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Introducing the Genetic 
Algorithm and Direct 
Search Toolbox

What Is the Genetic Algorithm and 
Direct Search Toolbox? (p. 1-2)

Introduces the toolbox and its features.

Writing M-Files for Functions You 
Want to Optimize (p. 1-3)

Explains how to write M-files that compute the functions 
you want to optimize.
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What Is the Genetic Algorithm and Direct Search Toolbox?
The Genetic Algorithm and Direct Search Toolbox is a collection of functions 
that extend the capabilities of the Optimization Toolbox and the MATLAB® 
numeric computing environment. The Genetic Algorithm and Direct Search 
Toolbox includes routines for solving optimization problems using

• Genetic algorithm

• Direct search

These algorithms enable you to solve a variety of optimization problems that 
lie outside the scope of the standard Optimization Toolbox.

All the toolbox functions are MATLAB M-files, made up of MATLAB 
statements that implement specialized optimization algorithms. You can view 
the MATLAB code for these functions using the statement

type function_name

You can extend the capabilities of the Genetic Algorithm and Direct Search 
Toolbox by writing your own M-files, or by using the toolbox in combination 
with other toolboxes, or with MATLAB or Simulink®.
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Writing M-Files for Functions You Want to Optimize
To use the Genetic Algorithm and Direct Search Toolbox, you must first write 
an M-file that computes the function you want to optimize. The M-file should 
accept a row vector, whose length is the number of independent variables for 
the objective function, and return a scalar. This section explains how to write 
the M-file and covers the following topics:

• “Example — Writing an M-File” on page 1-3

• “Maximizing Versus Minimizing” on page 1-4

Example — Writing an M-File
The following example shows how to write an M-file for the function you want 
to optimize. Suppose that you want to minimize the function

The M-file that computes this function must accept a row vector x of length 2, 
corresponding to the variables x1 and x2, and return a scalar equal to the value 
of the function at x. To write the M-file, do the following steps:

1 Select New in the MATLAB File menu.

2 Select M-File. This opens a new M-file in the editor.

3 In the M-file, enter the following two lines of code:

function z = my_fun(x)
z = x(1)^2 - 2*x(1)*x(2) + 6*x(1) + x(2)^2 - 6*x(2);

4 Save the M-file in a directory on the MATLAB path.

To check that the M-file returns the correct value, enter 

my_fun([2 3])

ans =

    -5

f x1  x2( , ) x1
2 2x1x2 6x1 x2

2 6x2–+ +–=
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Note  Do not use the Editor/Debugger to debug the M-file for the objective 
function while running the Genetic Algorithm Tool or the Pattern Search Tool. 
Doing so results in Java exception messages in the Command Window and 
makes debugging more difficult. See either “Defining a Problem in the Genetic 
Algorithm Tool” on page 4-3 or “Defining a Problem in the Pattern Search 
Tool” on page 5-3 for more information on debugging.

Maximizing Versus Minimizing
The optimization functions in the Genetic Algorithm and Direct Search 
Toolbox minimize the objective or fitness function. That is, they solve problems 
of the form

If you want to maximize f(x), you can do so by minimizing -f(x), because the 
point at which the minimum of -f(x) occurs is the same as the point at which 
the maximum of f(x) occurs.

For example, suppose you want to maximize the function

described in the preceding section. In this case, you should write your M-file to 
compute

and minimize this function.

minimize
x

f x( )

f x1  x2( , ) x1
2 2x1x2 6x1 x2

2 6x2–+ +–=

f– x1  x2( , ) x1
2– 2x1x2 6x1– x2

2– 6x2+ +=



 

2
Getting Started with the 
Genetic Algorithm

What Is the Genetic Algorithm? (p. 2-2) Introduces the genetic algorithm.

Using the Genetic Algorithm (p. 2-3) Explains how to use the genetic algorithm tool.

Example: Rastrigin’s Function (p. 2-6) Presents an example of solving an optimization problem 
using the genetic algorithm.

Some Genetic Algorithm Terminology 
(p. 2-15)

Explains some basic terminology for the genetic 
algorithm.

How the Genetic Algorithm Works 
(p. 2-18)

Presents an overview of how the genetic algorithm works.
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What Is the Genetic Algorithm?
The genetic algorithm is a method for solving optimization problems that is 
based on natural selection, the process that drives biological evolution. The 
genetic algorithm repeatedly modifies a population of individual solutions. At 
each step, the genetic algorithm selects individuals at random from the current 
population to be parents and uses them produce the children for the next 
generation. Over successive generations, the population “evolves” toward an 
optimal solution. You can apply the genetic algorithm to solve a variety of 
optimization problems that are not well suited for standard optimization 
algorithms, including problems in which the objective function is 
discontinuous, nondifferentiable, stochastic, or highly nonlinear.

The genetic algorithm uses three main types of rules at each step to create the 
next generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the 
population at the next generation. 

• Crossover rules combine two parents to form children for the next generation. 

• Mutation rules apply random changes to individual parents to form children.

The genetic algorithm differs from a standard optimization algorithm in two 
main ways, as summarized in the following table.

Standard Algorithm Genetic Algorithm

Generates a single point at each 
iteration. The sequence of points 
approaches an optimal solution.

Generates a population of points at 
each iteration. The population 
approaches an optimal solution.

Selects the next point in the 
sequence by a deterministic 
computation.

Selects the next population by 
computations that involve random 
choices.
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Using the Genetic Algorithm
There are two ways you can use the genetic algorithm with the toolbox:

• Calling the genetic algorithm function ga at the command line.

• Using the Genetic Algorithm Tool, a graphical interface to the genetic 
algorithm.

This section provides a brief introduction to these methods.

Calling the Function ga at the Command Line
To use the genetic algorithm at the command line, call the genetic algorithm 
function ga with the syntax

[x fval] = ga(@fitnessfun, nvars, options)

where

• @fitnessfun is a handle to the fitness function.

• nvars is the number of independent variables for the fitness function.

• options is a structure containing options for the genetic algorithm. If you do 
not pass in this argument, ga uses its default options.

The results are given by

• fval — Final value of the fitness function

• x — Point at which the final value is attained

Using the function ga is convenient if you want to

• Return results directly to the MATLAB workspace

• Run the genetic algorithm multiple times with different options, by calling 
ga from an M-file

“Using the Genetic Algorithm from the Command Line” on page 4-21 provides 
a detailed description of using the function ga and creating the options 
structure.
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Using the Genetic Algorithm Tool
The Genetic Algorithm Tool is a graphical user interface that enables you to 
use the genetic algorithm without working at the command line. To open the 
Genetic Algorithm Tool, enter

gatool

This opens the tool as shown in the following figure.

Enter fitness function.

Enter number of variables 
for the fitness function.

Start the genetic 
algorithm.

Results displayed here.

Click to display descriptions of options.
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To use the Genetic Algorithm Tool, you must first enter the following 
information:

• Fitness function — The objective function you want to minimize. Enter the 
fitness function in the form @fitnessfun, where fitnessfun.m is an M-file 
that computes the fitness function. “Writing M-Files for Functions You Want 
to Optimize” on page 1-3 explains how write this M-file. The @ sign creates a 
function handle to fitnessfun. 

• Number of variables — The length of the input vector to the fitness 
function. For the function my_fun described in “Writing M-Files for 
Functions You Want to Optimize” on page 1-3, you would enter 2.

To run the genetic algorithm, click the Start button. The tool displays the 
results of the optimization in the Status and Results pane. 

You can change the options for the genetic algorithm in the Options pane. To 
view the options in one of the categories listed in the pane, click the + sign next 
to it. 

For more information,

• See “Overview of the Genetic Algorithm Tool” on page 4-2 for a detailed 
description of the tool.

• See “Example: Rastrigin’s Function” on page 2-6 for an example of using the 
tool.
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Example: Rastrigin’s Function
This section presents an example that shows how to find the minimum of 
Rastrigin’s function, a function that is often used to test the genetic algorithm. 
This section covers the following topics:

• “Rastrigin’s Function” on page 2-6

• “Finding the Minimum of Rastrigin’s Function” on page 2-8

• “Displaying Plots” on page 2-11

Rastrigin’s Function
For two independent variables, Rastrigin’s function is defined as

The toolbox contains an M-file, rastriginsfcn.m, that computes the values of 
Rastrigin’s function. The following figure shows a plot of Rastrigin’s function.

Ras x( ) 20 x1
2 x2

2 10 2πx1cos 2πx2cos+( )–+ +=
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As the plot shows, Rastrigin’s function has many local minima — the “valleys” 
in the plot. However, the function has just one global minimum, which occurs 
at the point [0 0] in the x-y plane, as indicated by the vertical line in the plot, 
where the value of the function is 0. At any local minimum other than [0 0], the 
value of Rastrigin’s function is greater than 0. The farther the local minimum 
is from the origin, the larger the value of the function is at that point.

Rastrigin’s function is often used to test the genetic algorithm, because its 
many local minima make it difficult for standard, gradient-based methods to 
find the global minimum.

The following contour plot of Rastrigin’s function shows the alternating 
maxima and minima.

Global minimum at [0 0]
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Finding the Minimum of Rastrigin’s Function
This section explains how to find the minimum of Rastrigin’s function using the 
genetic algorithm.

Note  Because the genetic algorithm uses random data to perform its search, 
the algorithm returns slightly different results each time you run it.

To find the minimum, do the following steps:

1 Enter gatool at the command line to open the Genetic Algorithm Tool. 

2 Enter the following in the Genetic Algorithm Tool:

- In the Fitness function field, enter @rastriginsfcn.

- In the Number of variables field, enter 2, the number of independent 
variables for Rastrigin’s function.
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The Fitness function and Number of variables fields should appear as shown 
in the following figure.

3 Click the Start button in the Run solver pane, as shown in the following 
figure.

While the algorithm is running, the Current generation field displays the 
number of the current generation. You can temporarily pause the algorithm by 
clicking the Pause button. When you do so, the button name changes to 
Resume. To resume the algorithm from the point at which you paused it, click 
Resume.

When the algorithm is finished, the Status and results pane appears as shown 
in the following figure.

Click the Start button

Fitness function value at final point

Final point



2 Getting Started with the Genetic Algorithm

2-10

The Status and results pane displays the following information:

• The final value of the fitness function when the algorithm terminated:
Function value: 0.0067749206244585025

Note that the value shown is very close to the actual minimum value of 
Rastrigin’s function, which is 0. “Genetic Algorithm Examples” on page 4-30 
describes some ways to get a result that is closer to the actual minimum.

• The reason the algorithm terminated. 

Exit: Optimization terminated:
maximum number of generations exceeded.

In this example, the algorithm terminates after 100 generations, the default 
value of the option Generations, which specifies the maximum number of 
generations the algorithm computes.

• The final point, which in this example is [0.00274 -0.00516].

Finding the Minimum from the Command Line
To find the minimum of Rastrigin’s function from the command line, enter

[x fval reason] = ga(@rastriginsfcn, 2)

This returns

[x fval reason] = ga(@rastriginsfcn, 2)

x =

    0.0027   -0.0052

fval =

    0.0068

reason =

Optimization terminated:
maximum number of generations exceeded.
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where

• x is the final point returned by the algorithm.

• fval is the fitness function value at the final point.

• reason is the reason that the algorithm terminated.

Displaying Plots
The Plots pane enables you to display various plots that provide information 
about the genetic algorithm while it is running. This information can help you 
change options to improve the performance of the algorithm. For example, to 
plot the best and mean values of the fitness function at each generation, select 
the box next to Best fitness value, as shown in the following figure.

When you click Start, the Genetic Algorithm Tool displays a plot of the best 
and mean values of the fitness function at each generation. When the 
algorithm stops, the plot appears as shown in the following figure.

Select Best fitness
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The points at the bottom of the plot denote the best fitness values, while the 
points above them denote the averages of the fitness values in each generation. 
The plot also displays the best and mean values in the current generation 
numerically at the top.

To get a better picture of how much the best fitness values are decreasing, you 
can change the scaling of the y-axis in the plot to logarithmic scaling. To do so,

1 Select Axes Properties from the Edit menu in the plot window to open the 
Property Editor, as shown in the following figure. 
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2 Click the Y tab.

3 In the Scale pane, select Log.

Click the Y tab.

Select Log.
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The plot now appears as shown in the following figure.

Typically, the best fitness value improves rapidly in the early generations, 
when the individuals are farther from the optimum. The best fitness value 
improves more slowly in later generations, whose populations are closer to the 
optimal point. 
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Some Genetic Algorithm Terminology
This section explains some basic terminology for the genetic algorithm, 
including

• “Fitness Functions” on page 2-15

• “Individuals” on page 2-15

• “Populations and Generations” on page 2-15

• “Fitness Values and Best Fitness Values” on page 2-16

• “Parents and Children” on page 2-17

Fitness Functions
The fitness function is the function you want to optimize. For standard 
optimization algorithms, this is known as the objective function. The toolbox 
tries to find the minimum of the fitness function. 

You can write the fitness function as an M-file and pass it as an input argument 
to the main genetic algorithm function.

Individuals
An individual is any point to which you can apply the fitness function. The 
value of the fitness function for an individual is its score. For example, if the 
fitness function is

the vector (2, 3, 1), whose length is the number of variables in the problem, is 
an individual. The score of the individual (2, 3, 1) is f(2, -3, 1) = 51. 

An individual is sometimes referred to as a genome and the vector entries of an 
individual as genes.

Populations and Generations
A population is an array of individuals. For example, if the size of the 
population is 100 and the number of variables in the fitness function is 3, you 
represent the population by a 100-by-3 matrix. The same individual can appear 

f x1 x2 x3, ,( ) 2x1 1+( )2 3x2 4+( )2 x3 2–( )2+ +=
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more than once in the population. For example, the individual (2, 3, 1) can 
appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on 
the current population to produce a new population. Each successive 
population is called a new generation.

Diversity
Diversity refers to the average distance between individuals in a population. A 
population has high diversity if the average distance is large; otherwise it has 
low diversity. In the following figure, the population on the left has high 
diversity, while the population on the right has low diversity.

Diversity is essential to the genetic algorithm because it enables the algorithm 
to search a larger region of the space.

Fitness Values and Best Fitness Values
The fitness value of an individual is the value of the fitness function for that 
individual. Because the toolbox finds the minimum of the fitness function, the 
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best fitness value for a population is the smallest fitness value for any 
individual in the population. 

Parents and Children
To create the next generation, the genetic algorithm selects certain individuals 
in the current population, called parents, and uses them to create individuals 
in the next generation, called children. Typically, the algorithm is more likely 
to select parents that have better fitness values.
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How the Genetic Algorithm Works
This section provides an overview of how the genetic algorithm works. This 
section covers the following topics:

• “Outline of the Algorithm” on page 2-18

• “Initial Population” on page 2-19

• “Creating the Next Generation” on page 2-20

• “Plots of Later Generations” on page 2-22

• “Stopping Conditions for the Algorithm” on page 2-23

Outline of the Algorithm
The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population. 

2 The algorithm then creates a sequence of new populations, or generations. 
At each step, the algorithm uses the individuals in the current generation to 
create the next generation. To create the new generation, the algorithm 
performs the following steps:

a Scores each member of the current population by computing its fitness 
value.

b Scales the raw fitness scores to convert them into a more usable range of 
values.

c Selects parents based on their fitness.

d Produces children from the parents. Children are produced either by 
making random changes to a single parent — mutation — or by 
combining the vector entries of a pair of parents — crossover.

e Replaces the current population with the children to form the next 
generation.

3 The algorithm stops when one of the stopping criteria is met. See “Stopping 
Conditions for the Algorithm” on page 2-23.
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Initial Population
The algorithm begins by creating a random initial population, as shown in the 
following figure.

In this example, the initial population contains 20 individuals, which is the 
default value of Population size in the Population options. Note that all the 
individuals in the initial population lie in the upper-right quadrant of the 
picture, that is, their coordinates lie between 0 and 1, because the default value 
of Initial range in the Population options is [0;1]. 

If you know approximately where the minimal point for a function lies, you 
should set Initial range so that the point lies near the middle of that range. 
For example, if you believe that the minimal point for Rastrigin’s function is 
near the point [0 0], you could set Initial range to be [-1;1]. However, as this 
example shows, the genetic algorithm can find the minimum even with a less 
than optimal choice for Initial range.
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Creating the Next Generation
At each step, the genetic algorithm uses the current population to create the 
children that make up the next generation. The algorithm selects a group of 
individuals in the current population, called parents, who contribute their 
genes — the entries of their vectors — to their children. The algorithm usually 
selects individuals that have better fitness values as parents. You can specify 
the function that the algorithm uses to select the parents in the Selection 
function field in the Selection options.

The genetic algorithm creates three types of children for the next generation:

• Elite children are the individuals in the current generation with the best 
fitness values. These individuals automatically survive to the next 
generation.

• Crossover children are created by combining the vectors of a pair of parents. 

• Mutation children are created by introducing random changes, or mutations, 
to a single parent.

The following schematic diagram illustrates the three types of children.

Crossover child

Mutation child

Elite child
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“Mutation and Crossover” on page 4-40 explains how to specify the number of 
children of each type that the algorithm generates and the functions it uses to 
perform crossover and mutation.

The following sections explain how the algorithm creates crossover and 
mutation children.

Crossover Children
The algorithm creates crossover children by combining pairs of parents in the 
current population. At each coordinate of the child vector, the default crossover 
function randomly selects an entry, or gene, at the same coordinate from one of 
the two parents and assigns it to the child. 

Mutation Children
The algorithm creates mutation children by randomly changing the genes of 
individual parents. By default, the algorithm adds a random vector from a 
Gaussian distribution to the parent. 

The following figure shows the children of the initial population, that is, the 
population at the second generation, and indicates whether they are elite, 
crossover, or mutation children.
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Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.
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As the number of generations increases, the individuals in the population get 
closer together and approach the minimum point [0 0].

Stopping Conditions for the Algorithm
The genetic algorithm uses the following five conditions to determine when to 
stop:

• Generations — The algorithm stops when the number of generations 
reaches the value of Generations. 

• Time limit — The algorithm stops after running for an amount of time in 
seconds equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function 
for the best point in the current population is less than or equal to Fitness 
limit.

• Stall generations — The algorithm stops if there is no improvement in the 
objective function for a sequence of consecutive generations of length Stall 
generations.

• Stall time limit — The algorithm stops if there is no improvement in the 
objective function during an interval of time in seconds equal to Stall time 
limit.

The algorithm stops as soon as any one of these five conditions is met. You can 
specify the values of these criteria in the Stopping criteria options in the 
Genetic Algorithm Tool. The default values are shown in the figure below.

When you run the genetic algorithm, the Status panel displays the criterion 
that caused the algorithm to stop.

The options Stall time limit and Time limit prevent the algorithm from 
running too long. If the algorithm stops due to one of these conditions, you 
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might improve your results by increasing the values of Stall time limit and 
Time limit.
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What Is Direct Search?

Direct search is a method for solving optimization problems that does not 
require any information about the gradient of the objective function. As 
opposed to more traditional optimization methods that use information about 
the gradient or higher derivatives to search for an optimal point, a direct 
search algorithm searches a set of points around the current point, looking for 
one where the value of the objective function is lower than the value at the 
current point. You can use direct search to solve problems for which the 
objective function is not differentiable, or even continuous.

The Genetic Algorithm and Direct Search Toolbox implements a special class 
of direct search algorithms called pattern search algorithms. A pattern search 
algorithm computes a sequence of points that get closer and closer to the 
optimal point. At each step, the algorithm searches a set of points, called a 
mesh, around the current point — the point computed at the previous step of 
the algorithm. The algorithm forms the mesh by adding the current point to a 
scalar multiple of a fixed set of vectors called a pattern. If the algorithm finds 
a point in the mesh that improves the objective function at the current point, 
the new point becomes the current point at the next step of the algorithm.
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Performing a Pattern Search
This section provides a brief introduction to the Pattern Search Tool, a 
graphical user interface (GUI) for performing a pattern search. This section 
covers the following topics:

• “Calling patternsearch at the Command Line” on page 3-3

• “Using the Pattern Search Tool” on page 3-3

Calling patternsearch at the Command Line
To perform a pattern search on an unconstrained problem at the command line, 
you call the function patternsearch with the syntax

[x fval] = patternsearch(@objfun, x0)

where

• @objfun is a handle to the objective function.

• x0 is the starting point for the pattern search.

The results are given by

• fval — Final value of the objective function

• x — Point at which the final value is attained

“Performing a Pattern Search from the Command Line” on page 5-14 explains 
in detail how to use the function patternsearch.

Using the Pattern Search Tool
To open the Pattern Search Tool, enter

psearchtool

This opens the tool as shown in the following figure.
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Enter objective function.

Enter start point.

Start the pattern search. 

Results displayed here.

Click to display descriptions of options.
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To use the Pattern Search Tool, you must first enter the following information:

• Objective function — The objective function you want to minimize. You 
enter the objective function in the form @objfun, where objfun.m is an M-file 
that computes the objective function. The @ sign creates a function handle to 
objfun. 

• Start point— The initial point at which the algorithm starts the 
optimization. 

You can enter constraints for the problem in the Constraints pane. If the 
problem is unconstrained, leave these fields blank.

Then, click the Start button. The tool displays the results of the optimization 
in the Status and results pane.

