
Unidimensional Scaling: A (Nascent)
Toolbox for MATLAB

From the toolbox construction team (listed in
alphabetical order):

Lawrence Hubert; Hans-Friedreich Köhn; Douglas
Steinley

M-files are available from:
http://cda.psych.uiuc.edu/unidimensionalscaling_mfiles

Version: January 26, 2007

1

Contents

1 Introduction 5
1.1 A Proximity Matrix for Illustrating Unidimensional Scaling:

Agreement Among Supreme Court Justices 5

2 The Basics of Linear Unidimensional Scaling (LUS) 7
2.1 Iterative Quadratic Assignment 8
2.2 An M-file for Performing LUS Through Iterative QA 9
2.3 A Useful Utility for the QA Task Generally 11

3 Confirmatory and Nonmetric LUS 12
3.1 The Confirmatory Fitting of a Given Order 13
3.2 The Monotonic Transformation of a Proximity Matrix 14

3.2.1 An Application Incorporating proxmon.m 15
3.3 Using the MATLAB Statistical Toolbox M-file for Metric and

Nonmetric (Multi)dimensional scaling 20
3.4 A Convenient Utility for Plotting a LUS Representation 22

4 Incorporating an Additive Constant in LUS 23
4.1 The Incorporation of an Additive Constant in LUS Through

the M-file linfitac.m . 25

5 Circular Unidimensional Scaling (CUS) 27
5.1 The Circular Unidimensional Scaling Utilities 28

5.1.1 The M-function unicirac.m 31
5.1.2 Using unicirac.m on the Supreme Court Proximity Matrix 35
5.1.3 Using uniscalqa.m on the Morse Code Proximity Matrix 35

6 LUS for Two-Mode (Rectangular) Proximity Data 37
6.1 Reordering Two-Mode Proximity Matrices 38
6.2 Fitting a Two-Mode Unidimensional Scale 40

7 Order-Constrained Partition Construction 44
7.1 The Dynamic Programming Implementation 46

2

7.2 Two Utility Functions For Coordinate Estimation 49
7.3 Extensions to Generalized Ultrametrics 53

8 Some Possible LUS and CUS Generalizations 56
8.1 Additive Representation Through Multiple Structures 56
8.2 Individual Differences . 58
8.3 Incorporating Transformations of the Proximities 58
8.4 Finding and Fitting Best LUS Structures in the Presence of

Missing Proximities . 60
8.5 Obtaining Good Object Orders Through a Dynamic Program-

ming Strategy . 63
8.6 Extending LUS and CUS Representations Through Additively

Imposed Centroid Matrices . 65
8.7 Fitting the LUS Model Through Partitions Consistent With a

Given Object Order . 71

9 Comparing Categorical (Ultrametric) and Continuous (LUS)
Representations for a Proximity Matrix 74
9.1 Comparing Equally-Spaced Versus Unrestricted Representa-

tions for a Proximity Matrix 77
9.2 Representing an Order-Constrained LUS and an Ultrametric

on the Same Graph . 80

10 Some Bibliographic Comments 82

A Header Comments for the M-files Mentioned in the Text or
Used Internally by Other M-files; Given in Alphabetical Or-
der 85

3

List of Tables

1 Dissimilarities Among Nine Supreme Court Justices. 6
2 A Proximity Matrix, morse digits, for the Ten Morse Code

Symbols Representing the First Ten Digits. 29
3 The Two Unidimensional Scalings of the supreme agree5x4

Data Matrix. 44
4 Dissimilarities Among Ten Supreme Court Justices for the

2005/6 Term. The Missing Entry Between O’Connor and Alito
is Represented With an Asterisk. 61

List of Figures

1 Plot of the Monotonically Transformed Proximities (y-axis)
Against the Original Supreme Court Proximities (x-axis). . . . 19

2 Plot of the Monotonically Transformed Supreme Court Prox-
imities (y-axis) Against the Fitted Values (x-axis). 20

3 The LUS Representation Using linearplot.m with the Coordi-
nates Obtained from linfit.m on the supreme agree Proximities. 23

4 Two-dimensional Circular Plot for the morse digits Data Ob-
tained Using circularplot.m. 34

5 The LUS Representation for the supreme agree 2005 6 Prox-
imities Using linearplot.m with the Coordinates Constructed
from linfitac missing.m. 63

6 A Joint Order-Constrained LUS and Ultrametric Representa-
tion for the supreme agree Proximity Matrix 81

4

1 Introduction

A broad definition of unidimensional scaling can be given as the search for
an arrangement of n objects from a set, say S = {O1, . . . , On}, along a sin-
gle dimension (for linear unidimensional scaling (LUS)), or around a closed
circular structure (for circular unidimensional scaling (CUS)), such that the
induced n(n− 1)/2 interpoint distances between the objects reflect the given
proximity information. These latter proximities are assumed to be the data
available to guide the search and in the form of an n × n symmetric matrix
P = {pij}, where pij (= pji ≥ 0, and pii = 0) is a dissimilarity measure for the
objects Oi and Oj in which larger values indicate more dissimilar objects. We
begin with presenting such an illustrative data set that can be carried along
throughout this chapter for our numerical illustrations. Later sections intro-
duce the basic LUS and CUS tasks and provide a variety of useful extensions
and generalizations of each. In all instances, the MATLAB computational
environment is relied on to effect our analyses, using the Statistical Toolbox,
for example, to carry out some of the common (multi)dimensional scaling
methods, and our own open-source MATLAB M-files (freely available as a
nascent Toolbox from a web site listed later) whenever the extensions go
beyond what is currently available commercially, and/or if the commercial
methods fail to provide adequate analysis strategies.

1.1 A Proximity Matrix for Illustrating Unidimensional Scaling:
Agreement Among Supreme Court Justices

On Saturday, July 2, 2005, the lead headline in The New York Times read as
follows: ‘O’Connor to Retire, Touching Off Battle Over Court.” Opening the
story attached to the headline, Richard W. Stevenson wrote, ‘Justice Sandra
Day O’Connor, the first woman to serve on the United States Supreme Court
and a critical swing vote on abortion and a host of other divisive social issues,
announced Friday that she is retiring, setting up a tumultuous fight over her
successor.” Our interests are in the data set also provided by the Times that
day, quantifying the (dis)agreement among the Supreme Court justices during
the decade they had been together. We give this in Table 1 in the form of
the percentage of non-unanimous cases in which the justices disagree, from

5

the 1994/95 term through 2003/04 (known as the Rehnquist Court). The
dissimilarity matrix (in which larger entries reflect less similar justices) is
listed in the same row and column order as the Times data set, with the
justices obviously ordered from ‘liberal” to ‘conservative”:

