The Virtual Reality Toolbox includes the tutorial model
vrtut3.mdl. This is a simplified model in which the deformation of an elastic
sphere is simulated. After collision with the rigid blocks, the sphere’s x
dimension is decreased by a factor from 1 to 0.4, and the y and z dimensions are
expanded so that the volume of the deformed sphere-ellipsoid remains
constant. Additional blocks in the model supply the correctly sized vectors to
the Virtual Reality Toolbox block. The simulation stops when the sphere is
deformed to 0.4 times its original size in the x direction.

Adding a Virtual Reality Toolbox Block
This procedure uses the Simulink model vrtut3.mdl as an example to explain
how to add a Virtual Reality Toolbox block to your model. The model generates
the values for the position of B1, the position of B2, and the dimensions of S for
the problem previously defined. See “Defining the Problem” on page 5-5.

1 From the directory C:\<matlab root>\toolbox\vr\vrdemos\, copy the file
vrtut3.mdl to your MATLAB working directory.

2 Start MATLAB, and then change the current directory to your MATLAB
working directory.

3 In the MATLAB Command Window, type

vrtut3

A Simulink window opens with a model that contains Virtual Reality
Toolbox VR Signal Expander blocks, but no VR Sink block to write data from
the model to Virtual Reality Toolbox. Instead, this model uses Scope blocks
to temporarily monitor the relevant signals.

Deformation of a Sphere Example

5-7

4 From the MATLAB Command Window, type

vrlib

The Virtual Reality Toolbox library opens.

5 Virtual Worlds

5-8

5 From the Library window, drag and drop the VR Sink block to the Simulink
diagram. You can then close the Library: vrlib window.

Your next task is to create a virtual world that you will associate with the VR
Sink block. See “Creating a Sphere in a Virtual World” on page 5-8.

Creating a Sphere in a Virtual World
You need to create a virtual world before you can connect it to a Simulink model
and visualize signals.

After you add a VR Sink block to your Simulink model, you can create a virtual
world using V-Realm Builder. This procedure uses the model vrtut3.mdl as an
example and assumes that you have opened the model and that you have added
a VR Sink block. See “Adding a Virtual Reality Toolbox Block” on page 5-6.

1 From the Microsoft Windows task bar, click Start, and then click Run.

2 In the Run dialog box, enter

<matlab root>\toolbox\vr\vrealm\program\vrbuild2.exe

The V-Realm Builder application window opens.

3 From the File menu, click New or click the blank page icon .

In the left pane, V-Realm Builder displays an empty VRML tree, and in the
right pane it displays an empty virtual world.

4 On the toolbar, click the sphere icon .

In the left pane you can see the VRML tree for a sphere. This tree includes
the following nodes: Transform, Shape, Appearance, Material, and Sphere.
A yellow icon indicates the field of a node.

Deformation of a Sphere Example

5-9

The top-level node is the Transform node. This grouping node allows you to
change the position and scale of objects (children) that are part of this node.
Its subtree consists of one object, which is described in the Shape node. The
Shape node contains the appearance and geometry fields.

5 Expand the Sphere node.

The radius field appears. The yellow icon indicates the type of value. In this
case, f indicates a value with the type SFFloat. SFFloat is a 32-bit
floating-point value.

5 Virtual Worlds

5-10

6 Double-click the radius field.

The Edit SFFloat dialog box opens.

7 In the text box, enter 0.9, and then click OK. In the right pane, the sphere
appears smaller.

8 Under the Shape node, expand the appearance field. Under the appearance
field, expand the Appearance node. Under the Appearance node, expand the
material field. Under the material field, expand the Material node.

Deformation of a Sphere Example

5-11

9 Under the Material node, double-click the diffuseColor field.

The Edit Color dialog box opens.

5 Virtual Worlds

5-12

10 Set the color to blue or any other color you would like, and then click OK.

11 If you want to check or modify the position of the sphere, double-click the
translation field under the Transform node. You do not need to change the
default values from [0 0 0].

In this exercise, you want to deform the sphere. You can apply deformation
by changing the scale field of the sphere’s Transform node. The Virtual
Reality Toolbox requires you to assign a name to this node so that it can
access it. In VRML syntax, the named nodes are indicated by the “DEF
Name Node” statement. V-Realm Builder lists node names next to their
icons in the tree viewer.

12 Click the Transform node, and then click the node a second time.

The text appears in edit mode.

13 Enter a name for the node. For example, enter the letter S, and then click
anywhere to exit the text mode.

Your next task is to create two boxes in the virtual world. See “Creating a Box
in a Virtual World” on page 5-13.

Deformation of a Sphere Example

5-13

Creating a Box in a Virtual World
This topic describes how to create two boxes in the virtual world.

1 In the tree, click New World (the topmost item). On the toolbar, click the box
icon .

A new box object appears at the same position as the sphere centered in the
origin of the coordinate system. Note that the sphere is hidden behind the
box and currently is not visible.

2 Double-click the translation field under the Transform node.

The Edit Vector 3 dialog box opens. Notice that there are two Transform
nodes. Use the one with the Box node in its subtree.

3 Select the X Axis check box. In the text box below, enter 3, then click OK.

The position of the box is set to [3 0 0].

4 Expand the Box node. Double-click the size field under the Box node.

The Edit Vector 3 dialog box opens.

5 Virtual Worlds

5-14

5 Set the values to [0.3 1 1], and then click OK.

Note You might need to select the diffuseColor node to adjust the box.

The following figure shows the tree with the expanded branch of the box.

Deformation of a Sphere Example

5-15

6 Create a second box the same way you created the first box.

7 To move the second box to its correct place, double-click the translation
field of the second Transform node, and change its position to [-3 0 0].

8 Double-click the size field under the Box node. Set the values to [0.3 1 1],
and then click OK.

The scene is now complete.

9 To access the positions of the boxes from a Virtual Reality Toolbox block,
give each Transform node a name. For example, set the name of the first
Transform node to B1 and the second Transform node to B2. The Virtual
Reality Toolbox allows you to access fields of only those nodes that are
named in virtual worlds.

5 Virtual Worlds

5-16

10 Save the virtual world as vrtut3.wrl in the same working directory where
the file vrtut3.mdl resides, and then exit V-Realm Builder.

Caution If you want to use your virtual worlds with the Virtual Reality
Toolbox, do not save them in a compressed Gzip format.

Your next task is to connect the model outputs to the Virtual Reality Toolbox
block in your Simulink model. See “Connecting a Simulink Model to a Virtual
World” on page 5-16.

Connecting a Simulink Model to a Virtual World
After you create a virtual world and a Simulink model, and add a Virtual
Reality Toolbox block to your model, you can define the associations between
the model signals and the virtual world. This procedure uses the model
vrtut3.mdl as an example. It assumes that you have opened the model and
that you have added a VR Sink block. See “Adding a Virtual Reality Toolbox
Block” on page 5-6.

1 In the Simulink window, double-click the VR Sink block.

The viewer displays.

2 Select the Simulation menu Block Parameters option

The Parameters: VR Sink dialog box opens again.

3 Click Browse.

The Select World dialog box opens.

4 Select vrtut3.wrl, and then click Open.

5 In the Output pane, select the Open VRML viewer automatically check
box.

This check box specifies that a viewer for the virtual world starts when you
run the model.

6 In the Description field, type vrtut3.

Deformation of a Sphere Example

5-17

7 Click Apply in the Parameters: VR Sink dialog box.

8 In the tree viewer, select the S scale, B1 translation, and B2 translation
check boxes as the nodes you want to connect to your model signals. Click
OK to close the dialog box.

The Virtual Reality Toolbox block appears with corresponding inputs.

9 Connect these input lines to the matching signals in the model. These
signals were originally connected to Scope blocks.

10 Double-click the VR Sink block.

The viewer displays.

11 Select the Simulation menu Block Parameters option.

12 In the Parameters: VR Sink dialog box, click the View button.

Your default viewer opens and displays the virtual world. For more
information on changing your default viewer, see “Setting the Default
Viewer of Virtual Scenes” on page 2-24.

5 Virtual Worlds

5-18

13 In the Simulink window, from the Simulation menu, click Start.

In your default viewer, you see a 3-D animation of the scene. Using the
viewer controls, you can observe the action from various points.

When the width of the sphere is reduced to 0.4 of its original size, the
simulation stops running.

Deformation of a Sphere Example

5-19

This example shows you how to create and use a very simple virtual reality
model. Using the same method, you can create more complex models for solving
the particular problems that you face.

5 Virtual Worlds

5-20

VRML Data Types
VRML data types are used by VRML nodes to define objects and types of data
that can appear in the VRML node fields and events.

This section includes the following topics:

• “VRML Field Data Types” on page 5-20

• “VRML Data Class Types” on page 5-24

VRML Field Data Types
Virtual Reality Toolbox provides an interface between the MATLAB and
Simulink environment and VRML scenes. With this interface, you can set and
get the VRML scene node field values. To work with these values, you must
understand the relationship between VRML data types and the corresponding
MATLAB data types. The following table illustrates the VRML data types and
how they are converted to and from MATLAB types.

For a detailed description of the VRML fields, refer to the VRML97 Standard.

VRML Type Description VR Toolbox Type

SFBool Boolean value true or
false.

logical

SFFloat 32 bit floating-point
value.

single

SFInt32 32 bit signed-integer
value.

int32

SFTime Absolute or relative
time value.

double

SFVec2f Vector of two
floating-point values
that you usually use for
2-D coordinates. For
example, texture
coordinates.

Single array (1-by-2)

VRML Data Types

5-21

SFVec3f Vector of three
floating-point values
that you usually use for
3-D coordinates

Single array (1-by-3)

SFColor Vector of three
floating-point values
you use for RGB color
specification.

Single array (1-by-3)

SFRotation Vector of four
floating-point values
you use for specifying
rotation coordinates
(x,y,z) of an axis plus
rotation angle around
that axis.

Single array (1-by-4)

SFImage Two-dimensional array
represented by a
sequence of
floating-point numbers.

N/A

SFString String in UTF-8
encoding. Compatible
with ASCII, allowing
you to use Unicode
characters.

char

SFNode Container for a VRML
node.

N/A

MFFloat Array of SFFloat
values.

Single array (n-by-1)

MFInt32 Array of SFInt32
values.

int32 array (n-by-1)

VRML Type Description VR Toolbox Type

5 Virtual Worlds

5-22

Virtual Reality Toolbox can work with various MATLAB data types, converting
them if necessary:

• The setfield function (and its dot notation form) and VR Sink inputs accept
all meaningful data types on input. Both convert the data types into natural
VRML types as necessary. The data types include logicals, signed and
unsigned integers, singles, and doubles.

• The getfield function (and its dot notation form) return their natural data
types according to the table above.

MFVec2f Array of SFVec2f
values.

Single array (n-by-2)

MFVec3f Array of SFvec3f
values.

Single array (n-by-3)

MFColor Array of SFColor
values.

Single array (n-by-3)

MFRotation Array of SFRotation
values.

Single array (n-by-4)

MFString Array of SFString
values.

char array (n-by-1)

MFNode Array of SFNode values. N/A

VRML Type Description VR Toolbox Type

VRML Data Types

5-23

To ensure backward compatibility with existing models and applications, use
the Virtual Reality Toolbox vrsetpref function to define the data type support.
Their names are

Property Description

DataTypeBool Specifies the boolean data type for vrnode/setfield
and vrnode/getfield. Valid values are 'logical' and
'char'. If set to 'logical', the VRML boolean data
type is returned as a logical value. If set to 'char', the
VRML Boolean data type is returned 'on' or 'off'.

DataTypeInt32 Specifies the int32 data type for vrnode/setfield and
vrnode/getfield. Valid values are 'int32' and
'double'. If set to 'int32', the VRML int32 data type
is returned as int32. If set to 'double', the VRML
int32 data type is returned as 'double'.

DataTypeFloat Specifies the float data type for vrnode/setfield and
vrnode/getfield. Valid values are 'single' and
'double'. If set to 'single', the VRML float and
color data types (the types of most VRML fields) are
returned as 'single'. If set to 'double', the VRML
float and color data types are returned as 'double'.

5 Virtual Worlds

5-24

VRML Data Class Types
A node can contain four classes of data: field, exposedField, eventIn, and
eventOut. These classes define the behavior of the nodes, the way the nodes are
stored in the computer memory, and how they can interact with other nodes
and external objects.

eventIn
Usually, eventIn events correspond to a field in the node. Node fields are not
accessible from outside the node. The only way you can change them is by
having a corresponding eventIn.

Some nodes have eventIn events that do not correspond to any field of that
node, but provide additional functionality for it. For example, the Transform
node has an addChildren eventIn. When this event is received, the child nodes
that are passed are added to the list of children of a given transform.

You use this class type for fields that are exposed to other objects.

eventOut
This event is sent whenever the value of a corresponding node field that allows
sending events changes its value.

You use this class type for fields that have this functionality.

VRML Data Class Description

eventIn An event that can be received by the node

eventOut An event that can be sent by the node

field A private node member, holding node data

exposedField A public node member, holding node data

VRML Data Types

5-25

field
A field can be set to a particular value in the VRML file. Generally, the field is
private to the node and its value can be changed only if its node receives a
corresponding eventIn. It is important to understand that the field itself
cannot be changed on the fly by other nodes or via the external authoring
interface.

You use this class type for fields that are not exposed and do not have the
eventOut functionality.

exposedField
This is a powerful VRML data class that serves many purposes. You use this
class type for fields that have both eventIn and eventOut functionality. The
alternative name of the corresponding eventIn is always the field name with a
set_ prefix. The name of the eventOut is always the field name with a
_changed suffix.

The exposedField class defines how the corresponding eventIn and eventOut
behave. For all exposedField classes, when an event occurs, the field value is
changed, with a corresponding change to the scene appearance, and an
eventOut is sent with the new field value. This allows the chaining of events
through many nodes.

The exposedField class is accessible to scripts, whereas the field class is not.

5 Virtual Worlds

5-26

6

Viewing Virtual Worlds

After you create a virtual world in VRML (as described in Chapter 5, “Virtual Worlds”), you can
visualize that virtual world with the Virtual Reality Toolbox viewer or with a VRML-enabled Web
browser. The Virtual Reality Toolbox includes its own viewer as the default for all supported
platforms. It is the preferred method of viewing virtual worlds. For PC platforms, Virtual Reality
Toolbox also includes a VRML plug-in (blaxxun Contact) that you can use as an alternative viewer for
virtual worlds. A basic understanding of these tools and how to use them will help you to get started
quickly.

Virtual Reality Toolbox Viewer (p. 6-2) Description of the Virtual Reality Toolbox viewer

blaxxun Contact VRML Plug-In
(p. 6-44)

Description of the blaxxun Contact VRML plug-in that
you can use to view virtual worlds

6 Viewing Virtual Worlds

6-2

Virtual Reality Toolbox Viewer
The Virtual Reality Toolbox contains a viewer as the default method for
viewing virtual worlds. You can use this viewer on any supported operating
system. For a list of supported operating systems, see “System Requirements”
on page 2-6. The following topics provide an overview of the features and
controls of the viewer. This section uses the vrpend, vrplanets, and vrtut1
demos to illustrate the viewer features.

1 Select a Virtual Reality demo and type that demo’s name in the MATLAB
Command Window. For example:

vrpend

The Simulink model is displayed. By default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer is not
displayed, double-click the VR Sink block in the Simulink model.

2 Inspect the viewer window.

The Virtual Reality Toolbox viewer displays the virtual scene. The top of the
viewer contains a menu bar and toolbar. The bottom of the viewer contains
a navigation panel. These three areas give you alternate ways to work with
the virtual scene.

Virtual Reality Toolbox Viewer

6-3

Note The Virtual Reality Toolbox viewer settings are saved when you save
your model file.

By default, the Virtual Reality Toolbox viewer displays the virtual scene
with a navigation panel at the bottom.

Menu bar Toolbar

Navigation panel

6 Viewing Virtual Worlds

6-4

Menu Bar
The Virtual Reality Toolbox viewer menu bar has the following menus:

• File — General file operation options, including:

- New Window — Opens another window for the virtual scene. You might
want to use this option if you want to have multiple views of the virtual
scene open.

- Open in Editor — Opens the default editor (V-Realm Builder) for the
current virtual world. The editor opens with the virtual world already
loaded into the editor.

- Reload — Reloads the saved virtual world. Note that if you have created
any viewpoints in this session, they are not retained unless you have saved
those viewpoints with the Save As option.

- Save As — Allows you to save the virtual world.

- Close — Closes the viewer window.

• View — Enables you to customize the Virtual Reality viewer, including:

- Toolbar — Toggles the toolbar display.

- Status Bar — Toggles the status bar display at the bottom of the viewer.
This display includes the current viewpoint, simulation time, navigation
method, and the camera position and direction.

- Navigation Zones — Toggles the navigation zones on/off (see “Navigation”
on page 6-10 for a description of how to use navigation zones).

- Navigation Panel — Controls the display of the navigation panel,
including toggling it.

- Zoom In/Out — Zooms in or out of the viewer scene.

- Normal (100%) — Returns the zoom to normal (initial viewpoint setting).

• Viewpoints — Manages the virtual world viewpoints.

• Navigation — Manages scene navigation.

• Rendering — Manages scene rendering (see “Rendering” on page 6-35).