You can also change the options for the pattern search in the Options pane. To 
view the options in a category, click the + sign next to it.

“Finding the Minimum of the Function” on page 3-7 gives an example of using 
the Pattern Search Tool.

“Overview of the Pattern Search Tool” on page 5-2 provides a detailed 
description of the Pattern Search Tool.
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Example: Finding the Minimum of a Function
This section presents an example of using a pattern search to find the 
minimum of a function. This section covers the following topics:

• “Objective Function” on page 3-6

• “Finding the Minimum of the Function” on page 3-7

• “Plotting the Objective Function Values and Mesh Sizes” on page 3-8

Objective Function
The example uses the objective function, ps_example, which is included in the 
Genetic Algorithms and Direct Search Toolbox. You can view the code for the 
function by entering

type ps_example

The following figure shows a plot of the function.
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Finding the Minimum of the Function
To find the minimum of ps_example, do the following steps:

1 Enter

psearchtool

to open the Pattern Search Tool. 

2 In the Objective function field of the Pattern Search Tool, enter 
@ps_example.

3 In the Start point field, type [2.1 1.7].

You can leave the fields in the Constraints pane blank because the problem 
is unconstrained.

4 Click Start to run the pattern search. 

The Status and Results pane displays the results of the pattern search.

The minimum function value is approximately -2. The Final point pane 
displays the point at which the minimum occurs. 
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Plotting the Objective Function Values and Mesh 
Sizes
To see the performance of the pattern search, you can display plots of the best 
function value and mesh size at each iteration. First, select the following check 
boxes in the Plots pane:

• Best function value

• Mesh size

Then click Start to run the pattern search. This displays the following plots.
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The upper plot shows the objective function value of the best point at each 
iteration. Typically, the objective function values improve rapidly at the early 
iterations and then level off as they approach the optimal value.

The lower plot shows the mesh size at each iteration. The mesh size increases 
after each successful iteration and decreases after each unsuccessful one, 
explained in “How Pattern Search Works” on page 3-13.
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Pattern Search Terminology
This section explains some standard terminology for pattern search, including

• “Patterns” on page 3-10

• “Meshes” on page 3-11

• “Polling” on page 3-12

Patterns
A pattern is a collection of vectors that the algorithm uses to determine which 
points to search at each iteration. For example, if there are two independent 
variables in the optimization problem, the default pattern consists of the 
following vectors.

v1 = [1 0]
v2 = [0 1]
v3 = [-1 0]
v4 = [0 -1]
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The following figure shows these vectors.

Meshes
At each step, the pattern search algorithm searches a set of points, called a 
mesh, for a point that improves the objective function. The algorithm forms the 
mesh by 

1 Multiplying the pattern vectors by a scalar, called the mesh size

2 Adding the resulting vectors to the current point — the point with the best 
objective function value found at the previous step

For example, suppose that

• The current point is [1.6 3.4]. 
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• The pattern consists of the vectors

v1 = [1 0]
v2 = [0 1]
v3 = [-1 0]
v4 = [0 -1]

• The current mesh size is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current 
point to obtain the following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]
[1.6 3.4] + 4*[0 1] = [1.6 7.4]
[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction. 

Polling
At each step, the algorithm polls the points in the current mesh by computing 
their objective function values. When option Complete poll has the default 
setting Off, the algorithm stops polling the mesh points as soon as it finds a 
point whose objective function value is less than that of the current point. If 
this occurs, the poll is called successful and the point it finds becomes the 
current point at the next iteration. Note that the algorithm only computes the 
mesh points and their objective function values up to the point at which it stops 
the poll. If the algorithm fails to find a point that improves the objective 
function, the poll is called unsuccessful and the current point stays the same at 
the next iteration. 

If you set Complete poll to On, the algorithm computes the objective function 
values at all mesh points. The algorithm then compares the mesh point with 
the smallest objective function value to the current point. If that mesh point 
has a smaller value than the current point, the poll is successful. 
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How Pattern Search Works
The pattern search algorithm finds a sequence of points, x0, x1, x2, ... , that 
approaches the optimal point. The value of the objective function decreases 
from each point in the sequence to the next. This section explains how pattern 
search works for the function described in “Example: Finding the Minimum of 
a Function” on page 3-6. 

To simplify the explanation, this section describes how the pattern search 
works when you set Scale to Off in Mesh options.

This section covers the following topics:

• “Successful Polls” on page 3-13

• “An Unsuccessful Poll” on page 3-16

• “Displaying the Results at Each Iteration” on page 3-17

• “More Iterations” on page 3-18

Successful Polls
The pattern search begins at the initial point x0 that you provide. In this 
example, x0 = [2.1 1.7].

Iteration 1
At the first iteration, the mesh size is 1 and the pattern search algorithm adds 
the pattern vectors to the initial point x0 = [2.1 1.7] to compute the 
following mesh points.

[1 0] + x0 = [3.1 1.7]
[0 1] + x0 = [2.1 2.7]
[-1 0] + x0 = [1.1 1.7]
[0 -1 ] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order 
shown above. The following figure shows the value of ps_example at the initial 
point and mesh points.
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The algorithm polls the mesh points by computing their objective function 
values until it finds one whose value is smaller than 4.6347, the value at x0. In 
this case, the first such point it finds is [1.1 1.7], at which the value of the 
objective function is 4.5146, so the poll at iteration 1 is successful. The 
algorithm sets the next point in the sequence equal to 

x1 = [1.1 1.7]

Note  By default, the pattern search algorithm stops the current iteration as 
soon as it finds a mesh point whose fitness value is smaller than that of the 
current point. Consequently, the algorithm might not poll all the mesh points. 
You can make the algorithm poll all the mesh points by setting Complete poll 
to On.

1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

4.7824.63474.5146

5.6347

3.6347

Objective Function Values at Initial Point and Mesh Points

Initial point x0
Mesh points

First polled point that improves the objective function



How Pattern Search Works

3-15

Iteration 2
After a successful poll, the algorithm multiplies the current mesh size by 2, the 
default value of Expansion factor in the Mesh options pane. Because the 
initial mesh size is 1, at the second iteration the mesh size is 2. The mesh at 
iteration 2 contains the following points.

2*[1 0] + x1 = [3.1 1.7]
2*[0 1] + x1 = [1.1 3.7]
2*[-1 0] + x1 = [-0.9 1.7]
2*[0 -1 ] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with the 
corresponding values of ps_example.

The algorithm polls the mesh points until it finds one whose value is smaller 
than 4.5146, the value at x1. The first such point it finds is [-0.9 1.7], at 
which the value of the objective function is 3.25, so the poll at iteration 2 is 
again successful. The algorithm sets the second point in the sequence equal to

x2 = [-0.9 1.7]
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Because the poll is successful, the algorithm multiplies the current mesh size 
by 2 to get a mesh size of 4 at the third iteration.

An Unsuccessful Poll
By the fourth iteration, the current point is

x3 = [-0.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[-1 0] + x3 = [-4.9 1.7]
8*[0 1] + x3 = [-0.9 5.7]
8*[0 -1] + x3 = [-0.9 -2.3]

The following figure shows the mesh points and their objective function values.
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At this iteration, none of the mesh points has a smaller objective function value 
than the value at x3, so the poll is unsuccessful. In this case, the algorithm does 
not change the current point at the next iteration. That is,

x4 = x3;

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the 
default value of Contraction factor in the Mesh options pane, so that the 
mesh size at the next iteration is 4. The algorithm then polls with a smaller 
mesh size.

Displaying the Results at Each Iteration
You can display the results of the pattern search at each iteration by setting 
Level of display to Iterative in Display to command window options. This 
enables you to evaluate the progress of the pattern search and to make changes 
to options if necessary.

With this setting, the pattern search displays information about each iteration 
at the command line. The first four lines of the display are

Iter     f-count        MeshSize      f(x)        Method
    0        1              1         4.635     Start iterations
    1        4              2         4.515     Successful Poll
    2        7              4          3.25     Successful Poll
    3       10              8       -0.2649     Successful Poll
    4       14              4       -0.2649     Refine Mesh

The entry Successful Poll below Method indicates that the current iteration 
was successful. For example, the poll at iteration 2 successful. As a result, the 
objective function value of the point computed at iteration 2, displayed below 
f(x), is less than the value at iteration 1. 

At iteration 4, the entry Refine Mesh below Method tells you that the poll is 
unsuccessful. As a result, the function value at iteration 4 remains unchanged 
from iteration 3. 

Note that the pattern search doubles the mesh size after each successful poll 
and halves it after each unsuccessful poll.
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More Iterations
The pattern search performs 88 iterations before stopping. The following plot 
shows the points in the sequence computed in the first 13 iterations of the 
pattern search. 

The numbers below the points indicate the first iteration at which the 
algorithm finds the point. The plot only shows iteration numbers 
corresponding to successful polls, because the best point doesn’t change after 
an unsuccessful poll. For example, the best point at iterations 4 and 5 is the 
same as at iteration 3.

Stopping Conditions for the Pattern Search
This section describes the criteria for stopping the pattern search algorithm. 
These criteria are listed in the Stopping criteria section of the Pattern Search 
Tool, as shown in the following figure.
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The algorithm stops when any of the following conditions occurs:

• The mesh size is less than Mesh tolerance.

• The number of iterations performed by the algorithm reaches the value of 
Max iteration.

• The total number of objective function evaluations performed by the 
algorithm reaches the value of Max function evaluations.

• The distance between the point found at one successful poll and the point 
found at the next successful poll is less than X tolerance.

• The change in the objective function from one successful poll to the next 
successful poll is less than Function tolerance.

The Bind tolerance option, which is used to identify active constraints for 
constrained problems, is not used as a stopping criterion.
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Using the Genetic 
Algorithm

Overview of the Genetic Algorithm Tool 
(p. 4-2)

Provides an overview of the Genetic Algorithm Tool.

Using the Genetic Algorithm from the 
Command Line (p. 4-21)

Describes how to use the genetic algorithm at the 
command line.

Genetic Algorithm Examples (p. 4-30) Explains how to set options for the genetic algorithm.
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Overview of the Genetic Algorithm Tool
The section provides an overview of the Genetic Algorithm Tool. This section 
covers the following topics:

• “Opening the Genetic Algorithm Tool” on page 4-2

• “Defining a Problem in the Genetic Algorithm Tool” on page 4-3

• “Running the Genetic Algorithm” on page 4-4

• “Pausing and Stopping the Algorithm” on page 4-6

• “Displaying Plots” on page 4-7

• “Example — Creating a Custom Plot Function” on page 4-8

• “Reproducing Your Results” on page 4-11

• “Setting Options in the Genetic Algorithm Tool” on page 4-12

• “Importing and Exporting Options and Problems” on page 4-13

• “Example — Resuming the Genetic Algorithm from the Final Population” on 
page 4-16

Opening the Genetic Algorithm Tool
To open the tool, enter

gatool

at the MATLAB prompt. This opens the Genetic Algorithm Tool, as shown in 
the following figure.
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Defining a Problem in the Genetic Algorithm Tool
You can define the problem you want to solve in the following two fields:

• Fitness function — The function you want to minimize. Enter a handle to 
an M-file function that computes the fitness function. “Writing M-Files for 
Functions You Want to Optimize” on page 1-3 describes how to write the 
M-file.

Enter fitness function.

Enter number of 
variables for the fitness 

Start the genetic 
algorithm.

Results displayed here

Click to display descriptions of options
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• Number of variables — The number of independent variables for the fitness 
function.

Note  Do not use the Editor/Debugger to debug the M-file for the objective 
function while running the Genetic Algorithm Tool. Doing so results in Java 
exception messages in the Command Window and makes debugging more 
difficult. Instead, call the objective function directly from the command line or 
pass it to the genetic algorithm function ga. To facilitate debugging, you can 
export your problem from the Genetic Algorithm Tool to the MATLAB 
workspace, as described in “Importing and Exporting Options and Problems” 
on page 4-13.

The following figure shows these fields for the example described in “Example: 
Rastrigin’s Function” on page 2-6.

Running the Genetic Algorithm
To run the genetic algorithm, click Start in the Run solver pane. When you do 
so,

• The Current generation field displays the number of the current 
generation.

• The Status and results pane displays the message “GA running.”.

The following figure shows the Current generation field and Status and 
results pane while the algorithm is running.
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When the algorithm terminates, the Status and results pane displays

• The message “GA terminated.”

• The fitness function value of the best individual in the final generation 

• The reason the algorithm terminated

• The coordinates of the final point

The following figure shows this information displayed when you run the 
example in “Example: Rastrigin’s Function” on page 2-6.

You can change many of the settings in the Genetic Algorithm Tool while the 
algorithm is running. Your changes are applied at the next generation. Until 
your changes are applied, which occurs at the start of the next generation, the 
Status and Results pane displays the message Changes pending. At the start 
of the next generation, the pane displays the message Changes applied. as 
shown in the following figure.

Fitness function value at final point

Coordinates of final point
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Pausing and Stopping the Algorithm
While the genetic algorithm is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the algorithm 
using the current population at the time you paused, click Resume. 

• Click Stop to stop the algorithm. The Status and results pane displays the 
fitness function value of the best point in the current generation at the 
moment you clicked Stop.

Note  If you click Stop and then run the genetic algorithm again by clicking 
Start, the algorithm begins with a new random initial population or with the 
population you specify in the Initial population field. If you want to restart 
the algorithm where it left off, use the Pause and Resume buttons.

“Example — Resuming the Genetic Algorithm from the Final Population” on 
page 4-16 explains what to do if you click Stop and later decide to resume the 
genetic algorithm from the final population of the last run.

Setting Stopping Criteria
The genetic algorithm uses five criteria, listed in the Stopping criteria 
options, to decide when to stop, in case you do not stop it manually by clicking 
Stop. The algorithm stops if any one of the following conditions occur:

• Generations — The algorithm reaches the specified number of generations.

• Time — The algorithm runs for the specified amount of time in seconds.

• Fitness limit — The best fitness value in the current generation is less than 
or equal to the specified value.

• Stall generations — The algorithm computes the specified number of 
generations with no improvement in the fitness function.

• Stall time limit — The algorithm runs for the specified amount of time in 
seconds with no improvement in the fitness function.

If you want the genetic algorithm to continue running until you click Pause or 
Stop, you should change the default values of these options as follows:

• Set Generations to Inf
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• Set Time to Inf.

• Set Fitness limit to -Inf.

• Set Stall generations to Inf.

• Set Stall time limit to Inf.

The following figure shows these settings.

Note  Do not use these settings when calling the genetic algorithm function 
ga at the command line, as the function will never terminate until you press 
Ctrl + C. Instead, set Generations or Time limit to a finite number.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various 
plots of the results of the genetic algorithm. 

Select the check boxes next to the plots you want to display. For example, if you 
select Best fitness and Best individual, and run the example described in 
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“Example: Rastrigin’s Function” on page 2-6, the tool displays the plots shown 
in the following figure.

The upper plot displays the best and mean fitness values in each generation. 
The lower plot displays the coordinates of the point with the best fitness value 
in the current generation.

Note  When you display more than one plot, clicking on any plot opens a 
larger version of it in a separate window.

“Plot Options” on page 6-4 describes the types of plots you can create.

Example — Creating a Custom Plot Function
If none of the plot functions that come with the toolbox is suitable for the output 
you want to plot, you can write your own custom plot function, which the 
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genetic algorithm calls at each generation to create the plot. This example 
shows how to create a plot function that displays the change in the best fitness 
value from the previous generation to the current generation. 

This section covers the following topics:

• “Creating the Plot Function” on page 4-9

• “Using the Plot Function” on page 4-10

• “How the Plot Function Works” on page 4-10

Creating the Plot Function
To create the plot function for this example, copy and paste the following code 
into a new M-file in the MATLAB Editor.

function state = gaplotchange(options, state, flag)
% GAPLOTCHANGE Plots the change in the best score from the 
% previous generation.
%   
persistent last_best % Best score in the previous generation

if(strcmp(flag,'init')) % Set up the plot
    set(gca,'xlim',[1,options.Generations],'Yscale','log');
    hold on;
    xlabel Generation
    title('Change in Best Fitness Value')
end

best = min(state.Score); % Best score in the current generation
if state.Generation == 0 % Set last_best to best.
    last_best = best;
else

change = last_best - best; % Change in best score 
last_best=best;
plot(state.Generation, change, '.r');
title(['Change in Best Fitness Value'])

end

Then save the M-file as gaplotchange.m in a directory on the MATLAB path.
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Using the Plot Function
To use the custom plot function, select Custom in the Plots pane and enter 
@gaplotchange in the field to the right. To compare the custom plot with the 
best fitness value plot, also select Best fitness. Now, if you run the example 
described in “Example: Rastrigin’s Function” on page 2-6, the tool displays the 
plots shown in the following figure.

Note that because the scale of the y-axis in the lower custom plot is logarithmic, 
the plot only shows changes that are greater then 0. The logarithmic scale 
enables you to see small changes in the fitness function that the upper plot does 
not reveal. 

How the Plot Function Works
The plot function uses information contained in the following structures, which 
the genetic algorithm passes to the function as input arguments:

• options — The current options settings

• state — Information about the current generation

• flag — String indicating the current status of the algorithm
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The most important lines of the plot function are the following:

• persistent last_best 

Creates the persistent variable last_best — the best score in the previous 
generation. Persistent variables are preserved over multiple calls to the plot 
function.

• set(gca,'xlim',[1,options.Generations],'Yscale','log');

Sets up the plot before the algorithm starts. options.Generation is the 
maximum number of generations.

• best = min(state.Score)

The field state.Score contains the scores of all individuals in the current 
population. The variable best is the minimum score. For a complete 
description of the fields of the structure state, see “Structure of the Plot 
Functions” on page 6-5.

• change = last_best - best

The variable change is the best score at the previous generation minus the 
best score in the current generation.

• plot(state.Generation, change, '.r')

Plots the change at the current generation, whose number is contained in 
state.Generation.

The code for gaplotchange contains many of the same elements as the code for 
gaplotbestf, the function that creates the best fitness plot.

Reproducing Your Results
To reproduce the results of the last run of the genetic algorithm, select the Use 
random states from previous run check box. This resets the states of the 
random number generators used by the algorithm to their previous values. If 
you do not change any other settings in the Genetic Algorithm Tool, the next 
time you run the genetic algorithm, it returns the same results as the previous 
run. 

Normally, you should leave Use random states from previous run unselected 
to get the benefit of randomness in the genetic algorithm. Select the Use 
random states from previous run check box if you want to analyze the results 
of that particular run or show the exact results to others.
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Setting Options in the Genetic Algorithm Tool
You can set options for the genetic algorithm in the Options pane, shown in the 
figure below.

“Genetic Algorithm Examples” on page 4-30 describes how options settings 
affect the performance of the genetic algorithm. For a detailed description of all 
the available options, see “Genetic Algorithm Options” on page 6-3.

Setting Options as Variables in the MATLAB Workspace
You can set numerical options either directly, by typing their values in the 
corresponding edit box, or by entering the name of a variable in the MATLAB 
workspace that contains the option values. For example, you can set the Initial 
point to [2.1 1.7] in either of the following ways:
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• Enter [2.1 1.7] in the Initial point field.

• Enter 
x0 = [2.1 1.7]

at the MATLAB prompt and then enter x0 in the Initial point field.

For options whose values are large matrices or vectors, it is often more 
convenient to define their values as variables in the MATLAB workspace. This 
way, it is easy to change the entries of the matrix or vector if necessary.

Importing and Exporting Options and Problems
You can export options and problem structures from the Genetic Algorithm 
Tool to the MATLAB workspace, and then import them back into the tool at a 
later time. This enables you to save the current settings for a problem and 
restore them later. You can also export the options structure and use it with 
the genetic algorithm function ga at the command line.

You can import and export the following information:

• The problem definition, including Fitness function and Number of 
variables

• The currently specified options

• The results of the algorithm

The following sections explain how to import and export this information:

• “Exporting Options and Problems” on page 4-13

• “Example — Running ga on an Exported Problem” on page 4-15

• “Importing Options” on page 4-16

• “Importing Problems” on page 4-16

Exporting Options and Problems
You can export options and problems to the MATLAB workspace so that you 
can use them at a future time in the Genetic Algorithm Tool. You can also apply 
the function ga using these options or problems at the command line — see 
“Using Options and Problems from the Genetic Algorithm Tool” on page 4-24.
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To export options or problems, click the Export button or select Export to 
Workspace from the File menu. This opens the dialog box shown in the 
following figure.

The dialog provides the following options:

• To save both the problem definition and the current options settings, select 
Export problem and options to a MATLAB structure named and enter a 
name for the structure. Clicking OK saves this information to a structure in 
the MATLAB workspace. If you later import this structure into the Genetic 
Algorithm Tool, the settings for Fitness function, Number of variables, 
and all options settings are restored to the values they had when you 
exported the structure.

Note  If you select Use random states from previous run in the Run solver 
pane before exporting a problem, the Genetic Algorithm Tool also saves the 
states of rand and randn at the beginning of the last run when you export. 
Then, when you import the problem and run the genetic algorithm with Use 
random states from previous run selected, the results of the run just before 
you exported the problem are reproduced exactly.

• If you want the genetic algorithm to resume from the final population of the 
last run before you exported the problem, select Include information 
needed to resume this run. Then, when you import the problem structure 
and click Start, the algorithm resumes from the final population of the 
previous run. 