1: John Paul Stevens (St)
2: Stephen G. Breyer (Br)
3: Ruth Bader Ginsberg (Gi)
4: David Souter (So)
5: Sandra Day O’Connor (Oc)
6: Anthony M. Kennedy (Ke)
7: William H. Rehnquist (Re)
8: Antonin Scalia (Sc)
9: Clarence Thomas (Th)

We use the Supreme Court data matrix of Table 1 for various illustrations
of unidimensional scaling in the sections to follow. It will be loaded into a
MATLAB environment with the command ‘load supreme_agree.dat’. The
supreme_agree.dat file is in simple ascii form with verbatim contents as
follows:

.00 .38 .34 .37 .67 .64 .75 .86 .85

.38 .00 .28 .29 .45 .53 .57 .75 .76

.34 .28 .00 .22 .53 .51 .57 .72 .74

.37 .29 .22 .00 .45 .50 .56 .69 .71

.67 .45 .53 .45 .00 .33 .29 .46 .46

.64 .53 .51 .50 .33 .00 .23 .42 .41

.75 .57 .57 .56 .29 .23 .00 .34 .32

.86 .75 .72 .69 .46 .42 .34 .00 .21

.85 .76 .74 .71 .46 .41 .32 .21 .00

St Br Gi So Oc Ke Re Sc Th
1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .38 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .34 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .67 .45 .53 .45 .00 .33 .29 .46 .46
6 Ke .64 .53 .51 .50 .33 .00 .23 .42 .41
7 Re .75 .57 .57 .56 .29 .23 .00 .34 .32
8 Sc .86 .75 .72 .69 .46 .42 .34 .00 .21
9 Th .85 .76 .74 .71 .46 .41 .32 .21 .00

Table 1: Dissimilarities Among Nine Supreme Court Justices.

6

2 The Basics of Linear Unidimensional Scaling (LUS)

The LUS task can be characterized as arranging the objects in S along a single
dimension such that the induced n(n − 1)/2 interpoint distances between
the objects reflect the proximities in P. The most common formalization
of this task is through a least-squares criterion and finding n coordinates,
x1, x2, . . . , xn, so

∑

i<j

(pij − |xj − xi|)2 (1)

is minimized. In turn, this optimization suggested by (1) can be rephrased as
two separate problems to be solved simultaneously: find a set of n numbers,
x1 ≤ x2 ≤ · · · ≤ xn, and a permutation on the first n integers, ρ(·) ≡ ρ, for
which

∑

i<j

(pρ(i)ρ(j) − (xj − xi))
2 (2)

is minimized. Thus, a set of locations (coordinates) is defined along a contin-
uum as represented in ascending order by the sequence x1, x2, . . . , xn; the n

objects are allocated to these locations by the permutation ρ, so object Oρ(i)

is placed at location i.

The minimization of (2) can be carried out directly by the maximization

of the single term,
∑

i(t
(ρ)
i)2 (under the mild regularity condition that all off-

diagonal proximities in P are positive and not merely nonnegative), where

t
(ρ)
i = (u

(ρ)
i − v

(ρ)
i)/n,

for

u
(ρ)
i =

i−1∑

j=1
pρ(i)ρ(j), when i ≥ 2;

v
(ρ)
i =

n∑

j=i+1
pρ(i)ρ(j), when i < n,

and

7

u
(ρ)
1 = v(ρ)

n = 0.

In words, u
(ρ)
i is the sum of the entries within row ρ(i) of {pρ(i)ρ(j)} from the

extreme left up to the main diagonal; v
(ρ)
i is the sum from the main diagonal

to the extreme right. If ρ∗ denotes the permutation that maximizes
∑

i(t
(ρ)
i)2,

then we can let xi = t
(ρ∗)
i , with the order induced by t

(ρ∗)
1 , . . . , t(ρ

∗)
n being con-

sistent with the constraint, x1 ≤ x2 ≤ · · · ≤ xn. In short, the minimization of
(2) reduces to the combinatorial optimization of the single term

∑
i(t

(ρ)
i)2, and

where the coordinate estimation is completed as an automatic byproduct.

2.1 Iterative Quadratic Assignment

Because the measure of loss in (2) can be reduced algebraically to

∑

i<j

p2
ij + n(

∑

i

x2
i − 2

∑

i

xit
(ρ)
i), (3)

subject to the constraints that x1 ≤ · · · ≤ xn and
∑

i xi = 0, or as

∑

i<j

p2
ij + n

∑

i

(xi − t
(ρ)
i)2 −∑

i

(t
(ρ)
i)2

 , (4)

the two optimization subproblems to be solved simultaneously of identifying
an optimal permutation and a set of coordinates can be separated:

(a) assuming that an ordering of the objects is known (and denoted, say, as

ρ0 for the moment), find those values x0
1 ≤ · · · ≤ x0

n to minimize
∑

i(x
0
i−t

(ρ0)
i)2.

If the permutation ρ0 produces a monotonic form for the matrix {pρ0(i)ρ0(j)}
in the sense that t

(ρ0)
1 ≤ t

(ρ0)
2 ≤ · · · ≤ t(ρ

0)
n , the coordinate estimation is

immediate by letting x0
i = t

(ρ0)
i , in which case

∑
i(x

0
i − t

(ρ0)
i)2 is zero.

(b) assuming that the locations x0
1 ≤ · · · ≤ x0

n are known, find the per-

mutation ρ0 to maximize
∑

i xit
(ρ0)
i . Any such permutation which even only

locally maximizes
∑

i xit
(ρ0)
i , in the sense that no adjacently placed pair of ob-

jects in ρ0 could be interchanged to increase the index, will produce a mono-
tonic form for the nonnegative matrix {pρ0(i)ρ0(j)}. Also, the task of finding

8

the permutation ρ0 to maximize
∑

i xit
(ρ0)
i is actually a quadratic assignment

(QA) task, discussed extensively in the literature of operations research. As
usually defined, a QA problem involves two n × n matrices, A = {aij} and
B = {bij}, and we seek a permutation ρ to maximize

Γ(ρ) =
∑

i,j

aρ(i)ρ(j)bij. (5)

If we define bij = |xi − xj| and let aij = pij, then

Γ(ρ) =
∑

i,j

pρ(i)ρ(j)|xi − xj| = 2n
∑

i

xit
(ρ)
i ,

and thus, the permutation that maximizes Γ(ρ) also maximizes
∑

xit
(ρ)
i .