• Simulation — Manages model starts/stops and VR block parameters.

• Recording —Manages animation file recording parameters.

• Help — Displays the Help browser for the Virtual Reality Toolbox viewer.

Virtual Reality Toolbox Viewer

6-5

Toolbar
The Virtual Reality Toolbox viewer toolbar has buttons for some of the more
commonly used operations available from the menu bar. These buttons include:

• Drop-down list that displays all the viewpoints in the virtual world

• Return to viewpoint button

• Create viewpoint button

• Straighten up button

• Drop-down list that displays the navigation options Walk, Examine, and Fly.

• Undo move button

• Zoom in/out buttons ,

• Start/stop recording button

• Block parameters button

• Start/pause/continue simulation button

• Stop simulation button

Navigation Panel
The Virtual Reality Toolbox viewer navigation panel has navigation controls
for some of the more commonly used navigation operations available from the
menu bar. These controls include:

Viewer Help

Headlight toggle
Wireframe toggle

Go to default viewpoint

Hide panel

Navigation wheel

Navigation method
Next/previous viewpoint

Slide left/right

6 Viewing Virtual Worlds

6-6

• Hide panel — Toggles the navigation panel.

• Next/previous viewpoint — Toggles through the list of viewpoints.

• Return to default viewpoint — Returns focus to original default viewpoint.

• Slide left/right — Slides the view left or right.

• Navigation wheel — Moves view in one of eight directions.

• Navigation method — Manages scene navigation.

• Wireframe toggle — Toggles scene wireframe rendering.

• Headlight toggle — Toggles camera headlight.

• Help — Invokes the viewer online help.

The following table summarizes the possible operations from the menu bar,
toolbar, navigation panel, and keyboard.

Operation Menu
Bar

Toolbar Navigation
Panel

Keyboard
Shortcut

New Window X

Open in Editor X

Reload X

Save As X

Close X

Toolbar X

Status Bar X

Navigation Zones X F7

Navigation Panel X X

Zoom In X X +

Zoom Out X X -

Normal (100%) X

Virtual Reality Toolbox Viewer

6-7

Previous Viewpoint X X Page Up

Next Viewpoint X X Page Down

Return to
Viewpoint

X X X Home

Go to Default
Viewpoint

X

Create Viewpoint X X

Remove Current
Viewpoint

X

Pseudo
orthographic view

X

Close View X

View from top X

X axis X

Z axis X

Method X X X Shift+W,
Shift+E,
Shift+F

Speed X

Straighten Up X X F9

Undo Move X X Backspace

Camera Bound to
Viewpoint

X F10

Antialiasing X F8

Headlight X X F6

Operation Menu
Bar

Toolbar Navigation
Panel

Keyboard
Shortcut

6 Viewing Virtual Worlds

6-8

Lighting X

Textures X

Maximum Texture
Size

X

Transparency X

Wireframe X X F5

Start (Simulation) X X Ctrl+T

Stop (Simulation) X X Ctrl+T

Block Parameters X X

Start Recording X X Ctrl+R

Stop Recording X X Ctrl+R

Recording
Parameters

X X

Slide Left X

Navigation Wheel X

Slide Right X

Help X X

Pan Left/Right Left/Right
Arrows,
Shift
Left/Right
Arrows

Pan Up/Down Up/Down
Arrows

Operation Menu
Bar

Toolbar Navigation
Panel

Keyboard
Shortcut

Virtual Reality Toolbox Viewer

6-9

Starting and Stopping Simulations
You can start and stop simulations of the virtual world from the Virtual Reality
Toolbox viewer through the menu bar, toolbar, or keyboard.

• From the menu bar, select the Simulation menu Start or Stop option to
start or stop the simulation.

• From the toolbar, click Start/pause/continue simulation or Stop
simulation to start or stop the simulation.

• From the keyboard, press Ctrl+T to toggle between starting or stopping the
simulation.

Note The Ctrl+T operation is available only if you started the viewer from a
Simulink model. If you start the viewer through the MATLAB interface, no
Simulink model is associated. You cannot start and stop the simulation in this
case.

Move
Forward/Backward

Shift+Up/
Down
Arrows

Orbit Around
Selected Object

Ctrl+Left/
Right/Up/
Down Arrow

Slide
Left/Right/Up/
Down

Alt+arrows

Tilt Left/Right Shift+Alt+
Left/Right
Arrow

Operation Menu
Bar

Toolbar Navigation
Panel

Keyboard
Shortcut

6 Viewing Virtual Worlds

6-10

Navigation
You can navigate around a virtual scene using the menu bar, toolbar,
navigation panel, mouse, and keyboard. The vrbounce demo shows the viewer’s
functionality.

Navigation view — You can change the camera position. From the menu bar,
select the Navigation menu Straighten Up option. Alternatively, you can click
the Straighten Up control from the toolbar or press F9 on the keyboard. This
option resets the camera so that it points straight ahead.

Navigation methods — Navigation with the mouse depends on the navigation
method you select and the navigation zone you are in when you first click and
hold down the mouse button. You can set the navigation method using one of
the following:

• From the menu bar, select the Navigation menu Method option. This option
provides three choices, Walk, Examine, or Fly. See the table “Mouse
Navigation” on page 6-13.

Virtual Reality Toolbox Viewer

6-11

• From the toolbar, select the drop-down menu that displays the navigation
options Walk, Examine, and Fly.

• From the navigation panel, click the W, E, or F buttons.

• From the keyboard, press Shift+W, Shift+E, or Shift+F.

Navigation zones — You can view the navigation zones for a scene through the
menu bar or keyboard.

From the menu bar, select the View menu Navigation Zones option. The
virtual scene changes as the navigation zones are toggled on and appear in the
virtual scene. Alternatively, from the keyboard, press the F7 key.

The vrbounce demo with Method set to Fly has three navigation zones.

Navigation drop-down menu

6 Viewing Virtual Worlds

6-12

Virtual Reality Toolbox Viewer

6-13

The following table summarizes the behavior associated with the movement
modes and navigation zones when you use your mouse to navigate through a
virtual world. Turn the navigation zones on and experiment by clicking and
dragging your mouse in the different zones of a virtual world.

If your virtual world contains sensors, these sensors take precedence over
mouse navigation at the sensor’s location. See “Example of How Sensors Affect
Mouse Navigation” on page 6-14 for a description of how sensors affect this
navigation.

Mouse Navigation

Movement
Mode

Zone and Description

Walk Outer — Click and drag the mouse up, down, left, or
right to slide the camera in any of these directions in a
single plane.
Inner — Click and drag the mouse up and down to
move forward and backward. Drag the mouse left and
right to turn left or right.

Examine Outer — Click and drag the mouse up and down to move
forward and backward. Drag the mouse left and right to
slide left or right.
Inner — Click and drag the mouse to rotate the
viewpoint around the origin of the scene.

Fly Outer — Click and drag the mouse to tilt the view
either left or right.
Inner — Click and drag the mouse to pan the camera
up, down, left, or right within the scene.
Center — Click and drag the mouse up and down to
move forward and backward. Move the mouse left or
right to turn in either of these directions.

6 Viewing Virtual Worlds

6-14

Changing the Navigation Speed
You can change the speed at which you navigate around the view.

1 In the menu bar, select the Navigation menu.

2 Select the Speed option.

3 Select Very Slow.

4 Navigate the virtual world.

Your navigation speed within the virtual world is much slower than before.

Note Your navigation speed controls the distance you move with each
keystroke. It does not affect rendering speed.

Consider setting a higher speed for large scenes and a slower speed for more
controlled navigation in smaller scenes.

Example of How Sensors Affect Mouse Navigation

1 In the MATLAB Command Window, type

vrpend

at the MATLAB command prompt. The Inverted Pendulum demo starts,
and the viewer displays the following scene.

Virtual Reality Toolbox Viewer

6-15

2 In the Simulink model window, from the Simulation menu, choose Start.

The demo starts running.

3 Click inside and outside the sensor area of the viewer window. Note that the
sensor takes precedence over navigation with the left mouse button. The
shape of your pointer changes when it is located over the sensor area.

If the sensor covers the entire navigable area, mouse navigation is effectively
disabled. In this case, use the control panel or the keyboard to move about the
scene. For a three-button mouse or a mouse with a clickable wheel, you can
always use the middle button or the wheel to move about the scene. The middle
mouse button and wheel do not trigger sensors within the virtual world.

6 Viewing Virtual Worlds

6-16

Keyboard — You can also use the keyboard to navigate through a virtual
world. It can be faster and easier to issue a keyboard command, especially if
you want to move the camera repeatedly in a single direction. The following
table summarizes the keyboard commands and their associated navigation
functions. Note that the letters presented do not need to be capitalized in order
to perform their intended function.

Keyboard Navigation

Keyboard Command Navigation Function

Backspace Undo move.

Ctrl+R Start/stop recording.

Ctrl+T Start/stop simulation.

F9 Straighten up and make the camera stand on the
horizontal plane of its local coordinates.

+/- Zoom in/out.

F6 Toggle the headlight on/off.

F7 Toggle the navigation zones on/off.

F5 Toggle the wireframe option on/off.

F8 Toggle the antialiasing option on/off.

Esc Go to default viewpoint.

Home Return to current viewpoint.

Page Up, Page Down Move between preset viewpoints.

F10 Camera is bound/unbound from the viewpoint.

Shift+W Set the navigation method to Walk.

Shift+E Set the navigation method to Examine.

Shift+F Set the navigation method to Fly.

Virtual Reality Toolbox Viewer

6-17

Configuring Animation Recording Parameters
Virtual Reality Toolbox allows you to record animations of virtual scenes
controlled from Simulink or MATLAB. You can later play these animations
offline (in other words, without the Virtual Reality Toolbox viewer). You might
want to generate animation files for presentations, or to distribute or archive
simulation results.

Shift Up/Down
Arrow

Move the camera forward and backward.

Up/Down Arrow Pan the camera up and down.

Left/Right Arrow,
Shift+Left/Right
Arrow

Pan the camera right and left.

Alt+Up/Down Arrow Slide up and down.

Alt+Left/Right
Arrow

Slide left and right.

Ctrl+Left/Right/Up/D
own Arrow

Pressing Ctrl alone acquires the examine lock at
the point of intersection between the line
perpendicular to the screen, coming through the
center of the viewer window, and the closest
visible surface to the camera. Pressing the arrow
keys without releasing Ctrl rotates the viewpoint
about the acquired center point.

Shift+Alt+Left/Right
Arrow

Tilt the camera right and left.

Keyboard Navigation (Continued)

Keyboard Command Navigation Function

6 Viewing Virtual Worlds

6-18

You can save the virtual world offline animation data in the following formats:

• 3-D VRML file — Virtual Reality Toolbox traces object movements and saves
that data into a VRML file using VRML97 standard interpolators. These
files allow you to observe animated virtual scenes in a virtual reality
environment. 3-D VRML files typically use much less disk space than .avi
files. Virtual Reality Toolbox does not save any navigation movements you
make while recording the animation.

• 2-D Audio Video Interleave (AVI) file — Virtual Reality Toolbox writes
animation data in an .avi file. Virtual Reality Toolbox uses vrfigure objects
to record 2-D animation files. The recorded animation reflects exactly what
you see in the Virtual Reality Toolbox viewer window, including navigation
movements, during the recording.

Note If you distribute the VRML animation files, be sure to also distribute
all the inlined object and texture files referenced in the original VRML world
file.

This section contains the following topic. This topic uses the vrplanets demo
as the example.

• “Animation Recording File Tokens” on page 6-19 — Describes the filename
tokens you can use to direct the Virtual Reality Toolbox viewer to record an
animation.

Once you understand recording file tokens, you can continue to the following
topics:

• “Recording Files in the VRML Format” on page 6-21 — Describes how to
configure the record simulation parameters to create 3-D format animation
files.

• “Recording Files in the Audio Video Interleave (AVI) Format” on page 6-22
— Describes how to configure the record simulation parameters to create 2-D
format animation files.

• “Scheduling Files for Recording” on page 6-24 — Describes how to schedule
record simulation operations to occur automatically.

Virtual Reality Toolbox Viewer

6-19

Animation Recording File Tokens
By default, the Virtual Reality Toolbox viewer records simulations in a file
named with the following format:

%f_anim_%n.<extension>

This format creates a unique filename each time you record the animation. %f
and %n are tokens, where %f is replaced with the name of the virtual world
associated with the model and %n is a number that is incremented each time
you record a simulation for the same virtual world. If you do not change the
default filename, for example, if the name of the virtual world file is vrplanets
and you record the simulation for the first time, the animation file is:

vrplanets_anim_1.wrl

If you run and record the simulation a second time, the animation filename is
vrplanets_anim_2.wrl.

You can use a number of tokens to customize the automated generation of
animation files. This section describes how to use these tokens to create
varying animation filenames.

You can

• Create files whose root names are the same as those of the virtual world. This
might be useful if you use different virtual worlds for one model.

• Create files in directories relative to the virtual world location. (This is most
helpful if you want to ensure that the virtual world file and animation file
are in the same directory.)

• Create rolling numbered filenames such that subsequent runs of the model
simulation create incrementally numbered filenames. This is useful if you
expect to create files of different parts of the model simulation. This feature
allows you to run a Simulink model multiple times, but create a unique file
at each run.

• Create multiple filenames with time or date stamps, with a unique file
created at each run.

6 Viewing Virtual Worlds

6-20

The following tokens are the same for .wrl and .avi files.

Token Description

%d The full path to the world VRML file replaces this token in the
filename string. For example, the format
%d/animdir/animfile.avi saves the animation into the
animdir subdirectory of the directory containing the virtual
world VRML file.

%D The current day in the month replaces this token in the
filename string. For example, the format %f_anim_%D.wrl saves
the animation to vrplanets_anim_29.wrl for the 29th day of
the month.

%f The virtual world filename replaces this token in the filename
string. For example, the format %f_anim_%D.wrl saves the
animation to vrplanets_anim_29.wrl.

%h The current hour replaces this token in the filename string. For
example, the format %f_anim_%h.wrl saves the animation to
vrplanets_anim_14.wrl for any time between 14:00 and 15:00.

%m The current minute replaces this token in the filename string.
For example, the format %f_anim_%h%m.wrl saves the animation
to vrplanets_anim_1434.wrl for a start record time of 14:34.

%M The current month replaces this token in the filename string.
For example, the format %f_anim_%M.wrl saves the animation
to vrplanets_anim_4.wrl for a start record time in April.

%s The current second replaces this token in the filename string.
For example, the format %f_anim_%h%m%s.wrl saves the
animation to vrplanets_anim_150430.wrl for a start record
time of 15:04:30.

Virtual Reality Toolbox Viewer

6-21

Recording Files in the VRML Format
The following procedure describes how to set up recording parameters to create
a 3-D VRML format file from a Simulink model execution. This procedure uses
the vrplanets demo. It describes how to create an animation filename with the
default name format. See “Animation Recording File Tokens” on page 6-19 to
save files to other filenames.

1 Type the demo’s name in the MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Recording Parameters.

The Recording Parameters dialog box is displayed.

3 Select the Record to VRML file check box.

The File text field becomes active and the default filename,
%f_anim_%n.wrl, appears in the text field.

%n The current incremental number replaces this token in the
filename string. Each subsequent run of the simulation
increments the number. For example, the format
%f_anim_%n.wrl saves the animation to vrplanets_anim_1.wrl
on the first run, vrplanets_anim_2.wrl on the second run, and
so forth.

%Y The current four digit year replaces this token in the filename
string. For example, the format %f_anim_%Y.wrl saves the
animation to vrplanets_anim_2003.wrl for the year 2003.

Token Description

6 Viewing Virtual Worlds

6-22

4 Click OK.

After you define an animation file, you can manually record simulations. See
“Interactively Starting and Stopping Animation Recording” on page 6-26. If
you want to record simulations on a schedule, see “Scheduling Files for
Recording” on page 6-24.

Recording Files in the Audio Video Interleave (AVI)
Format
The following procedure describes how to set up recording parameters to create
a 2-D AVI format file from a Simulink model execution. This procedure uses the
vrplanets demo. It describes how to create an animation filename with the
default name format. See “Animation Recording File Tokens” on page 6-19 to
save files to other filenames.

1 Type the demo’s name in the MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Recording Parameters.

The Recording Parameters dialog box is displayed.

Virtual Reality Toolbox Viewer

6-23

3 Select the Record to AVI file check box.

The File text field and Compression selection area become active and the
default filename, %f_anim_%n.avi, appears in the text field.

4 From the Compression list, select a compression method for the .avi file.
Because .avi files can become large, you might want to compress the .avi
file.

Choose from

- Autoselect — Allows Virtual Reality Toolbox to select the most
appropriate compression codec. Associated with this option is a quality
setting that is a number between 0 and 100. Higher quality numbers
result in higher video quality and larger file sizes. Lower quality numbers
result in lower video quality and smaller file sizes.

- Lossless — Forces Virtual Reality Toolbox to compress the animation file
without loss of data. (Typically, the compression of files sacrifices some
data.)

6 Viewing Virtual Worlds

6-24

- User Defined — Enables you to specify a particular compression codec.
Associated with this option is a quality setting that is a number between
0 and 100. Higher quality numbers result in higher video quality and
larger file sizes. Lower quality numbers result in lower video quality and
smaller file sizes. You need to specify an identification string of a codec
that your system supports.