To restore the genetic algorithm’s default behavior of generating a random 
initial population, delete the population in the Initial population field and 
replace it with empty brackets, []. 
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Note  If you select Include information needed to resume this run, then 
selecting Use random states from previous run has no effect on the initial 
population created when you import the problem and run the genetic 
algorithm on it. The latter option is only intended to reproduce results from 
the beginning of a new run, not from a resumed run.

• To save only the options, select Export options to a MATLAB structure 
named and enter a name for the options structure.

• To save the results of the last run of the algorithm, select Export results to 
a MATLAB structure named and enter a name for the results structure.

Example — Running ga on an Exported Problem
To export the problem described in “Example: Rastrigin’s Function” on 
page 2-6 and run the genetic algorithm function ga on it at the command line, 
do the following steps:

1 Click Export to Workspace.

2 In the Export to Workspace dialog box, enter a name for the problem 
structure, such as my_gaproblem, in the Export problems and options to a 
MATLAB structure named field.

3 At the MATLAB prompt, call the function ga with my_gaproblem as the 
input argument:

[x fval] = patternsearch(my_gaproblem)

This returns

x =

    0.0027   -0.0052

fval =

    0.0068
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See “Using the Genetic Algorithm from the Command Line” on page 4-21 for 
form information.

Importing Options
To import an options structure from the MATLAB workspace, select Import 
Options from the File menu. This opens a dialog box that displays a list of the 
genetic algorithm options structures in the MATLAB workspace. When you 
select an options structure and click Import, the options fields in the Genetic 
Algorithm Tool are updated to display the values of the imported options. 

You can create an options structure in either of the following ways:

• Calling gaoptimset with options as the output

• By saving the current options from the Export to Workspace dialog box in 
the Genetic Algorithm Tool

Importing Problems
To import a problem that you previously exported from the Genetic Algorithm 
Tool, select Import Problem from the File menu. This opens the dialog box 
that displays a list of the genetic algorithm problem structures in the MATLAB 
workspace. When you select a problem structure and click OK, the following 
fields are updated in the Genetic Algorithm Tool:

• Fitness function
• Number of variables

• The options fields

Example — Resuming the Genetic Algorithm from 
the Final Population
The following example shows how export a problem so that when you import it 
and click Start, the genetic algorithm resumes from the final population saved 
with the exported problem. To run the example, enter the following 
information in the Genetic Algorithm Tool:

• Set Fitness function to @ackleyfcn, which computes Ackley’s function, a 
test function provided with the toolbox.

• Set Number of variables to 10.
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• Select Best fitness in the Plots pane.

• Click Start.

This displays the following plot.

Suppose you want to experiment by running the genetic algorithm with other 
options settings, and then later restart this run from its final population with 
its current options settings. You can do this by the following steps:

1 Click the Export to Workspace button

2 In the dialog box that appears, 

- Select Export problem and options to a MATLAB structure named.

- Enter a name for the problem and options, such as ackley_run1, in the 
text field.

- Select Include information needed to resume this run.
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The dialog box should now appear as in the following figure.

3 Click OK.

This exports the problem and options to a structure in the MATLAB 
workspace. You can view the structure in the MATLAB Command Window by 
entering 

ackley_uniform

ackley_uniform = 

      fitnessfcn: @ackleyfcn
    genomelength: 10
         options: [1x1 struct]



Overview of the Genetic Algorithm Tool

4-19

After running the genetic algorithm with different options settings or even a 
different fitness function, you can restore the problem as follows:

1 Select Import Problem from the File menu. This opens the dialog box 
shown in the following figure.

2 Select ackley_uniform.

3 Click Import.

This sets the Initial population field in Population options to the final 
population of the run before you exported the problem. All other options are 
restored to their setting during that run. When you click Start, the genetic 
algorithm resumes from the saved final population. The following figure shows 
the best fitness plots from the original run and the restarted run.
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Note  If, after running the genetic algorithm with the imported problem, you 
want to restore the genetic algorithm’s default behavior of generating a 
random initial population, delete the population in the Initial population 
field and replace it with empty brackets, [].

Generating an M-File
To create an M-file that runs the genetic algorithm, using the fitness function 
and options you specify in the Genetic Algorithm Tool, select Generate M-File 
from the File menu and save the M-file in a directory on the MATLAB path. 
Calling this M-file at the command line returns the same results as the Genetic 
Algorithm Tool, using the fitness function and options settings that were in 
place when you generated the M-file.
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Using the Genetic Algorithm from the Command Line
As an alternative to using the Genetic Algorithm Tool, you can run the genetic 
algorithm function ga from the command line. This section explains how to do 
so and covers the following topics.

• “Running ga with the Default Options” on page 4-21

• “Setting Options for ga at the Command Line” on page 4-22

• “Using Options and Problems from the Genetic Algorithm Tool” on page 4-24

• “Reproducing Your Results” on page 4-25

• “Resuming ga from the Final Population of a Previous Run” on page 4-26

• “Running ga from an M-File” on page 4-27

Running ga with the Default Options
To run the genetic algorithm with the default options, call ga with the syntax

[x fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

• @fitnessfun — A function handle to the M-file that computes the fitness 
function. “Writing M-Files for Functions You Want to Optimize” on page 1-3 
explains how to write this M-file.

• nvars — The number of independent variables for the fitness function.

The output arguments are

• x — The final point

• fval — The value of the fitness function at x

For a description of additional output arguments, see the reference page for ga.

As an example, you can run the example described in “Example: Rastrigin’s 
Function” on page 2-6 from the command line by entering

[x fval] = ga(@rastriginsfcn, 2)
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This returns

x =

    0.0027   -0.0052

fval =

    0.0068

Additional Output Arguments
To get more information about the performance of the genetic algorithm, you 
can call ga with the syntax

[x fval reason output population scores] = ga(@fitnessfcn, nvars)

Besides x and fval, this returns the following additional output arguments:

• reason — Reason the algorithm terminated

• output — Structure containing information about the performance of the 
algorithm at each generation

• population — Final population

• scores — Final scores

See the reference page for ga for more information about these arguments.

Setting Options for ga at the Command Line
You can specify any of the options that are available in the Genetic Algorithm 
Tool by passing an options structure as an input argument to ga using the 
syntax

[x fval] = ga(@fitnessfun, nvars, options)

You create the options structure using the function gaoptimset.

options = gaoptimset
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This returns the structure options with the default values for its fields.

options = 

            PopulationType: 'doubleVector'
           PopInitRange: [2x1 double]
        PopulationSize: 20
            EliteCount: 2
     CrossoverFraction: 0.8000
    MigrationDirection: 'forward'
     MigrationInterval: 20
     MigrationFraction: 0.2000
           Generations: 100
             TimeLimit: Inf
          FitnessLimit: -Inf
           StallLimitG: 50
           StallLimitS: 20
     InitialPopulation: []
         InitialScores: []
          PlotInterval: 1
           CreationFcn: @gacreationuniform
     FitnessScalingFcn: @fitscalingrank
          SelectionFcn: @selectionstochunif
          CrossoverFcn: @crossoverscattered
           MutationFcn: @mutationgaussian
             HybridFcn: []
               Display: 'final'
              PlotFcns: []
            OutputFcns: []
            Vectorized: 'off'

The function ga uses these default values if you do not pass in options as an 
input argument.

The value of each option is stored in a field of the options structure, such as 
options.PopulationSize. You can display any of these values by entering 
options followed by the name of the field. For example, to display the size of 
the population for the genetic algorithm, enter 
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options.PopulationSize

ans =

    20

To create an options structure with a field value that is different from the 
default —for example to set PopulationSize to 100 instead of its default value 
20 — enter

options = gaoptimset('PopulationSize', 100)

This creates the options structure with all values set to their defaults except 
for PopulationSize, which is set to 100.

If you now enter,

ga(@fitnessfun, nvars, options)

ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in the options structure, 
such as setting PlotFcns to @gaplotbestf, which plots the best fitness function 
value at each generation, call gaoptimset with the syntax

options = gaoptimset(options, 'PlotFcns', @plotbestf)

This preserves the current values of all fields of options except for PlotFcns, 
which is changed to @plotbestf. Note that if you omit the input argument 
options, gaoptimset resets PopulationSize to its default value 20.

You can also set both PopulationSize and PlotFcns with the single command

options = gaoptimset('PopulationSize',100,'PlotFcns',@plotbestf)

Using Options and Problems from the Genetic 
Algorithm Tool
As an alternative to creating an options structure using gaoptimset, you can 
set the values of options in the Genetic Algorithm Tool and then export the 
options to a structure in the MATLAB workspace, as described in “Exporting 
Options and Problems” on page 4-13. If you export the default options in the 
Genetic Algorithm Tool, the resulting structure options has the same settings 
as the default structure returned by the command
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options = gaoptimset

If you export a problem structure, ga_problem, from the Genetic Algorithm 
Tool, you can apply ga to it using the syntax

[x fval] = ga(ga_problem)

The problem structure contains the following fields:

• fitnessfcn — Fitness function

• nvars — Number of variables for the problem

• options — Options structure

Reproducing Your Results
Because the genetic algorithm is stochastic — that is, it makes random choices 
— you get slightly different results each time you run the genetic algorithm. 
The algorithm uses the MATLAB uniform and normal random number 
generators, rand and randn, to makes random choices at each iteration. Each 
time ga calls rand and randn, their states are changed, so that the next time 
they are called, they return different random numbers. This is why the output 
of ga differs each time you run it.

If you need to reproduce your results exactly, you can call ga with an output 
argument that contains the current states of rand and randn and then reset the 
states to these values before running ga again. For example, to reproduce the 
output of ga applied to Rastrigin’s function, call ga with the syntax

[x fval reason output] = ga(@rastriginsfcn, 2);

Suppose the results are

x =

    0.0027   -0.0052
fval =

    0.0068
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The states of rand and randn are stored in the first two fields of output.

output = 

      randstate: [35x1 double]
     randnstate: [2x1 double]
    generations: 100
      funccount: 2000
        message: [1x64 char]

Then, reset the states, by entering 

rand('state', output.randstate);
randn('state', output.randnstate);

If you now run ga a second time, you get the same results.

Note  If you do not need to reproduce your results, it is better not to set the 
states of rand and randn, so that you get the benefit of the randomness in the 
genetic algorithm.

Resuming ga from the Final Population of a 
Previous Run
By default, ga creates a new initial population each time you run it. However, 
you might get better results by using the final population from a previous run 
as the initial population for a new run. To do so, you must have saved the final 
population from the previous run by calling ga with the syntax

[x, fval, reason, output, final_pop] = ga(@fitnessfcn, nvars);

The last output argument, is the final population. To run ga using final_pop 
as the initial population, enter

options = gaoptimset('InitialPop', final_pop);
[x, fval, reason, output, final_pop2] = ga(@fitnessfcn, nvars);

If you want, you can then use final_pop2, the final population from the second 
run, as the initial population for a third run.
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Running ga from an M-File
The command-line interface enables you to run the genetic algorithm many 
times, with different options settings, using an M-file. For example, you can 
run the genetic algorithm with different settings for Crossover fraction to see 
which one gives the best results. The following code runs the function ga 
twenty-one times, varying options.CrossoverFraction from 0 to 1 in 
increments of 0.5, and records the results.

options = gaoptimset('Generations',300);
rand('state', 71); % These two commands are only included to
randn('state', 59); % make the results reproducible.
record=[];
for n=0:.05:1

options = gaoptimset(options,'CrossoverFraction', n);
[x fval]=ga(@rastriginsfcn, 10, options);
record = [record; fval];

end

You can plot the values of fval against the crossover fraction with the following 
commands:

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')



4 Using the Genetic Algorithm

4-28

This displays the following plot.

The plot indicates that you get the best results by setting 
options.CrossoverFraction to a value somewhere between 0.6 and 0.95.
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You can get a smoother plot of fval as a function of the crossover fraction by 
running ga 20 times and averaging the values of fval for each crossover 
fraction. The following figure shows the resulting plot.

The plot narrows the range of best choices for options.CrossoverFraction to 
values between 0.7 and 0.9.
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Genetic Algorithm Examples
To get the best results from the genetic algorithm, you usually need to 
experiment with different options. Selecting the best options for a problem 
involves trial and error. This section describes some ways you can change 
options to improve results. For a complete description of the available options, 
see “Genetic Algorithm Options” on page 6-3.

This section covers the following topics:

• “Population Diversity” on page 4-30

• “Fitness Scaling” on page 4-35

• “Selection” on page 4-39

• “Reproduction Options” on page 4-40

• “Mutation and Crossover” on page 4-40

• “Setting the Amount of Mutation” on page 4-41

• “Setting the Crossover Fraction” on page 4-43

• “Example — Global Versus Local Minima” on page 4-48

• “Using a Hybrid Function” on page 4-52

• “Setting the Maximum Number of Generations” on page 4-54

• “Vectorizing the Fitness Function” on page 4-56

Population Diversity
One of the most important factors that determines the performance of the 
genetic algorithm performs is the diversity of the population. If the average 
distance between individuals is large, the diversity is high; if the average 
distance is small, the diversity is low. Getting the right amount of diversity is 
a matter of trial and error. If the diversity is too high or too low, the genetic 
algorithm might not perform well. 

This section explains how to control diversity by setting the Initial range of the 
population. “Setting the Amount of Mutation” on page 4-41 describes how the 
amount of mutation affects diversity.

This section also explains how to set the population size.
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Example —Setting the Initial Range
By default, the Genetic Algorithm Tool creates a random initial population 
using the creation function. You can specify the range of the vectors in the 
initial population in the Initial range field in Population options. 

Note  The initial range only restricts the range of the points in the initial 
population. Subsequent generations can contain points whose entries do not 
lie in the initial range. 

If you know approximately where the solution to a problem lies, you should 
specify the initial range so that it contains your guess for the solution. 
However, the genetic algorithm can find the solution even if it does not lie in 
the initial range, provided that the populations have enough diversity. 

The following example shows how the initial range affects the performance of 
the genetic algorithm. The example uses Rastrigin’s function, described in 
“Example: Rastrigin’s Function” on page 2-6. The minimum value of the 
function is 0, which occurs at the origin.

To run the example, make the following settings in the Genetic Algorithm Tool:

• Set Fitness function to @Rastriginsfcn.

• Set Number of variables to 2.

• Select Best fitness in the Plots pane.

• Select Distance in the Plots pane.

• Set Initial range to [1; 1.1].

Then click Start. The genetic algorithm returns the best fitness function value 
of approximately 2 and displays the plots in the following figure.
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The upper plot the best fitness values at each generation shows little progress 
in lowering the fitness function. The lower plot shows the average distance 
between individuals at each generation, which is a good measure of the 
diversity of a population. For this setting of initial range, there is too little 
diversity for the algorithm to make progress.

Next, try setting Initial range to [1; 100] and running the algorithm. The 
genetic algorithm returns the best fitness value of approximately 3.9 and 
displays the following plots.
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This time, the genetic algorithm makes progress, but because the average 
distance between individuals is so large, the best individuals are far from the 
optimal solution.

Finally, set Initial range to [1; 2] and run the genetic algorithm. This returns 
the best fitness value of approximately.012 and displays the following plots.
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The diversity in this case is better suited to the problem, so the genetic 
algorithm returns a much better result than in the previous two cases.

Setting the Population Size
The Size field in Population options determines the size of the population at 
each generation. Increasing the population size enables the genetic algorithm 
to search more points and thereby obtain a better result. However, the larger 
the population size, the longer the genetic algorithm takes to compute each 
generation. 

Note  You should set Size to be at least the value of Number of variables, so 
that the individuals in each population span the space being searched.
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You can experiment with different settings for Population size that return 
good results without taking a prohibitive amount of time to run.

Fitness Scaling
Fitness scaling converts the raw fitness scores that are returned by the fitness 
function to values in a range that is suitable for the selection function. The 
selection function uses the scaled fitness values to select the parents of the next 
generation. The selection function assigns a higher probability of selection to 
individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. 
If the scaled values vary too widely, the individuals with the highest scaled 
values reproduce too rapidly, taking over the population gene pool too quickly, 
and preventing the genetic algorithm from searching other areas of the 
solution space. On the other hand, if the scaled values vary only a little, all 
individuals have approximately the same chance of reproduction and the 
search will progress very slowly. 

The default fitness scaling function, Rank, scales the raw scores based on the 
rank of each individual instead of its score. The rank of an individual is its 
position in the sorted scores: the rank of the most fit individual is 1, the next 
most fit is 2, and so on. The rank scaling function assigns scaled values so that 

• The scaled value of an individual with rank n is proportional to . 

• The sum of the scaled values over the entire population equals the number 
of parents needed to create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores. 

The following plot shows the raw scores of a typical population of 20 
individuals, sorted in increasing order.

1 n( )⁄
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The following plot shows the scaled values of the raw scores using rank scaling.

Because the algorithm minimizes the fitness function, lower raw scores have 
higher scaled values. Also, because rank scaling assigns values that depend 
only on an individual’s rank, the scaled values shown would be the same for 
any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling
To see the effect of scaling, you can compare the results of the genetic algorithm 
using rank scaling with one of the other scaling functions, such as Top. By 
default, top scaling assigns the four fittest individuals the same scaled value, 
equal to the number of parents divided by 4, and assigns the rest the value 0. 
Using the default selection function, only the four fittest individuals can be 
selected as parents. 

The following figure compares the scaled values of a population of size 20 with 
number of parents equal to 32 using rank and top scaling.
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Because top scaling restricts parents to the fittest individuals, it creates less 
diverse populations than rank scaling. The following plot compares the 
variances of distances between individuals at each generation using rank and 
top scaling.
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Selection
The selection function chooses parents for the next generation based on their 
scaled values from the fitness scaling function. An individual can be selected 
more than once as a parent, in which case it contributes its genes to more than 
one child. The default selection function, Stochastic uniform, lays out a line 
in which each parent corresponds to a section of the line of length proportional 
to its scaled value. The algorithm moves along the line in steps of equal size. At 
each step, the algorithm allocates a parent from the section it lands on. 

A more deterministic selection function is Remainder, which performs two 
steps:

• In the first step, the function selects parents deterministically according to 
the integer part of the scaled value for each individual. For example, if an 
individual’s scaled value is 2.3, the function selects that individual twice as 
a parent.
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• In the second step, the selection function selects additional parents using the 
fractional parts of the scaled values, as in stochastic uniform selection. The 
function lays out a line in sections, whose lengths are proportional to the 
fractional part of the scaled value of the individuals, and moves along the 
line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur 
using Top scaling, the selection is entirely deterministic.

Reproduction Options
Reproduction options control how the genetic algorithm creates the next 
generation. The options are

• Elite count — The number of individuals with the best fitness values in the 
current generation that are guaranteed to survive to the next generation. 
These individuals are called elite children. The default value of Elite count 
is 2.

When Elite count is at least 1, the best fitness value can only decrease from 
one generation to the next. This is what you want to happen, since the 
genetic algorithm minimizes the fitness function. Setting Elite count to a 
high value causes the fittest individuals to dominate the population, which 
can make the search less effective.

• Crossover fraction — The fraction of individuals in the next generation, 
other than elite children, that are created by crossover.“Setting the 
Crossover Fraction” on page 4-43 describes how the value of Crossover 
fraction affects the performance of the genetic algorithm.

Mutation and Crossover
The genetic algorithm uses the individuals in the current generation to create 
the children that make up the next generation. Besides elite children, which 
correspond to the individuals in the current generation with the best fitness 
values, the algorithm creates 

• Crossover children by selecting vector entries, or genes, from a pair of 
individuals in the current generation and combines them to form a child.

• Mutation children by applying random changes to a single individual in the 
current generation to create a child.
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Both processes are essential to the genetic algorithm. Crossover enables the 
algorithm to extract the best genes from different individuals and recombine 
them into potentially superior children. Mutation adds to the diversity of a 
population and thereby increases the likelihood that the algorithm will 
generate individuals with better fitness values. Without mutation, the 
algorithm could only produce individuals whose genes were a subset of the 
combined genes in the initial population.

See “Creating the Next Generation” on page 2-20 for an example of how the 
genetic algorithm applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as 
follows:

• Elite count, in Reproduction options, specifies the number of elite children.

• Crossover fraction, in Reproduction options, specifies the fraction of the 
population, other than elite children, that are crossover children. 

For example, if the Population size is 20, the Elite count is 2, and the 
Crossover fraction is 0.8, the numbers of each type of children in the next 
generation is as follows:

• There are 2 elite children

• There are 18 individuals other than elite children, so the algorithm rounds 
0.8*18 = 14.4 to 14 to get the number of crossover children.

• The remaining 4 individuals, other than elite children, are mutation 
children.

Setting the Amount of Mutation
The genetic algorithm applies mutations using the function that you specify in 
the Mutation function field. The default mutation function, Gaussian, adds a 
random number, or mutation, chosen from a Gaussian distribution, to each 
entry of the parent vector. Typically, the amount of mutation, which is 
proportional to the standard deviation of the distribution, decreases as at each 
new generation. You can control the average amount of mutation that the 
algorithm applies to a parent in each generation through the Scale and Shrink 
options: 
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• Scale controls the standard deviation of the mutation at the first generation, 
which is Scale multiplied by the range of the initial population, which you 
specify by the Initial range option. 