2.2 An M-file for Performing LUS Through Iterative QA

To carry out the unidimensional scaling of proximity matrix, we will rely
on the M-file, uniscalqa.m, downloadable (as are all the other M-files we
mention throughout this manual) as open-source code from

http://cda.psych.uiuc.edu/unidimensionalscaling_mfiles.
We give the output from a MATLAB session below using the data of Table
1. We note that these Supreme Court data were first written into a text file
called supreme_agree.dat and placed into the MATLAB workspace with
the load command. Also, from the help file written as part of the output for
uniscalqa.m (and which is also given in the Appendix), the proximity in-
put matrix is called supreme_agree; we use an equally-spaced target matrix
targlin(9) (available from the same site that uniscalqa.m was obtained);
the built-in MATLAB random permutation generator, randperm(9), is in-
voked for a starting permutation.

>> load supreme_agree.dat

>> supreme_agree

supreme_agree =

0 0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500

0.3800 0 0.2800 0.2900 0.4500 0.5300 0.5700 0.7500 0.7600

0.3400 0.2800 0 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6700 0.4500 0.5300 0.4500 0 0.3300 0.2900 0.4600 0.4600

0.6400 0.5300 0.5100 0.5000 0.3300 0 0.2300 0.4200 0.4100

9

0.7500 0.5700 0.5700 0.5600 0.2900 0.2300 0 0.3400 0.3200

0.8600 0.7500 0.7200 0.6900 0.4600 0.4200 0.3400 0 0.2100

0.8500 0.7600 0.7400 0.7100 0.4600 0.4100 0.3200 0.2100 0

>> help uniscalqa.m

UNISCALQA carries out a unidimensional scaling of a symmetric

proximity matrix using iterative quadratic assignment.

syntax: [outperm, rawindex, allperms, index, coord, diff] = ...

uniscalqa(prox, targ, inperm, kblock)

PROX is the input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation);

TARG is the input target matrix (usually with a zero main

diagonal and a dissimilarity interpretation representing

equally spaced locations along a continuum);

INPERM is the input beginning permutation (a permutation of the

first n integers). OUTPERM is the final permutation of PROX

with the cross-product index RAWINDEX

with respect to TARG redefined as

$ = \{abs(coord(i) - coord(j))\}$;

ALLPERMS is a cell array containing INDEX entries corresponding

to all the permutations identified in the optimization from

ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

The insertion and rotation routines use from 1 to KBLOCK

(which is less than or equal to $n-1$) consecutive objects in

the permutation defining the row and column order of the data

matrix. COORD is the set of coordinates of the unidimensional

scaling in ascending order;

DIFF is the value of the least-squares loss function for the

coordinates and object permutation.

>> [outperm, rawindex, allperms, index, coord, diff] = ...

uniscalqa(supreme_agree, targlin(9), randperm(9), 1);

>> outperm

outperm =

1 2 3 4 5 6 7 8 9

>> coord

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

>> diff

diff =

0.4691

10

As might be expected given the Times presentation of Table 1 using the order
from ‘liberal” to ‘conservative”, the obtained unidimensional scaling was for
the identity permutation in outperm with the (ordered) coordinates given in
coord with a least-squares loss of .4691 (in diff).

2.3 A Useful Utility for the QA Task Generally

For the QA problem in (5), the attempt to find ρ to maximize Γ(ρ), reorga-
nizes the (proximity) matrix as Aρ = {aρ(i)ρ(j)}, which hopefully shows the
same pattern, more or less, as (the fixed target) B; equivalently, we maxi-
mize the usual Pearson product-moment correlation between the off-diagonal
entries in B and Aρ. Another way of rephrasing this search when B is given
by the equally-spaced target matrix, {|i − j|}, is to say that we seek a per-
mutation ρ that provides a structure ‘close’ as possible to what is called an
anti-Robinson (AR) form for Aρ, i.e., the degree to which the entries in Aρ,
moving away from the main diagonal in either direction never decrease (and
usually increase); this is exactly the pattern exhibited by the equally-spaced
target matrix B = {|i− j|}.

The type of heuristic optimization strategy we use for the QA task in
order.m implements simple object interchange/rearrangement operations.
Based on given matrices A and B, and beginning with some permutation
(possibly chosen at random), local interchanges and rearrangements of a par-
ticular type are implemented until no improvement in the index can be made.
By repeatedly initializing such a process randomly, a distribution over a set
of local optima can be achieved. Three different classes of local operations
are used in the M-file, order.m: (i) the pairwise interchanges of objects in the
current permutation defining the row and column order of the data matrix
A. All possible such interchanges are generated and considered in turn, and
whenever an increase in the cross-product index would result from a partic-
ular interchange, it is made immediately. The process continues until the
current permutation cannot be improved upon by any such pairwise object
interchange. The procedure then proceeds to (ii): the local operations con-
sidered are all reinsertions of from 1 to kblock (which is less than n and set
by the user) consecutive objects somewhere in the permutation defining the

11

current row and column order of the data matrix. When no further improve-
ment can be made, we move to (iii): the local operations are now all possible
rotations (or inversions) of from 2 to kblock consecutive objects in the cur-
rent row/column order of the data matrix. (We suggest a use of kblock equal
to 3 as a reasonable compromise between the extensiveness of local search,
speed of execution, and quality of solution.) The three collections of local
changes are revisited (in order) until no alteration is possible in the final
permutation obtained.

The use of order.m is illustrated in the verbatim recording below on the
supreme_agree data. There are index permutations stored in the MATLAB
cell-array allperms, from the first randomly generated one in allperms{1},
to the found local optimum in allperms{index}. (These have been sup-
pressed in the output.) Notice that retrieving entries in a cell-array requires
the use of curly braces, {,}. The M-file, targlin.m, provides the equally-
spaced target matrix as an input. Starting with a random permutation and
the supreme_agree data matrix, the identity permutation is found (in fact, it
would be the sole local optimum identified upon repeated starts using random
permutations).

>> load supreme_agree.dat

>> [outperm,rawindex,allperms,index] = order(supreme_agree,targlin(9),randperm(9),3)

outperm =

1 2 3 4 5 6 7 8 9

rawindex =

145.1200

index =

19

3 Confirmatory and Nonmetric LUS

In developing linear unidimensional scaling (as well as other types of) repre-
sentations for a proximity matrix, it is convenient to have a general mecha-
nism available for solving linear (in)equality constrained least-squares tasks.

12

The two such instances discussed in this section involve (a) the confirmatory
fitting of a given object order to a proximity matrix (through an M-file called
linfit.m), and (b) the construction of an optimal monotonic transformation
of a proximity matrix in relation to a given unidimensional ordering (through
an M-file called proxmon.m). In both these cases, we rely on what can be
called the Dykstra-Kaczmarz method for solving linear inequality constrained
least-squares problems.