- None — Prevents any compression for the animation file.

5 Disable the navigation panel. The navigation panel appears at the bottom of
the virtual scene view. You might want to turn off this panel for a cleaner
view of the virtual scene. Choose View -> Navigation Panel -> Off.

You can reenable the Navigation Panel (for example, choose View ->
Navigation Panel -> Halfbar) after you are finished recording the .avi file.

6 Click OK.

After you define an animation file, you can record animations. See
“Interactively Starting and Stopping Animation Recording” on page 6-26. If
you want to record animations on a schedule, see “Scheduling Files for
Recording” on page 6-24.

Scheduling Files for Recording
This topic describes how to schedule the recording of an animation using the
MATLAB interface for a virtual world that is associated with a Simulink
model. In this case, the timing in an animation file derives from the simulation
time. One second of the recorded animation time corresponds to one second of
Simulink time. To schedule the recording of an animation file, you preset the
simulation time interval during which the animation recording occurs. This
procedure uses the vrplanets demo. It assumes that you have already
configured the recording parameters for an animation file. See “Recording Files
in the VRML Format” on page 6-21 or “Recording Files in the Audio Video
Interleave (AVI) Format” on page 6-22 for further details.

Virtual Reality Toolbox Viewer

6-25

1 If the vrplanets demo is not already open, type the demo’s name in the
MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

2 From the Recording menu, choose Recording Parameters.

The Recording Parameters dialog box is displayed. This dialog box
contains the Record mode list. Note that the Record mode list is enabled
only if you also select either or both the Record to VRML or Record to AVI
check box.

3 From the Record mode list, choose Scheduled.

The Start time and Stop time text fields are enabled.

4 Enter in Start time and Stop time the start and stop times during which
you want to record the animation. For example, enter 0 as the start time and
100 as the stop time.

6 Viewing Virtual Worlds

6-26

Ensure that the recording start time value is not earlier than the start time
of the Simulink model; the recording operation cannot start in this instance.
If the stop time exceeds the stop time of the Simulink model, or if it is an out
of bounds value such as a negative number, the recording operation stops
when the simulation stops.

5 Click OK.

After you define the schedule, you can record simulations. See “Starting and
Stopping Simulations” on page 6-9.

Note You can override the recording schedule by starting or stopping the
recording interactively.

Interactively Starting and Stopping Animation
Recording
You can start or stop recording animations of the virtual world from the Virtual
Reality Toolbox viewer through the menu bar, toolbar, or keyboard. This
section assumes that you have specified animation files into which the
animation is to be recorded. See “Configuring Animation Recording
Parameters” on page 6-17 if you have not defined animation files.

• From the menu bar, choose the Simulation menu, Start option to start
recording the animation (select Stop to stop the recording).

Virtual Reality Toolbox Viewer

6-27

• From the toolbar, click the Start/stop recording button to start or stop
recording the animation (select Stop to stop the recording). Alternatively,
you can use the Recording menu Start Recording and Stop Recording
options. From the keyboard, press Ctrl+R to toggle between starting or
stopping the animation recording.

• Stop the simulation or let the model simulate until the defined simulation
stop time.

Note If you stop the simulation while recording is enabled, the viewer also
stops recording the animation.

Viewing the Animation File
This topic assumes that you have a VRML or AVI animation file that you want
to view. If you do not have an animation file, see “Recording Files in the VRML
Format” on page 6-21 or “Recording Files in the Audio Video Interleave (AVI)
Format” on page 6-22 for descriptions on how to create one.

To View VRML Files

1 Change directory to the one that contains the VRML animation file.

2 You can view the file in one of the following ways:

- Double-click on the VRML file. A VRML-enabled Web browser opens with
the animation running. To view the resulting animation file, you must
have a VRML-enabled Web browser installed on your system. Also, ensure
that the .wrl extension is associated with the blaxxun Contact Web
browser.

- At the MATLAB window, type
w=vrview('vrplanets_anim_1.wrl');
set(w,'TimeSource','freerun');

The vrview command displays the default Virtual Reality Toolbox viewer
for the animation file. Setting the TimeSource property to 'freerun'
directs the viewer to advance its time independent of MATLAB.

6 Viewing Virtual Worlds

6-28

3 To stop the animation, type

set(w,'TimeSource','external');

Alternatively, to close the viewer and delete the world, you can get the
handle of the vrfigure object and close it, as follows:

f=get(w,'Figures')
close(f);
delete(w);

Or, to close all vrfigure objects and delete the world, type

vrclose
delete(w);

To View AVI Files

1 Change directory to the one that contains the AVI animation file.

2 Double-click that file.

The program associated with .avi files in your system (for example,
Windows Media Player) opens for the .avi file. If your .avi file is not yet
running, start it now from the application. The animation file runs.

Working with Viewpoints
You or visitors to a virtual world navigate through the virtual world
environment using the Virtual Reality Toolbox viewer navigation methods
Walk, Examine, and Fly. In addition to these navigation methods, a virtual
world creator can set up points of interest, known as viewpoints, in the virtual
world. You can use viewpoints to guide visitors through the virtual world and
to emphasize important points.

When a visitor first enters a virtual world, he or she is defaulted to the default
viewpoint. This is the first Viewpoint node in the virtual world file. Define the
virtual world default viewpoint carefully; it should be the most interesting
entry point to the virtual world.

Each virtual world has as many viewpoints as you define for it. You can define
viewpoints in the virtual world through your chosen editor or through the
Virtual Reality Toolbox viewer.

Virtual Reality Toolbox Viewer

6-29

You can define a viewpoint to be either static or dynamic.

• Static — Created typically at the top level of the virtual world object
hierarchy. You can also create these viewpoints as children of static objects
(Transforms).

• Dynamic — Created as children of moving objects (objects controlled from
MATLAB or Simulink) or linked to moving objects with the VRML ROUTE
mechanism. Dynamic viewpoints allow you to create interesting views such
as from the driver’s seat at a racing course.

This topic illustrates viewpoints using the vrplanets demo.

1 Select a Virtual Reality Toolbox demo and type that demo’s name in the
MATLAB command window. For example:

vrplanets

The Simulink model is displayed. By default, the Virtual Reality Toolbox
viewer for that model is loaded and becomes active. If the viewer is not
displayed, double-click the VR Sink block in the Simulink model.

2 From the menu bar, select the Viewpoints menu.

A menu of the viewpoint options is displayed. Included is a list of the existing
viewpoints.

3 Select the drop-down list on the leftmost side of the toolbar to see the list of
existing viewpoints from the toolbar.

List of viewpoints

6 Viewing Virtual Worlds

6-30

When you add new viewpoints to the world, these lists are updated to reflect
the new viewpoints.

The current viewpoint is also displayed in the left pane of the status bar.

List of viewpoints

Current viewpoint

Virtual Reality Toolbox Viewer

6-31

You manage and navigate through viewpoints from the menu bar, toolbar,
navigation panel, and keyboard. In particular, you can

• Navigate to a previous or next viewpoint

• Return to the initial position of the current viewpoint

• Go to the virtual world’s default viewpoint

• Create and remove viewpoints

• Navigate to an existing viewpoint

Navigating through Viewpoints
You can navigate through a virtual scene’s viewpoints using the menu bar,
toolbar, navigation panel, or keyboard shortcut keys. These navigation
methods are inactive if the author has specified no or only one viewpoint in the
virtual world.

• From the menu bar, use the Viewpoints menu to move between viewpoints.
Use the Previous Viewpoint and Next Viewpoint options to sequentially
move up and down the list of existing viewpoints. To move focus to a
particular viewpoint, choose a viewpoint from the list of viewpoints.

• From the toolbar, use the drop-down list of viewpoints to select a particular
viewpoint.

• From the navigation panel, use the Previous Viewpoint and Next
Viewpoint controls to sequentially move up and down the list of existing
viewpoints.

• From the keyboard, press Page Up and Page Down.

To reset a camera to the initial position of the current viewpoint, use one of the
methods listed in “Resetting Viewpoints” on page 6-32. Resetting the viewpoint
is useful when you have been moving about the scene and need to reorient
yourself.

6 Viewing Virtual Worlds

6-32

Resetting Viewpoints
You can reset your position in a scene to initial default or current viewpoint
position through the menu bar, toolbar, navigation panel, or keyboard shortcut
keys.

• From the menu bar, use the Viewpoints menu Return to viewpoint option
to return to the initial position of the current viewpoint. Alternatively, from
the toolbar, select Return to viewpoint button to return to the initial
position of the current viewpoint.

• From the navigation panel, click the Go to default viewpoint control to
return to the default viewpoint of the virtual world. Alternatively, from the
menu bar, use the Viewpoints menu Go to Default Viewpoint option to
return to the default viewpoint of the virtual world.

• From the keyboard:

- Press the Esc key to return to the default viewpoint of the virtual world.

- Press the Home key to return to the initial position of the current
viewpoint.

Creating Viewpoints
You can add new viewpoints to the virtual world through the menu bar or
toolbar.

1 Select a Virtual Reality Toolbox demo and type that demo’s name in the
MATLAB Command Window. For example:

vrplanets

The Simulink model is displayed. Also, by default, the Virtual Reality
Toolbox viewer for that model is loaded and becomes active. If the viewer is
not displayed, double-click the VR Sink block in the Simulink model.

In the Virtual Reality Toolbox viewer, the default viewpoint for this model
is View from top.

2 From the menu bar, choose the Viewpoints menu.

3 Choose View on Earth.

4 In the viewer window, navigate to a random position in the scene.

Virtual Reality Toolbox Viewer

6-33

5 From the Viewpoints menu, choose Create Viewpoint. Alternatively, click
Create viewpoint on the toolbar.

The Create Viewpoint dialog box is displayed.

6 In the Name box, enter a unique and descriptive name for the viewpoint.

7 The state of the Placement field depends on the current viewpoint. If the
current viewpoint is at the top hierarchy level in the virtual world (one of the
children of the root), the Placement field is grayed out. In this case, it is only
meaningful to create the new viewpoint as a static one at the same top
hierarchy level.

In this example, the Placement field is editable. Select Child of the root
as the viewpoint type. This option makes the viewpoint a static one.

8 Select the Jump to new viewpoint immediately check box to make the new
viewpoint become the current viewpoint for the viewer. If you do not select
this check box, you still create a new viewpoint, but you remain bound to the
current viewpoint, not to the new viewpoint.

9 Click OK

10 From the File menu, click Save As to save the file with the new viewpoint.
If you do not save the file, the new viewpoint will be lost during simulation.

11 From the Simulation menu, click Start. Observe the motion of the planets
from the new, static viewpoint.

12 Stop the simulation.

13 Repeat steps 2 to 6.

6 Viewing Virtual Worlds

6-34

14 In the Placement field, select Sibling of the current viewpoint. This
option creates a new viewpoint at the same level in the virtual world object
hierarchy as the child of the parent transform of the current viewpoint. The
local coordinate system of the parent transform defines the new viewpoint
coordinates. As a result, the new viewpoint moves with the parent
transform. The new viewpoint also keeps the position relative to the
transform (offset) you first defined by navigating somewhere in the space
from the current viewpoint (step 4).

Note If the current viewpoint is at the top hierarchy level in the virtual
world (one of the children of the root), the Placement field is grayed out. In
this case, it is only meaningful to create the new viewpoint as a static one at
the same top hierarchy level.

15 Select the Jump to new viewpoint immediately check box to make the new
viewpoint become the current viewpoint for the viewer. If you do not select
this check box, you still create a new viewpoint, but you remain bound to the
current viewpoint, not to the new viewpoint.

16 Click OK.

17 From the File menu, choose Save As to save the file with the new viewpoint.
If you do not save the file, the new viewpoint will be lost during simulation.

18 From the Simulation menu, choose Start. Observe that the relative position
between the new viewpoint and Earth remains the same. The new viewpoint
moves together with its parent object Earth transform.

Virtual Reality Toolbox Viewer

6-35

Rendering
You can change the rendering of the scene through the controls on the
navigation panel or options on the rendering menu. The vrpend and vrplanets
demos are used to demonstrate the viewer’s functionality.

You can turn the antialiasing of the scene on or off. Antialiasing applies to the
textures of a world. Antialiasing is a technique that attempts to smooth the
appearance of jagged lines. These jagged lines are the result of a printer or
monitor’s not having enough resolution to represent a line smoothly. When
Antialiasing is on, the jagged lines are surrounded by shades of gray or color.
Therefore, the lines appear smoother rather than jagged. For example, the
following figure depicts the vrplanets demo View on Earth viewpoint with
Antialiasing on. To better display the affects of antialiasing, turn Headlight
on. You can turn antialiasing on or off to observe the differences.

6 Viewing Virtual Worlds

6-36

You can turn the camera headlight and the lighting of the scene on or off. When
Headlight is off, the camera does not emit light. Consequently, the scene can
appear dark. For example, the following figure depicts the vrpend demo with
Headlight on.

Virtual Reality Toolbox Viewer

6-37

The scene looks darker when Headlight is set to off.

Headlight toggle

6 Viewing Virtual Worlds

6-38

Note It is helpful to define enough lighting within the virtual scene so that it
is lit regardless of the Headlight setting.

Virtual Reality Toolbox Viewer

6-39

When Lighting is off, the virtual world appears as if lit in all directions. The
Virtual Reality Toolbox viewer does not compute and render all the lighting
effects at the surfaces of the objects. Shadows disappear and the scene loses
some of its 3-D quality. The following is the vrpend demo with Lighting off.

6 Viewing Virtual Worlds

6-40

If Transparency is off, transparent objects are rendered as solid objects.

Virtual Reality Toolbox Viewer

6-41

Turning Wireframe on changes the scene’s objects from solid to wireframe
rendering. The following is the vrpend demo with Wireframe on.

If Textures is on, objects have texture in the virtual scene. The following is the
vrplanets demo with Textures on.

Wireframe toggle

6 Viewing Virtual Worlds

6-42

If Textures is off, objects do not have texture in the virtual scene. The following
is the vrplanets demo with Textures off.

Virtual Reality Toolbox Viewer

6-43

6 Viewing Virtual Worlds

6-44

blaxxun Contact VRML Plug-In
The Virtual Reality Toolbox includes the blaxxun Contact VRML plug-in. This
is a VRML plug-in for either Microsoft Internet Explorer or Netscape
Navigator on a Windows platform. This section provides a quick overview of
the functions and controls of the blaxxun Contact VRML plug-in, and also
describes full screen stereo support in blaxxun.

When you open a VRML file with a Web browser, the blaxxun Contact VRML
plug-in is used to display a virtual scene. A control panel is located at the
bottom of the scene.

Viewpoint Control
Three buttons on the control panel control the viewpoint. The square button in
the middle resets the current viewpoint to its initial position. This is the most
useful viewpoint control button until you gain enough experience with the
viewer to explore worlds using navigation. The keyboard shortcut for the
square button is the Esc key.

You use the other two triangular buttons to browse forward and backward
through author-defined viewpoints of the virtual world. If the author does not
define other viewpoints, these buttons are inactive. The keyboard shortcuts for
the triangular buttons are the Page Up and Page Down keys.

Viewpoint control

Show/Hide panel

Movement mode
and dial control

Left/Right buttons

Show menu

blaxxun Contact VRML Plug-In

6-45

Control Menu
You use the control menu to review or select viewer settings and navigation
methods. To access the control menu, use the following procedure:

1 On the control panel, click the question mark, or place your mouse pointer
anywhere in the browser window, and then right-click.

If you selected Direct3D with the blaxxun Contact installation, a menu
similar to the one shown appears.

2 From the menu, you can make changes to the navigational mode, graphic
quality, and graphic speed.

Depending on the complexity of the virtual world and the required speed and
rendering quality, you can choose the settings that best meet your needs.

Because the viewer’s graphical performance strongly depends on several
factors, you might want to experiment to find a reasonable compromise
between the quality and speed for your system.

Navigation
The dial control and left/right buttons give you direct access to the movement
mode for walking through a virtual world. However, the movement behavior of
your mouse pointer changes depending on the movement mode you select.
When you select a different movement mode, clicking your left mouse button
causes your viewpoint to move differently. Practice changing the movement
mode and navigating through a virtual world until you get satisfactory results.

6 Viewing Virtual Worlds

6-46

To select a movement mode, use the following procedure:

1 Place your mouse pointer over a virtual world, then right-click. A menu
appears.

2 On the menu, point to Movement. A submenu appears.

3 Choose Walk, Slide, Rotate, Examine, Fly, Pan, or Jump.

A letter in the center of the dial indicates the current movement mode. For
example, in the preceding illustration, the large E stands for Examine mode.

Initially, you should use Examine mode, which is for examining objects from
various angles. You will find that the functions of the left/right button controls
in Examine mode are the easiest for beginners to master.

Movement Modes
The following table lists the movement modes.

Movement
Mode

Description

Walk Drag the mouse toward the top or the bottom of the
screen to move forward or backward, and drag toward
the left or right to turn left or right.

Slide Drag the mouse to move up, down, left, or right within
a plane that is perpendicular to your view.

Rotate Press the left mouse button to select a rotation point
within the scene. Then drag the mouse toward the top
or bottom to move forward or back, or drag the mouse
left or right to rotate around the fixed point.