• Shrink controls the rate at which the average amount of mutation decreases. 
The standard deviation decreases linearly so that its final value equals 
1 - Shrink times its initial value at the first generation. For example, if 
Shrink has the default value of 1, then the amount of mutation decreases to 
0 at the final step.

You can see the effect of mutation by selecting the plot functions Distance and 
Range, and then running the genetic algorithm on a problem such as the one 
described in “Example: Rastrigin’s Function” on page 2-6. The following figure 
shows the plot.

The upper plot displays the average distance between points in each 
generation. As the amount of mutation decreases, so does the average distance 
between individuals, which is approximately 0 at the final generation. The 
lower plot displays a vertical line at each generation, showing the range from 
the smallest to the largest fitness value, as well as mean fitness value. As the 
amount of mutation decreases, so does the range. These plots show that 
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reducing the amount of mutation decreases the diversity of subsequent 
generations.

For comparison, the following figure shows the plots for Distance and Range 
when you set Shrink to 0.5.

With Shrink set to 0.5, the average amount of mutation decreases by a factor 
of 1/2 by the final generation. As a result, the average distance between 
individuals decreases by approximately the same factor.

Setting the Crossover Fraction
The Crossover fraction field, in the Reproduction options, specifies the 
fraction of each population, other than elite children, that are made up of 
crossover children. A crossover fraction of 1 means that all children other than 
elite individuals are crossover children, while a crossover fraction of 0 means 
that all children are mutation children. The following example show that 
neither of these extremes is an effective strategy for optimizing a function.

The example uses the fitness function whose value at a point is the sum of the 
absolute values of the coordinates at the points. That is,
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You can define this function as an anonymous function by setting Fitness 
function to 

@(x) sum(abs(x))

To run the example, 

• Set Fitness function to @(x) sum(abs(x)).

• Set Number of variables to 10.

• Set Initial range to [-1; 1].

• Select the Best fitness and Distance in the Plots pane.

First, run the example with the default value of 0.8 for Crossover fraction. 
This returns the best fitness value of approximately 0.2 and displays the 
following plots.
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Crossover Without Mutation
To see how the genetic algorithm performs when there is no mutation, set 
Crossover fraction to 1.0 and click Start. This returns the best fitness value 
of approximately 1.3 and displays the following plots.

In this case, the algorithm selects genes from the individuals in the initial 
population and recombines them. The algorithm cannot create any new genes 
because there is no mutation. The algorithm generates the best individual that 
it can using these genes at generation number 8, where the best fitness plot 
becomes level. After this, it creates new copies of the best individual, which are 
then are selected for the next generation. By generation number 17, all 
individuals in the population are the same, namely, the best individual. When 
this occurs, the average distance between individuals is 0. Since the algorithm 
cannot improve the best fitness value after generation 8, it stalls after 50 more 
generations, because Stall generations is set to 50.
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Mutation without Crossover
To see how the genetic algorithm performs when there is no crossover, set 
Crossover fraction to 0 and click Start. This returns the best fitness value of 
approximately 3.5 and displays the following plots.

In this case, the random changes that the algorithm applies never improve the 
fitness value of the best individual at the first generation. While it improves 
the individual genes of other individuals, as you can see in the upper plot by 
the decrease in the mean value of the fitness function, these improved genes 
are never combined with the genes of the best individual because there is no 
crossover. As a result, the best fitness plot is level and the algorithm stalls at 
generation number 50.

Comparing Results for Varying Crossover Fractions
The demo deterministicstudy.m, which is included in the toolbox, compares 
the results of applying the genetic algorithm to Rastrigin’s function with 
Crossover fraction set to 0, .2, .4, .6, .8, and 1. The demo runs for 10 
generations. At each generation, the demo plots the means and standard 
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deviations of the best fitness values in all the preceding generations, for each 
value of the Crossover fraction. 

To run the demo, enter

deterministicstudy

at the MATLAB prompt. When the demo is finished, the plots appear as in the 
following figure.

The lower plot shows the means and standard deviations of the best fitness 
values over 10 generations, for each of the values of the crossover fraction. The 
upper plot shows a color-coded display of the best fitness values in each 
generation. 

For this fitness function, setting Crossover fraction to 0.8 yields the best 
result. However, for another fitness function, a different setting for Crossover 
fraction might yield the best result.
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Example — Global Versus Local Minima
Sometimes the goal of an optimization is to find the global minimum or 
maximum of a function — a point where the function value is smaller or larger 
at any other point in the search space. However, optimization algorithms 
sometimes return a local minimum — a point where the function value is 
smaller than at nearby points, but possibly greater than at a distant point in 
the search space. The genetic algorithm can sometimes overcome this 
deficiency with the right settings.

As an example, consider the following function

The following figure shows a plot of the function.
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The function has two local minima, one at x = 0, where the function value is - 1, 
and the other at x = 21, where the function value is - 1 - 1/e. Since the latter 
value is smaller, the global minimum occurs at x = 21. 

Running the Genetic Algorithm on the Example
To run the genetic algorithm on this example,

1 Copy and paste the following code into a new M-file in the MATLAB Editor.

function y = two_min(x)
if x<20
    y = -exp(-(x/20).^2);
else
    y = -exp(-1)+(x-20)*(x-22);
end

2 Save the file as two_min.m in a directory on the MATLAB path.

3 In the Genetic Algorithm Tool,

- Set Fitness function to @two_min.

- Set Number of variables to 1.

- Click Start.

The genetic algorithm returns a point very close to the local minimum at x = 0.

The following custom plot shows why the algorithm finds the local minimum 
rather than the global minimum. The plot shows the range of individuals in 
each generation and the best individual.
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Note that all individuals are between -2 and 2.5. While this range is larger than 
the default Initial range of [0;1], due to mutation, it is not large enough to 
explore points near the global minimum at x = 21. 

One way to make the genetic algorithm explore a wider range of points — that 
is, to increase the diversity of the populations — is to increase the Initial 
range. The Initial range does not have to include the point x = 21, but it must 
be large enough so that the algorithm generates individuals near x = 21. Set 
Initial range to [0;15] as shown in the following figure.
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Then click Start. The genetic algorithm returns a point very close 21.

This time, the custom plot shows a much wider range of individuals. By the 
second generation there are individuals greater than 21, and by generation 12, 
the algorithm finds a best individual that is approximately equal to 21. 
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Using a Hybrid Function
A hybrid function is an optimization function that runs after the genetic 
algorithm terminates in order to improve the value of the fitness function. The 
hybrid function uses the final point from the genetic algorithm as its initial 
point. You can specify a hybrid function in Hybrid function options.

This example uses the function fminunc, an unconstrained minimization 
function in the Optimization Toolbox. The example first runs the genetic 
algorithm to find a point close to the optimal point and then uses that point as 
the initial point for fminunc.

The example finds the minimum of Rosenbrock’s function, which is defined by

The following figure shows a plot of Rosenbrock’s function.
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The toolbox provides an M-file, dejong2fcn.m, that computes the function. To 
a see a demo of this example, enter

hybriddemo

at the MATLAB prompt.

To explore the example, first enter gatool to open the Genetic Algorithm Tool 
and enter the following settings:

• Set Fitness function to @dejong2fcn.

• Set Number of variables to 2.

• Set Population size to 10.

Before adding a hybrid function, trying running the genetic algorithm by itself, 
by clicking Start. The genetic algorithm displays the following results in the 
Status and results pane.

The final point is close to the true minimum at (1, 1). You can improve this 
result by setting Hybrid function to fminunc in Hybrid function options.

When the genetic algorithm terminates, the function fminunc takes the final 
point of the genetic algorithm and as its initial point and returns a more 
accurate result, as shown in the Status and results pane.

Set Hybrid function to fminunc.
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Setting the Maximum Number of Generations
The Generations option in Stopping criteria determines the maximum 
number of generations the genetic algorithm runs for — see “Stopping 
Conditions for the Algorithm” on page 2-23. Increasing Generations often 
improves the final result. 

As an example, change the settings in the Genetic Algorithm Tool as follows:

• Set Fitness function to @rastriginsfcn.

• Set Number of variables to 10.

• Select Best fitness in the Plots pane.

• Set Generations to Inf.

• Set Stall generations to Inf.

• Set Stall time to Inf

Then run the genetic algorithm for approximately 300 generations and click 
Stop. The following figure shows the resulting Best fitness plot after 300 
generations.
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Note that the algorithm stalls at approximately generation number 170 — that 
is, there is no immediate improvement in the fitness function after generation 
170. If you restore Stall generations to its default value of 50, the algorithm 
would terminate at approximately generation number 230. If the genetic 
algorithm stalls repeated with the current setting for Generations, you can try 
increasing both Generations and Stall generations to improve your results. 
However, changing other options might be more effective.

Note  When Mutation function is set to Gaussian, increasing the value of 
Generations might actually worsen the final result. This can occur because 
the Gaussian mutation function decreases the average amount of mutation in 
each generation by a factor that depends on Generations. Consequently, the 
setting for Generations affects the behavior of the algorithm. 
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Vectorizing the Fitness Function
The genetic algorithm usually runs faster if you vectorize the fitness function. 
This means that the genetic algorithm only calls the fitness function once, but 
expects the fitness function to compute the fitness for all individuals in the 
current population at once. To vectorize the fitness function,

• Write the M-file that computes the function so that it accepts a matrix with 
arbitrarily many rows, corresponding to the individuals in the population. 
For example, to vectorize the function

write the M-file using the following code:
z =x(:,1).^2 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).^2 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is 
a vector. The .^ and .* operators perform element-wise operations on the 
vectors. 

• Set the Vectorize option to On.

Note  The fitness function must accept an arbitrary number of rows to use 
the Vectorize option.

The following comparison, run at the command line, shows the improvement in 
speed with Vectorize set to On.

tic;ga(@rastriginsfcn,20);toc

elapsed_time =

    4.3660
options=gaoptimset('Vectorize','on');
tic;ga(@rastriginsfcn,20,options);toc

elapsed_time =

    0.5810

f x1  x2( , ) x1
2 2x1x2 6x1 x2

2 6x2–+ +–=
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Overview of the Pattern Search Tool
The section provides an overview of the Pattern Search Tool, the graphical user 
interface (GUI) for performing a pattern search. This section covers the 
following topics:

• “Opening the Pattern Search Tool” on page 5-2

• “Defining a Problem in the Pattern Search Tool” on page 5-3

• “Running a Pattern Search” on page 5-5

• “Example — A Constrained Problem” on page 5-6

• “Pausing and Stopping the Algorithm” on page 5-8

• “Displaying Plots” on page 5-8

• “Setting Options in the Pattern Search Tool” on page 5-10

• “Importing and Exporting Options and Problems” on page 5-11

• “Generating an M-File” on page 5-13

Opening the Pattern Search Tool
To open the tool, enter

psearchtool

at the MATLAB prompt. This opens the Pattern Search Tool, as shown in the 
following figure.
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Defining a Problem in the Pattern Search Tool
You can define the problem you want to solve in the following fields:

• Objective function — The function you want to minimize. Enter a handle to 
an M-file function that computes the objective function. “Writing M-Files for 

Enter objective function

Enter start point

Start the pattern search 

Results are displayed here

Click to display descriptions of options
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Functions You Want to Optimize” on page 1-3 describes how to write the 
M-file.

• Start point — The starting point for the pattern search algorithm

Note  Do not use the Editor/Debugger to debug the M-file for the objective 
function while running the Pattern Search Tool. Doing so results in Java 
exception messages in the Command Window and makes debugging more 
difficult. Instead, call the objective function directly from the command line or 
pass it to the function patternsearch. To facilitate debugging, you can export 
your problem from the Pattern Search Tool to the MATLAB workspace, as 
described in “Importing and Exporting Options and Problems” on page 5-11.

The following figure shows these fields for the example described in “Example: 
Finding the Minimum of a Function” on page 3-6.

Constrained Problems
You can enter any constraints for the problem in the following fields in the 
Constraints pane:

• Linear inequalities — Enter the following for inequality constraints of the 
form : 

- Enter the matrix A in the A = field.

- Enter the vector b in the b = fields.

• Linear equalities — Enter the following for equality constraints of the form 
:

- Enter the matrix Aeq in the Aeq = field.

- Enter the vector beq in the beq = field.

Ax b≤

Aeq x beq=
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• Bounds — Enter the following information for bounds constraints of the 
form  and :

- Enter the vector lb for the lower bound in the Lower = field.

- Enter the vector ub in the Upper = field.

Leave the fields corresponding to constraints that do not appear in the problem 
empty.

Running a Pattern Search
To run a pattern search, click Start in the Run solver pane. When you do so,

• The Current iteration field displays the number of the current iteration.

• The Status and results pane displays the message “Pattern search 
running.” 

When the pattern search terminates, the Status and results pane displays

• The message “Pattern search terminated.”

• The objective function value at the final point 

• The reason the pattern search terminated

• The coordinates of the final point

The following figure shows this information displayed when you run the 
example in “Example: Finding the Minimum of a Function” on page 3-6.

lb x≤ x ub≤

Objective function value at final point

Coordinates of final point
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Example — A Constrained Problem
This section presents an example of performing a pattern search on a 
constrained minimization problem. The example minimizes the function 

where

subject to the constraints 

where 

F x( ) 1
2
---xTHx fTx+=

H

36 17 19 12 8 15
17 33 18 11 7 14
19 18 43 13 8 16
12 11 13 18 6 11
8 7 8 6 9 8
15 14 16 11 8 29

=

f 20 15 21 18 29 24=

A x⋅ b≤
Aeq x⋅ beq=

A 8– 7 3 4– 9 0=

b 7=

Aeq

7 1 8 3 3 3
5 0 5 1 5 8
2 6 7 1 1 8
1 0 0 0 0 0

=

beq 84 62 65 1=
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Performing a Pattern Search on the Example
To perform a pattern search on the example, first enter 

psearchtool

to open the Pattern Search Tool. Then set Objective function to

@lincontest7

an M-file included in the toolbox that computes the objective function for the 
example. Because the matrices and vectors defining the starting point and 
constraints are large, it is more convenient to set their values as variables in 
the MATLAB workspace first and then enter the variable names in the Pattern 
Search Tool. To do so, enter

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];

Then, enter the following in the Pattern Search Tool:

• Set Initial point to x0.

• Set the following Linear inequalities: 

- Set A = to Aineq.

- Set b = to bineq.

- Set Aeq = to Aeq.

- Set beq = to beq.

The following figure shows these settings in the Pattern Search Tool.
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Then click Start to run the pattern search. When the search is finished, the 
results are displayed in Status and results pane, as shown in the following 
figure.

Pausing and Stopping the Algorithm
While pattern search is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the algorithm 
from the point at which you paused, click Resume.

• Click Stop to stop the algorithm. The Status and results pane displays the 
objective function value of the current point at the moment you clicked Stop.

Displaying Plots
The Plots pane, shown in the following figure, enables you to display various 
plots of the results of a pattern search. 
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Select the check boxes next to the plots you want to display. For example, if you 
select Best function value and Mesh size, and run the example described in 
“Example: Finding the Minimum of a Function” on page 3-6, the tool displays 
the plots shown in the following figure.

The upper plot displays the objective function value at each iteration. The 
lower plot displays the coordinates of the point with the best objective function 
value at the current iteration.

Note  When you display more than one plot, clicking on any plot displays a 
larger version of it in a separate window.

“Plot Options” on page 6-4 describes the types of plots you can create.
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Setting Options in the Pattern Search Tool
You can set options for a pattern search in the Options pane, shown in the 
figure below.

For a detailed description of the available options, see “Pattern Search 
Options” on page 6-21.

Setting Options as Variables in the MATLAB workspace
You can set numerical options either directly, by typing their values in the 
corresponding edit box, or by entering the name of a variable in the MATLAB 
workspace that contains the option values. For options whose values are large 
matrices or vectors, it is often more convenient to define their values as 
variables in the MATLAB workspace.
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Importing and Exporting Options and Problems
You can export options and problem structures from the Pattern Search Tool 
to the MATLAB workspace, and later import them in a subsequent session of 
the tool. This provides an easy way to save your work for future sessions of the 
Pattern Search Tool. The following sections describe how to import and export 
options and problem structures. 

Exporting Options, Problems, and Results
After working on a problem using the Pattern Search Tool, you can export the 
following information to the MATLAB workspace:

• The problem definition, including

- The objective function

- The start point

- Constraints on the problem

• The current options

• The results of the algorithm

To do so, click the Export button or select Export to Workspace from the File 
menu. This opens the dialog box shown in the following figure.

The dialog provides the following options:

• To save the objective function and options in a MATLAB structure, select 
Export problem and options to a MATLAB structure named and enter a 
name for the structure. 

If you have run a pattern search in the current session and you select 
Include information needed to resume this run, the final point from the 
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last search is saved in place of Start point. Use this option if you want to run 
the pattern search at a later time from the final point of the last search.

See “Importing a Problem” on page 5-13.

• To save only the options, select Export options to a MATLAB structure 
named and enter a name for the options structure.

• To save the results of the last run of the algorithm, select Export results to 
a MATLAB structure named and enter a name for the results structure.

Example — Running patternsearch on an Exported Problem
To export the problem described in “Example — A Constrained Problem” on 
page 5-6 and perform a pattern search on it using the function patternsearch 
at the command line, do the following steps:

1 Click Export to Workspace.

2 In the Export to Workspace dialog box, enter a name for the problem 
structure, such as my_psroblem, in the Export problems and options to a 
MATLAB structure named field.

3 Call the function patternsearch with my_psproblem as the input argument.

[x fval] = patternsearch(my_psproblem)

This returns

x =

    1.0010   -2.3027    9.5131   -0.0474   -0.1977    1.3083

fval =

  2.1890e+003

See “Performing a Pattern Search from the Command Line” on page 5-14 for 
form information.

Importing Options
To import an options structure for a pattern search from the MATLAB 
workspace, select Import Options from the File menu. This opens a dialog box 
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that displays a list of the valid pattern search options structures in the 
MATLAB workspace. When you select an options structure and click Import, 
the Pattern Search Tool resets its options to the values in the imported 
structure. 

Note  You cannot import options structures that contain any invalid option 
fields. Structures with invalid fields are not displayed in the Import Pattern 
Search Options dialog box.

You can create an options structure in either of the following ways:

• Calling psoptimset with options as the output

• By saving the current options from the Export to Workspace dialog box in 
the Pattern Search Tool

Importing a Problem
To import a problem that you previously exported from the Pattern Search 
Tool, select Import Problem from the File menu. This opens the dialog box 
that displays a list of the pattern search problem structures in the MATLAB 
workspace. When you select a problem structure and click OK, the Pattern 
Search Tool resets the problem definition and the options to the values in the 
imported structure. In addition, if you selected Include information needed 
to resume this run when you created the problem structure, the tool resets 
Start point to the final point of the last run prior to exporting the structure.

See “Exporting Options, Problems, and Results” on page 5-11.

Generating an M-File
To create an M-file that runs a pattern search using the objective function and 
options you specify in the Pattern Search Tool, select Generate M-File from 
the File menu and save the M-file in a directory on the MATLAB path. Calling 
this M-file at the command line returns the same results as the Pattern Search 
Tool, using the fitness function and options settings that were in place when 
you generated the M-file.
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Performing a Pattern Search from the Command Line
As an alternative to using the Pattern Search Tool, you can call the function 
patternsearch at the command line. This section explains how to do so and 
covers the following topics:

• “Calling patternsearch with the Default Options” on page 5-14

• “Setting Options for patternsearch at the Command Line” on page 5-16

• “Using Options and Problems from the Pattern Search Tool” on page 5-18

Calling patternsearch with the Default Options
This section describes how to perform a pattern search with the default 
options. 

Pattern Search on Unconstrained Problems
For an unconstrained problem, call patternsearch with the syntax

[x fval] = patternsearch(@objectfun, x0)

The output arguments are

• x — The final point

• fval — The value of the objective function at x

The required input arguments are

• @objectfun — A function handle to the objective function objectfun, which 
you can write as an M-file. See “Writing M-Files for Functions You Want to 
Optimize” on page 1-3 to learn how to do this.

• x0 — The initial point for the pattern search algorithm

As an example, you can run the example described in “Example: Finding the 
Minimum of a Function” on page 3-6 from the command line by entering

[x fval] = patternsearch(@ps_example, [2.1 1.7])

This returns

Optimization terminated: 
Current mesh size 9.5367e-007 is less than 'TolMesh'.
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x =

   -4.7124   -0.0000

fval =

   -2.0000

Pattern Search on Constrained Problems
If your problem has constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, A, b Aeq, beq, lb, ub)

where 

• A is a matrix and b is vector that represent inequality constraints of the form 
.

• Aeq is a matrix and beq is a vector that represent equality constraints of the 
form .

• lb and ub are vectors representing bound constraints of the form  and 
, respectively.

You only need to pass in the constraints that are part of the problem. For 
example, if there are no bound constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, A, b Aeq, beq)

Use empty brackets [] for constraint arguments that are not needed for the 
problem. For example, if there are no inequality constraints, use the syntax

[x fval] = patternsearch(@objfun, x0, [], [], Aeq, beq, lb, ub)

Additional Output Arguments
To get more information about the performance of the pattern search, you can 
call patternsearch with the syntax

[x fval exitflag output] = patternsearch(@objfun, x0)

Besides x and fval, this returns the following additional output arguments:

• exitflag — Integer indicating whether the algorithm was successful

Ax b≤

Aeq x beq=
lb x≤

x ub≤
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• output — Structure containing information about the performance of the 
solver

See the reference page for patternsearch for more information about these 
arguments.