3.1 The Confirmatory Fitting of a Given Order

The M-function, linfit.m, fits a set of coordinates to a given proximity
matrix based on some given input permutation, say, ρ(0). Specifically, we
seek x1 ≤ x2 ≤ · · · ≤ xn such that

∑
i<j(pρ0(i)ρ0(j) − |xj − xi|)2 is minimized

(and where the permutation ρ(0) may not even put the matrix {pρ0(i)ρ0(j)} into
a monotonic form). Using the syntax

[fit,diff,coord] = linfit(prox,inperm)

the matrix {|xj − xi|} is referred to as the fitted matrix (fit); coord gives
the ordered coordinates; and diff is the value of the least-squares criterion.
The fitted matrix is found through the Dykstra-Kaczmarz method where the
equality constraints defined by distances along a continuum are imposed to
construct the fitted matrix, i.e., if i < j < k, then |xi−xj|+|xj−xk| = |xi−xk|.
Once found, the actual ordered coordinates are retrieved by the usual t

(ρ0)
i

formula but computed on fit. In the example below of the use of linfit.m,
the identity permutation obtained from the use of uniscalqa.m is used as
the input permutation.

>> load supreme_agree.dat

>> [fit,diff,coord] = linfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

13

diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

3.2 The Monotonic Transformation of a Proximity Matrix

The function, proxmon.m, provides a monotonically transformed proximity
matrix that is closest in a least-squares sense to a given input matrix. The
syntax is

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

Here, proxpermut is the input proximity matrix (which may have been sub-
jected to an initial row/column permutation, hence the suffix ‘permut’) and
fitted is a given target matrix; the output matrix monproxpermut is closest
to fitted in a least-squares sense and obeys the order constraints obtained
from each pair of entries in (the upper-triangular portion of) proxpermut

(and where the inequality constrained optimization is carried out using the
Dykstra-Kaczmarz iterative projection strategy); vaf denotes ‘variance-ac-
counted-for’ and indicates how much variance in monproxpermut can be ac-
counted for by fitted; finally, diff is the value of the least-squares loss
function and is the sum of squared differences between the entries in fitted

and monproxpermut (actually, diff is one-half of such a sum because the loss
function is over i < j).

When fitting a given order, fitted would correspond to the matrix {|xj−
xi|}, where x1 ≤ x2 ≤ · · · ≤ xn; the input proxpermut would be {pρ0(i)ρ0(j)};
monproxpermut would be {f(pρ0(i)ρ0(j))}, where the function f(·) satisfies the
monotonicity constraints, i.e., if pρ0(i)ρ0(j) < pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and
1 ≤ i′ < j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤ f(pρ0(i′)ρ0(j′)). The transformed proximity

14

matrix {f(pρ0(i)ρ0(j))} minimizes the least-squares criterion (diff) of

∑

i<j

(f(pρ0(i)ρ0(j))− |xj − xi|)2,

over all functions f(·) that satisfy the monotonicity constraints. The vaf is
a normalization of this loss value by the sum of squared deviations of the
transformed proximities from their mean:

VAF = 1−
∑

i<j(f(pρ0(i)ρ0(j))− |xj − xi|)2

∑
i<j(f(pρ0(i)ρ0(j))− f̄)2 ,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.

3.2.1 An Application Incorporating proxmon.m

The script M-file listed below gives an application of proxmon.m using the
identity permutation for our supreme_agree matrix. First, linfit.m is in-
voked to obtain a fitted matrix (fit); proxmon.m then generates the mono-
tonically transformed proximity matrix (monprox) with vaf = .9869 and diff

= .0349. The strategy is then repeated one-hundred times (i.e., finding a fit-
ted matrix based on the monotonically transformed proximity matrix, finding
a new monotonically transformed matrix, and so on). To avoid degeneracy
(where all matrices would converge to zeros), the sum of squares of the fit-
ted matrix is normalized. As indicated in the output below, the final vaf
is .9934 with a diff of .0190. (Although the permutation found earlier for
supreme_agree remains the same throughout the construction of the optimal
monotonic transformation, in this particular example it would also remain
optimal with the same VAF if the unidimensional scaling were repeated with
monprox now considered the input proximity matrix. Even though proba-
bly rare, other data sets might not have such an invariance, and it may be
desirable to initiate an iterative routine that finds both a unidimensional
scaling [i.e., an object ordering] in addition to monotonically transforming
the proximity matrix.)

>> type uniscale_monotone_test

load supreme_agree.dat

15

inperm = [1 2 3 4 5 6 7 8 9];

proxpermut = supreme_agree(inperm,inperm);

[fit,diff,coord] = linfit(proxpermut,1:9)

[monprox,vaf,diff] = proxmon(proxpermut,fit)

sumfitsq = sum(sum(fit.^2));

for i = 1:100

[fit,diff,coord] = linfit(monprox,1:9);

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sumnewfitsq);

[monprox,vaf,diff] = proxmon(proxpermut,fit);