Examine Press the left mouse button to select a rotation point
within the scene. Then drag the mouse up, down, left,
or right to rotate the object.

blaxxun Contact VRML Plug-In

6-47

blaxxun Contact Settings
For PCs, the Virtual Reality Toolbox includes the blaxxun Contact VRML
plug-in for Web browsers. The viewer allows you to select several working
configurations, and its performance depends on several factors:

• The speed of your hardware

• System display driver settings

• Method of 3-D rendering

• blaxxun Contact parameters

• The size of the window in which you display the 3-D visualization

You might want to test the various combinations possible on your system to
find an optimal configuration for the best performance in 3-D visualization.

With respect to the 3-D rendering method, you can install blaxxun Contact
with two basic configurations using OpenGL and Direct3D drivers. You can
tune the viewer performance by setting the parameters in the
Settings-Preferences dialog box of the viewer floating menu, accessible by
right-clicking when you are viewing a virtual scene.

In Direct3D configuration, you can select the speed and quality on the fly from
the top level of the menu. You can, depending on the system capabilities, select
one of the options on the menu. For example, you can select High Speed, High
Quality, Hardware Acceleration, and MMX Speed.

Fly Press the left mouse button to start flying. Drag the
mouse toward the top or bottom to rise or sink, and
drag left or right.

Pan Drag the mouse toward the top or bottom of the scene
to loop up and down, and drag left or right to turn left
or right.

Jump Place your mouse pointer over an object, then left-click.
Your view moves to that point.

Movement
Mode

Description

6 Viewing Virtual Worlds

6-48

In the OpenGL configuration, you can set similar rendering properties. From
the floating menu, choose Settings, and then choose Preferences.

Stereoscopic Vision
blaxxun Contact supports stereoscopic vision. If the graphic card and system
driver enable full screen stereo mode, and if you have corresponding stereo
vision hardware (such as stereoscopic shutter glasses), you can access this
support. In full screen mode, no menus and other user interfaces are available
to the user.

• To switch blaxxun Contact to the full screen mode, press F5.

• To switch back to normal mode, press Esc.

If you have installed the appropriate stereo driver, blaxxun Contact supports
full screen stereo mode under Microsoft Windows with most NVIDIA graphic
cards. For details, refer to the card manufacturer documentation.

If you want to tune the full screen mode resolution or color depth.

1 In the blaxxun Contact window, place your mouse pointer over a virtual
world, then right-click.

A menu appears.

2 On the menu, point to Settings. A submenu appears.

3 Choose Preferences.

4 Tune the full screen mode resolution or color depth settings.

5 Click OK when done.

Note that your system configuration can switch to stereoscopic full screen mode
only when using one of the Direct3D or OpenGL rendering engines. If you are
unable to switch to full screen stereo mode, try to install blaxxun Contact using
another rendering engine. Typically, graphic card stereo drivers provide
testing applications to confirm the functionality of stereoscopic modes.

7

Block Reference

7 Block Reference

7-2

Blocks — Categorical List

Control Input Devices

Virtual Worlds

VRML Related Signals

Joystick Input Process input from asynchronous joystick
device

Magellan Space Mouse Process input from Magellan Space Mouse
device

VR Sink Write data from Simulink model to virtual
world

VR Placeholder Send unspecified value to Virtual Reality
Toolbox block

VR Signal Expander Expand input vectors into fully qualified
VRML field vectors

Blocks — Alphabetical List

7-3

Blocks — Alphabetical List 7

This section contains block reference pages listed alphabetically.

Joystick Input

7-4

7Joystick InputPurpose Process input from asynchronous joystick device

Library Virtual Reality Toolbox

Description The Joystick Input block provides a convenient interaction between a Simulink
model and the virtual world associated with a Virtual Reality Toolbox block. It
works only on Windows operating systems.

The Joystick Input block uses axes, buttons, and the point-of-view selector, if
present. You can use this block as you would use any other Simulink source
block. Its output ports reflect the status of the joystick controls for axes and
buttons.

The Joystick Input block also supports force-feedback devices.

Block
Parameters
Dialog Box

Joystick ID — The system ID assigned to the given joystick device. You can
find the properties of the joystick connected to the system in the Game
Controllers section of the system Control Panel.

Adjust I/O ports according to joystick capabilities — If you select this check
box, the block ports do not have the full width provided by the Windows Game
Controllers interface. Instead, the Virtual Reality Toolbox dynamically adjusts
the ports to correspond to the capabilities of the connected joystick each time
the model is opened. If the connected device does not have force-feedback
capability, selecting this check box causes the removal of the force-feedback
input from the block even if the Enable force-feedback input check box is
selected.

Enable force-feedback input — If you select this check box, Virtual Reality
Toolbox can support force-feedback joystick, steering wheel, and haptic (one
that enables tactile feedback) devices. To use this feature, you must install
Microsoft DirectX Version 8.0 or higher.

Joystick Input

7-5

Output Ports — Depending on the Adjust I/O ports according to joystick
capabilities check box setting previously described, output ports either have
fixed maximum width provided by the system Game Controllers interface or
the output ports change to correspond to the actual capabilities of the
connected joystick.

Output
Port

Value Description

Axes Vector of doubles in
the range < -1; 1 >

Outputs correspond to the current
position of the joystick in the
given axis. Values are normalized
to the range from -1 to 1.

Buttons Vector of doubles

0 — Button released
1 — Button pressed

Outputs correspond to the current
status of joystick buttons.

Point of
view

-1 — Selector inactive
<0; 360> — The angle
of the POV selector, in
degrees

Output corresponds to the current
status of the joystick Point of
View selector.

Input Port Value Description

Force Vector of doubles
in the range < -1; 1 >

Port active only for force-feedback
devices. Inputs correspond to the
desired force to be applied in the
given axis.

Please note that usually not all of
the device axes have
force-feedback. The size of the
Force vector is then smaller than
the Axes vector size.

Magellan Space Mouse

7-6

7Magellan Space MousePurpose Process input from Magellan Space Mouse device

Library Virtual Reality Toolbox

Description The Magellan Space Mouse is a device similar to a joystick in purpose, but it
also provides movement control with six degrees of freedom. This block reads
the status of the Space Mouse and provides some commonly used
transformations of the input. The Space Mouse block supports all models of
Space Mouse and PuckMan devices manufactured by 3Dconnexion. It also
supports USB devices. Space Mouse devices are supported only on Windows
operating systems.

Data Type
Support

A Magellan Space Mouse block outputs signals of type double.

Block
Parameters
Dialog Box

Port — Serial port to which the Magellan Space Mouse is connected. Possible
values are COM1…COM4 and USB.

Output Type — This field specifies how the inputs from the device are
transformed:

• Speed — No transformations are done. Outputs are translation and rotation
speeds.

• Position — Translations and rotations are integrated. Outputs are position
and orientation in the form of roll/pitch/yaw angles.

• Viewpoint coordinates — Translations and rotations are integrated.
Outputs are position and orientation in the form of an axis and an angle. You
can use these values as viewpoint coordinates in VRML.

Dominant mode — If this check box is selected, the mouse accepts only the
prevailing movement and rotation and ignores the others. This mode is very
useful for beginners using the Magellan Space Mouse.

Disable position movement — Fixes the positions at the initial values,
allowing you to change rotations only.

Disable rotation movement — Fixes the rotations at initial values, allowing
you to change positions only.

Magellan Space Mouse

7-7

Normalize output angle — Determines whether the integrated rotation
angles should wrap on a full circle (360°) or not. This is not used when you set
the output mode to Speed.

Position sensitivity — Mouse sensitivity for translations. Lower values
correspond to higher sensitivity.

Rotation sensitivity — Mouse sensitivity for rotations. Lower values
correspond to higher sensitivity.

Initial position — Initial condition for integrated translations. This is not
used when you set the output mode to Speed.

Initial rotation — Initial condition for integrated rotations. This is not used
when you set the output mode to Speed.

VR Placeholder

7-8

7VR PlaceholderPurpose Send unspecified value to Virtual Reality Toolbox block

Library Virtual Reality Toolbox

Description The VR Placeholder block sends out a special value that is interpreted as
“unspecified” by the VR Sink block. When this value appears on the VR Sink
input, whether as a single value or as an element of a vector, the appropriate
value in the virtual world stays unchanged. Use this block to change only one
value from a larger vector. For example, use this block to change just one
coordinate from a 3-D position.

The value output by the VR Placeholder block should not be modified before
being used in other VR blocks.

Data Type
Support

A VR Placeholder block outputs signals of type double.

Block
Parameters
Dialog Box

Output Width — Length of the vector containing placeholder signal values.

VR Signal Expander

7-9

7VR Signal ExpanderPurpose Expand input vectors into fully qualified VRML field vectors

Library Virtual Reality Toolbox

Description The VR Signal Expander block creates a vector of predefined length, using
some values from the input ports and filling the rest with placeholder signal
values.

Data Type
Support

 A VR Signal Expander block accepts and outputs signals of type double.

Block
Parameters
Dialog Box

Output width — How long the output vector should be.

Output signal indices — Vector indicating the position at which the input
signals appear at the output. The remaining positions are filled with VR
Placeholder signals.

VR Signal Expander

7-10

For example, suppose you want an input vector with two signals, and you want
an output vector with four signals, and you want the first input signal in
position 2 and the second input signal in position 4. In the Output width box,
enter 4 and in the Output signal indices box, enter [2,4]. The first and third
output signals are unspecified.

VR Sink

7-11

7VR SinkPurpose Write data from Simulink model to virtual world

Library Virtual Reality Toolbox

Description The VR Sink block writes values from its ports to virtual world fields specified
in the Block Parameters dialog box.

Data Type
Support

A VR Sink block accepts all meaningful data types on input. The block converts
these data types to natural VRML types as necessary. These data types include
logicals, many types of signed and unsigned integers, singles, and doubles. For
further details, see “VRML Field Data Types” on page 5-20.

Block
Parameters
Dialog Box

VR Sink

7-12

Source file — VRML filename specifying the virtual world this block is
connected to. The View button allows you to view the world in the Virtual
Reality Toolbox viewer or a Web browser. The Edit button launches an external
VRML editor, and the Reload button reloads the world after you change it. By
default, the full path to the associated .wrl file appears in this text box. If you
enter only the filename in this box, the Virtual Reality Toolbox assumes that
the .wrl file resides in the same directory as the model file.

Open VRML viewer automatically — If you select this check box, the default
VRML viewer displays the virtual world after loading the Simulink model.

Allow viewing from the Internet — If you select this check box, the virtual
world is accessible for viewing on a client computer. If it is not selected, the
world is visible only on the host computer. This is equivalent to the RemoteView
property of a vrworld object. See Chapter 4, “MATLAB Interface.”

Description — Description that is displayed in all virtual reality object
listings, in the title bar of the Virtual Reality Toolbox viewer, and in the list of
virtual worlds on the Virtual Reality Toolbox HTML page. This is equivalent
to the Description property of a vrworld object. See Chapter 4, “MATLAB
Interface.”

Sample time — Enter the sample time or -1 for inherited sample time.

Note To better record the animation, you might want to experimentally
change the value of this property.

VRML tree — This box shows the structure of the VRML file and the virtual
world itself.

Nodes that have names are marked with red arrows and can be accessed from
MATLAB. Nodes without names, but whose children are named, are also
marked with red arrows. This marking scheme makes it possible for you to find
all accessible nodes by traversing the tree using arrows. Other nodes have a
blue dot before their names.

VR Sink

7-13

Fields with settable values have check boxes. Use these check boxes to select
the fields you want Simulink to output values to. For every selected field, an
input port is created in the block. Input ports are assigned to the selected nodes
and fields in the order corresponding to the VRML file.

Fields whose values cannot be written (because their parent nodes do not have
names, or because they are not of VRML data class eventIn or exposedField),
have an X-shaped icon.

Show node types — If you select this check box, node types are shown in the
VRML tree.

Show field types — If you select this check box, field types are shown in the
VRML tree.

You can use the Simulink get_param and set_param functions to access the
following VR Sink block dialog parameters:

Note Use these parameters with care. It is your responsibility to maintain
consistency in the block parameters. For example, if you change the
WorldFileName property, also change the FieldsWritten property to reflect
the actual nodes and fields accessible in the newly associated VRML file.

Property Possible Values

FieldsWritten String containing list of NodeName.FieldName pairs,
separated by #
For example
Membrane.translation#Membrane.rotation

SampleTime String containing an expression that evaluates to a
valid Simulink sample time value

WorldFileName Associated VRML filename

VR Sink

7-14

8

Function Reference

8 Function Reference

8-2

Functions — Categorical List
This topic contains reference pages for MATLAB interface and Virtual
Reality Toolbox object functions.

• “MATLAB Interface Functions” on page 8-3 — Interfaces with virtual
worlds and miscellaneous features, such as opening the Virtual Reality
Toolbox library, closing virtual reality figure windows, and setting and
getting Virtual Reality Toolbox preferences.

• “vrworld Object Methods” on page 8-3 — Handle of a virtual scene. It
allows you to interact with and control the scene.

• “vrnode Object Methods” on page 8-4 — Handle of a VRML node. It allows
you to get and set the node properties. A vrnode object is a child object of a
vrworld object.

• “vrfigure Object Methods” on page 8-4 — Handle to the Virtual Reality
Toolbox viewer window that allows you to get and set the viewer properties.
A vrfigure object is a child object of a vrworld object.

About Virtual Reality Toolbox objects While the Simulink interface is
the preferred method for using the Virtual Reality Toolbox, you can access
virtual worlds through the MATLAB interface. To use this interface, you
create objects in the MATLAB workspace and associate those objects with
your virtual worlds. MATLAB functions and the Simulink interface share
the same Virtual Reality Toolbox objects. These objects are accessible from
both the MATLAB and Simulink interfaces simultaneously.

Functions — Categorical List

8-3

MATLAB Interface Functions

vrworld Object Methods

vrclear Delete all closed virtual worlds from memory

vrclose Close virtual reality figure windows

vrdrawnow Update virtual world

vrgetpref Read values of Virtual Reality Toolbox
preferences

vrinstall Install and check Virtual Reality Toolbox
components

vrlib Open Simulink block library for the Virtual
Reality Toolbox

vrsetpref Change Virtual Reality Toolbox preferences

vrview View virtual world using Virtual Reality
Toolbox viewer or Web browser

vrwho List virtual worlds in memory

vrwhos List details about virtual worlds in memory

vrworld Create new vrworld object associated with
virtual world

vrworld/close Close virtual world

vrworld/delete Delete virtual world from memory

vrworld/edit Open virtual world file in external VRML
editor

vrworld/get Read property value of vrworld object

vrworld/isvalid Return 1 if vrworld object is valid, 0 if not

vrworld/nodes List nodes available in virtual world

vrworld/open Open virtual world

vrworld/reload Reload virtual world from VRML file

8 Function Reference

8-4

vrnode Object Methods

vrfigure Object Methods

vrworld/save Write virtual world to VRML file

vrworld/set Change property values of vrworld object

vrworld/view View virtual world

vrnode Create node or handle to existing node

vrnode/delete Delete vrnode object

vrnode/fields Return VRML field summary of node object

vrnode/get Read property value of vrnode object

vrnode/getfield Get field value of vrnode object

vrnode/isvalid Return 1 if vrnode object is valid, 0 if not

vrnode/set Change property of virtual world node

vrnode/setfield Change field value of vrnode object

vrnode/sync Enable or disable synchronization of VRML
fields with clients

vrfigure Create new virtual reality figure

vrfigure/capture Create RGB image from virtual reality figure

vrfigure/close Close virtual reality figure

vrfigure/get Read property value of vrfigure object

vrfigure/isvalid Return 1 if vrfigure object is valid, 0 if not

vrfigure/set Change property value of vrfigure object

vrfigure/vrgcf Get handle for currently active virtual reality
figure

vrfigure/vrgcbf Get current callback vrfigure object

Functions — Alphabetical List

8-5

Functions — Alphabetical List 8

This section contains function reference pages listed alphabetically.

vrclear

8-6

8vrclearPurpose Delete all closed virtual worlds from memory

Syntax vrclear
vrclear('-force')

Description The vrclear function removes from memory all virtual worlds that are closed
and invalidates all vrworld objects related to them. This function does not
affect open virtual worlds. Open virtual worlds include those loaded from
Simulink. You use this command to

• Ensure that the maximum amount of memory is freed before a
memory-consuming operation takes place

• Perform a general cleanup of memory

The vrclear('-force') command removes all virtual worlds from memory,
including worlds opened from Simulink.

See Also vrworld/delete, vrworld

vrclose

8-7

8vrclosePurpose Close virtual reality figure windows

Syntax vrclose
vrclose all

Description vrclose and vrclose all close all the open virtual reality figures.

Examples Open a series of virtual reality figure windows by typing

vrpend
vrbounce
vrlights

Arrange the viewer windows so they are all visible. Type

vrclose

All the virtual reality figure windows disappear from the screen.

See Also vrfigure/close

vrdrawnow

8-8

8vrdrawnowPurpose Update virtual world

Syntax vrdrawnow

Description vrdrawnow removes from the queue pending changes to the virtual world and
makes these changes to the scene in the viewer.

Changes to the scene are normally queued and the views are updated when

• MATLAB is idle for some time (no Simulink model is running and no M-file
is being executed).