Setting Options for patternsearch at the Command 
Line
You can specify any of the options that are available in the Pattern Search Tool 
by passing an options structure as an input argument to patternsearch using 
the syntax

[x fval] = patternsearch(@fitnessfun, nvars, ...
A, b, Aeq, beq, lb, ub, options)

Pass in empty brackets [] for any constraints that do not appear in the 
problem.

You create the options structure using the function psoptimset.

options = psoptimset

This returns the options structure with the default values for its fields.

options = 

            TolMesh: 1.0000e-006
               TolX: 1.0000e-006
             TolFun: 1.0000e-006
            TolBind: 1.0000e-003
            MaxIter: '100*numberofvariables'
        MaxFunEvals: '2000*numberofvariables'
    MeshContraction: 0.5000
      MeshExpansion: 2
    MeshAccelerator: 'off'
         MeshRotate: 'on'
    InitialMeshSize: 1
          ScaleMesh: 'on'
        MaxMeshSize: Inf
         PollMethod: 'positivebasis2n'
       CompletePoll: 'off'
       PollingOrder: 'consecutive'
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       SearchMethod: []
     CompleteSearch: 'off'
            Display: 'final'
         OutputFcns: []
           PlotFcns: []
       PlotInterval: 1
              Cache: 'off'
          CacheSize: 10000
           CacheTol: 2.2204e-016
         Vectorized: 'off'

The function patternsearch uses these default values if you do not pass in 
options as an input argument.

The value of each option is stored in a field of the options structure, such as 
options.MeshExpansion. You can display any of these values by entering 
options followed by the name of the field. For example, to display the mesh 
expansion factor for the pattern search, enter 

options.MeshExpansion

ans =

    2

To create an options structure with a field value that is different from the 
default, use the function psoptimset. For example, to change the mesh 
expansion factor to 3 instead of its default value 2, enter

options = psoptimset('MeshExpansion', 3)

This creates the options structure with all values set to their defaults except 
for MeshExpansion, which is set to 3.

If you now call patternsearch with the argument options, the pattern search 
uses a mesh expansion factor of 3.

If you subsequently decide to change another field in the options structure, 
such as setting PlotFcns to @psplotmeshsize, which plots the mesh size at 
each iteration, call psoptimset with the syntax

options = psoptimset(options, 'PlotFcns', @psplotmeshsize)
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This preserves the current values of all fields of options except for PlotFcns, 
which is changed to @plotmeshsize. Note that if you omit the options input 
argument, psoptimset resets MeshExpansion to its default value, which is 2.0.

You can also set both MeshExpansion and PlotFcns with the single command

options = psoptimset('MeshExpansion',3,'PlotFcns',@plotmeshsize)

Using Options and Problems from the Pattern 
Search Tool
As an alternative to creating the options structure using psoptimset, you can 
set the values of options in the Pattern Search Tool and then export the options 
to a structure in the MATLAB workspace, as described in “Exporting Options, 
Problems, and Results” on page 5-11. If you export the default options in the 
Pattern Search Tool, the resulting options structure has the same settings as 
the default structure returned by the command

options = psoptimset

except for the default value of 'Display', which is 'final' when created by 
psoptimset, but 'none' when created in the Pattern Search Tool.

You can also export an entire problem from the Pattern Search Tool and run it 
from the command line. See “Example — Running patternsearch on an 
Exported Problem” on page 5-12 for an example.
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Pattern Search Examples
This section explains how to set options for a pattern search.

• “Poll Method” on page 5-19

• “Complete Poll” on page 5-21

• “Using a Search Method” on page 5-25

• “Mesh Expansion and Contraction” on page 5-28

• “Mesh Accelerator” on page 5-33

• “Using Cache” on page 5-34

• “Setting Tolerances for the Solver” on page 5-36

Poll Method
At each iteration, a pattern search polls the points in the current mesh — that 
is, it computes the objective function at the mesh points to see if there is one 
whose function value is less than the function value at the current point. “How 
Pattern Search Works” on page 3-13 provides an example of polling. You can 
specify the pattern that defines the mesh by the Poll method option. The 
default pattern, Positive basis 2N, consists of the following 2N directions, 
where N is the number of independent variables for the objective function.

For example, if objective function has three independent variables, the 
Positive basis 2N, consists of the following six vectors.

100…0[ ]
010…0[ ]

     …
000…1[ ]
1–  00…0[ ]

0 1– 0…0[ ]
     …
0 00… 1–[ ]
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Alternatively, you can set Poll method to Positive basis NP1, the pattern 
consisting of the following N + 1 directions.

For example, if objective function has three independent variables, the 
Positive basis Np1, consists of the following four vectors.

A pattern search will sometimes run faster using Positive basis Np1 as the 
Poll method, because the algorithm searches fewer points at each iteration. 
For example, if you run a pattern search on the example described in “Example 
— A Constrained Problem” on page 5-6, the algorithm performs 2080 function 
evaluations with Positive basis 2N, the default Poll method, but only 1413 
function evaluations using Positive basis 2P1. 

1 0 0

0 1 0

0 0 1

1– 0 0

0 1– 0

0 0 1–

100…0[ ]
010…0[ ]

     …
000…1[ ]
1–  1– 1– … 1–[ ]

1 0 0

0 1 0

0 0 1

1– 1– 1–
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However, if the objective function has many local minima, using Positive 
basis 2N as the Poll method might avoid finding a local minimum that is not 
the global minimum, because the search explores more points around the 
current point at each iteration. 

Complete Poll
By default, if the pattern search finds a mesh point that improves the value of 
the objective function, it stops the poll and sets that point as the current point 
for the next iteration. When this occurs, some mesh points might not get polled. 
Some of these unpolled points might have an objective function value that is 
even lower than the first one the pattern search finds. 

For problems in which there are several local minima, it is sometimes 
preferable to make the pattern search poll all the mesh points at each iteration 
and choose the one with the best objective function value. This enables the 
pattern search to explore more points at each iteration and thereby potentially 
avoid a local minimum that is not the global minimum. You can make the 
pattern search poll the entire mesh setting Complete poll to On in Poll options. 

Example — Using a Complete Poll in a Pattern Search
As an example, consider the following function.

f x1 x2,( )
x1

2 x2
2 25–+ for x1

2 x2
2+ 25≤

x1
2 x2 9–( )2 16–+   for  x1

2 x2 9–( )2 16≤+

0 otherwise⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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The following figure shows a plot of the function.

The global minimum of the function occurs at (0, 0), where its value is -25. 
However, the function also has a local minimum at (0, 9), where its value is -16.

To create an M-file that computes the function, copy and paste the following 
code into a new M-file in the MATLAB Editor.

function z = poll_example(x)
if x(1)^2 + x(2)^2 <= 25
    z = x(1)^2 + x(2)^2 - 25;
elseif x(1)^2 + (x(2) - 9)^2 <= 16
    z = x(1)^2 + (x(2) - 9)^2 - 16;
else z = 0;
end

Then save the file as poll_example.m in a directory on the MATLAB path.
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To run a pattern search on the function, enter the following in the Pattern 
Search Tool:

• Set Objective function to @poll_example.

• Set Start point to [0 5].

• Set Level of display to Iterative in Display to command window options.

Click Start to run the pattern search with Complete poll set to Off, its default 
value. The Pattern Search Tool displays the results in the Status and results 
pane, as shown in the following figure.

The pattern search returns the local minimum at (0, 9). At the initial point, 
(0, 5), the objective function value is 0. At the first iteration, the search polls 
the following mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective function 
value is less than at the initial point, it stops polling the current mesh and sets 
the current point at the next iteration to (0, 6). Consequently, the search moves 
toward the local minimum at (0, 9) at the first iteration.You see this by looking 
at the first two lines of the command line display. 

Iter     f-count        MeshSize      f(x)        Method
    0        1              1             0     Start iterations
    1        3              2            -7     Successful Poll

Note that the pattern search performs only two evaluations of the objective 
function at the first iteration, increasing the total function count from 1 to 3.
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Next, set Complete poll to On and click Start. The Status and results pane 
displays the following results.

This time, the pattern search finds the global minimum at (0, 0). The difference 
between this run and the previous one is that with Complete poll set to On, at 
the first iteration the pattern search polls all four mesh points.

f((0, 5) + (1, 0)) = f(1, 5) = 0

f((0, 5) + (0, 1)) = f(0, 6) = -6

f((0, 5) + (-1, 0)) = f(-1, 5) = 0

f((0, 5) + (0, -1)) = f(0, 4) = -9

Because the last mesh point has the lowest objective function value, the 
pattern search selects it as the current point at the next iteration. The first two 
lines of the command-line display show this.

Iter     f-count        MeshSize      f(x)        Method
    0        1              1             0     Start iterations
    1        5              2            -9     Successful Poll

In this case, the objective function is evaluated four times at the first iteration. 
As a result, the pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when Complete 
poll is set to Off with the sequence when Complete poll is On.
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Using a Search Method
In addition to polling the mesh points, the pattern search algorithm can 
perform an optional step at every iteration, called search. At each iteration, the 
search step applies another optimization method to the current point. If this 
search does not improve the current point, the poll step is performed. 

The following example illustrates the use of a search method on the problem 
described in “Example — A Constrained Problem” on page 5-6. To set up the 
example, enter the following commands at the MATLAB prompt to define the 
initial point and constraints.

x0 = [2 1 0 9 1 0];
Aineq = [-8 7 3 -4 9 0 ];
bineq = [7];
Aeq = [7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0];
beq = [84 62 65 1];
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Then enter the settings shown in the following figure in the Pattern Search 
Tool.
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For comparison, click Start to run the example without a search method. This 
displays the plots shown in the following figure.

To see the effect of using a search method, select Positive Basis Np1 in the 
Search method field in Search options. This sets the search method to be a 
pattern search using the pattern for Positive basis Np1. Then click Start to 
run the genetic algorithm. This displays the following plots.

0 50 100 150 200 250 300
2000

2500

3000

3500

4000

Iteration

F
un

ct
io

n 
va

lu
e

Best Function Value: 2189.0301

0 50 100 150 200 250 300
0

5

10

15

20

Iteration

F
un

ct
io

n 
co

un
t p

er
 in

te
rv

al

Total Function Count: 2080



5 Using Direct Search

5-28

Note that using the search method reduces the total function count — the 
number of times the objective function was evaluated — by almost 50 percent, 
and reduces the number of iterations from 270 to 120.

Mesh Expansion and Contraction
The Expansion factor and Contraction factor options, in Mesh options, 
control how much the mesh size is expanded or contracted at each iteration. 
With the default Expansion factor value of 2, the pattern search multiplies 
the mesh size by 2 after each successful poll. With the default Contraction 
factor value of 0.5, the pattern search multiplies the mesh size by 0.5 after 
each unsuccessful poll. 

You can view the expansion and contraction of the mesh size during the pattern 
search by selecting Mesh size in the Plots pane. 
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To also display the values of the mesh size and objective function at the 
command line, set Level of Display to Iterative in the Display to command 
window options. 

When you run the example described in “Example — A Constrained Problem” 
on page 5-6, the Pattern Search Tool displays the following plot.

To see the changes in mesh size more clearly, change the y-axis to logarithmic 
scaling as follows:

Select Mesh size.
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1 Select Axes Properties from the Edit menu in the plot window.

2 In the Properties Editor, select the Y tab.

3 Set Scale to Log.

The following figure shows these settings in the Property Editor.

Click the Y tab.

Select Log.
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When you click OK, the plot appears as shown in the following figure.

The first 37 iterations result in successful polls, so the mesh sizes increase 
steadily during this time. You can see that the first unsuccessful poll occurs at 
iteration 38 by looking at the command-line display for that iteration.

   36       39     6.872e+010          3486     Successful Poll
   37       40     1.374e+011          3486     Successful Poll
   38       43     6.872e+010          3486     Refine Mesh

Note that at iteration 37, which is successful, the mesh size doubles for the next 
iteration. But at iteration 38, which is unsuccessful, the mesh size is multiplied 
0.5.

To see how Expansion factor and Contraction factor affect the pattern 
search, make the following changes:

• Set Expansion factor to 3.0.

• Set Contraction factor to 0.75.

First unsuccessful poll
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Then click Start. The Status and results pane shows that the final point is 
approximately the same as with the default settings of Expansion factor and 
Contraction factor, but that the pattern search takes longer to reach that 
point.

The algorithm halts because it exceeds the maximum number of iterations, 
whose value you can set in the Max iteration field in the Stopping criteria 
options. The default value is 100 times the number of variables for the objective 
function, which is 6 in this example.

Set Expansion factor to 3.0.

Set Contraction factor to 0.75.
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When you change the scaling of the y-axis to logarithmic, the mesh size plot 
appears as shown in the following figure.

Note that the mesh size increases faster with Expansion factor set to 3.0, as 
compared with the default value of 2.0, and decreases more slowly with 
Contraction factor set to 0.75, as compared with the default value of 0.5. 

Mesh Accelerator
The mesh accelerator can make a pattern search converge faster to the optimal 
point by reducing the number of iterations required to reach the mesh 
tolerance. When the mesh size is below a certain value, the pattern search 
contracts the mesh size by a factor smaller than the Contraction factor factor.

Note  We recommend that you only use the mesh accelerator for problems in 
which the objective function is not too steep near the optimal point, or you 
might lose some accuracy. For differentiable problems, this means that the 
absolute value of the derivative is not too large near the solution.
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To use the mesh accelerator, set Accelerator to On in Mesh options. When you 
run the example describe in “Example — A Constrained Problem” on page 5-6, 
the number of iterations required to reach the mesh tolerance is 246, as 
compared with 270 when Accelerator is set to Off. 

You can see the effect of the mesh accelerator by setting Level of display to 
Iterative in the Display to command window. Run the example with 
Accelerator set to On, and then run it again with Accelerator set to Off. The 
mesh sizes are the same until iteration 226, but differ at iteration 227. The 
MATLAB Command Window displays the following lines for iterations 226 and 
227 with Accelerator set to Off.

Iter     f-count        MeshSize      f(x)        Method
226     1501     6.104e-005          2189     Refine Mesh
227     1516     3.052e-005          2189     Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of Contraction 
factor factor.

For comparison, the Command Window displays the following lines for the 
same iteration numbers with Accelerator set to On.

Iter     f-count        MeshSize      f(x)        Method
226     1501     6.104e-005          2189     Refine Mesh
227     1516     1.526e-005          2189     Refine Mesh

In this case the mesh size is multiplied by 0.25.

Using Cache
Typically, at any given iteration of a pattern search, some of the mesh points 
might coincide with mesh points at previous iterations. By default, the pattern 
search recomputes the objective function at these mesh points even though it 
has already computed their values and found that they are not optimal. If 
computing the objective function takes a long time — say, several minutes — 
this can make the pattern search run significantly longer. 

You can eliminate these redundant computations by using a cache, that is, by 
storing a history of the points that the pattern search has already visited. To 
do so, set Cache to On in Cache options. At each poll, the pattern search checks 
to see whether the current mesh point is within a specified tolerance, 
Tolerance, of a point in the cache. If so, the search does not compute the 
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objective function for that point, but uses the cached function value and moves 
on to the next point.

Note  When Cache is set to On, the pattern search might fail to identify a 
point in the current mesh that improves the objective function because it is 
within the specified tolerance of a point in the cache. As a result, the pattern 
search might run for more iterations with Cache set to On than with Cache 
set to Off. It is generally a good idea to keep the value of Tolerance very 
small, especially for highly nonlinear objective functions.

To illustrate this, select Best function value and Function count in the Plots 
pane and run the example described in “Example — A Constrained Problem” 
on page 5-6 with Cache set to Off. After the pattern search finishes, the plots 
appear as shown in the following figure.

Note that the total function count is 2080. 
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Now, set Cache to On and run the example again. This time, the plots appear 
as shown in the following figure.

This time, the total function count is reduced to 1973. 

Setting Tolerances for the Solver
Tolerance refers to how small a parameter, such a mesh size, can become before 
the search is halted or changed in some way. You can specify the value of the 
following tolerances:

• Mesh tolerance — When the current mesh size is less than the value of 
Mesh tolerance, the algorithm halts.

• X tolerance — After a successful poll, if the distance from the previous best 
point to the current best point is less than the value of X tolerance, the 
algorithm halts.

• Function tolerance — After a successful poll, if the distance from the 
previous best point to the current best point is less than the value of X 
tolerance, the algorithm halts.
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• Bind tolerance — Bind tolerance applies to constrained problems and 
specifies how close a point must get to the boundary of the feasible region 
before a linear constraint is considered to be active. When a linear constraint 
is active, the pattern search polls points in directions parallel to the linear 
constraint boundary as well as the mesh points. 

Usually, you should set Bind tolerance to be at least as large as the 
maximum of Mesh tolerance, X tolerance, and Function tolerance.

Example — Setting Bind Tolerance
The following example illustrates of how Bind tolerance affects a pattern 
search. The example finds the minimum of 

subject to the constraints

f x1 x2,( ) x1
2 x2

2+=

11x1– 10x2+ 10≤

10x1 10x2– 10≤
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Note that you can compute the objective function using the function norm. The 
feasible region for the problem lies between the two lines in the following 
figure.

Running a Pattern Search with the Default Bind Tolerance
To run the example, enter psearchtool to open the Pattern Search Tool and 
enter the following information:

• Set Objective function to @(x) norm(x).

• Set Start point to [-1.001 -1.1].

• Select Mesh size in the Plots pane.

• Set Level of display to Iterative in the Display to command window 
options.

Then click Start to run the pattern search.
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The display in the MATLAB Command Window shows that the first four polls 
are unsuccessful, because the mesh points do not lie in the feasible region.

Iter     f-count        MeshSize      f(x)        Method
    0        1              1         1.487     Start iterations
    1        1            0.5         1.487     Refine Mesh
    2        1           0.25         1.487     Refine Mesh
    3        1          0.125         1.487     Refine Mesh
    4        1         0.0625         1.487     Refine Mesh

The pattern search contracts the mesh at each iteration until one of the mesh 
points lies in the feasible region. The following figure shows a close-up of the 
initial point and mesh points at iteration 5.

The top mesh point, which is (-1.001, -1.0375), has a smaller objective function 
value than the initial point, so the poll is successful.

Because the distance from the initial point to lower boundary line is less than 
the default value of Bind tolerance, which is 0.0001, the pattern search does 
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not consider the linear constraint  to be active, so it does not 
search points in a direction parallel to the boundary line.

Increasing the Value of Bind Tolerance
To see the effect of bind tolerance, change Bind tolerance to 0.01 and run the 
pattern search again. 

This time, the display in the MATLAB Command Window shows that the first 
two iterations are successful.

Iter     f-count        MeshSize      f(x)        Method
    0        1              1         1.487     Start iterations
    1        2              2        0.7817     Successful Poll
    2        3              4        0.6395     Successful Poll

Because the distance from the initial point to the boundary is less than Bind 
tolerance, the second linear constraint is active. In this case, the pattern 
search polls points in directions parallel to the boundary line 

, resulting in successful poll. The following figure shows the 
initial point with two addition search points in directions parallel to the 
boundary.
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−1.6 −1.4 −1.2 −1 −0.8 −0.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6
Initial point
Search points in directions parallel to boundary



Pattern Search Examples

5-41

The following figure compares the sequences of points during the first 20 
iterations of the pattern search for both settings of Bind tolerance.

Note that when Bind tolerance is set to .01, the points move toward the 
optimal point more quickly. The pattern search requires only 90 iterations. 
When Bind tolerance is set to .0001, the search requires 124 iterations. 
However, when the feasible region does not contain very acute angles, as it 
does in this example, increasing Bind tolerance can increase the number of 
iterations required, because the pattern search tends to poll more points.
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Parameterizing Functions Called by patternsearch or ga
Sometimes you might want to write functions that are called by patternsearch 
or ga, which have additional parameters besides the independent variable. For 
example, suppose you want to minimize the following function:

for different values of a, b, and c. Because patternsearch and ga accept 
objective or fitness functions that depend only on x, you must provide the 
additional parameters a, b, and c to the function before calling patternsearch 
or ga. The following sections describe two ways to do this:

• “Parameterizing Functions Using Anonymous Functions” on page 5-42

• “Parameterizing a Function Using a Nested Function” on page 5-44

The examples in these sections show how to parameterize the objective 
function, but you can use the same methods to parameterize any user-defined 
functions called by patternsearch or ga, for example a custom search method 
for patternsearch or a custom scaling function for ga.

Parameterizing Functions Using Anonymous 
Functions
To parameterize your function, first write an M-file containing the following 
code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

         (-c + c*x(2)^2)*x(2)^2;

Save the M- file as myfun.m in a directory on the MATLAB path.

Now, suppose you want to minimize the function for the parameter values 
a = 4, b =2.1, and c = 4. To do so, define a function handle to an anonymous 
function by entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4;    % Define parameter values
objfun = @(x) parameterfun(x,a,b,c);
x0 = [0.5 0.5];

f x( ) a bx1
2– x1

4 3⁄+( )x1
2 x1x2 c– cx2

2+( )x2
2+ +=
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If you are using the pattern search tool, 

• Set Objective function to objfun.