end

fit

coord

vaf

diff

monprox

supreme_agree

>> uniscale_monotone_test

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

16

0.4478

0.4956

monprox =

0 0.2467 0.2433 0.2467 0.6517 0.6517 0.7967 1.0117 1.0117

0.2467 0 0.0800 0.1356 0.4044 0.5022 0.6178 0.8089 0.8567

0.2433 0.0800 0 0.0711 0.4092 0.4092 0.5533 0.7444 0.7922

0.2467 0.1356 0.0711 0 0.3030 0.4092 0.5022 0.6733 0.7211

0.6517 0.4044 0.4092 0.3030 0 0.1774 0.1774 0.4044 0.4092

0.6517 0.5022 0.4092 0.4092 0.1774 0 0.0800 0.3030 0.3030

0.7967 0.6178 0.5533 0.5022 0.1774 0.0800 0 0.1911 0.1774

1.0117 0.8089 0.7444 0.6733 0.4044 0.3030 0.1911 0 0.0478

1.0117 0.8567 0.7922 0.7211 0.4092 0.3030 0.1774 0.0478 0

vaf =

0.9869

diff =

0.0349

fit =

0 0.2234 0.2463 0.2643 0.6338 0.7235 0.8021 1.0067 1.0067

0.2234 0 0.0228 0.0409 0.4103 0.5001 0.5787 0.7832 0.7832

0.2463 0.0228 0 0.0180 0.3875 0.4773 0.5559 0.7604 0.7604

0.2643 0.0409 0.0180 0 0.3695 0.4592 0.5378 0.7424 0.7424

0.6338 0.4103 0.3875 0.3695 0 0.0898 0.1684 0.3729 0.3729

0.7235 0.5001 0.4773 0.4592 0.0898 0 0.0786 0.2831 0.2831

0.8021 0.5787 0.5559 0.5378 0.1684 0.0786 0 0.2046 0.2046

1.0067 0.7832 0.7604 0.7424 0.3729 0.2831 0.2046 0 0

1.0067 0.7832 0.7604 0.7424 0.3729 0.2831 0.2046 0 0

coord =

-0.1226

-0.0724

-0.0672

-0.0632

0.0199

0.0401

0.0578

0.1038

0.1038

vaf =

0.9934

diff =

0.0190

monprox =

17

0 0.2447 0.2447 0.2447 0.6787 0.6787 0.7927 1.0067 1.0067

0.2447 0 0.0474 0.0474 0.3854 0.5001 0.5787 0.7832 0.7927

0.2447 0.0474 0 0.0180 0.4414 0.4414 0.5559 0.7604 0.7604

0.2447 0.0474 0.0180 0 0.3695 0.4414 0.5378 0.7424 0.7424

0.6787 0.3854 0.4414 0.3695 0 0.1542 0.1542 0.3854 0.3854

0.6787 0.5001 0.4414 0.4414 0.1542 0 0.0474 0.2831 0.2831

0.7927 0.5787 0.5559 0.5378 0.1542 0.0474 0 0.2046 0.1542

1.0067 0.7832 0.7604 0.7424 0.3854 0.2831 0.2046 0 0

1.0067 0.7927 0.7604 0.7424 0.3854 0.2831 0.1542 0 0

supreme_agree =

0 0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500

0.3800 0 0.2800 0.2900 0.4500 0.5300 0.5700 0.7500 0.7600

0.3400 0.2800 0 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6700 0.4500 0.5300 0.4500 0 0.3300 0.2900 0.4600 0.4600

0.6400 0.5300 0.5100 0.5000 0.3300 0 0.2300 0.4200 0.4100

0.7500 0.5700 0.5700 0.5600 0.2900 0.2300 0 0.3400 0.3200

0.8600 0.7500 0.7200 0.6900 0.4600 0.4200 0.3400 0 0.2100

0.8500 0.7600 0.7400 0.7100 0.4600 0.4100 0.3200 0.2100 0

>> monproxvec = squareform(monprox)

monproxvec =

Columns 1 through 12

0.2447 0.2447 0.2447 0.6787 0.6787 0.7927 1.0067 1.0067 0.0474 0.0474 0.3854 0.5001

Columns 13 through 24

0.5787 0.7832 0.7927 0.0180 0.4414 0.4414 0.5559 0.7604 0.7604 0.3695 0.4414 0.5378

Columns 25 through 36

0.7424 0.7424 0.1542 0.1542 0.3854 0.3854 0.0474 0.2831 0.2831 0.2046 0.1542 0

>> supreme_agreevec = squareform(supreme_agree)

supreme_agreevec =

Columns 1 through 12

0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500 0.2800 0.2900 0.4500 0.5300

Columns 13 through 24

0.5700 0.7500 0.7600 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400 0.4500 0.5000 0.5600

Columns 25 through 36

0.6900 0.7100 0.3300 0.2900 0.4600 0.4600 0.2300 0.4200 0.4100 0.3400 0.3200 0.2100

>> fitvec = squareform(fit)

fitvec =

Columns 1 through 12

0.2234 0.2463 0.2643 0.6338 0.7235 0.8021 1.0067 1.0067 0.0228 0.0409 0.4103 0.5001

18

Columns 13 through 24

0.5787 0.7832 0.7832 0.0180 0.3875 0.4773 0.5559 0.7604 0.7604 0.3695 0.4592 0.5378

Columns 25 through 36

0.7424 0.7424 0.0898 0.1684 0.3729 0.3729 0.0786 0.2831 0.2831 0.2046 0.2046 0

>> plot(supreme_agreevec,monproxvec,’.k’)

>> plot(fitvec,monproxvec,’.k’)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: Plot of the Monotonically Transformed Proximities (y-axis) Against the Original
Supreme Court Proximities (x-axis).

There are several items to point out about the example just given. First,
it was actually run by invoking a script M-file, uniscale_monotone_test,
the contents of which can be seen by issuing the simple command,

‘type uniscale_monotone_test’.
The commands are performed by typing the script file name in the command
window. We also note that a rather arbitrary number of iterations of the
fitting process were carried out (i.e., one-hundred). An alternative strategy
would have been to exit upon a minimal change in, say, the VAF value.

19

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: Plot of the Monotonically Transformed Supreme Court Proximities (y-axis) Against
the Fitted Values (x-axis).

Second, we show how to plot the entries in the various matrices (monprox,
supreme_agree, and fit) by first changing them to vector form through the
MATLAB M-function, squareform.m. Figures 1 and 2 then show the plot
of monprox against supreme_agree and fit. Various editings of these plots
could now be done in MATLAB to produce axis labels, legends, and so on.

3.3 Using the MATLAB Statistical Toolbox M-file for Metric and
Nonmetric (Multi)dimensional scaling

There is an M-file, mdscale.m, within the MATLAB Statistical Toolbox that
performs various types of metric and nonmetric multidimensional scaling
analyses. When the dimensionality is set at ‘1’, and the loss criterion is set
to ‘metricstress’, the LUS task in (1) is being solved but with a different
type of optimization strategy based on gradients. The criterion reported is
stress, defined by the square-root of our diff divided by the sum-of-squares
for the original proximities. As can be seen from the MATLAB session below,
the gradient-based method has a very difficult time in finding the best solu-
tion defined by the identity permutation, and only two out of one-hundred

20

random starts produced it. (We have suppressed most of the output; the
best solution out of the one-hundred is reported automatically, and is identi-
cal [given the same coordinates] to that obtained with a single random start
of uniscalqa.m). It is true generally that gradient-based methods have an
extremely hard time avoiding purely local optima when used in one dimen-
sion. A reliance on uniscalqa.m is a much better option for approaching the
LUS task.

>> load supreme_agree.dat

>> opts = statset(’Display’,’final’,’Maxiter’,1000);

>> [coord,stress] = mdscale(supreme_agree,1,’Criterion’,’metricstress’,’Start’,’random’,’Replicates’,100,’Options’,opts)

6 iterations, Final stress criterion = 0.213021

4 iterations, Final stress criterion = 0.511745

4 iterations, Final stress criterion = 0.213232

4 iterations, Final stress criterion = 0.222266

5 iterations, Final stress criterion = 0.373536

2 iterations, Final stress criterion = 0.607790

2 iterations, Final stress criterion = 0.579076

2 iterations, Final stress criterion = 0.567206

3 iterations, Final stress criterion = 0.459125

2 iterations, Final stress criterion = 0.602695

remaining starts deleted

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

stress =

0.2125

21

3.4 A Convenient Utility for Plotting a LUS Representation

To actually plot a LUS representation, we provide an M-file, linearplot.m,
with usage syntax

[linearlength] = linearplot(coord,inperm)

Here, linearlength is the total length of representation from the smallest
coordinate to the largest; coord is the ordered set of coordinates that get
labeled with the values in inperm. As can be seen from the output below
and Figure 3, the LUS representation separates the far left, {Stevens:1}, from
the moderate liberals, {Breyer:2, Ginsberg:3, Souter:4}; and the far right,
{Scalia:8, Thomas:9}, from the moderate right, {O’Connor:5, Kennedy:6,
Rehnquist:7}.
>> [fit,diff,coord] = linfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

>> [linearlength] = linearplot(coord,[1 2 3 4 5 6 7 8 9])

linearlength =

1.0356

22

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Figure 3: The LUS Representation Using linearplot.m with the Coordinates Obtained from
linfit.m on the supreme agree Proximities.