• A Simulink step is finished.

vrfigure

8-9

8vrfigurePurpose Create new virtual reality figure

Syntax f = vrfigure(world)
f = vrfigure(world,position)
f = vrfigure
f = vrfigure([])

Description f = vrfigure(world) creates a new virtual reality figure showing the specified
world and returns an appropriate vrfigure object. The input argument world
must be a vrworld object.

f = vrfigure(world,position) creates a new virtual reality figure at the
specified position.

f = vrfigure returns an empty vrfigure object that does not have a visual
representation.

f = vrfigure([]) returns an empty vector of type vrfigure.

Examples Create a vrworld object. At the MATLAB command prompt, type

myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open the
virtual world before you can view it. At the MATLAB command prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox viewer by
typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene.

See Also vrworld, vrworld/open

vrfigure/capture

8-10

8vrfigure/capturePurpose Create RGB image from virtual reality figure

Syntax image_capture = capture(vrfigure_object)

Description image_capture = capture(vrfigure_object) captures a virtual reality figure
into a TrueColor RGB image that can be displayed by the image command.

Examples Create a vrworld object. At the MATLAB command prompt, type

myworld = vrworld('vrmount.wrl')

The vrworld object myworld is associated with the virtual world vrmount.wrl.

Next, open the virtual world using the vrworld object. You must open the
virtual world before you can view it. At the MATLAB command prompt, type

open(myworld)

You can now view the virtual world in the Virtual Reality Toolbox viewer by
typing

f = vrfigure(myworld)

Your viewer opens and displays the virtual scene. Next, create an RGB image
by typing

image_capture = capture(f);

Lastly, view the image

image(image_capture)

The scene from the viewer window is displayed in a MATLAB figure window.

See Also vrfigure

vrfigure/close

8-11

8vrfigure/closePurpose Close virtual reality figure

Syntax close(vrfigure_object)

Arguments

Description close(vrfigure_object) closes the virtual reality figure referenced by
vrfigure_object. If vrfigure_object is a vector of vrfigure handles, then
multiple figures are closed.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
f = vrfigure(myworld)
close(f)

See Also vrworld, vrworld/open, vrfigure

vrfigure_object Name of a figure object.

vrfigure/get

8-12

8vrfigure/getPurpose Read property value of vrfigure object

Syntax get(vrfigure_object)
x = get(vrfigure_object, 'property_name')

Arguments

Description get(vrfigure_object) lists all the properties of the vrfigure object. This is
useful when you want to determine the current values of these properties. Use
a command like the following to return a value of the specified property of the
vrfigure object.

x = get(vrfigure_object, 'property_name') returns a value of the specified
property of the vrfigure object.

The following are properties of vrfigure objects.

vrfigure_object Name of a vrfigure object.

property_name Name of the property.

Property Value Description

Antialiasing 'off' | 'on'
Default: 'off'

Determines whether
antialiasing is used
when rendering scene.
Antialiasing smooths
textures by
interpolating values
between texture
points. Read/write.

CameraBound 'off' | 'on'
Default: 'on'

Controls whether or
not the camera moves
with the current
viewpoint. Read/write.

CameraDirection Vector of three doubles Specifies the camera
direction relative to
the direction of the
current viewpoint.
Read/write.

vrfigure/get

8-13

CameraDirectionAbs Vector of three doubles Specifies the camera
direction in world
coordinates. Read
only.

CameraPosition Vector of three doubles Specifies the camera
position relative to the
position of the current
viewpoint. Read/write.

CameraPositionAbs Vector of three doubles Specifies the camera
position in world
coordinates. Read
only.

CameraUpVector Vector of three doubles Specifies the camera
up vector relative to
the up vector of the
current viewpoint.
Read/write.

CameraUpVectorAbs Vector of three doubles Specifies the camera
up vector in world
coordinates. Read
only.

DeleteFcn String Specifies the callback
invoked when closing
the vrfigure object.
Read/write.

Headlight 'off' | 'on'
Default: 'on'

Turns the headlight
on or off. Read/write.

Property Value Description

vrfigure/get

8-14

Lighting 'off' | 'on'
Default: 'on'

Specifies whether the
lighting is taken into
account when
rendering. If it is off,
all the objects are
drawn as if uniformly
lit. Read/write.

MaxTextureSize 'auto' | 32 <= x <=
video card limit, where
x is a power of 2 (video
card limit is typically
1024 or 2048)

Sets the maximum
pixel size of a texture
used in rendering
vrfigure objects. The
smaller the size, the
faster the texture can
render. Increasing this
value improves image
quality but decreases
performance. A value
of 'auto' sets the
maximum possible
pixel size. If the value
you enter is
unsuitable, a warning
might trigger. Virtual
Reality Toolbox then
automatically adjusts
the property to the
next smaller suitable
value.

Name String Specifies the name of
this vrfigure object.
Read/write.

NavMode 'fly' | 'examine' |
'walk'

Default: 'examine'

Specifies navigation
mode. Read/write.

Property Value Description

vrfigure/get

8-15

NavPanel 'opaque' |
'translucent' |
'none' | 'halfbar' |
'bar'
Default: 'halfbar'

Controls the
appearance of the
navigation panel in
the Virtual Reality
Toolbox viewer. Read/
write.

NavSpeed 'very slow' | 'slow'
| 'normal' | 'fast'
| 'very fast'

Default: 'normal'

Specifies navigation
speed. Read/write.

NavZones 'off' | 'on'

Default: 'off'

Toggles navigation
zones on/off. Read/
write.

Position Vector of four doubles Specifies the screen
coordinates of this
vrfigure object. Read/
write.

Record2D 'off' | 'on'
Default: 'off'

Enables 2-D offline
animation file
recording. Read/write.

Record2DCompress
Method

'' | 'auto' |
'lossless' |
'codec_code'
Default: 'auto'

Specifies the
compression method
for creating 2-D
animation files. The
codec code must be
registered in the
system. See the
MATLAB function
documentation for
avifile. Read/write.

Property Value Description

vrfigure/get

8-16

Record2DCompress
Quality

0–100
Default: '75'

Specifies the quality of
2-D animation file
compression. Read/
write.

Record2DFileName String
Default:
'%f_anim_%n.ext'

Specifies the 2-D
offline animation
filename. The string
can contain tokens
that are replaced by
the corresponding
information when the
animation recording
takes place. For
further details, see
“Animation Recording
File Tokens” on
page 4-12. Read/write.

StatusBar 'off' | 'on'
Default: 'on'

Toggles the status bar
at the bottom of the
Virtual Reality
Toolbox viewer. Read/
write.

Textures 'off' | 'on'
Default: 'on'

Turns texture
rendering on or off.
Read/write.

Toolbar 'off' | 'on'
Default: 'on'

Toggles toolbar on the
Virtual Reality
Toolbox viewer. Read/
write.

Property Value Description

vrfigure/get

8-17

Transparency 'off' | 'on'
Default: 'on'

Specifies whether or
not transparency
information is taken
into account when
rendering. Read/write.

Viewpoint String
If active viewpoint does
not have a name, value
is empty.

Specifies the vrfigure
object’s active
viewpoint. Read/write.

Wireframe 'off' | 'on'
Default: 'off'

Specifies whether
objects are drawn as
solids or wireframes.
Read/write.

World vrworld object Specifies the world
this vrfigure object is
displaying. Read only.

ZoomFactor Double Specifies the camera
zoom factor. Read/
write.

Property Value Description

vrfigure/get

8-18

Example Create a vrworld object:

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world vrmount.wrl.
Open the world:

open(myworld)

Create a vrfigure object:

f = vrfigure(myworld);

You can now get the object properties of the vrfigure object f:

get(f)

This returns the following object properties:

AntiAliasing = 'off'
CameraBound = 'on'
CameraDirection = [0 0 -1]
CameraDirectionAbs = [0 -1 3.61999e-006]
CameraPosition = [0 0 0]
CameraPositionAbs = [0 150 0]
CameraUpVector = [0 1 0]
CameraUpVectorAbs = [0 -3.61999e-006 -1]
DeleteFcn = ''
Headlight = 'off'
Lighting = 'on'
Name = 'Planets'
NavMode = 'fly'
NavPanel = 'halfbar'
NavSpeed = 'normal'
NavZones = 'off'
Position = [9 91 512 391]
Record2D = 'off'
Record2DCompressMethod = 'auto'
Record2DCompressQuality = 75
Record2DFileName = '%f_anim_%n.avi'
StatusBar = 'on'
Textures = 'on'
Toolbar = 'on'

vrfigure/get

8-19

Transparency = 'on'
Viewpoint = 'View from top'
Wireframe = 'off'
World = vrworld object: 1-by-1
ZoomFactor = 1

See Also vrfigure, vrfigure/set

vrfigure/isvalid

8-20

8vrfigure/isvalidPurpose Return 1 if vrfigure object is valid, 0 if not

Syntax x = isvalid(vrfigure_object_vector)

Arguments

Description This method detects whether the vrfigure handles are valid and returns an
array that contains a 1 where the vrfigure handles are valid and returns a 0
where they are not.

See Also vrworld/isvalid, vrnode/isvalid

vrfigure_object_vector Name of an array of vrfigure objects.

vrfigure/set

8-21

8vrfigure/setPurpose Change property value of vrfigure object

Syntax set(vrfigure_object, 'property_name', property_value)

Arguments

Description The set(vrfigure_object) method allows you to set the property value of a
vrfigure object. This method is useful when you want to change the value of a
property.

The following are properties of vrfigure objects.

vrfigure_object Name of a vrfigure object.

property_name Name of the property you want to set.

property_value New value of the property.

Property Value Description

Antialiasing 'off' | 'on'
Default: 'off'

Determines whether
antialiasing is used
when rendering scene.
Antialiasing smooths
textures by
interpolating values
between texture
points. Read/write.

CameraBound 'off' | 'on'
Default: 'on'

Controls whether or
not the camera moves
with the current
viewpoint. Read/write.

CameraDirection Vector of three doubles Specifies the camera
direction relative to
the direction of the
current viewpoint.
Read/write.

vrfigure/set

8-22

CameraDirectionAbs Vector of three doubles Specifies the camera
direction in world
coordinates. Read
only.

CameraPosition Vector of three doubles Specifies the camera
position relative to the
position of the current
viewpoint. Read/write.

CameraPositionAbs Vector of three doubles Specifies the camera
position in world
coordinates. Read
only.

CameraUpVector Vector of three doubles Specifies the camera
up vector relative to
the up vector of the
current viewpoint.
Read/write.

CameraUpVectorAbs Vector of three doubles Specifies the camera
up vector in world
coordinates. Read
only.

DeleteFcn String Specifies the callback
invoked when closing
the vrfigure object.
Read/write.

Headlight 'off' | 'on'
Default: 'on'

Turns the headlight
on or off. Read/write.

Property Value Description

vrfigure/set

8-23

Lighting 'off' | 'on'
Default: 'on'

Specifies whether the
lighting is taken into
account when
rendering. If it is off,
all the objects are
drawn as if uniformly
lit. Read/write.

MaxTextureSize 'auto' | 32 <= x <=
video card limit, where
x is a power of 2 (video
card limit is typically
1024 or 2048)

Sets the maximum
pixel size of a texture
used in rendering
vrfigure objects. The
smaller the size, the
faster the texture can
render. Increasing this
value improves image
quality but decreases
performance. A value
of 'auto' sets the
maximum possible
pixel size. If the value
you enter is
unsuitable, a warning
might trigger. Virtual
Reality Toolbox then
automatically adjusts
the property to the
next smaller suitable
value.

Name String Specifies the name of
this vrfigure object.
Read/write.

NavMode 'fly' | 'examine' |
'walk'

Default: 'examine'

Specifies navigation
mode. Read/write.

Property Value Description

vrfigure/set

8-24

NavPanel 'opaque' |
'translucent' |
'none' | 'halfbar' |
'bar'
Default: 'halfbar'

Controls the
appearance of the
navigation panel in
the Virtual Reality
Toolbox viewer. Read/
write.

NavSpeed 'very slow' | 'slow'
| 'normal' | 'fast'
| 'very fast'

Default: 'normal'

Specifies navigation
speed. Read/write.

NavZones 'off' | 'on'

Default: 'off'

Toggles navigation
zones on/off. Read/
write.

Position Vector of four doubles Specifies the screen
coordinates of this
vrfigure object. Read/
write.

Record2D 'off' | 'on'
Default: 'off'

Enables 2-D offline
animation file
recording. Read/write.

Record2DCompress
Method

'' | 'auto' |
'lossless' |
'codec_code'
Default: 'auto'

Specifies the
compression method
for creating 2-D
animation files. The
codec code must be
registered in the
system. See the
MATLAB function
documentation for
avifile. Read/write.

Property Value Description

vrfigure/set

8-25

Record2DCompress
Quality

0–100
Default: '75'

Specifies the quality of
2-D animation file
compression. Read/
write.

Record2DFileName String
Default:
'%f_anim_%n.ext'

Specifies the 2-D
offline animation
filename. The string
can contain tokens
that are replaced by
the corresponding
information when the
animation recording
takes place. For
further details, see
“Animation Recording
File Tokens” on
page 4-12. Read/write.

StatusBar 'off' | 'on'
Default: 'on'

Toggles the status bar
at the bottom of the
Virtual Reality
Toolbox viewer. Read/
write.

Textures 'off' | 'on'
Default: 'on'

Turns texture
rendering on or off.
Read/write.

Toolbar 'off' | 'on'
Default: 'on'

Toggles toolbar on the
Virtual Reality
Toolbox viewer. Read/
write.

Property Value Description

vrfigure/set

8-26

Transparency 'off' | 'on'
Default: 'on'

Specifies whether or
not transparency
information is taken
into account when
rendering. Read/write.

Viewpoint String
If active viewpoint does
not have a name, value
is empty.

Specifies the vrfigure
object’s active
viewpoint. Read/write.

Wireframe 'off' | 'on'
Default: 'off'

Specifies whether
objects are drawn as
solids or wireframes.
Read/write.

World vrworld object Specifies the world
this vrfigure object is
displaying. Read only.

ZoomFactor Double Specifies the camera
zoom factor. Read/
write.

Property Value Description

vrfigure/set

8-27

Examples Create a vrworld object.

myworld = vrworld('vrmount.wrl');

The vrworld object myworld is associated with the virtual world vrmount.wrl.
Open the world:

open(myworld)

Create a vrfigure object:

f = vrfigure(myworld);

The VR Car in the Mountains virtual world opens in the Virtual Reality
Toolbox viewer. You can now set the object properties of the vrfigure object f:

set(f,'Name','Car on a Mountain Road')

You can see that the name of the virtual world has changed in the viewer.

See Also vrfigure, vrfigure/get

vrfigure/vrgcf

8-28

8vrfigure/vrgcfPurpose Get handle for currently active virtual reality figure

Syntax h = vrgcf

Description h = vrgcf returns the handle of the current virtual reality figure. The current
virtual reality figure is the currently active virtual reality figure window in
which you can get and set the viewer properties. If no virtual reality figure
exists, MATLAB creates one and returns its handle.

This method is most useful to query and set virtual reality figure properties.

See Also vrfigure, vrfigure/get, vrfigure/set

vrfigure/vrgcbf

8-29

8vrfigure/vrgcbf

Purpose Get current callback vrfigure object

Syntax f = vrgcbf

f = vrgcbf returns a vrfigure object representing the virtual reality figure
that contains the callback currently being executed.

When no virtual reality figure callbacks are executing, vrgcbf returns an
empty array of vrfigure objects.

vrgetpref

8-30

8vrgetprefPurpose Read values of Virtual Reality Toolbox preferences

Syntax x = vrgetpref
x = vrgetpref('preference_name')
x = vrgetpref('preference_name','factory')
x = vrgetpref('factory')

Arguments

Description x = vrgetpref returns the values of all the Virtual Reality Toolbox
preferences in a structure array.

x = vrgetpref('preference_name') returns the value of the specified
preference. If preference_name is a cell array of preference names, a cell array
of corresponding preference values is returned.

x = vrgetpref('preference_name','factory')returns the default value for
the specified preference.

x = vrgetpref('factory') returns the default values for all the preferences.

'preference_name' Name of the preference to read.

vrgetpref

8-31

The following preferences are defined. For preferences that begin with the
string DefaultFigure or DefaultWorld, these values are the default values for
the corresponding vrfigure or vrworld property:

Preference Description

DataTypeBool Specifies the handling of the VRML Bool
data type for vrnode/setfield and vrnode/
getfield. Valid values are 'logical' and
'char'. If set to 'logical', the VRML Bool
data type is returned as a logical value. If set
to 'char', the Bool data type is returned
'on' or 'off'. Default is 'logical'.

DataTypeInt32 Specifies handling of the VRML Int32 data
type for vrnode/setfield and vrnode/
getfield. Valid values are 'int32' and
'double'. If set to 'int32', the VRML Int32
data type is returned as int32. If set to
'double', the Int32 data type is returned as
'double'. Default is 'double'.

DataTypeFloat Specifies the handling of the VRML float
data type for vrnode/setfield and vrnode/
getfield. Valid values are 'single' and
'double'. If set to 'single', the VRML
Float and Color data types are returned as
'single'. If set to 'double', the Float and
Color data types are returned as 'double'.
Default is 'double'.

DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by
default for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureDeleteFcn Specifies the default callback invoked when
closing a vrfigure object.

vrgetpref

8-32

DefaultFigureLighting Specifies whether the lights are rendered by
default for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a
texture used in rendering new vrfigure
objects. Valid values are 'auto' and 32 <= x
<= video card limit, where x is a power of 2.

DefaultFigureNavPanel Specifies the default appearance of the
control panel in the viewer. Valid values are
'opaque', 'translucent', 'none',
'halfbar', 'bar', and 'factory'. Default is
'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on
or off by default for new vrfigure objects.
Valid values are 'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of
the Virtual Reality Toolbox viewer window.
Valid value is a vector of four doubles.

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for
creating 2-D animation files for new
vrfigure objects. Valid values are '',
'auto', 'lossless', and 'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation
file compression for new vrfigure objects.
Valid values are 0–100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation
filename for new vrfigure objects.

DefaultFigureStatusBar Specifies whether the status bar appears by
default at the bottom of the Virtual Reality
Toolbox viewer for new vrfigure objects.
Valid values are 'off' and 'on'.

Preference Description

vrgetpref

8-33

DefaultFigureToolBar Specifies whether the toolbar appears by
default on the Virtual Reality Toolbox viewer
for new vrfigure objects. Valid values are
'off' and 'on'.

DefaultFigure
Transparency

Specifies whether or not transparency
information is taken into account when
rendering for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids
or wireframes by default for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a
virtual scene. The Virtual Reality Toolbox
viewer is used when the preference is set to
'internal'. The Web browser is used when
this preference is set to 'web'. Default is
'internal'.

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation filename
for new vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording
mode for new vrworld objects. Valid values
are 'manual' and 'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for
scheduled animation recording for new
vrworld objects. Valid value is a vector of two
doubles.

DefaultWorldRemoteView Specifies whether the virtual world is
enabled by default for remote viewing for
new vrworld objects. Valid values are 'off'
and 'on'.

Preference Description

vrgetpref

8-34

Note that the HttpPort, VrPort, and TransportBuffer preferences affect
Web-based viewing of virtual worlds. DefaultFigurePosition and
DefaultNavPanel affect the Virtual Reality Toolbox viewer.

DefaultFigureNavPanel — Controls the appearance of the navigation panel in
the Virtual Reality Toolbox viewer. For example, setting this value to
'translucent' causes the navigation panel to appear translucent.

DefaultViewer — Determines whether the virtual scene appears in the Virtual
Reality Toolbox viewer or in your Web browser. If the preference is set to
'internal', the Virtual Reality Toolbox viewer is the default viewer. If it is set
to 'web', the default Web browser with the VRML plug-in is the default viewer.

DefaultWorldTimeSource Specifies the default source of the time for
new vrworld objects. Valid values are
'external' and 'freerun'.

Editor Path to the VRML editor. If this path is
empty, the MATLAB editor is used.

HttpPort IP port number used to access the VR server
over the Web via HTTP. If you change this
preference, you must restart MATLAB before
the change takes effect.

TransportBuffer Length of the transport buffer (network
packet overlay) for communication between
the VR server and its clients.

TransportTimeout Amount of time the VR Toolbox server waits
for a reply from the client. If there is no
response from the client, the VR Toolbox
server disconnects from the client.

VrPort IP port used for communication between the
VR server and its clients. If you change this
preference, you must restart MATLAB before
the change takes effect.

Preference Description

vrgetpref

8-35

Editor — Contains a path to the VRML editor executable file. When you use
the edit command, the Virtual Reality Toolbox runs the VRML editor
executable with all parameters required to edit the VRML file.

When you run the editor, the Virtual Reality Toolbox uses the Editor
preference value as if you typed it into a command line. The following tokens
are interpreted:

For instance, a possible value for the Editor preference is

`%matlabroot\bin\win32\meditor.exe %file'

If this preference is empty, the MATLAB editor is used.

HttpPort — Specifies the network port to be used for Web access. The port is
given in the Web URL as follows:

http://server.name:port_number

The default value of this preference is 8123.

TransportBuffer — Defines the size of the message window for client-server
communication. This value determines how many messages, at a maximum,
can travel between the client and the server at one time.

Generally, higher values for this preference make the animation run more
smoothly, but with longer reaction times. (More messages in the line create a
buffer that compensates for the unbalanced delays of the network transfer.)

The default value is 5, which is optimal for most purposes. You should change
this value only if the animation is significantly distorted or the reaction times
are very slow. On fast connections, where delays are introduced more by the
client rendering speed, this value has very little effect. Viewing on a host
computer is equivalent to an extremely fast connection. On slow connections,
the correct value can improve the rendering speed significantly but, of course,
the absolute maximum is determined by the maximum connection throughput.

%matlabroot Refers to the MATLAB root directory

%file Refers to the VRML filename

vrgetpref

8-36

VrPort — Specifies the network port to use for communication between the
Virtual Reality Toolbox server (host computer) and its clients (client
computers). Normally, this communication is completely invisible to the user.
However, if you view a virtual world from a client computer, you might need to
configure the security network system (firewall) so that it allows connections
on this port. The default value of this preference is 8124.

See Also vrsetpref

vrnode

8-37

8vrnodePurpose Create node or handle to existing node

Syntax mynode = vrnode
mynode = vrnode([])
mynode = vrnode(vrworld_object, 'node_name')
mynode = vrnode(vrworld_object, 'node_name','node_type')
mynode = vrnode(parent_node,'parent_field', 'node_name',
'node_type')

Arguments

Description mynode = vrnode creates an empty vrnode handle that does not reference any
node.

mynode = vrnode([]) creates an empty array of vrnode handles.

mynode = vrnode(vrworld_object, 'node_name') creates a handle to an
existing named node in the virtual world.

mynode = vrnode(vrworld_object, 'node_name','node_type') creates a new
node called node_name of type node_type on the root of the virtual world. It
returns the handle to the newly created node.

mynode = vrnode(parent_node,'parent_field', 'node_name','node_type')
creates a new node called node_name of type node_type that is a child of the
parent_node and resides in the field parent_field. It returns the handle to the
newly created node.

A vrnode object identifies a virtual world node in a way very similar to a
handle. If the vrnode method is applied to a node that does not exist, the node
is created, the vrnode object is created, and the handle to the vrnode object is
returned. If the vrnode method is applied to an existing node, the handle to the
vrnode object associated with this node is returned.

vrworld_object Name of a vrworld object representing a virtual
world.

node_name Name of the node.

node_type Type of the node.

parent_node Name of the parent node that is a vrnode object.

parent_field Name of the field of the parent node.

vrnode

8-38

 See Also vrworld, vrnode/get, vrnode/set, vrnode/getfield, vrnode/setfield,
vrnode/delete

vrnode/delete

8-39

8vrnode/deletePurpose Delete vrnode object

Syntax delete(vrnode_object)
delete(n)

Arguments

Description delete(vrnode_object) deletes the virtual world node.

delete(n) deletes the vrnode object referenced by the vrnode handle n. If n is
a vector of vrnode handles, multiple nodes are deleted.

As soon as a node is deleted, it and all its child objects are removed from all
clients connected to the virtual world.

See Also vrworld/delete

vrnode_object Name of a vrnode object.

vrnode/fields

8-40

8vrnode/fieldsPurpose Return VRML field summary of node object

Syntax fields(vrnode_object)
x = fields(vrnode_object)

Arguments

Description fields(vrnode_object) displays a list of VRML fields of the node associated
with the vrnode object in the MATLAB Command Window.

x = fields(vrnode_object) returns the VRML fields of the node associated
with the vrnode object in a structure array. The resulting structure contains a
field for every VRML field with the following subfields:

• Type is the name of the VRML field type, for example, 'MFString',
'SFColor'.

• Access is the accessibility description of the VRML data class, for example,
'eventIn', 'exposedField'.

• Sync is the synchronization status 'on' or 'off'. See also vrnode/sync on
page 8-47.

See Also vrnode/get, vrnode/set

vrnode_object Name of a vrnode object representing the node to
be queried.

vrnode/get

8-41

8vrnode/getPurpose Read property value of vrnode object

Syntax get(vrnode_object)
x = get(vrnode_object)
x = get(vrnode_object, 'property_name')

Arguments

Description get(vrnode_object) lists all vrnode properties in the MATLAB Command
Window.

x = get(vrnode_object), where vrnode_object is a scalar, returns a
structure where each field name is the name of a property and each field
contains the value of that property.

x = get(vrnode_object, 'property_name') returns the value of given
property.

If vrnode_object is a vector of vrnode handles, get returns an M-by-1 cell
array of values, where M is equal to length(vrnode_object).

The vrnode property values are case sensitive. Property names are not case
sensitive.

The vrnode object properties allow you to control the behavior of objects. The
vrnode objects have the following properties. All these properties are read only.

vrnode_object Name of a vrnode object representing the node to
be queried.

property_name Name of the property to be read.

Property Value Description

Fields Cell array Valid field names for the VRML node.

Name String Name of the node.

Type String VRML type of the node. The value is a string
(for example, 'Transform', 'Shape').

World Handle Handle of the parent vrworld object. This is a
vrworld object that represents the node’s
parent world.

vrnode/get

8-42

See Also vrnode/set, vrnode/getfield, vrnode/setfield, vrnode

vrnode/getfield

8-43

8vrnode/getfieldPurpose Get field value of vrnode object

Syntax getfield(vrnode_object)
x = getfield(vrnode_object)
x = getfield(vrnode_object,'fieldname')

Arguments

Description getfield(vrnode_object) displays all the field names and their current
values for the respective VRML node.

x = getfield(vrnode_object), where vrnode_object is a scalar, returns a
structure where each field name is the name of a vrnode field and each field
contains the value of that field.

x = getfield(vrnode_object,'fieldname') returns the value of the specified
field for the node referenced by the vrnode_object handle. If vrnode_object is
a vector of vrnode handles, getfield returns an M-by-1 cell array of values,
where M is equal to length(vrnode_object).

If 'fieldname' is a 1-by-N or N-by-1 cell array of strings containing field
names, getfield returns an M-by-N cell array of values.

Note The dot notation is the preferred method for accessing nodes.

See Also vrnode/get, vrnode/set, vrnode/setfield, vrnode

vrnode_object Name of a vrnode object representing the node to
be queried.

fieldname Name of the vrnode object field whose values you
want to query.

vrnode/isvalid

8-44

8vrnode/isvalidPurpose Return 1 if vrnode object is valid, 0 if not

Syntax x = isvalid(vrnode_object_vector)

Arguments

Description This method returns an array that contains 1 when the elements of
vrnode_object_vector are valid vrnode objects, and 0 when they are not.

The vrnode object is considered valid if the following conditions are met:

• The parent world of the node exists.

• The parent world of the node is open.

• The VRML node with the given vrnode handle exists in the parent world.

See Also vrworld/isvalid, vrfigure/isvalid

vrnode_object_vector Name of an array of vrnode objects to be
queried.

vrnode/set

8-45

8vrnode/setPurpose Change property of virtual world node

Syntax x = set(vrnode_object, 'property_name','property_value')

Arguments

Description x = set(vrnode_object, 'property_name','property_value') changes the
specified property of the vrnode object to the specified value.

 The vrnode property values are case sensitive, while property names are not
case sensitive.

 The vrnode property values are case sensitive, while property names are not
case sensitive.

The vrnode objects have the following properties. All these properties are read
only.

Currently, VRML nodes have no settable properties.

See Also vrnode/get, vrnode/getfield, vrnode/setfield, vrnode

vrnode_object Name of a vrnode object representing a node in
the virtual world.

property_name Name of a property.

property_value Value of a property.

Property Value Description

Fields Cell array Valid field names for the VRML node.
Read only.

Name String Name of the node. Read only.

Type String VRML type of the node. The value is a
string (for example, 'Transform',
'Shape'). Read only.

World Handle Handle of the parent vrworld object. This
is a vrworld object that represents the
node’s parent world. Read only.

vrnode/setfield

8-46

8vrnode/setfieldPurpose Change field value of vrnode object

Syntax x = setfield(vrnode_object,'fieldname','fieldvalue')

Arguments

Description x = setfield(vrnode_object,'fieldname','fieldvalue') changes the
specified field of the vrnode object to the specified value. You can specify
multiple field names and field values in one line of code by grouping them in
pairs. For example, x = setfield(vrnode_object, 'fieldname1',
'fieldvalue1', 'fieldname2', 'fieldvalue2', ...).

Note that VRML field names are case sensitive, while property names are not.

Note The dot notation is the preferred method for accessing nodes.

See Also vrnode/get, vrnode/set, vrnode/getfield, vrnode

vrnode_object Name of a vrnode object representing the node to
be changed.

fieldname Name of the vrnode object VRML field whose
values you want to set.

fieldvalue Value of fieldname.

vrnode/sync

8-47

8vrnode/syncPurpose Enable or disable synchronization of VRML fields with clients

Syntax sync(vrnode_object, 'field_name', 'action')

Arguments

Description The sync method controls whether the value of a VRML field is synchronized.

When the field is marked 'on', the field value is updated every time it is
changed on the client computer. If the field is marked 'off', the host computer
ignores the changes on the client computer.

Synchronized fields add more traffic to the network line because the value of
the field must be resent by the client any time it is changed. Because of this,
you should mark for synchronization only the fields you need to scan for
changes made on clients (typically sensors). By default, fields are not
synchronized and their values reflect only settings from MATLAB or Simulink.

Synchronization is meaningful only for readable fields. Readable fields are of
VRML data class eventOut and exposedField. You cannot enable
synchronization for eventIn or nonexposed fields.

See Also vrnode/get, vrnode

vrnode_object Name of a vrnode object representing the node.

field_name Name of the VRML field to be synchronized.

action The action parameter determines what should be
done:

• 'on' enables synchronization of this field.

• 'off' disables synchronization of this field.

vrinstall

8-48

8vrinstallPurpose Install and check Virtual Reality Toolbox components

Syntax vrinstall('action')
vrinstall action
vrinstall('action','component')
vrinstall action component
x = vrinstall('action', 'component')

Arguments

Description You use this function to manage the installation of optional software
components related to the Virtual Reality Toolbox. Currently there are two
such components: VRML plug-in and VRML editor.

action Type of action for this function. Values are -interactive,
-selftest, -check, -install, and -uninstall.

component Name of the component for the action. Values are viewer
and editor.

Action Value Description

-selftest Checks the integrity of the Virtual Reality Toolbox.
If this function reports an error, you should reinstall
the Virtual Reality Toolbox. The function
vrinstall automatically does a self-test with any
other actions.

-interactive Checks for the installed components, and then
displays a list of uninstalled components you can
choose to install.

-check Checks the installation of optional components. If
the given component is installed, returns 1. If the
given component is not installed, returns 0. If you do
not specify a component, displays a list of
components and their status.

vrinstall

8-49

Examples Install the VRML plug-in. This command starts the blaxxun Contact install
program and installs the plug-in to your default Web browser.

vrinstall -install viewer

Install the VRML editor. This command associates V-Realm Builder with the
Edit button in the Block Parameters dialog boxes.

vrinstall -install editor

-install Installs optional components. This action requires
you to specify the component name. All components
can be installed using this command, but some of
them (currently only the plug-in) need to be
uninstalled using the system standard
uninstallation procedure.

-uninstall Uninstalls optional components. This option is
currently available for the editor only. Note that
this action does not remove the files for the editor
from the installation directory. It removes the editor
registry information.

If you want to uninstall the VRML plug-in, exit
MATLAB and, from the Control Panel window,
select Add/Remove Programs.

Action Value Description

vrlib

8-50

8vrlibPurpose Open Simulink block library for the Virtual Reality Toolbox

Syntax vrlib

Description The Simulink library for the Virtual Reality Toolbox has six blocks: VR Sink,
VR Placeholder, VR Signal Expander, Joystick Input, and Magellan
SpaceMouse.

Alternatively, you can access these blocks from a Simulink block diagram. In
the Simulink window, from the View menu, click Show Library Browser.

vrsetpref

8-51

8vrsetprefPurpose Change Virtual Reality Toolbox preferences

Syntax vrsetpref('preference_name', 'preference_value')
vrsetpref('factory')

Arguments

Description This function sets the given Virtual Reality Toolbox preference to a given
value. The following preferences are defined. For preferences that begin with
the string DefaultFigure or DefaultWorld, these values are the default values
for the corresponding vrfigure or vrworld property:

preference_name Name of the preference.

preference_value New value of the preference.

Preference Description

DataTypeBool Specifies the handling of the VRML Bool
data type for vrnode/setfield and vrnode/
getfield. Valid values are 'logical' and
'char'. If set to 'logical', the VRML Bool
data type is returned as a logical value. If set
to 'char', the Bool data type is returned
'on' or 'off'. Default is 'logical'.

DataTypeInt32 Specifies handling of the VRML Int32 data
type for vrnode/setfield and vrnode/
getfield. Valid values are 'int32' and
'double'. If set to 'int32', the VRML Int32
data type is returned as int32. If set to
'double', the Int32 data type is returned as
'double'. Default is 'double'.

vrsetpref

8-52

DataTypeFloat Specifies the handling of the VRML float
data type for vrnode/setfield and vrnode/
getfield. Valid values are 'single' and
'double'. If set to 'single', the VRML
Float and Color data types are returned as
'single'. If set to 'double', the Float and
Color data types are returned as 'double'.
Default is 'double'.