• Set Start point to x0.

The following figure shows these settings in the Pattern Search Tool.

Next, click Start to run the optimization. The Status and results pane displays 
the final answer.

If you subsequently decide to change the values of a, b, and c, you must recreate 
the anonymous function. For example,

a = 3.6; b = 2.4; c = 5;    % Define parameter values
objfun = @(x) parameterfun(x,a,b,c);
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Parameterizing a Function Using a Nested Function
As an alternative to parameterizing the objective function as an anonymous 
function, you can write a single M-file that

• Accepts a, b, c, and x0 as inputs.

• Contains the objective function as a nested function.

• Calls patternsearch. 

The following shows the code for the M-file.

function [x fval] =  runps(a,b,c,x0)
[x, fval] = patternsearch(@nestedfun,x0);
% Nested function that computes the objective function
    function y = nestedfun(x)
        y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
         (-c + c*x(2)^2)*x(2)^2;
    end
end

Note that the objective function is computed in the nested function nestedfun, 
which has access to the variables a, b, and c. To run the optimization, enter

[x fval] = runps(a,b,c,x0)

This returns

Optimization terminated: current mesh size 9.5367e-007 is less 
than 'TolMesh'.

x =

   -0.0898    0.7127

fval =

   -1.0316
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Function Reference

Functions — Categorical List (p. 6-2) Lists the functions in the toolbox by category.

Genetic Algorithm Options (p. 6-3) Describes the options for the genetic algorithm.

Pattern Search Options (p. 6-21) Describes the options for pattern search.

Functions — Alphabetical List (p. 6-37) Lists the functions in the toolbox alphabetically.
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Functions — Categorical List
The Genetic Algorithm and Direct Search Toolbox provides two categories of 
functions:

• Genetic algorithm

• Direct search

Genetic Algorithm

Direct Search

Function Description

ga Find the minimum of a function using the genetic 
algorithm

gaoptimget Get values of a genetic algorithm options structure

gaoptimset Create a genetic algorithm options structure

gatool Open the Genetic Algorithm Tool

Function Description

patternsearch Find the minimum of a function using a pattern search

psoptimget Get values of a pattern search options structure

psoptimset Create a pattern search options structure

psearchtool Open the Pattern Search Tool
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Genetic Algorithm Options
This section describes the options for the genetic algorithm. There are two 
ways to specify options, depending on whether you are using the Genetic 
Algorithm Tool or calling the function ga at the command line:

• If you are using the Genetic Algorithm Tool (gatool), you specify the options 
by selecting an option from a drop-down list or by entering the value of the 
option in a text field. See “Setting Options in the Genetic Algorithm Tool” on 
page 4-12.

• If you are calling ga from the command line, you specify the options by 
creating an options structure using the function gaoptimset, as follows:

options = gaoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options for ga at the Command Line” on page 4-22 for 
examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Genetic Algorithm Tool

• By its field name in the options structure

For example:

• Population type refers to the label of the option in the Genetic Algorithm 
Tool.

• PopulationType refers to the corresponding field of the options structure.

The genetic algorithm options are divided into the following categories:

• “Plot Options” on page 6-4

• “Population Options” on page 6-6

• “Fitness Scaling Options” on page 6-8

• “Selection Options” on page 6-9

• “Reproduction Options” on page 6-11

• “Mutation Options” on page 6-11

• “Crossover Options” on page 6-14

• “Migration Options” on page 6-16
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• “Hybrid Function Option” on page 6-17

• “Stopping Criteria Options” on page 6-18

• “Output Function Options” on page 6-18

• “Display to Command Window Options” on page 6-19

• “Vectorize Option” on page 6-20

Plot Options
Plot options enable you to plot data from the genetic algorithm while it is 
running. When you select plot functions and run the genetic algorithm, a plot 
window displays the plots on separate axes. You can stop the algorithm at any 
time by clicking the Stop button on the plot window. 

Plot interval (PlotInterval) specifies the number of generations between 
consecutive calls to the plot function.

You can select any of the following plot functions in the Plots pane:

• Best fitness (@gaplotbestf) plots the best function value versus generation.

• Expectation (@gaplotexpectation) plots the expected number of children 
versus the raw scores at each generation.

• Score diversity (@gaplotscorediversity) plots a histogram of the scores at 
each generation.

• Stopping (@plotstopping) plots stopping criteria levels.

• Best individual (@gaplotbestindiv) plots the vector entries of the 
individual with the best fitness function value in each generation.

• Genealogy (@gaplotgenealogy) plots the genealogy of individuals. Lines 
from one generation to the next are color-coded as follows:

- Red lines indicate mutation children.

- Blue lines indicate crossover children.

- Black lines indicate elite individuals.

• Scores (@gaplotscores) plots the scores of the individuals at each 
generation.

• Distance (@gaplotdistance) plots the average distance between individuals 
at each generation.

• Range (@gaplotrange) plots the minimum, maximum, and mean fitness 
function values in each generation.



Genetic Algorithm Options

6-5

• Selection (@gaplotselection) plots a histogram of the parents.

• Custom function enables you to use plot functions of your own. To specify 
the plot function if you are using the Genetic Algorithm Tool, 

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

See “Structure of the Plot Functions” on page 6-5.

To display a plot when calling ga from the command line, set the PlotFcns field 
of options to be a function handle to the plot function. For example, to display 
the best fitness plot, set options as follows.

options = gaoptimset('PlotFcns', @gaplotbestf);

To display multiple plots, use the syntax

options =gaoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are command-line names of plot 
functions.

Structure of the Plot Functions
The first line of a plot function has the form

function state = plotfun(options, state, flag)

The input arguments to the function are 

• options — Structure containing all the current options settings

• state — Structure containing information about the current generation. 
“The State Structure” on page 6-5 describes the fields of state.

• flag — String that tells what stage the algorithm is currently in

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

The State Structure
The state structure, which is an input argument to plot, mutation, and output 
functions, contains the following fields:

• Population — Population in the current generation

• Score — Scores of the current population
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• Generation — Current generation number

• StartTime — Time when GA started 

• StopFlag — String containing the reason for stopping

• Selection — Indices of individuals selected for elite, crossover and mutation

• Expectation — Expectation for selection of individuals

• Best — Vector containing the best score in each generation

• LastImprovement — Generation at which the last improvement in fitness 
value occurred

• LastImprovementTime — Time at which last improvement occurred

Population Options
Population options enable you to specify the parameters of the population that 
the genetic algorithm uses.

Population type (PopulationType) specifies the data type of the input to the 
fitness function. You can set Population type to be one of the following:

• Double Vector ('doubleVector') — Use this option if the individuals in the 
population have type double. This is the default.

• Bit string ('bitstring') — Use this option if the individuals in the 
population are bit strings.

• Custom ('custom') — Use this option to create a population whose data type 
is neither of the preceding.

If you use a custom population type, you must write your own creation, 
mutation, and crossover functions that accept inputs of that population type, 
and specify these functions in the following fields, respectively:

- Creation function (CreationFcn)

- Mutation function (MutationFcn)

- Crossover function (CrossoverFcn)

Population size (PopulationSize) specifies how many individuals there are in 
each generation. With a large population size, the genetic algorithm searches 
the solution space more thoroughly, thereby reducing the chance that the 
algorithm will return a local minimum that is not a global minimum. However, 
a large population size also causes the algorithm to run more slowly.
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If you set Population size to a vector, the genetic algorithm creates multiple 
subpopulations, the number of which is the length of the vector. The size of 
each subpopulation is the corresponding entry of the vector.

Creation function (CreationFcn) specifies the function that creates the initial 
population for ga. You can choose from the following functions:

• Uniform (@gacreationuniform) creates a random initial population with a 
uniform distribution. This is the default.

• Custom enables you to write your own creation function, which must generate 
data of the type that you specify in Population type. To specify the creation 
function if you are using the Genetic Algorithm Tool, 

- Set Creation function to Custom.

- Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set 
options = gaoptimset('CreationFcn', @myfun);

Your creation function must have the following calling syntax.
function Population = myfun(GenomeLength, FitnessFcn, options)

The input arguments to the function are

- Genomelength — Number of independent variables for the fitness function

- FitnessFcn — Fitness function

- options — Options structure

The function returns Population, the initial population for the genetic 
algorithm.

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

Initial population (InitialPopulation) specifies an initial population for the 
genetic algorithm. The default value is [], in which case ga uses the Creation 
function to create an initial population. If you enter a nonempty array in the 
Initial population field, the array must have Population size rows and 
Number of variables columns. In this case, the genetic algorithm does not call 
the Creation function.

Initial scores (InitialScores) specifies initial scores for the initial 
population.
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Initial range (PopInitRange) specifies the range of the vectors in the initial 
population that is generated by the creation function. You can set Initial range 
to be a matrix with two rows and Number of variables columns, each column 
of which has the form [lb; ub], where lb is the lower bound and ub is the 
upper bound for the entries in that coordinate. If you specify Initial range to 
be a 2-by-1 vector, each entry is expanded to a constant row of length Number 
of variables.

See “Example —Setting the Initial Range” on page 4-31 for an example.

Fitness Scaling Options
Fitness scaling converts the raw fitness scores that are returned by the fitness 
function to values in a range that is suitable for the selection function. You can 
specify options for fitness scaling in the Fitness scaling pane.

Scaling function (FitnessScalingFcn) specifies the function that performs 
the scaling. The options are

• Rank (@fitscalingrank) — The default fitness scaling function, Rank, scales 
the raw scores based on the rank of each individual instead of its score. The 
rank of an individual is its position in the sorted scores. The rank of the most 
fit individual is 1, the next most fit is 2, and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores. 

• Proportional (@fitscalingprop) — Proportional scaling makes the scaled 
value of an individual proportional to its raw fitness score. 

• Top (@fitscalingtop) — Top scaling scales the top individuals equally. 
Selecting Top displays an additional field, Quantity, which specifies the 
number of individuals that are assigned positive scaled values. Quantity can 
be an integer between 1 and the population size or a fraction between 0 and 
1 specifying a fraction of the population size. The default value is 0.4. Each 
of the individuals that produce offspring is assigned an equal scaled value, 
while the rest are assigned the value 0. The scaled values have the form 
[0 1/n 1/n 0 0 1/n 0 0 1/n ...].

To change the default value for Quantity at the command line, use the 
following syntax:
options = gaoptimset('FitnessScalingFcn', {@fitscalingtop, 
quantity})

where quantity is the value of Quantity.
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• Shift linear (@fitscalingshiftlinear) — Shift linear scaling scales the 
raw scores so that the expectation of the fittest individual is equal to a 
constant multiplied by the average score. You specify the constant in the 
Max survival rate field, which is displayed when you select Shift linear. 
The default value is 2.

To change the default value of Max survival rate at the command line, use 
the following syntax:
options = gaoptimset('FitnessScalingFcn', 
{@fitscalingshiftlinear, rate})

where rate is the value of Max survival rate.

• Custom enables you to write your own scaling function. To specify the scaling 
function using the Genetic Algorithm Tool, 

- Set Scaling function to Custom

- Set Function name to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set 
options = gaoptimset('FitnessScalingFcn', @myfun);

Your scaling function must have the following calling syntax.
function expection = myfun(scores, nParents)

The input arguments to the function are

- scores — A vector of scalars, one for each member of the population

- nParents — The number of parents needed from this population

The function returns expectation, a row vector of scalars of the same length 
as scores, giving the scaled values of each member of the population. The 
sum of the entries of expectation must equal nParents.

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

See “Fitness Scaling” on page 4-35 for more information.

Selection Options
Selection options specify how the genetic algorithm chooses parents for the 
next generation. You can specify the function the algorithm uses in the 
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Selection function (SelectionFcn) field in the Selection options pane. The 
options are

• Stochastic uniform (@selectionstochunif) — The default selection 
function, Stochastic uniform, lays out a line in which each parent 
corresponds to a section of the line of length proportional to its scaled value. 
The algorithm moves along the line in steps of equal size. At each step, the 
algorithm allocates a parent from the section it lands on. The first step is a 
uniform random number less than the step size.

• Remainder (@selectionremainder) — Remainder selection assigns parents 
deterministically from the integer part of each individual’s scaled value and 
then uses roulette selection on the remaining fractional part. For example, if 
the scaled value of an individual is 2.3, that individual is listed twice as a 
parent because the integer part is 2. After parents have been assigned 
according to the integer parts of the scaled values, the rest of the parents are 
chosen stochastically. The probability that a parent is chosen in this step is 
proportional to the fractional part of its scaled value.

• Uniform (@selectionuniform) — Uniform selection chooses parents using 
the expectations and number of parents. Uniform selection is useful for 
debugging and testing, but is not a very effective search strategy.

• Roulette (@selectionroulette) — Roulette selection chooses parents by 
simulating a roulette wheel, in which the area of the section of the wheel 
corresponding to an individual is proportional to the individual’s 
expectation. The algorithm uses a random number to select one of the 
sections with a probability equal to its area.

• Tournament (@selectiontournament) — Tournament selection chooses each 
parent by choosing Tournament size players at random and then choosing 
the best individual out of that set to be a parent. Tournament size must be 
at least 2. The default value of Tournament size is 4.

To change the default value of Tournament size at the command line, use 
the syntax
options = gaoptimset('SelectionFcn', {@selecttournament, size})

where size is the value of Tournament size.

• Custom enables you to write your own selection function. To specify the 
selection function using the Genetic Algorithm Tool, 

- Set Selection function to Custom
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- Set Function name to @myfun, where myfun is the name of your function.

If you are using ga at the command line, set 
options = gaoptimset('SelectionFcn', @myfun);

Your selection function must have the following calling syntax:
function parents = myfun(expectation, nParents, options)

The input arguments to the function are

- expectation — Expected number of children for each member of the 
population

- nParents — Number of parents to select

- options — Genetic algorithm options structure

The function returns parents, a row vector of length nParents containing 
the indices of the parents that you select.

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function.

See “Selection” on page 4-39 for more information.

Reproduction Options
Reproduction options specify how the genetic algorithm creates children for the 
next generation.

Elite count (EliteCount) specifies the number of individuals that are 
guaranteed to survive to the next generation. Set Elite count to be a positive 
integer less than or equal to the population size. The default value is 2.

Crossover fraction (CrossoverFraction) specifies the fraction of the next 
generation, other than elite children, that are produced by crossover. Set 
Crossover fraction to be a fraction between 0 and 1, either by entering the 
fraction in the text box or moving the slider. The default value is 0.8.

See “Setting the Crossover Fraction” on page 4-43 for an example.

Mutation Options
Mutation options specify how the genetic algorithm makes small random 
changes in the individuals in the population to create mutation children. 
Mutation provides genetic diversity and enable the genetic algorithm to search 
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a broader space. You can specify the mutation function in the Mutation 
function (MutationFcn) field in the Mutation options pane. You can choose 
from the following functions:

• Gaussian (mutationgaussian) — The default mutation function, Gaussian, 
adds a random number taken from a Gaussian distribution with mean 0 to 
each entry of the parent vector. The variance of this distribution is 
determined by the parameters Scale and Shrink, which are displayed when 
you select Gaussian, and by the Initial range setting in the Population 
options. 

- The Scale parameter determines the variance at the first generation. If 
you set Initial range to be a 2-by-1 vector v, the initial variance is the 
same at all coordinates of the parent vector, and is given by 
Scale*(v(2) - v(1)). 

If you set Initial range to be a vector v with two rows and Number of 
variables columns, the initial variance at coordinate i of the parent vector 
is given by Scale*(v(i,2) - v(i,1)).

- The Shrink parameter controls how the variance shrinks as generations 
go by. If you set Initial range to be a 2-by-1 vector, the variance at the kth 
generation, vark, is the same at all coordinates of the parent vector, and is 
given by the recursive formula

If you set Initial range to be a vector with two rows and Number of 
variables columns, the variance at coordinate i of the parent vector at the 
kth generation, vari,k, is given by the recursive formula

If you set Shrink to 1, the algorithm shrinks the variance in each 
coordinate linearly until it reaches 0 at the last generation is reached. A 
negative value of Shrink causes the variance to grow.

The default values of Scale and Shrink are 0.5 and 0.75, respectively. To 
change these default values at the command line, use the syntax

vark vark 1– 1 Shrink k
Generations
-----------------------------⋅–⎝ ⎠

⎛ ⎞=

vari k, vari k 1–, 1 Shrink k
Generations
-----------------------------⋅–⎝ ⎠

⎛ ⎞=
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options = gaoptimset('MutationFcn', ...
{@mutationgaussian, scale, shrink})

where scale and shrink are the values of Scale and Shrink, respectively.

• Uniform (mutationuniform) — Uniform mutation is a two-step process. 
First, the algorithm selects a fraction of the vector entries of an individual 
for mutation, where each entry has a probability Rate of being mutated. The 
default value of Rate is 0.01. In the second step, the algorithm replaces each 
selected entry by a random number selected uniformly from the range for 
that entry.

To change the default value of Rate at the command line, use the syntax
options = gaoptimset('MutationFcn', {@mutationuniform, rate})

where rate is the value of Rate.

• Custom enables you to write your own mutation function. To specify the 
mutation function using the Genetic Algorithm Tool, 

- Set Mutation function to Custom

- Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set 
options = gaoptimset('MutationFcn', @myfun); 

Your mutation function must have this calling syntax:
function mutationChildren = myfun(parents, options, nvars, 
FitnessFcn, state, thisScore, thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — Options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- state — Structure containing information about the current generation. 
“The State Structure” on page 6-5 describes the fields of state.

- thisScore — Vector of scores of the current population
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- thisPopulation — Matrix of individuals in the current population

The function returns mutationChildren — the mutated offspring — as a 
matrix whose rows correspond to the children. The number of columns of the 
matrix is Number of variables.

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

Crossover Options
Crossover options specify how the genetic algorithm combines two individuals, 
or parents, to form a crossover child for the next generation.

Crossover function (CrossoverFcn) specifies the function that performs the 
crossover. You can choose from the following functions:

• Scattered (@crossoverscattered), the default crossover function, creates a 
random binary vector and selects the genes where the vector is a 1 from the 
first parent, and the genes where the vector is a 0 from the second parent, 
and combines the genes to form the child. For example, if p1 and p2 are the 
parents
p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [1 1 0 0 1 0 0 0], the function returns the following 
child:
child1 = [a b 3 4 e 6 7 8]

• Single point (@crossoversinglepoint) chooses a random integer n 
between 1 and Number of variables and then

- Selects vector entries numbered less than or equal to n from the first 
parent.

- Selects vector entries numbered greater than n from the second parent.

- Concatenates these entries to form a child vector. 

For example, if p1 and p2 are the parents
p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover point is 3, the function returns the following child.
child = [a b c 4 5 6 7 8]
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• Two point (@crossovertwopoint) selects two random integers m and n 
between 1 and Number of variables. The function selects 

- Vector entries numbered less than or equal to m from the first parent

- Vector entries numbered from m+1 to n, inclusive, from the second parent

- Vector entries numbered greater than n from the first parent. 

The algorithm then concatenates these genes to form a single gene. For 
example, if p1 and p2 are the parents
p1 = [a b c d e f g h]
p2 = [1 2 3 4 5 6 7 8]

and the crossover points are 3 and 6, the function returns the following child.
child = [a b c 4 5 6 g h]

• Intermediate (@crossoverintermediate) creates children by taking a 
weighted average of the parents. You can specify the weights by a single 
parameter, Ratio, which can be a scalar or a row vector of length Number of 
variables. The default is a vector of all 1’s. The function creates the child 
from parent1 and parent2 using the following formula.
child = parent1 + rand * Ratio * ( parent2 - parent1)

If all the entries of Ratio lie in the range [0, 1], the children produced are 
within the hypercube defined by placing the parents at opposite vertices. If 
Ratio is not in that range, the children might lie outside the hypercube. If 
Ratio is a scalar, then all the children lie on the line between the parents. 

To change the default value of Ratio at the command line, use the syntax
options = gaoptimset('CrossoverFcn', ... 
{@crossoverintermediate, ratio});

where ratio is the value of Ratio.

• Heuristic (@crossoverheuristic) returns a child that lies on the line 
containing the two parents, a small distance away from the parent with the 
better fitness value in the direction away from the parent with the worse 
fitness value. You can specify how far the child is from the better parent by 
the parameter Ratio, which appears when you select Heuristic. The default 
value of Ratio is 1.2. If parent1 and parent2 are the parents, and parent1 
has the better fitness value, the function returns the child
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child = parent2 + R * (parent1 - parent2);

To change the default value of Ratio at the command line, use the syntax
options=gaoptimset('CrossoverFcn',{@crossoverheuristic,ratio});

where ratio is the value of Ratio.

• Custom enables you to write your own crossover function. To specify the 
crossover function using the Genetic Algorithm Tool, 

- Set Crossover function to Custom.

- Set Function name to @myfun, where myfun is the name of your function.

If you are using ga, set 
options = gaoptimset('CrossoverFcn', @myfun);

Your selection function must have the following calling syntax.
xoverKids = myfun(parents, options, nvars, FitnessFcn, 
unused,thisPopulation)

The arguments to the function are

- parents — Row vector of parents chosen by the selection function

- options — options structure

- nvars — Number of variables

- FitnessFcn — Fitness function

- unused — Place holder that is not used

- thisPopulation — Matrix representing the current population. The 
number of rows of the matrix is Population size and the number of 
columns is Number of variables.