4 Incorporating an Additive Constant in LUS

A generalization to the basic LUS task that incorporates an additional ad-
ditive constant will prove extremely convenient when extensions to multiple
unidimensional scales are proposed. In this section we emphasize a single
LUS structure through the more general least-squares loss function of the
form ∑

i<j

(pij − {|xj − xi| − c})2, (6)

where c is some constant to be estimated along with the coordinates x1, . . . , xn.
Much later, the restriction to fitting only a single unidimensional structure
to a symmetric proximity matrix is removed; the latter will rely heavily on
a computational approach that includes the augmentation by an estimated
additive constant and a procedure of successive residualization of the original
proximity matrix. For example, the fitting of two LUS structures to a prox-
imity matrix {pij} could be rephrased as the minimization of a loss function

23

generalizing (6) to the form
∑

i<j

(pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2])
2. (7)

The attempt to minimize (7) could proceed with the fitting of a single LUS
structure to {pij}, [|xj1 − xi1| − c1], and once obtained, fitting a second LUS
structure, [|xj2−xi2|−c2], to the residual matrix, {pij− [|xj1−xi1|−c1]}. The
process would then cycle by repetitively fitting the residuals from the second
linear structure by the first, and the residuals from the first linear structure
by the second, until the sequence converges. In any case, obvious extensions
would also exist for the inclusion of more than two LUS structures.

The explicit inclusion of two constants, c1 and c2, in (7) rather than adding
these two together and including a single additive constant, c, deserves some
additional introductory explanation. As would be the case in fitting a single
LUS structure using the loss function in (6), two interpretations exist for
the role of the additive constant, c. We could consider {|xj − xi|} to be
fitted to the translated proximities {pij + c}, or alternatively, {|xj − xi| − c}
to be fitted to the original proximities {pij}, where the constant c becomes
part of the actual model. Although these two interpretations do not lead
to any algorithmic differences in how we would proceed with minimizing the
loss function in (6), a consistent use of the second interpretation suggests
that we frame extensions to the use of multiple LUS structures as we did in
(7), where it is explicit that the constants c1 and c2 are part of the actual
models to be fitted to the (untransformed) proximities {pij}. Once c1 and
c2 are obtained, they could be summed as c = c1 + c2, and an interpretation
made that we have attempted to fit a transformed set of proximities {pij +
c} by the sum {|xj1 − xi1| + |xj2 − xi2|} (and in this latter case, a more
usual terminology would be one of a two-dimensional scaling (MDS) based
on the city-block distance function). However, such a further interpretation is
unnecessary and could lead to at least some small terminological confusion in
further extensions that we might wish to pursue. For instance, if some type of
(optimal nonlinear) transformation, say f(·), of the proximities is also sought
(e.g., a monotonic function of some form as we did in Section 3.2), in addition
to fitting multiple LUS structures, and where pij in (7) is replaced by f(pij),
and f(·) is to be constructed, the first interpretation would require the use

24

of a ‘doubly transformed’ set of proximities {f(pij) + c} to be fitted by the
sum {|xj1 − xi1|+ |xj2 − xi2|}. In general, it seems best to avoid the need to
incorporate the notion of a double transformation in this context, and instead
merely consider the constants c1 and c2 to be part of the models being fitted
to a transformed set of proximities f(pij).

4.1 The Incorporation of an Additive Constant in LUS Through
the M-file linfitac.m

We present and illustrate an M-function, linfitac.m, that fits a given sin-
gle unidimensional scale (by providing the coordinates x1, . . . , xn) and the
additive constant (c) for some fixed input object ordering along the con-
tinuum defined by a permutation ρ(0). This approach directly parallels the
M-function given earlier as linfit.m, but now with an included additive
constant estimation. The usage syntax of

[fit,vaf,coord,addcon] = linfitac(prox,inperm)

is similar to that of linfit.m except for the inclusion (as output) of the
additive constant addcon, and the replacement of the least-squares criterion
of diff by the variance-accounted-for (vaf) given by the general formula

VAF = 1−
∑

i<j(pρ(0)(i)ρ(0)(j) + c− |xj − xi|)2

∑
i<j(pij − p̄)2 ,

where p̄ is the mean of the proximity values under consideration.

To illustrate the invariance of vaf to the use of linear transformations of
the proximity matrix (although coord and addcon obviously will change de-
pending on the transformation used), the identity permutation was fitted us-
ing two different matrices: the original proximity matrix for supreme_agree,
and one standardized to mean zero and variance one. The latter matrix is
obtained with the utility proxstd.m, with usage explained in its M-file header
comments given in the Appendix. Note that for the two proximity matrices
employed, the VAF values are exactly the same (.9796) but the coordinates
and additive constants differ; a listing of the standardized proximity matrix is

25

given in the output to show explicitly how negative proximities pose no prob-
lem for the fitting process that allows the incorporation of additive constants
within the fitted model.

>> load supreme_agree.dat

>> inperm = [1 2 3 4 5 6 7 8 9];

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree,inperm)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

>> supreme_agree_stan = proxstd(supreme_agree,0.0)

supreme_agree_stan =

0 -0.6726 -0.8887 -0.7266 0.8948 0.7326 1.3271 1.9216 1.8676

-0.6726 0 -1.2130 -1.1590 -0.2942 0.1381 0.3543 1.3271 1.3812

-0.8887 -1.2130 0 -1.5373 0.1381 0.0300 0.3543 1.1650 1.2731

-0.7266 -1.1590 -1.5373 0 -0.2942 -0.0240 0.3003 1.0028 1.1109

0.8948 -0.2942 0.1381 -0.2942 0 -0.9428 -1.1590 -0.2402 -0.2402

0.7326 0.1381 0.0300 -0.0240 -0.9428 0 -1.4832 -0.4564 -0.5104

1.3271 0.3543 0.3543 0.3003 -1.1590 -1.4832 0 -0.8887 -0.9968

1.9216 1.3271 1.1650 1.0028 -0.2402 -0.4564 -0.8887 0 -1.5913

1.8676 1.3812 1.2731 1.1109 -0.2402 -0.5104 -0.9968 -1.5913 0

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree_stan,inperm)