DefaultFigureAnti
Aliasing

Determines whether antialiasing is used by
default for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureDeleteFcn Specifies the default callback invoked when
closing a vrfigure object.

DefaultFigureLighting Specifies whether the lights are rendered by
default for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureMax
TextureSize

Specifies the default maximum size of a
texture used in rendering new vrfigure
objects. Valid values are 'auto' and 32 <= x
<= video card limit, where x is a power of 2.

DefaultFigureNavPanel Specifies the default appearance of the
control panel in the viewer. Valid values are
'opaque', 'translucent', 'none',
'halfbar', 'bar', and 'factory'. Default is
'halfbar'.

DefaultFigureNavZones Specifies whether the navigation zone is on
or off by default for new vrfigure objects.
Valid values are 'off' and 'on'.

DefaultFigurePosition Sets the default initial position and size of
the Virtual Reality Toolbox viewer window.
Valid value is a vector of four doubles.

Preference Description

vrsetpref

8-53

DefaultFigureRecord2D
CompressMethod

Specifies the default compression method for
creating 2-D animation files for new
vrfigure objects. Valid values are '',
'auto', 'lossless', and 'codec_code'.

DefaultFigureRecord2D
CompressQuality

Specifies the default quality of 2-D animation
file compression for new vrfigure objects.
Valid values are 0–100.

DefaultFigureRecord2D
FileName

Specifies the default 2-D offline animation
filename for new vrfigure objects.

DefaultFigureStatusBar Specifies whether the status bar appears by
default at the bottom of the Virtual Reality
Toolbox viewer for new vrfigure objects.
Valid values are 'off' and 'on'.

DefaultFigureToolBar Specifies whether the toolbar appears by
default on the Virtual Reality Toolbox viewer
for new vrfigure objects. Valid values are
'off' and 'on'.

DefaultFigure
Transparency

Specifies whether or not transparency
information is taken into account when
rendering for new vrfigure objects. Valid
values are 'off' and 'on'.

DefaultFigureWireframe Specifies whether objects are drawn as solids
or wireframes by default for new vrfigure
objects. Valid values are 'off' and 'on'.

DefaultViewer Specifies which viewer is used to view a
virtual scene. The Virtual Reality Toolbox
viewer is used when the preference is set to
'internal'. The Web browser is used when
this preference is set to 'web'. Default is
'internal'.

Preference Description

vrsetpref

8-54

DefaultWorldRecord3D
FileName

Specifies the default 3-D animation filename
for new vrworld objects.

DefaultWorldRecordMode Specifies the default animation recording
mode for new vrworld objects. Valid values
are 'manual' and 'scheduled'.

DefaultWorldRecord
Interval

Specifies the default start and stop times for
scheduled animation recording for new
vrworld objects. Valid value is a vector of two
doubles.

DefaultWorldRemoteView Specifies whether the virtual world is
enabled by default for remote viewing for
new vrworld objects. Valid values are 'off'
and 'on'.

DefaultWorldTimeSource Specifies the default source of the time for
new vrworld objects. Valid values are
'external' and 'freerun'.

Editor Path to the VRML editor. If this path is
empty, the MATLAB editor is used.

HttpPort IP port number used to access the VR server
over the Web via HTTP. If you change this
preference, you must restart MATLAB before
the change takes effect.

TransportBuffer Length of the transport buffer (network
packet overlay) for communication between
the VR server and its clients.

Preference Description

vrsetpref

8-55

Changes to the HttpPort or VrPort preferences take effect only after you
restart MATLAB.

When you use 'factory' as a single argument, all preferences are reset to
their default values. If you use 'factory' for a preference value, that single
preference is reset to its default.

See Also vrgetpref

TransportTimeout Amount of time the VR Toolbox server waits
for a reply from the client. If there is no
response from the client, the VR Toolbox
server disconnects from the client.

VrPort IP port used for communication between the
VR server and its clients. If you change this
preference, you must restart MATLAB before
the change takes effect.

Preference Description

vrview

8-56

8vrviewPurpose View virtual world using Virtual Reality Toolbox viewer or Web browser

Syntax vrview
x = vrview('filename')
x = vrview('filename','-internal')
x = vrview('filename','-web')

Description vrview opens the default Web browser and loads the Virtual Reality Toolbox
Web page containing a list of virtual worlds available for viewing.

x = vrview('filename') creates a virtual world associated with the .wrl file,
opens the virtual world, and displays it in the Virtual Reality Toolbox viewer
or the Web browser depending on the value of the DefaultViewer preference.
The handle to the virtual world is returned.

x = vrview('filename','-internal') creates a virtual world associated with
the .wrl file, opens the virtual world, and displays it in the Virtual Reality
Toolbox viewer.

x = vrview('filename','-web') creates a virtual world associated with the
.wrl file, opens the virtual world, and displays it in your Web browser.

See Also vrworld, vrworld/open, vrworld/view

vrwho

8-57

8vrwhoPurpose List virtual worlds in memory

Syntax vrwho
x = vrwho

Description If you do not specify an output parameter, vrwho displays a list of virtual
worlds in memory in the MATLAB Command Window.

If you specify an output parameter, vrwho returns a vector of handles to
existing vrworld objects, including those opened from Simulink.

See Also vrwhos, vrworld, vrclear

vrwhos

8-58

8vrwhosPurpose List details about virtual worlds in memory

Syntax vrwhos

Description vrwhos displays a list of virtual worlds currently in memory, with a description,
in the MATLAB Command Window. The relation between vrwho and vrwhos is
similar to the relation between who and whos.

See Also vrwho, vrclear

vrworld

8-59

8vrworldPurpose Create new vrworld object associated with virtual world

Syntax myworld = vrworld('filename')
myworld = vrworld
myworld = vrworld([])

Arguments

Description myworld = vrworld('filename') creates a virtual world associated with the
VRML file filename and returns its handle. If the virtual world already exists,
a handle to the existing virtual world is returned.

myworld = vrworld creates an empty vrworld handle that does not refer to any
virtual world.

myworld = vrworld([]) returns an empty array of vrworld handles.

A vrworld object identifies a virtual world in a way very similar to a handle.
All functions that affect virtual worlds accept a vrworld object as an argument
to identify the virtual world.

If the given virtual world already exists in memory, the handle to the existing
virtual world is returned. A second virtual world is not loaded into memory. If
the virtual world does not exist in memory, it is loaded from the associated
VRML file. The newly loaded virtual world is closed and must be opened before
you can use it.

The vrworld object associated with a virtual world remains valid until you use
either delete or vrclear.

Examples myworld = vrworld('vrpend.wrl')

See Also vrworld/open, vrworld/delete, vrworld/close

filename String containing the name of the VRML file from
which the virtual world is loaded. If no file
extension is specified, the file extension .wrl is
assumed.

vrworld/close

8-60

8vrworld/closePurpose Close virtual world

Syntax close(vrworld_object)

Arguments

Description This method changes the virtual world from an opened to a closed state:

• If the world was opened more than once, you must use an appropriate
number of close calls before the virtual world closes.

• If vrworld_object is a vector of vrworld objects, all associated virtual
worlds close.

• If the virtual world is already closed, close does nothing.

Opening and closing virtual worlds is a mechanism of memory management.
When the system needs more memory and the virtual world is closed, you can
discard its contents at any time.

Generally, you should close a virtual world when you no longer need it. This
allows you to reuse the memory it occupied. The vrworld objects associated
with this virtual world stay valid after it is closed, so the virtual world can be
opened again without creating a new vrworld object.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
close(myworld)

See Also vrworld, vrworld/open, vrworld/delete

vrworld_object A vrworld object representing the virtual world.

vrworld/delete

8-61

8vrworld/deletePurpose Delete virtual world from memory

Syntax delete(vrworld_object)

Arguments

Description The delete method removes from memory the virtual world associated with a
vrworld object. The virtual world must be closed before you can delete it.

Deleting a virtual world frees the virtual world from memory and invalidates
all existing vrworld objects associated with the virtual world.

If vrworld_object is a vector of vrworld objects, all associated virtual worlds
are deleted.

You do not commonly use this method. One of the possible reasons to use this
method is to ensure that a large virtual world is removed from memory before
another memory-consuming operation starts.

See Also vrworld/close, vrclear

vrworld_object A vrworld object representing a virtual world.

vrworld/edit

8-62

8vrworld/editPurpose Open virtual world file in external VRML editor

Syntax edit(vrworld_object)

Arguments

Description The edit method opens the VRML file associated with the vrworld object in a
VRML editor. The Editor preference specifies the VRML editor to use. See
vrsetpref for details on setting preferences.

The VRML editor saves any changes you make directly to a virtual world file.
If the virtual world is open,

• Use the save command in the VRML editor to save the changes to a virtual
world file. In MATLAB, the changes appear after you reload the virtual
world.

• Use the save method in MATLAB to replace the modified VRML file. Any
changes you made in the editor are lost.

See Also vrworld/reload, vrworld/save

vrworld_object A vrworld object representing a virtual world.

vrworld/get

8-63

8vrworld/getPurpose Read property value of vrworld object

Syntax get(vrworld_object)
x = get(vrworld_object)
x = get(vrworld_object, 'property_name')

Arguments

Description get(vrworld_object) displays all the virtual world properties and their
values.

x = get(vrworld_object) returns an M-by-1 structure where the field names
are the names of the virtual world properties. Each field contains the
associated property value. M is equal to length(vrworld_object).

x = get(vrworld_object, 'property_name') returns the value of the
specified property.

• If vrworld_object is a vector of vrworld handles, the get method returns an
M-by-1 cell array of values where M is equal to length(vrworld_object).

• If property_name is a 1-by-N or N-by-1 cell array of strings containing field
names, the get method returns an M-by-N cell array of values.

The following are properties of vrworld objects. Names are not case sensitive.

vrworld_object A vrworld object representing a virtual world.

property_name Name of the property.

Property Value Description

Clients Scalar Number of clients
currently viewing the
virtual world. Read only.

ClientUpdates 'off' | 'on'
Default: 'on'

Client cannot or can
update the virtual scene.
Read/write.

vrworld/get

8-64

Description String
Default: automatically
taken from the VRML
file property title

Description of the
virtual world as it
appears on the main
Web page. Read/write.

Figures Vector of vrfigure
objects

Vector of handles to
Virtual Reality Toolbox
viewer windows
currently viewing the
virtual world. Read only.

FileName String Name of the associated
VRML file. Read only.

Nodes Vector of vrnode objects Vector of vrnode objects
for all named nodes in
the virtual world. Read
only.

Open 'off' | 'on'
Default: 'off'

Indicates a closed or
open virtual world. Read
only.

Record3D 'off' | 'on'
Default: 'off'

Enables 3-D animation
recording. Read/write.

Record3DFileName String
Default:
'%f_anim_%n.wrl'

3-D animation filename.
The string can contain
tokens that are replaced
by the corresponding
information when the
animation recording
takes place. For details,
see “Animation
Recording File Tokens”
on page 4-12. Read/
write.

Property Value Description

vrworld/get

8-65

Recording 'off' | 'on'
Default: 'off'

Animation recording
toggle. This property
acts as the master
recording switch. Read/
write.

RecordMode 'manual' |
'scheduled'

Default: 'manual'

Animation recording
mode. Read/write.

RecordInterval Vector of two doubles
Default: [0 0]

Start and stop times for
scheduled animation
recording. Corresponds
to the virtual world
object Time property.
Read/write.

RemoteView 'off' | 'on'
Default: 'off'

Remote access flag. If
the virtual world is
enabled for remote
viewing, it is set to 'on';
otherwise, it is set to
'off'. Read/write.

Time Double Current time in the
virtual world. Read/
write.

Property Value Description

vrworld/get

8-66

The ClientUpdates property is set to 'on' by default and can be set by the
user. When it is set to 'off', the viewers looking at this virtual world should
not update the view according to the virtual world changes. That is, the view is
frozen until this property is changed to 'on'. This is useful for preventing
tearing effects with complex animations. Before every animation frame, set
ClientUpdates to 'off', make the appropriate modifications to the object
positions, and then switch ClientUpdates back to 'on'.

The Description property defaults to '(untitled)' and can be set by the user.
If the virtual world is loaded from a VRML file containing a WorldInfo node
with a title property (see the VRML reference), the Description property is
loaded from the VRML file instead.

The Nodes property is valid only when the virtual world is open. If the virtual
world is closed, Nodes always contains an empty vector.

The RemoteView property is set to 'off' by default and can be set by the user.
If it is set to 'on', all viewers can access the virtual world through the Web
interface. If it is set to 'off', only host viewers can access it.

TimeSource 'external' |
'freerun'

Default: 'external'

Source of the time for
the virtual world. If set
to 'external', time in
the scene is controlled
from MATLAB (by
setting the Time
property) or Simulink
(simulation time).
If set to 'freerun', time
in the scene advances
independently based on
the system timer. Read/
write.

View 'off' | 'on'
Default: 'on'

Indicates an unviewable
or viewable virtual
world. Read/write.

Property Value Description

vrworld/get

8-67

The View property is set to 'on' by default and can be set by the user. When it
is set to 'off', the virtual world is not accessible by the viewer. You rarely use
this property.

See Also vrworld/set, vrworld

vrworld/isvalid

8-68

8vrworld/isvalidPurpose Return 1 if vrworld object is valid, 0 if not

Syntax x = isvalid(vrworld_object)

Arguments

Description A vrworld object is considered valid if its associated virtual world still exists.

x = isvalid(vrworld_object) returns an array that contains a 1 when the
elements of vrworld_object are valid vrworld objects, and returns a 0 when
they are not.

You use this method to check whether the vrworld object is still valid. Using a
delete or vrclear command can make a vrworld object invalid.

See Also vrfigure/isvalid, vrnode/isvalid

vrworld_object A vrworld object representing a virtual world.

vrworld/nodes

8-69

8vrworld/nodesPurpose List nodes available in virtual world

Syntax nodes(vrworld_object, '-full')
x = nodes(vrworld_object, '-full')

Arguments

Description If you give an output argument, the method nodes returns a cell array of the
names of all available nodes in the world. If you do not give an output
argument, the list of nodes is displayed in the MATLAB window.

You can use the '-full' switch to obtain a detailed list that contains not only
the nodes, but also all their fields. This switch affects only the output to the
MATLAB Command Window.

The virtual world must be open for you to use this method.

See Also vrworld, vrworld/open

vrworld_object A vrworld object representing a virtual world.

'-full' Switch to obtain a detailed list of nodes and fields.

vrworld/open

8-70

8vrworld/openPurpose Open virtual world

Syntax open(vrworld_object)

Arguments

Description The open method opens the virtual world. When the virtual world is opened for
the first time, the virtual world internal representation is created based on the
associated VRML file.

If the input argument is an array of virtual world handles, all the virtual
worlds associated with those handles are opened.

The virtual world must be open for you to use it. You can close the virtual world
with the method close.

You can call the method open more than once, but you must use an appropriate
number of close calls before the virtual world returns to a closed state.

Examples Create two vrworld objects by typing

myworld1 = vrworld('vrmount.wrl')

myworld2 = vrworld('vrpend.wrl')

Next, create an array of virtual world handles by typing

myworlds = [myworld1 myworld2];

open(myworlds) opens both of these virtual worlds.

See Also vrworld, vrworld/close

vrworld_object A vrworld object representing a virtual world.

vrworld/reload

8-71

8vrworld/reloadPurpose Reload virtual world from VRML file

Syntax reload(vrworld_object)

Arguments

Description The reload method reloads the virtual world from the VRML file associated
with the vrworld object. If the input argument is an array of virtual world
handles, all the virtual worlds associated with those handles are reloaded. The
virtual world must be open for you to use this method.

reload forces all the clients currently viewing the virtual world to reload it.
This is useful when there are changes to the VRML file.

See Also vrworld/edit, vrworld/save, vrworld/open

vrworld_object A vrworld object representing a virtual world.

vrworld/save

8-72

8vrworld/savePurpose Write virtual world to VRML file

Syntax save(vrworld_object, 'vrml_file')

Arguments

Description The save method saves the current virtual world to a VRML97 file. The virtual
world must be open for you to use this method.

The resulting file is a VRML97 compliant UTF-8 encoded text file. Lines are
indented using spaces. Line ends are encoded as CR-LF or LF according to the
local system default. Values are separated by spaces.

See Also vrworld/edit, vrworld/reload, vrworld/open

vrworld_object A vrworld object representing a virtual world.

vrml_file Name of the VRML file to save the virtual world
to.

vrworld/set

8-73

8vrworld/setPurpose Change property values of vrworld object

Syntax set(vrworld_object, 'property_name', property_value)

Arguments

Description You can change the values of the read/write virtual world properties. The
following are properties of vrworld objects. Names are not case sensitive.

vrworld_object Name of a vrworld object representing a virtual
world.

property_name Name of the property.

property_value New value of the property.

Property Value Description

Clients Scalar Number of clients
currently viewing the
virtual world. Read only.

ClientUpdates 'off' | 'on'
Default: 'on'

Client cannot or can
update the virtual scene.
Read/write.