The function returns xoverKids — the crossover offspring — as a matrix 
whose rows correspond to the children. The number of columns of the matrix 
is Number of variables.

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

Migration Options
Migration options specify how individuals move between subpopulations. 
Migration occurs if you set Population size to be a vector of length greater 
than 1. When migration occurs, the best individuals from one subpopulation 
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replace the worst individuals in another subpopulation. Individuals that 
migrate from one subpopulation to another are copied. They are not removed 
from the source subpopulation.

You can control how migration occurs by the following three fields in the 
Migration options pane: 

• Direction (MigrationDirection) — Migration can take place in one or both 
directions.

- If you set Direction to Forward ('forward'), migration takes place toward 
the last subpopulation. That is the nth subpopulation migrates into the 
(n+1)th subpopulation. 

- If you set Direction to Both ('both'), the nth subpopulation migrates into 
both the (n-1)th and the (n+1)th subpopulation. 

Migration wraps at the ends of the subpopulations. That is, the last 
subpopulation migrates into the first, and the first may migrate into the last. 
To prevent wrapping, specify a subpopulation of size 0 by adding an entry of 
0 at the end of the population size vector that you enter in Population size.

• Interval (MigrationInterval) — Specifies how many generation pass 
between migrations. For example, if you set Interval to 20, migration takes 
place every 20 generations.

• Fraction (MigrationFraction) — Specifies how many individuals move 
between subpopulations. Fraction specifies the fraction of the smaller of the 
two subpopulations that moves. For example, if individuals migrate from a 
subpopulation of 50 individuals into a subpopulation of 100 individuals and 
you set Fraction to 0.1, the number of individuals that migrate is 
0.1 * 50 = 5. 

Hybrid Function Option
A hybrid function is another minimization function that runs after the genetic 
algorithm terminates. You can specify a hybrid function in Hybrid function 
(HybridFcn) options. The choices are

• [] — No hybrid function

• fminsearch (@fminsearch) — Uses the MATLAB function fminsearch

• patternsearch (@patternsearch) — Uses a pattern search

• fminunc (@fminunc) — Uses the Optimization Toolbox function fminunc
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See “Using a Hybrid Function” on page 4-52 for an example.

Stopping Criteria Options
Stopping criteria determine what causes the algorithm to terminate. You can 
specify the following options:

• Generations (Generations) — Specifies the maximum number of iterations 
the genetic algorithm will perform. The default is 100.

• Time limit (TimeLimit) — Specifies the maximum time in seconds the 
genetic algorithm runs before stopping.

• Fitness limit (FitnessLimit) — The algorithm stops if the best fitness value 
is less than or equal to the value of Fitness limit.

• Stall generations (StallGenLimit) — The algorithm stops if there is no 
improvement in the best fitness value for the number of generations 
specified by Stall generations.

• Stall time (StallTimeLimit) — The algorithm stops if there is no 
improvement in the best fitness value for an interval of time in seconds 
specified by Stall time.

See “Setting the Maximum Number of Generations” on page 4-54 for an 
example.

Output Function Options
Output functions return output from the genetic algorithm to the command 
line at each generation.

History to new window (@gaoutputgen) displays the history of points 
computed by the algorithm in a new window at each multiple of Interval 
iterations. 

Custom enables you to write your own output function. To specify the output 
function using the Genetic Algorithm Tool, 

• Select Custom function.

• Enter @myfun in the text box, where myfun is the name of your function.

If you are using ga, set 

options = gaoptimset('OutputFcn', @myfun);
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To see a template that you can use to write your own output functions, enter 

edit gaoutputfcntemplate

at the MATLAB command line.

The following section describe the structure of the output function.

Structure of the Output Function
The output function has the following calling syntax.

[state, options,optchanged] = myfun(options,state,flag,interval)

The function has the following input arguments:

• options — Options structure

• state — Structure containing information about the current generation. 
“The State Structure” on page 6-5 describes the fields of state.

• flag — String indicating the current status of the algorithm as follows:

- 'init' — Initial stage

- 'iter' — Algorithm running

- 'done' — Algorithm terminated

• interval — Optional interval argument

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

The output function returns the following arguments to ga:

• state — Structure containing information about the current generation

• options — Options structure modified by the output function. This 
argument is optional.

• optchanged — Flag indicating changes to options

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed at 
the command line while the genetic algorithm is running. The available options 
are

• Off ('off') — Only the final answer is displayed.
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• Iterative ('iter') — Information is displayed at each iteration.

• Diagnose ('diagnose') — Information is displayed at each iteration. In 
addition, options that are changed from the defaults are listed.

• Final ('final') — The outcome of the genetic algorithm (successful or 
unsuccessful), the reason for stopping, and the final point.

Both Iterative and Diagnose display the following information:

• Generation — Generation number

• f-count — Cumulative number of fitness function evaluations

• Best f(x) — Best fitness function value

• Mean f(x) — Mean fitness function value

• Stall Generations — Number of generations since the last improvement 
of the fitness function

The default value of Level of display is

• Off in the Genetic Algorithm Tool

• 'final' in an options structure created using gaoptimset

Vectorize Option
The vectorize option specifies whether the computation of the fitness function 
is vectorized. When you set Fitness function is vectorized (Vectorized) to 
Off, the genetic algorithm computes the fitness function values of the new 
generation in a loop. When you set Fitness function is vectorized to On, the 
algorithm computes the fitness function values of a new generation with one 
call to the fitness function, which is faster than computing the values in a loop. 
However, to use this option, your fitness function must be able to accept input 
matrices with an arbitrary number of rows.

See “Vectorizing the Fitness Function” on page 4-56 for an example.
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Pattern Search Options
This section describes the options for pattern search. There are two ways to 
specify the options, depending on whether you are using the Pattern Search 
Tool or calling the function patternsearch at the command line:

• If you are using the Pattern Search Tool (psearchtool), you specify the 
options by selecting an option from a drop-down list or by entering the value 
of the option in the text field, as described in “Setting Options in the Pattern 
Search Tool” on page 5-10.

• If you are calling patternsearch from the command line, you specify the 
options by creating an options structure using the function psoptimset, as 
follows:

options = psoptimset('Param1', value1, 'Param2', value2, ...);

See “Setting Options for patternsearch at the Command Line” on page 5-16 
for examples.

In this section, each option is listed in two ways:

• By its label, as it appears in the Pattern Search Tool

• By its field name in the options structure

For example:

• Poll method refers to the label of the option in the Pattern Search Tool.

• PollMethod refers to the corresponding field of the options structure.

The options are divided into the following categories:

• “Plot Options” on page 6-22

• “Poll Options” on page 6-24

• “Search Options” on page 6-26

• “Mesh Options” on page 6-30

• “Cache Options” on page 6-31

• “Stopping Criteria” on page 6-31

• “Output Function Options” on page 6-32
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• “Display to Command Window Options” on page 6-34

• “Vectorize Option” on page 6-34

Plot Options
Plot options enable you to plot data from the pattern search while it is running. 
When you select plot functions and run the pattern search, a plot window 
displays the plots on separate axes. You can stop the algorithm at any time by 
clicking the Stop button on the plot window.

Plot interval (PlotInterval) specifies the number of iterations between 
consecutive calls to the plot function.

You can select any of the following plots in the Plots pane.

• Best function value (@psplotbestf) plots the best objective function value.

• Function count (@psplotfuncount) plots the number of function 
evaluations.

• Mesh size (@psplotmeshsize) plots the mesh size.

• Best point (@psplotbestx) plots the current best point.

• Custom enables you to use your own plot function. To specify the plot 
function using the Pattern Search Tool, 

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

“Structure of the Plot Functions” on page 6-23 describes the structure of a 
plot function. 

To display a plot when calling patternsearch from the command line, set the 
PlotFcns field of options to be a function handle to the plot function. For 
example, to display the best function value, set options as follows.

options = psoptimset('PlotFcns', @psplotbestf);

To display multiple plots, use the syntax

options = psoptimset('PlotFcns', {@plotfun1, @plotfun2, ...});

where @plotfun1, @plotfun2, and so on are command-line names of plot 
functions (listed in parentheses in the preceding list).
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Structure of the Plot Functions
The first line of a plot function has the form

function stop = plotfun(optimvalues, flag)

The input arguments to the function are 

• optimvalues — Structure containing information about the current state of 
the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration

• flag — Current state in which the plot function is called. The possible values 
for flag are

- init — initialization state

- iter — iteration state

- done — final state

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the function. 

The output argument stop provides a way to stop the algorithm at the current 
iteration. stop can have the following values:

• false — The algorithm continues to the next iteration. 

• true — The algorithm terminates at the current iteration.
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Poll Options
Poll options control how the pattern search polls the mesh points at each 
iteration.

Poll method (PollMethod) specifies the pattern the algorithm uses to create 
the mesh. There are two patterns:

• The default pattern, Positive basis 2N, consists of the following 2N vectors, 
where N is the number of independent variables for the objective function.

For example, if objective function has three independent variables, the 
pattern consists of the following six vectors.

100…0[ ]
010…0[ ]

     …
000…1[ ]
1–  00…0[ ]

0 1– 0…0[ ]
     …
0 00… 1–[ ]

1 0 0

0 1 0

0 0 1

1– 0 0

0 1– 0

0 0 1–
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• The Positive basis NP1 pattern consisting of the following N + 1 vectors.

For example, if objective function has three independent variables, the 
pattern consists of the following four vectors.

Complete poll (CompletePoll) specifies whether all the points in the current 
mesh must be polled at each iteration. Complete Poll can have the values On 
or Off. 

• If you set Complete poll to On, the algorithm polls all the points in the mesh 
at each iteration and chooses the point with the smallest objective function 
value as the current point at the next iteration.

• If you set Complete poll to Off, the default value, the algorithm stops the 
poll as soon as it finds a point whose objective function value is less than that 
of the current point. The algorithm then sets that point as the current point 
at the next iteration.

Polling order (PollingOrder) specifies the order in which the algorithm 
searches the points in the current mesh. The options are

• Random — The polling order is random.

• Success — The first search direction at each iteration is the direction in 
which the algorithm found the best point at the previous iteration. After the 
first point, the algorithm polls the mesh points in the same order as 
Consecutive.

100…0[ ]
010…0[ ]

     …
000…1[ ]
1–  1– 1– … 1–[ ]

1 0 0

0 1 0

0 0 1

1– 1– 1–
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• Consecutive — The algorithm polls the mesh points in consecutive order, 
that is, the order of the pattern vectors as described in Poll method.

See “Poll Options” on page 6-24 for more information.

Search Options
Search options specify an optional search that the algorithm can perform at 
each iteration prior to the polling. If the search returns a point that improves 
the objective function, the algorithm uses that point at the next iteration and 
omits the polling. 

Complete search (CompleteSearch) only applies when you set Search 
method to Positive basis Np1, Positive basis 2N, or Latin hypercube. 
Complete search can have the values On or Off.

For Positive basis Np1 or Positive basis 2N, Complete search has the 
same meaning as the poll option Complete poll. 

Search method (SearchMethod) specifies the method of the search. The 
options are

• None ([]) specifies no search (the default).

• Positive basis Np1 ('PositiveBasisNp1') specifies a pattern search using 
the Positive Basis Np1 option for Poll method.

• Positive basis 2N ('PositiveBasis2N') specifies a pattern search using 
the Positive Basis 2N option for Poll method.

• Genetic Algorithm (@searchga) specifies a search using the genetic 
algorithm. If you select Genetic Algorithm, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations of 
the pattern search for which the genetic algorithm search is performed.

- Options — Options structure for the genetic algorithm, which you can set 
using gaoptimset

To change the default values of Iteration limit and Options at the command 
line, use the syntax
options=psoptimset('SearchMethod', {@searchga,iterlim,optionsGA}

where iterlim is the value of Iteration limit and optionsGA is the genetic 
algorithm options structure.
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• Latin hypercube (@searchlhs) specifies a Latin hypercube search. The way 
the search is performed depends on the setting for Complete search:

- If you set Complete search to On, the algorithm polls all the points that 
are randomly generated at each iteration by the latin hypercube search 
and chooses the one with the smallest objective function value.

- If you set Complete search to Off, the algorithm stops the poll as soon as 
it finds one of the randomly generated points whose objective function 
value is less than that of the current point, and chooses that point for the 
next iteration.

If you select Latin hypercube, two other options appear:

- Iteration limit — Positive integer specifying the number of iterations of 
the pattern search for which the Latin hypercube search is performed.

- Design level — A positive integer specifying the design level. The number 
of points searched equals the Design level multiplied by the number of 
independent variables for the objective function.

To change the default values of Iteration limit and Design level at the 
command line, use the syntax
options=psoptimset('SearchMethod', {@searchlhs,iterlim,level}

where iterlim is the value of Iteration limit and level is the value of 
Design level.

• Nelder-Mead (@searchneldermead) specifies a search using fminsearch, 
which uses the Nelder-Mead algorithm. If you select Nelder-Mead, two other 
options appear:

- Iteration limit — Positive integer specifying the number of iterations of 
the pattern search for which the Nelder-Mead search is performed

- Options — Options structure for the function fminsearch, which you can 
create using the function optimset.

To change the default values of Iteration limit and Options at the command 
line, use the syntax
options=psoptimset('SearchMethod', {@searchga,iterlim,optionsNM}

where iterlim is the value of Iteration limit and optionsNM is the options 
structure.
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• Custom enables you to write your own search function. To specify the search 
function using the Pattern Search Tool, 

- Set Search function to Custom

- Set Function name to @myfun, where myfun is the name of your function.

If you are using patternsearch, set 
options = psoptimset('SearchMethod', @myfun);

To see a template that you can use to write your own search function, enter
edit searchfcntemplate

The following section describes the structure of the search function.

Structure of the Search Function
Your search function must have the following calling syntax.

function [successSearch,nextIterate,FunEval] = 
searchfcntemplate(fun,x0,iterate,tol,A,L,U, ...
    funeval,maxfun,searchoptions,objfcnarg)

The search function has the following input arguments:

• fun — Objective function

• xin — Initial point

• iterate — Current point in the iteration. Iterate is a structure that contains 
the current point and the function value.

• tol — Tolerance that determines whether the constraints are active or not

• A, L, U — Defines the feasible region in case of linear or bound constraints as 
L <= A*x <= U.

• funeval — Counter for number of function evaluations. Funeval is always 
less than maxfun, which is maximum number of function evaluations. 

• maxfun — Maximum limit on number of function evaluations.

• searchoptions — Structure that enables you to set search options. The 
structure contains the following fields:

- completesearch — If 'off', the search can be terminated as soon as a 
better point is found; that is, no sufficient decrease condition is imposed. 
The default is 'on'. See psoptimset for a description of completesearch.
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- meshsize — Current mesh size used in search step

- iteration — Current iteration number

- scale — Scale factor used to scale the design points

- indineqcstr — Indices of inequality constraints

- indeqcstr — Indices of equality constraints

- problemtype — Flag passed to the search routines, indicating whether the 
problem is 'unconstrained', 'boundconstraints', or 
'linearconstraints'.

- notvectorized — A flag indicating fun is not evaluated as vectorized

- cache — A flag for using cache. If 'off', no cache is used.

- cachetol — Tolerance used in cache to determine whether two points are 
the same or not

- cachelimit — Limit to the cache size

• objfunarg — Cell array of additional arguments for objective function. 

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the search function. 

The function has the following output arguments:

• successsearch — A Boolean identifier indicating whether the search is 
successful or not

• nextiterate — Successful iterate after polling is done. If poll is not 
successful, nextiterate is same as iterate.

Note  If you set Search method to Genetic algorithm or Nelder-Mead, we 
recommend that you leave Iteration limit set to the default value 1, as 
performing these searches more than once is not likely to improve results.

See “Using a Search Method” on page 5-25 for an example.
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Mesh Options
Mesh options control the mesh that the pattern search uses. The following 
options are available.

Initial size (InitialMeshSize) specifies the size of the initial mesh, which is 
the length of the shortest vector from the initial point to a mesh point. Initial 
size should be a positive scalar. The default is 1.0.

Max size (MaxMeshSize) specifies a maximum size for the mesh. When the 
maximum size is reached, the mesh size does not increase after a successful 
iteration. Max size must be a positive scalar. The default value is Inf.

Accelerator (MeshAccelerator) specifies whether the Contraction factor is 
multiplied by 0.5 after each unsuccessful iteration. Accelerator can have the 
values On or Off, the default.

Rotate (MeshRotate) specifies whether the mesh vectors are multiplied by -1 
when the mesh size is less than a small value. Rotate is only applied when Poll 
method is set to Positive basis Np1 and Rotate is set to On, the default. 

Note  Changing the setting of Rotate has no effect on the poll when Poll 
method is set to Positive basis 2N.

Scale (ScaleMesh) specifies whether the algorithm scales the mesh points by 
multiplying the pattern vectors by constants. Scale can have the values Off or 
On (the default).

Expansion factor (MeshExpansion) specifies the factor by which the mesh 
size is increased after a successful poll. The default value is 2.0, which means 
that the size of the mesh is multiplied by 2.0 after a successful poll. Expansion 
factor must be a positive scalar.

Contraction factor(MeshContraction) specifies the factor by which the mesh 
size is decreased after an unsuccessful poll. The default value is 0.5, which 
means that the size of the mesh is multiplied by 0.5 after an unsuccessful poll. 
Contraction factor must be a positive scalar.

See “Mesh Expansion and Contraction” on page 5-28 for more information.
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Cache Options
The pattern search algorithm can keep a record of the points it has already 
polled, so that it does not have to poll the same point more than once. If the 
objective function requires a relatively long time to compute, the cache option 
can speed up the algorithm. The memory allocated for recording the points is 
called the cache. This option should only be used for deterministic objective 
functions, but not for stochastic ones.

Cache (Cache) specifies whether a cache is used. The options are On and Off, 
the default. When you set Cache to On, the algorithm does not evaluate the 
objective function at any mesh points that are within Tolerance of a point in 
the cache.

Tolerance (CacheTol) specifies how close a mesh point must be to a point in 
the cache for the algorithm to omit polling it. Tolerance must be a positive 
scalar. The default value is eps.

Size (CacheSize) specifies the size of the cache. Size must be a positive scalar. 
The default value is 1e4.

See “Using Cache” on page 5-34 for more information.

Stopping Criteria
Stopping criteria determine what causes the pattern search algorithm to stop. 
Pattern search uses the following criteria:

Mesh tolerance (TolMesh) specifies the minimum tolerance for mesh size. The 
algorithm stops if the mesh size becomes smaller than Mesh tolerance. The 
default value is 1e-6.

Max iteration (MaxIter) specifies the maximum number of iterations the 
algorithm performs. The algorithm stops if the number of iterations reaches 
Max iteration. You can select either

• 100*numberofvariables — Maximum number of iterations is 100 times the 
number of independent variables (the default).

• Specify — A positive integer for the maximum number of iterations

Max function evaluations (MaxFunEval) specifies the maximum number of 
evaluations of the fitness function. The algorithm stops if the number of 
function evaluations reaches Max function evaluations. You can select either
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• 2000*numberofvariables — Maximum number of function evaluations is 
2000 times the number of independent variables.

• Specify — A positive integer for the maximum number of function 
evaluations

Bind tolerance (TolBind) specifies the minimum tolerance for the distance 
from the current point to the boundary of the feasible region. Bind tolerance 
specifies when a linear constraint is active. It is not a stopping criterion. The 
default value is 1e-3.

X tolerance (TolX) specifies the minimum distance between the current points 
at two consecutive iterations. The algorithm stops if the distance between two 
consecutive points is less than X tolerance. The default value is 1e-6.

Function tolerance (TolFun) specifies the minimum tolerance for the objective 
function. The algorithm stops when the value of the objective function at the 
current point is less than Function tolerance. The default value is 1e-6.

See “Setting Tolerances for the Solver” on page 5-36 for an example.

Output Function Options
Output functions are functions that the pattern search algorithm calls at each 
iteration. The following options are available:

• History to new window (@psoutputhistory) displays the history of points 
computed by the algorithm in the MATLAB Command Window at each 
multiple of Interval iterations.

• Custom enables you to write your own output function. To specify the output 
function using the Pattern Search Tool, 

- Select Custom function.

- Enter @myfun in the text box, where myfun is the name of your function.

If you are using patternsearch, set 
options = psoptimset('OutputFcn', @myfun);

To see a template that you can use to write your own output function, enter
edit psoutputfcntemplate
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The following section describes the structure of the output function.

Structure of the Output Function
Your output function must have the following calling syntax:

[stop, options,optchanged] = 
psoutputhistory(optimvalues,options,flag,interval)

The function has the following input arguments:

• optimvalues — Structure containing information about the current state of 
the solver. The structure contains the following fields:

- x — Current point

- iteration — Iteration number

- fval — Objective function value

- meshsize — Current mesh size

- funccount — Number of function evaluations

- method — Method used in last iteration

- TolFun — Tolerance on function value in last iteration

- TolX — Tolerance on x value in last iteration

• options — Options structure

• flag — Current state in which the output function is called. The possible 
values for flag are

- init — initialization state

- iter — iteration state

- done — final state

• interval — Optional interval argument

“Parameterizing Functions Called by patternsearch or ga” on page 5-42 
explains how to provide additional parameters to the output function. 