fit =

0 0.7050 0.7914 0.9139 2.2073 2.4799 2.7345 3.5037 3.5037

26

0.7050 0 0.0864 0.2089 1.5024 1.7750 2.0295 2.7987 2.7987

0.7914 0.0864 0 0.1225 1.4159 1.6885 1.9431 2.7123 2.7123

0.9139 0.2089 0.1225 0 1.2935 1.5661 1.8206 2.5898 2.5898

2.2073 1.5024 1.4159 1.2935 0 0.2726 0.5272 1.2964 1.2964

2.4799 1.7750 1.6885 1.5661 0.2726 0 0.2546 1.0238 1.0238

2.7345 2.0295 1.9431 1.8206 0.5272 0.2546 0 0.7692 0.7692

3.5037 2.7987 2.7123 2.5898 1.2964 1.0238 0.7692 0 0

3.5037 2.7987 2.7123 2.5898 1.2964 1.0238 0.7692 0 0

vaf =

0.9796

coord =

-1.8710

-1.1661

-1.0796

-0.9572

0.3363

0.6089

0.8635

1.6327

1.6327

addcon =

1.5480

5 Circular Unidimensional Scaling (CUS)

Circular unidimensional scaling (CUS) has the objective of placing n objects
around a closed continuum such that the reconstructed distance between
each pair of objects, defined by the minimum length over the two possible
paths that join the objects, reflects the given proximities as well as possible.
Explicitly, and in analogy with the loss function for linear unidimensional
scaling (LUS), we wish to find a set of coordinates, x1, . . . , xn, plus an (n+1)st

value, x0 ≥ |xj − xi| for all 1 ≤ i 6= j ≤ n, minimizing
∑

i<j

(pij + c−min{|xj − xi|, x0 − |xj − xi|})2, (8)

or equivalently,
∑

i<j

(pij − [min{|xj − xi|, x0 − |xj − xi|} − c])2, (9)

where c is again some constant to be estimated. The value x0 represents the
total length of the closed continuum, and the expression, min{|xj − xi|, x0 −

27

|xj − xi|}, gives the minimum length over the two possible paths joining
objects Oi and Oj.

Because the supreme_agree proximity matrix is so well-represented by
LUS, we use a different data set here for illustration of CUS, given in the form
of a rather well-known proximity matrix in Table 2 (and called ‘morse_digits’).
The later is a 10× 10 proximity matrix for the ten Morse Code symbols that
represent the first ten digits: (0: − − − − −; 1: • − − − −; 2: • • − − −;
3: • • • − −; 4: • • • • −; 5: • • • • • ; 6: − • • • • ; 7: − − • • • ; 8: −
− − • • ; 9: − − − − •). (Note that the labeling of objects in the output is
from 1 to 10; thus, a translation back to the actual numbers corresponding to
the Morse Code symbols requires a subtraction of one.) The entries in Table
2 have a dissimilarity interpretation and are defined for each object pair by
2.0 minus the sum of the two proportions for a group of subjects used by
Rothkopf in the 1950’s, representing ‘same” judgments to the two symbols
when given in the two possible presentation orders of the signals. Based on
previous multidimensional scalings of the complete data set involving all of
the Morse code symbols and in which the data of Table 2 are embedded, it
might be expected that the symbols for the digits would form a clear linear
unidimensional structure that would be interpretable according to a regular
progression in the number of dots to dashes. It turns out, as discussed in
greater detail below, that a circular model is probably more consistent with
the patterning of the proximities in Table 2 than are representations based
on linear unidimensional scalings.

5.1 The Circular Unidimensional Scaling Utilities

The two circular unidimensional scaling utilities that implement the mechan-
ics of fitting the CUS model, parallel the LUS utilities of linfit.m and
linfitac.m. The M-files, cirfit.m and cirfitac.m, carry out confirma-
tory fittings of a given order (assumed to be an object ordering around a
closed unidimensional structure), and have syntax:

[fit, diff] = cirfit(prox,inperm)

[fit,vaf,addcon] = cirfitac(prox,inperm)

28

Table 2: A Proximity Matrix, morse digits, for the Ten Morse Code Symbols Representing
the First Ten Digits.

0.00 .75 1.69 1.87 1.76 1.77 1.59 1.26 .86 .95

.75 0.00 .82 1.54 1.85 1.72 1.51 1.50 1.45 1.63

1.69 .82 0.00 1.25 1.47 1.33 1.66 1.57 1.83 1.81

1.87 1.54 1.25 0.00 .89 1.32 1.53 1.74 1.85 1.86

1.76 1.85 1.47 .89 0.00 1.41 1.64 1.81 1.90 1.90

1.77 1.72 1.33 1.32 1.41 0.00 .70 1.56 1.84 1.64

1.59 1.51 1.66 1.53 1.64 .70 0.00 .70 1.38 1.70

1.26 1.50 1.57 1.74 1.81 1.56 .70 0.00 .83 1.22

.86 1.45 1.83 1.85 1.90 1.84 1.38 .83 0.00 .41

.95 1.63 1.81 1.86 1.90 1.64 1.70 1.22 .41 0.00

where inperm is the given order; fit is an n× n matrix fitted to the matrix
prox(inperm,inperm) with a least-squares value diff. The syntax for the
routine, cirfitac.m, is the same except for the inclusion of an additive
constant, addcon, and the use of vaf rather than diff.

In brief, then, the type of matrix being fitted to the proximity matrix has
the form

{min(| xρ(j) − xρ(i) |, x0 − | xρ(j) − xρ(i) |) − c},
where c is an estimated additive constant (assumed equal to zero in cirfit.m),
xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and the last coordinate, x0, is the circumfer-
ence of the circular structure. We can obtain these latter coordinates from
the adjacent spacings in the output matrix fit. As an example, we applied
cirfit.m to the morse_digits proximity matrix with an assumed identity
input permutation; the spacings around the circular structure between the
placements for objects 1 and 2 is .5337; 2 and 3: .7534; 3 and 4: .6174; 4
and 5: .1840; 5 and 6: .5747; 6 and 7: .5167; 7 and 8: .3920; 8 and 9: .5467;
9 and 10: .1090; and back around between 10 and 1: .5594 (the sum of all
these adjacent spacings is 4.787 and is the circumference (x0) of the circular
structure). For cirfitac.m the additive constant was estimated as -.8031
with a vaf of .7051; here, the spacings around the circular structure between
the placements for objects 1 and 2 is .2928; 2 and 3: .4322; 3 and 4: .2962; 4
and 5: .0234; 5 and 6: .3338; 6 and 7: .2758; 7 and 8: .2314; 8 and 9: .2800;

29

9 and 10: .0000; and back around between 10 and 1: .2124 (here, x0 has a
value of 2.378).