Description String
Default: automatically
taken from the VRML
file property title

Description of the
virtual world as it
appears on the main
Web page. Read/write.

Figures Vector of vrfigure
objects

Vector of handles to
Virtual Reality Toolbox
viewer windows
currently viewing the
virtual world. Read only.

FileName String Name of the associated
VRML file. Read only.

vrworld/set

8-74

Nodes Vector of vrnode objects Vector of vrnode objects
for all named nodes in
the virtual world. Read
only.

Open 'off' | 'on'
Default: 'off'

Indicates a closed or
open virtual world. Read
only.

Record3D 'off' | 'on'
Default: 'off'

Enables 3-D animation
recording. Read/write.

Record3DFileName String
Default:
'%f_anim_%n.wrl'

3-D animation filename.
The string can contain
tokens that are replaced
by the corresponding
information when the
animation recording
takes place. For details,
see “Animation
Recording File Tokens”
on page 4-12. Read/
write.

Recording 'off' | 'on'
Default: 'off'

Animation recording
toggle. This property
acts as the master
recording switch. Read/
write.

RecordMode 'manual' |
'scheduled'

Default: 'manual'

Animation recording
mode. Read/write.

Property Value Description

vrworld/set

8-75

See Also vrworld/get, vrworld

RecordInterval Vector of two doubles
Default: [0 0]

Start and stop times for
scheduled animation
recording. Corresponds
to the virtual world
object Time property.
Read/write.

RemoteView 'off' | 'on'
Default: 'off'

Remote access flag. If
the virtual world is
enabled for remote
viewing, it is set to 'on';
otherwise, it is set to
'off'. Read/write.

Time Double Current time in the
virtual world. Read/
write.

TimeSource 'external' |
'freerun'

Default: 'external'

Source of the time for
the virtual world. If set
to 'external', time in
the scene is controlled
from MATLAB (by
setting the Time
property) or Simulink
(simulation time).
If set to 'freerun', time
in the scene advances
independently based on
the system timer. Read/
write.

View 'off' | 'on'
Default: 'on'

Indicates an unviewable
or viewable virtual
world. Read/write.

Property Value Description

vrworld/view

8-76

8vrworld/viewPurpose View virtual world

Syntax view(vrworld_object)
x = view(vrworld_object)
x = view(vrworld_object,'-internal')
x = view(vrworld_object,'-web')

Arguments

Description The view method opens the default VRML viewer on the host computer and
loads the virtual world associated with the vrworld object into the viewer
window. You specify the default VRML viewer using the DefaultViewer
preference. The virtual world must be open for you to use this method.

x = view(vrworld_object) opens the default VRML viewer on the host
computer and loads the virtual world associated with the vrworld object into
the viewer window. If the Virtual Reality Toolbox viewer is used, view also
returns the vrfigure handle of the viewer window. If a Web browser is used,
view returns an empty array of vrfigure handles.

x = view(vrworld_object,'-internal') opens the virtual world in the
Virtual Reality Toolbox viewer.

x = view(vrworld_object,'-web') opens the virtual world in the Web
browser.

If the virtual world is disabled for viewing (that is, the View property for the
associated vrworld object is set to 'off'), the view method does nothing.

Examples myworld = vrworld('vrpend.wrl')
open(myworld)
view(myworld)

See Also vrworld, vrview

vrworld_object A vrworld object representing a virtual world.

Glossary-1

Glossary

simulation The process of running a dynamic system in nonreal time to observe its
behavior.

Virtual Reality
Modeling
Language

The specification for displaying three-dimensional objects using a VRML
viewer.

virtual figure
object

A handle to a Virtual Reality Toolbox viewer window.

virtual node
object

A handle to a node in a virtual world that allows access to the node’s properties.

virtual world An imaginary world where you can navigate around objects in three
dimensions.

virtual world
object

A handle to a virtual world that allows you to interact with and control the
world.

VRML Virtual Reality Modeling Language. See “VRML Overview” on page 1-10 of this
guide.

 Glossary

Glossary-2

Index-1

Index

Numerics
2-D AVI files

recording through MATLAB interface 4-11
recording through Virtual Reality Toolbox

viewer 6-18
3-D VRML files

recording with MATLAB interface 4-10
recording with Virtual Reality Toolbox viewer

6-18

A
adding

Virtual Reality Toolbox blocks 3-2
animation files

recording with MATLAB interface 4-10
recording with Virtual Reality Toolbox viewer

6-17
associating virtual worlds with Simulink blocks

3-10

B
bitmap file formats 1-28
blaxxun Contact

creating virtual worlds 5-8
installing 2-20
known issue 2-22
VRML viewer 6-44

bmp file formats 1-28
bouncing ball

Simulink example 1-17

C
car

MATLAB interface example 1-24
changing virtual world associated with Simulink

block 3-10
client computer

installation of VRML viewer (Windows) 2-38
system requirements 2-10

closing virtual worlds 4-8
components

client computer 2-38
host computer 2-13

connecting
Simulink model to a virtual world 5-16

coordinate system
MATLAB 1-11
VRML 1-11

creating vrworld object 4-2

D
default editor

setting 2-30
default viewer

setting 2-24
deformation of a sphere example

adding Virtual Reality Toolbox blocks 5-6
connecting Simulink to a virtual world 5-16
creating a box in a virtual world 5-13
creating a sphere in a virtual world 5-8
defining the problem 5-5

deleting virtual worlds 4-8
displaying virtual worlds 3-12

Index

Index-2

E
editors

general 3-D 5-2
native VRML 5-2
uninstalling 2-36

examples
bouncing ball 1-17
car 1-24
deformation of a sphere 5-5
heat transfer 1-24
inverted pendulum 1-22
lighting 1-19
magnetic levitation 1-19
magnetic levitation for Real-Time Windows

Target 1-20
manipulator with SpaceMouse 1-20
MATLAB interface 1-16
plane taking off 1-23
rotating membrane 1-26
Simulink interface 1-16
solar system 1-23
using MATLAB interface 1-24

F
file format

VRML 1-13
files

textures 1-28
functions

MATLAB interface 8-1
vrclear 8-6
vrgetpref 8-30
vrinstall 8-48
vrlib 8-50
vrsetpref 8-51
vrview 8-56

vrwho 8-57
vrwhos 8-58

H
heat transfer

MATLAB example 1-24
history

VRML 1-10
host computer

installing Virtual Reality Toolbox 2-12
installing VRML editor (Windows) 2-29
installing VRML viewer (UNIX) 2-23
installing VRML viewer (Windows) 2-20
required components 2-13
system requirements 2-7
Virtual Reality Toolbox viewer 2-19
VRML editor (UNIX) 2-30

I
installation

blaxxun Contact 2-20
client computer 2-38
components

host computer 2-13
host computer 2-12
supported platforms 2-6
system requirements 2-6
testing 2-39
viewer on host computer 2-19
Virtual Reality Toolbox 2-12
VRML editor (UNIX) 2-30
VRML editor (Windows) 2-29
VRML viewer (UNIX) 2-23
VRML viewer (Windows) 2-20

interacting with a virtual world 4-5

Index

Index-3

interface overview 3-2
inverted pendulum

Simulink example 1-22

J
Joystick Input

Simulink block 7-4

L
license

getting or updating 2-12
lighting

Simulink example 1-19

M
Magellan SpaceMouse

Simulink block 7-6
SpaceMouse

See also Magellan SpaceMouse
magnetic levitation

Simulink example 1-19
Simulink example for Real-Time Windows

Target 1-20
manipulator with Space Mouse

Simulink example 1-20
MATLAB

coordinate system 1-11
interface examples 1-24

MATLAB interface
creating a vrworld object 4-2
interacting with a virtual world 4-5
opening a virtual world 4-3
table of general functions 8-1

N
native VRML 5-2
navigation

about a virtual scene 6-10
example of navigation 6-14
keyboard 6-16
using the mouse 6-10

navigation speed
changing 6-14

network security setting
changing default 2-22
See also blaxxun Contact

O
opening a viewer window 3-15
opening virtual worlds 4-3
overview

associating virtual worlds with Simulink 3-2
Simulink interface 3-2
virtual worlds 5-2
VRML 1-10
VRML editing tools 5-2

P
plane taking off

Simulink example 1-23
platforms

supported 2-6

Index

Index-4

R
rendering of a virtual scene 6-35
rotating membrane

Simulink example 1-22
Virtual Reality Toolbox example 1-26

running Simulink example 2-39

S
security settings

changing 2-22
server

Virtual Reality Toolbox 1-29
setting

default editor 2-30
default viewer 2-24

simulation
displaying virtual worlds 3-12
starting 3-12

Simulink
associating with virtual worlds 3-2
interface examples 1-16
See also examples

Simulink blocks
adding Virtual Reality Toolbox blocks 3-2
changing virtual world association 3-10
VR Placeholder 7-8
VR Signal Expander 7-9
VR Sink 7-4

Simulink interface examples
bouncing ball 1-17
deformation of a sphere 5-6
inverted pendulum 1-22
lighting 1-19
magnetic levitation 1-19
magnetic levitation with Real-Time Windows

Target 1-20
manipulator with SpaceMouse 1-20
plane taking off 1-23
rotating membrane 1-22
running and viewing 2-39
solar system 1-23
vehicle dynamics visualization 1-22

Simulink interface overview 3-2
solar system

Simulink example 1-23
SpaceMouse

Simulink examples 1-20
supported platforms 2-6
system requirements

client computer 2-10
host computer 2-7

T
testing

installation 2-39
MATLAB example 2-44
Simulink example 2-39

textures 1-28

Index

Index-5

U
uninstalling

editor 2-36
Virtual Reality Toolbox 2-36
V-Realm Builder 2-36
VRML viewer (Windows) 2-36

V
vehicle visualization

Simulink example 1-22
view a virtual world

using a Web browser on the client computer
3-19

using a Web browser on the host computer
3-15

viewer
installation on client computer 2-38
installation on host computer 2-19
opening 3-15

viewpoint control 6-28
Virtual Reality Toolbox

description 1-2
features 1-4

Virtual Reality Toolbox blocks
VR Placeholder 7-8
VR Signal Expander 7-9
VR Sink 7-4

Virtual Reality Toolbox examples
car 1-24
heat transfer 1-24
rotating membrane 1-26
running and viewing 2-44

Virtual Reality Toolbox preferences
vrsetpref function 8-51

Virtual Reality Toolbox viewer
changing navigation speed 6-14
introduction 6-2
navigation 6-10
rendering 6-35
viewpoint control 6-28

virtual worlds
associating with Simulink 3-2
closing 4-8
deleting 4-8
displaying 3-12
interacting with 4-5
opening 4-3
overview 5-2

VR Placeholder
Simulink block 7-8

VR Signal Expander
Simulink block 7-9

VR Sink
Simulink block 7-4

vrclear

Virtual Reality Toolbox function 8-6
V-Realm Builder

installing 2-29
uninstalling 2-36
VRML editor 5-4

vrgetpref

Virtual Reality Toolbox function 8-30
vrinstall

Virtual Reality Toolbox function 8-48
vrlib

Virtual Reality Toolbox function 8-50
VRML

coordinate system 1-11
file format 1-13
history 1-10
overview 1-10

Index

Index-6

VRML editor
general 5-2
installing on host computer (Windows) 2-29
on UNIX platforms 2-30
V-Realm Builder 5-4

VRML viewer
blaxxun Contact 6-44
changing navigation speed 6-14
installing on client computer (Windows) 2-38
installing on host computer (UNIX) 2-23
installing on host computer (Windows) 2-20
known issue (blaxxun Contact) 2-22
navigation 6-10
rendering 6-35
uninstalling 2-36
viewpoint control 6-28
Virtual Reality Toolbox 6-2

vrsetpref

Virtual Reality Toolbox function 8-51
vrview

Virtual Reality Toolbox function 8-56
vrwho

Virtual Reality Toolbox function 8-57
vrwhos

Virtual Reality Toolbox function 8-58
vrworld object

creation 4-2

W
Web browser

viewing a virtual world on a client computer
3-19

viewing a virtual world on the host computer
3-15

	Getting Started
	What Is the Virtual Reality Toolbox?
	Expected Background

	Features of the Virtual Reality Toolbox
	VRML Support
	MATLAB Interface
	Simulink Interface
	VRML Viewers
	VRML Editor
	Real-Time Workshop Support
	SimMechanics Support
	Hardware Support
	Client-Server Architecture

	VRML Overview
	VRML History
	VRML Coordinate System
	VRML File Format

	Examples Using the Virtual Reality Toolbox
	Simulink Interface Examples
	MATLAB Interface Examples

	Virtual Reality Toolbox Texture File
	Implementation Notes
	VRML Compatibility
	Virtual Reality Toolbox Server

	Installation
	Required Products
	MATLAB
	VRML Viewer

	Recommended Product
	Simulink

	Related Products
	System Requirements
	Supported Computer Platforms
	Host Computer
	Client Computer

	Installing the Virtual Reality Toolbox on the Host Computer
	Getting or Updating Your License
	Components on a Host Computer
	Installing from CD (Windows)
	Installing from CD (UNIX/Linux)
	Downloading from the Web
	LD_LIBRARY_PATH Environment Variable (UNIX)
	Known Issue with the Virtual Reality Toolbox and Microsoft Internet Explorer 6.0 (Windows)

	Installing the VRML Viewer on the Host Computer
	Virtual Reality Toolbox Viewer
	Installing a VRML Plug-In (Windows)
	Installing a VRML Plug-In (UNIX/Linux)
	Setting the Default Viewer of Virtual Scenes

	Installing the VRML Editor on the Host Computer
	Installing the VRML Editor (Windows)
	VRML Editor (UNIX/Linux)
	Setting the Default Editor of Virtual Scenes

	Removing Components (Windows)
	Removing the Virtual Reality Toolbox and V-Realm Builder (Windows)
	Removing the blaxxun Contact Plug-In (Windows)

	Installing on the Client Computer
	Installing a VRML Plug-In (Windows)

	Testing the Installation
	Running a Simulink Interface Example
	Running a MATLAB Interface Example

	Simulink Interface
	Associating a Virtual World with Simulink
	Adding a Virtual Reality Toolbox Block
	Changing the Virtual World Associated with a Simulink Block

	Using the Simulink Interface
	Displaying a Virtual World and Starting Simulation
	Viewing a Virtual World with a Web Browser on the Host Computer
	Viewing a Virtual World with a Web Browser on the Client Computer

	MATLAB Interface
	Using the MATLAB Interface
	Creating a vrworld Object
	Opening a Virtual World
	Interacting with a Virtual World
	Closing and Deleting a vrworld Object

	Recording Offline Animations
	Animation Recording File Tokens
	Manual 3-D VRML Animation Recording
	Manual 2-D AVI Animation Recording
	Scheduled 3-D VRML Animation Recording
	Scheduled 2-D AVI Animation Recording
	Viewing Animation Files
	MATLAB Animation Recording of Virtual Worlds Not Associated with Simulink Models

	Virtual Worlds
	VRML Editing Tools
	Editors for Virtual Worlds
	V-Realm Builder

	Deformation of a Sphere Example
	Defining the Problem
	Adding a Virtual Reality Toolbox Block
	Creating a Sphere in a Virtual World
	Creating a Box in a Virtual World
	Connecting a Simulink Model to a Virtual World

	VRML Data Types
	VRML Field Data Types
	VRML Data Class Types

	Viewing Virtual Worlds
	Virtual Reality Toolbox Viewer
	Menu Bar
	Toolbar
	Navigation Panel
	Starting and Stopping Simulations
	Navigation
	Configuring Animation Recording Parameters
	Recording Files in the VRML Format
	Recording Files in the Audio Video Interleave (AVI) Format
	Scheduling Files for Recording
	Interactively Starting and Stopping Animation Recording
	Viewing the Animation File
	Working with Viewpoints
	Rendering

	blaxxun Contact VRML Plug-In
	Viewpoint Control
	Control Menu
	Navigation
	Movement Modes
	blaxxun Contact Settings
	Stereoscopic Vision

	Block Reference
	Blocks — Categorical List
	Control Input Devices
	Virtual Worlds
	VRML Related Signals

	Blocks — Alphabetical List
	Joystick Input
	Magellan Space Mouse
	VR Placeholder
	VR Signal Expander
	VR Sink

	Function Reference
	Functions — Categorical List
	MATLAB Interface Functions
	vrworld Object Methods
	vrnode Object Methods
	vrfigure Object Methods

	Functions — Alphabetical List
	vrclear
	vrclose
	vrdrawnow
	vrfigure
	vrfigure/capture
	vrfigure/close
	vrfigure/get
	vrfigure/isvalid
	vrfigure/set
	vrfigure/vrgcf
	vrfigure/vrgcbf
	vrgetpref
	vrnode
	vrnode/delete
	vrnode/fields
	vrnode/get
	vrnode/getfield
	vrnode/isvalid
	vrnode/set
	vrnode/setfield
	vrnode/sync
	vrinstall
	vrlib
	vrsetpref
	vrview
	vrwho
	vrwhos
	vrworld
	vrworld/close
	vrworld/delete
	vrworld/edit
	vrworld/get
	vrworld/isvalid
	vrworld/nodes
	vrworld/open
	vrworld/reload
	vrworld/save
	vrworld/set
	vrworld/view

	Glossary
	Index