The output function returns the following arguments to ga:

• stop — Provides a way to stop the algorithm at the current iteration. stop 
can have the following values:

- false — The algorithm continues to the next iteration. 

- true — The algorithm terminates at the current iteration.



6 Function Reference

6-34

• options — Options structure 

• optchanged — Flag indicating changes to options

Display to Command Window Options
Level of display ('Display') specifies how much information is displayed at 
the command line while the pattern search is running. The available options 
are

• Off ('off') — Only the final answer is displayed.

• Iterative ('iter') — Information is displayed for each iteration.

• Diagnose ('diagnose') — Information is displayed for each iteration. In 
addition, the options that have been changed from the defaults are listed.

• Final ('final') — The outcome of the pattern search (successful or 
unsuccessful), the reason for stopping, and the final point.

Both Iterative and Diagnose display the following information:

• Iter — Iteration number

• FunEval — Cumulative number of function evaluations

• MeshSize — Current mesh size

• FunVal — Objective function value of the current point

• Method — Outcome of the current poll

The default value of Level of display is

• Off in the Pattern Search Tool

• 'final' in an options structure created using psoptimset

Vectorize Option
The vectorize option specifies whether the computation of the objective 
function is vectorized. When you set Objective function is vectorized 
('Vectorize') to Off ('off'), the algorithm computes the objective function 
values of the mesh points in a loop, calling the objective function with exactly 
one point each time through the loop. On the other hand, when you set 
Objective function is vectorized to On ('on'), the pattern search algorithm 
computes the objective function values of all mesh points with a single call to 
the objective function, which is faster than computing them in a loop. However, 
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to use this option, your objective function must be able to accept input matrices 
with an arbitrary number of rows. 
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Functions — Alphabetical List 6

This section contains function reference pages listed alphabetically.
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6gaPurpose Find the minimum of a function using the genetic algorithm

Syntax x = ga(fitnessfun, nvars)
x = ga(fitnessfun, nvars, options)
x = ga(problem)
[x, fval] = ga(...)
[x, fval, reason] = ga(...)
[x, fval, reason, output] = ga(...)
[x, fval, reason, output, population] = ga(...)
[x, fval, reason, output, population, scores] = ga(...)

Description ga implements the genetic algorithm at the command line to minimize an 
objective function.

x = ga(fitnessfun, nvars) applies the genetic algorithm to an optimization 
problem, where fitnessfun is the objective function to minimize and nvars is 
the length of the solution vector x, the best individual found. 

x = ga(fitnessfun, nvars, options) applies the genetic algorithm to an 
optimization problem, using the parameters in the options structure.

x = ga(problem) finds the minimum for problem, a structure that has three 
fields:

• fitnessfcn — Fitness function

• nvars — Number of independent variables for the fitness function

• options — Options structure created with gaoptimset

[x, fval] = ga(...) returns fval, the value of the fitness function at x.

[x, fval, reason] = ga(...) returns reason, a string containing the reason 
the algorithm stops. 

[x, fval, reason, output] = ga(...) returns output, a structure that 
contains output from each generation and other information about the 
performance of the algorithm. The output structure contains the following 
fields:

• randstate — The state of rand, the MATLAB random number generator,  
just before the algorithm started. 
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• randnstate — The state of randn the MATLAB normal random number 
generator, just before the algorithm started. You can use the values of 
randstate and randnstate to reproduce the output of ga. See “Reproducing 
Your Results” on page 4-25.

• generations — The number of generations computed

• funccount — The number of evaluations of the fitness function

• message — The reason the algorithm terminated. This message is the same 
as the output argument reason.

[x, fval, reason, output, population] = ga(...) returns matrix 
population, whose rows are the final population.

[x, fval, reason, output, population, scores] = ga(...) returns 
scores, the scores of the final population.

Note  For problems that use the population type Double Vector (the default), 
ga does not accepts functions whose inputs are of type complex. To solve 
problems involving complex data, write your functions so that they accept real 
vectors, by separating the real and imaginary parts.

Example [x fval, reason] = ga(@rastriginsFcn, 10)
x =

  Columns 1 through 7 

    0.9977    0.9598    0.0085    0.0097   -0.0274   -0.0173    0.9650

  Columns 8 through 10 

   -0.0021   -0.0210    0.0065

fval =

    3.7456
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reason =

generations

Reference [1] Goldberg, David E., Genetic Algorithms in Search, Optimzation & Machine 
Learning, Addison-Wesley, 1989.

See Also gaoptimset, gatool
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6gaoptimgetPurpose Get values of a genetic algorithm options structure

Syntax val = gaoptimget(options, 'name')

Description val = gaoptimget(options, 'name') returns the value of the parameter name 
from the genetic algorithm options structure options.  
gaoptimget(options, 'name') returns an empty matrix [] if the value of 
name is not specified in options. It is only necessary to type enough leading 
characters of name to uniquely identify it. gaoptimget ignores case in 
parameter names. 

See Also ga, gaoptimset, gatool



gaoptimset

6-41

6gaoptimsetPurpose Create a genetic algorithm options structure

Syntax options = gaoptimset
gaoptimset
options = gaoptimset('param1',value1,'param2',value2,...)
options = gaoptimset(oldopts,'param1',value1,...)
options = gaoptimset(oldopts,newopts)

Description options = gaoptimset (with no input arguments) creates a structure called 
options that contains the options, or parameters, for the genetic algorithm and 
sets parameters to their default values.

gaoptimset with no input or output arguments displays a complete list of 
parameters with their valid values.

options = gaoptimset('param1',value1,'param2',value2,...) creates a 
structure options and sets the value of 'param1' to value1, 'param2' to 
value2, and so on. Any unspecified parameters are set to their default values. 
It is sufficient to type only enough leading characters to define the parameter 
name uniquely. Case is ignored for parameter names.

options = gaoptimset(oldopts,'param1',value1,...) creates a copy of 
oldopts, modifying the specified parameters with the specified values.

options = gaoptimset(oldopts,newopts) combines an existing options 
structure, oldopts, with a new options structure, newopts. Any parameters in 
newopts with nonempty values overwrite the corresponding old parameters in 
oldopts.

Options The following table lists the options you can set with gaoptimset.  See “Genetic 
Algorithm Options” on page 6-3 for a complete description of these options and 
their values. Values in {} denote the default value. You can also view the 
optimization parameters and defaults by typing gaoptimset at the command 
line.
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Option Description Values

CreationFcn Handle to the function 
that creates the initial 
population

{@gacreationuniform}

CrossoverFraction The fraction of the 
population at the next 
generation, not 
including elite 
children, that is 
created by the 
crossover function

Positive scalar | {0.8}

CrossoverFcn Handle to the function 
that the algorithm 
uses to create 
crossover children

@crossoverheuristic
{@crossoverscattered}
@crossoverintermediate
@crossoversinglepoint
@crossovertwopoint

EliteCount Positive integer 
specifying how many 
individuals in the 
current generation are 
guaranteed to survive 
to the next generation

Positive integer | {2}

FitnessLimit Scalar. If the fitness 
function attains the 
value of FitnessLimit, 
the algorithm halts. 

Scalar | {-Inf}

FitnessScalingFcn Handle to the function 
that scales the values 
of the fitness function

@fitscalinggoldberg
{@fitscalingrank}
@fitscalingprop
@fitscalingtop
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Generations Positive integer 
specifying the 
maximum number of 
iterations before the 
algorithm halts

Positive integer |{100}

PopInitRange Matrix or vector 
specifying the range of 
the individuals in the 
initial population 

Matrix or vector | [0;1]

PopulationType String describing the 
data type of the 
population

'bitstring' | 'custom' 
| {'doubleVector'}

HybridFcn Handle to a function 
that continues the 
optimization after ga 
terminates

Function handle | {[]}

InitialPopulation Initial population Positive scalar | {[]}

InitialScores Initial scores Column vector | {[]}

MigrationDirection Direction of migration 'both' | {'forward'}

MigrationFraction Scalar between 0 and 1 
specifying the fraction 
of individuals in each 
subpopulation that 
migrates to a different 
subpopulation

Scalar | {0.2}

Option Description Values
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MigrationInterval Positive integer 
specifying the number 
of generations that 
take place between 
migrations of 
individuals between 
subpopulations

Positive integer | {20}

MutationFcn Handle to the function 
that produces 
mutation children

@mutationuniform
{@mutationgaussian}

OutputFcns Array of handles to 
functions that ga calls 
at each iteration.

Array | {[]}

OutputInterval Positive integer 
specifying the number 
of generations between 
consecutive calls to the 
output functions

Positive integer | {1}

PlotFcns Array of handles to 
functions that plot 
data computed by the 
algorithm

@gaplotbestf 
@gaplotbestgenome  
@gaplotdistance                          
@gaplotexpectation  
@gaplotgeneology  
@gaplotselection  
@gaplotrange                       
@gaplotscorediversity  
@gaplotscores 
@gaplotstopping | {[]} 

PlotInterval Positive integer 
specifying the number 
of generations between 
consecutive calls to the 
plot functions 

Positive integer | {1}

Option Description Values
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See Also gaoptimget, gatool

PopulationSize Size of the population Positive integer | {20}

SelectionFcn Handle to the function 
that selects parents of 
crossover and 
mutation children

@selectiongoldberg
@selectionrandom
{@selectionstochunif}
@selectionroulette
@selectiontournament

StallGenLimit Positive integer. The 
algorithm stops if 
there is no 
improvement in the 
objective function for 
StallGenLimit 
consecutive 
generations.

Positive integer | {50}

StallTimeLimit Positive scalar. The 
algorithm stops if 
there is no 
improvement in the 
objective function for 
StallTimeLimit 
seconds.

Positive scalar | {20}

TimeLimit Positive scalar. The 
algorithm stops after 
running for TimeLimit 
seconds.

Positive scalar | {30}

Vectorized String specifying 
whether the 
computation of the 
fitness function is 
vectorized  

'on' | {'off'}

Option Description Values
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6gatoolPurpose Open the Genetic Algorithm Tool

Syntax gatool

Description gatool opens the Genetic Algorithm Tool, a graphical user interface (GUI) to 
the genetic algorithm, as shown in the figure below.
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You can use the Genetic Algorithm Tool to run the genetic algorithm on 
optimization problems and display the results. See “Using the Genetic 
Algorithm Tool” on page 2-4 for a complete description of the tool.

See Also ga, gaoptimset
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6patternsearchPurpose Find the minimum of a function using a pattern search

Syntax x = patternsearch(@fun, x0)
x = patternsearch(@fun, x0, A, b)
x = patternsearch(@fun, x0, A, b, Aeq,  beq)
x = patternsearch(@fun, x0, A, b, Aeq,  beq, lb, ub)
x = patternsearch(@fun, x0, A, b, Aeq,  beq, lb, ub, options)
x = patternsearch(problem)
[x, fval] = patternsearch(@fun, x0, ...)
[x, fval, exitflag] = patternsearch(@fun, x0, ...)
[x, fval, exitflag, output] = patternsearch(@fun, x0, ...)

Description patternsearch finds the minimum of a function using a pattern search.

x = patternsearch(@fun, x0) solves unconstrained problems of the form 

 

where fun is a MATLAB function that computes the values of the objective 
function f(x), and x0 is an initial point for the pattern search algorithm. The 
function patternsearch accepts the objective function as a function handle of 
the form @fun. patternsearch returns a local minimum x to the objective 
function. The function fun accepts a vector input and returns a scalar function 
value. 

x = patternsearch(@fun, x0, A, b) finds a local minimum x to the function 
fun, subject to the linear inequality constraints represented in matrix form by

 

If the problem has m linear inequality constraints and n variables, then

• A is a matrix of size m-by-n. 

• b is a vector of length m.

minimize
x

f x( )

A x b≤
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x = patternsearch(@fun, x0, A, b, Aeq, beq) finds a local minimum x to 
the function fun, subject to the constraints

where Aeq x = beq represents the linear equality constraints in matrix form. If 
the problem has r linear equality constraints and n variables, then 

• Aeq is a matrix of size r-by-n. 

• beq is a vector of length r.

If there are no inequality constraints, pass empty matrices, [], for A and b.

x = patternsearch(@fun, x0, A, b, Aeq, beq, lb, ub) finds a local 
minimum x to the function fun subject to the constraints

where  represents lower and upper bounds on the variables. If the 
problem has n variables, lb and ub are vectors of length n. If lb or ub is empty 
(or not provided), it is automatically expanded to -Inf or Inf, respectively. If 
there are no inequality or equality constraints, pass empty matrices for A, b, 
Aeq and beq.

x = patternsearch(@fun, x0, A, b, Aeq, beq, lb, ub, options) finds a 
local minimum x to the function fun, replacing the default optimization 
parameters by values in the structure options. You can create options with 
the function psoptimset. Pass empty matrices for A, b, Aeq, beq, lb, ub, and 
options to use the default values.

x = patternsearch(problem) finds the minimum for problem, a structure that 
has  the following fields:

• objective — Objective function

• X0 — Starting point

• Aineq —  Matrix for the inequality constraints

• Bineq — Vector for the inequality constraints

A x b≤
Aeq x beq=

A x b≤
Aeq x beq=
lb x ub≤ ≤

lb x ub≤ ≤
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• Aeq — Matrix for the equality constraints

• Beq — Vector for the equality constraints

• LB — Lower bound for x

• UB — Upper bound for x

• options — Options structure created with psoptimset

• randstate — Optional field to reset the state of rand

• randnstate — Optional field to reset the state of randn

You can create the structure problem by exporting a problem from the Pattern 
Search Tool, as described in “Importing and Exporting Options and Problems” 
on page 5-11.

Note  problem must have all the fields as specified above. 

[x, fval] = patternsearch(@fun, x0, ...) returns the value of the 
objective function fun at the solution x.

[x, fval, exitflag] = patternsearch(@fun, x0, ...) returns  exitflag, 
which describes the exit condition of patternsearch. If 

• exitflag > 0,  patternsearch converged to a solution x.

• exitflag = 0,  patternsearch reached the maximum number of function 
evaluations or iterations.

• exitflag < 0, patternsearch did not converge to a solution.

[x, fval, exitflag, output] = patternsearch(@fun, x0, ...) returns a 
structure output containing information about the search. The output 
structure contains the following fields:

• function — Objective function

• problemtype — Type of problem: unconstrained, bound constrained or linear 
constrained

• pollmethod — Polling method

• searchmethod — Search method used, if any

• iteration — Total number of iterations
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• funccount — Total number of function evaluations

• meshsize — Mesh size at x

• message — Reason why the algorithm terminated

Note  patternsearch does not accepts functions whose inputs are of type 
complex. To solve problems involving complex data, write your functions so 
that they accept real vectors, by separating the real and imaginary parts.

Example Given the following constraints

the following code finds the minimum of the function, lincontest6, that is 
provided with the toolbox:

A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
[x, fval, exitflag] = patternsearch(@lincontest6,...
[0 0],A,b,[],[],lb)
Optimization terminated:
Next Mesh size (9.5367e-007)less than 'TolMesh.'

x =

    0.6667    1.3333

1 1
1– 2
2 1

x1

x2

2
2
3

≤

0 x1≤

0 x2≤



patternsearch

6-52

fval =

   -8.2222

exitflag =

     1

References [1] Torczon, Virginia, "On the convergence of Pattern Search Algorithms," 
SIAM Journal on Optimization, Vol. 7, Number 1, pp. 1-25, 1997.

[2] Lewis, Robert Michael and Virginia Torczon, "Pattern Search Algorithms 
for Bound Constrained Minimization," SIAM Journal on Optimization, Vol. 9, 
Number 4, pp. 1082-1099, 1999.

[3] Lewis, Robert Michael and Virginia Torczon, "Pattern Search Methods for 
Linearly Constrained Minimization," SIAM Journal on Optimization, Vol. 10, 
Number 3, pp. 917-941, 2000.

[4] Audet, Charles and J.E. Dennis Jr., "Analysis of Generalized Pattern 
Searches," SIAM Journal on Optimization, Vol. 13, Number 3, pp. 889-903, 
2003.

See Also psearchtool, psoptimget, psoptimset
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6psearchtoolPurpose Open the Pattern Search Tool

Syntax psearchtool

Description psearchtool opens the Pattern Search Tool, a graphical user interface (GUI) 
for performing pattern searches, as shown in the figure below.
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You can use the Pattern Search Tool to run a pattern search on optimization 
problems and display the results. See “Using the Pattern Search Tool” on 
page 3-3 for a complete description of the tool.

See Also patternsearch, psoptimget, psoptimset
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6psoptimgetPurpose Get values of a pattern search options structure

Syntax val = psoptimget(options, 'name')

Description val = psoptimget(options, 'name') returns the value of the parameter name 
from the pattern search options structure options.  
psoptimget(options, 'name') returns an empty matrix [] if the value of 
name is not specified in options. It is only necessary to type enough leading 
characters of name to uniquely identify it. psoptimget ignores case in 
parameter names. 

See Also psoptimset, patternsearch
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6psoptimsetPurpose Create a pattern search options structure

Syntax options = psoptimset
psoptimset
options = psoptimset('param1',value1,'param2',value2,...)
options = psoptimset(oldopts,'param1',value1,...)
options = psoptimset(oldopts,newopts)

Description options = psoptimset (with no input arguments) creates a structure called 
options that contains the options, or parameters, for the pattern search and 
sets parameters to their default values.

psoptimset with no input or output arguments displays a complete list of 
parameters with their valid values.

options = psoptimset('param1',value1,'param2',value2,...) creates a 
structure options and sets the value of 'param1' to value1, 'param2' to 
value2, and so on. Any unspecified parameters are set to their default values. 
It is sufficient to type only enough leading characters to define the parameter 
name uniquely. Case is ignored for parameter names.

options = psoptimset(oldopts,'param1',value1,...) creates a copy of 
oldopts, modifying the specified parameters with the specified values.

options = psoptimset(oldopts,newopts) combines an existing options 
structure, oldopts, with a new options structure, newopts. Any parameters in 
newopts with nonempty values overwrite the corresponding old parameters in 
oldopts.

Options The following table lists the options you can set with psoptimset. See “Pattern 
Search Options” on page 6-21 for a complete description of the options and 
their values. Values in {} denote the default value. You can also view the 
optimization parameters and defaults by typing psoptimset at the command 
line.
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Option Description Values

Cache With Cache set to 'on', 
patternsearch keeps a 
history of the mesh 
points it polls and does 
not poll points close to 
them again at 
subsequent iterations. 
Use this option if 
patternsearch runs 
slowly because it is 
taking a long time to 
compute the objective 
function.

'on' | {'off'}

CacheSize Size of the history Positive scalar | {1e4}

CacheTol Positive scalar specifying 
how close the current 
mesh point must be to a 
point in the history in 
order for patternsearch 
to avoid polling it

Positive scalar | {1e-10}

CompletePoll Complete poll around 
current iterate

'on' | {'off'}

CompleteSearch Complete poll around 
current iterate

'on' | {'off'}

Display Level of display 'off' | 'iter' | 'notify' | 'diagnose' | 
{'final'}

InitialMeshSize Initial mesh size for 
pattern algorithm

Positive scalar | {1.0}
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MaxFunEvals Maximum number of 
objective function 
evaluations

Positive integer | 
{2000*numberOfVariables}

MaxIter Maximum number of 
iterations 

Positive integer | 
{100*numberOfVariables}

MaxMeshSize Maximum mesh size Positive scalar | {Inf}

MeshAccelerator Accelerate convergence 
near a minimum

'on' | {'off'}

MeshContraction Mesh contraction factor. 
Used when iteration is 
unsuccessful.

Positive scalar | {0.5}

MeshExpansion Mesh expansion factor. 
Expands mesh when 
iteration is successful.

Positive scalar |{2.0}

OutputFcn Specifies a user-defined 
function that an 
optimization function 
calls at each iteration

@psoutputhistory | {none}

PlotFcn Specifies plots of output 
from the pattern search

@psplotbestf | @psplotmeshsize | 
@psplotfuncount | {[]}

PlotInterval Specifies the number of 
iterations between 
consecutive calls to the 
plot functions

Positive integer

PollingOrder Order of poll directions in 
pattern search 

'Random' | 'Success' | {'Consecutive'}

PollMethod Polling strategy used in 
pattern search

{'PositiveBasis2N'} |  
'PositiveBasisNp1'

ScaleMesh Automatic scaling of 
variables

{'on'} | 'off'
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For a detailed description of these options, see “Pattern Search Options” on 
page 6-21.

See Also patternsearch, psoptimget

SearchMethod Type of search used in 
pattern search

'PositiveBasisNp1' | 
'PositiveBasis2N' | @searchga | 
@searchlhs | @searchneldermead| {[]}

TolBind Binding tolerance Positive scalar | {1e-3}

TolCon Tolerance on constraints Positive scalar | {1e-6}

TolFun Tolerance on function Positive scalar | {1e-6}

TolMesh Tolerance on mesh size Positive scalar | {1e-6}

TolX Tolerance on variable Positive scalar | {1e-6}

Vectorized Specifies whether 
functions are vectorized

'on' | {'off'}
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