>> load morse_digits.dat

>> morse_digits

morse_digits =

0 0.7500 1.6900 1.8700 1.7600 1.7700 1.5900 1.2600 0.8600 0.9500

0.7500 0 0.8200 1.5400 1.8500 1.7200 1.5100 1.5000 1.4500 1.6300

1.6900 0.8200 0 1.2500 1.4700 1.3300 1.6600 1.5700 1.8300 1.8100

1.8700 1.5400 1.2500 0 0.8900 1.3200 1.5300 1.7400 1.8500 1.8600

1.7600 1.8500 1.4700 0.8900 0 1.4100 1.6400 1.8100 1.9000 1.9000

1.7700 1.7200 1.3300 1.3200 1.4100 0 0.7000 1.5600 1.8400 1.6400

1.5900 1.5100 1.6600 1.5300 1.6400 0.7000 0 0.7000 1.3800 1.7000

1.2600 1.5000 1.5700 1.7400 1.8100 1.5600 0.7000 0 0.8300 1.2200

0.8600 1.4500 1.8300 1.8500 1.9000 1.8400 1.3800 0.8300 0 0.4100

0.9500 1.6300 1.8100 1.8600 1.9000 1.6400 1.7000 1.2200 0.4100 0

>> [fit,diff] = cirfit(morse_digits,1:10)

fit =

0 0.5337 1.2871 1.9044 2.0884 2.1237 1.6071 1.2151 0.6684 0.5594

0.5337 0 0.7534 1.3707 1.5547 2.1294 2.1407 1.7487 1.2021 1.0931

1.2871 0.7534 0 0.6174 0.8014 1.3761 1.8927 2.2847 1.9554 1.8464

1.9044 1.3707 0.6174 0 0.1840 0.7587 1.2754 1.6674 2.2141 2.3231

2.0884 1.5547 0.8014 0.1840 0 0.5747 1.0914 1.4834 2.0301 2.1391

2.1237 2.1294 1.3761 0.7587 0.5747 0 0.5167 0.9087 1.4554 1.5644

1.6071 2.1407 1.8927 1.2754 1.0914 0.5167 0 0.3920 0.9387 1.0477

1.2151 1.7487 2.2847 1.6674 1.4834 0.9087 0.3920 0 0.5467 0.6557

0.6684 1.2021 1.9554 2.2141 2.0301 1.4554 0.9387 0.5467 0 0.1090

0.5594 1.0931 1.8464 2.3231 2.1391 1.5644 1.0477 0.6557 0.1090 0

diff =

7.3898

>> [fit,vaf,addcon] = cirfitac(morse_digits,1:10)

fit =

0 0.2928 0.7250 1.0212 1.0446 0.9996 0.7238 0.4924 0.2124 0.2124

0.2928 0 0.4322 0.7284 0.7518 1.0856 1.0166 0.7852 0.5052 0.5052

0.7250 0.4322 0 0.2962 0.3196 0.6534 0.9292 1.1606 0.9374 0.9374

1.0212 0.7284 0.2962 0 0.0234 0.3572 0.6330 0.8644 1.1444 1.1444

1.0446 0.7518 0.3196 0.0234 0 0.3338 0.6096 0.8410 1.1210 1.1210

0.9996 1.0856 0.6534 0.3572 0.3338 0 0.2758 0.5072 0.7872 0.7872

0.7238 1.0166 0.9292 0.6330 0.6096 0.2758 0 0.2314 0.5114 0.5114

0.4924 0.7852 1.1606 0.8644 0.8410 0.5072 0.2314 0 0.2800 0.2800

0.2124 0.5052 0.9374 1.1444 1.1210 0.7872 0.5114 0.2800 0 0.0000

0.2124 0.5052 0.9374 1.1444 1.1210 0.7872 0.5114 0.2800 0.0000 0

vaf =

0.7051

addcon =

-0.8031

30

5.1.1 The M-function unicirac.m

The function M-file, unicirac.m, carries out a circular unidimensional scal-
ing of a symmetric dissimilarity matrix (with the estimation of an additive
constant) using an iterative quadratic assignment strategy (and thus, can be
viewed an analogue of uniscalqa.m for the LUS task). We begin with an
equally-spaced circular target constructed using the M-file targcir.m (that
could be invoked with the command targcir(10)), a (random) starting
permutation, and then use a sequential combination of the pairwise inter-
change/rotation/insertion heuristics; the target matrix is re-estimated based
on the identified (locally optimal) permutation. The whole process is re-
peated until no changes can be made in the target or the identified (locally
optimal) permutation. The explicit usage syntax is

[find,vaf,outperm,addcon] = unicirac(prox,inperm,kblock)

where the various terms should now be familiar. The given starting permu-
tation, inperm, is of the first n integers (assumed to be around the circle);
find is the least-squares optimal matrix (with variance-accounted-for of vaf)
to prox having the appropriate circular form for the row and column object
ordering given by the final permutation, outperm. The spacings between the
objects are given by the entries immediately above the main diagonal in find

(and the extreme (1, n) entry in find). The block size in the use the iterative
quadratic assignment routine is kblock; the additive constant for the model
is given by addcon.

The problem of local optima is much more severe in CUS than in LUS.
Given the heuristic identification of inflection points (i.e., the clock- or coun-
terclockwise change of direction for the calculation of distances between ob-
ject pairs), the relevant spacings can vary somewhat depending on the ‘equiv-
alent’ orderings identified around a circular structure. The example given
below was identified as the best achievable (and for some multiple number
of times) over 100 random starting permutations for inperm; with its vaf of
71.90%, it is apparently the best attainable. Given the (equivalent to the)
identity permutation identified for outperm, the substantive interpretation
for this representation is fairly clear — we have a nicely interpretable order-
ing of the Morse code symbols around a circular structure involving a regular

31

replacement of dashes by dots moving clockwise until the symbol containing
all dots is reached, and then a subsequent replacement of the dots by dashes
until the initial symbol containing all dashes is reached.

>> [find,vaf,outperm,addcon] = unicirac(morse_digits,randperm(10),2)

find =

0 0.0247 0.3620 0.6413 0.9605 1.1581 1.1581 1.0358 0.7396 0.3883

0.0247 0 0.3373 0.6165 0.9358 1.1334 1.1334 1.0606 0.7643 0.4131

0.3620 0.3373 0 0.2793 0.5985 0.7961 0.7961 1.0148 1.1016 0.7503

0.6413 0.6165 0.2793 0 0.3193 0.5169 0.5169 0.7355 1.0318 1.0296

0.9605 0.9358 0.5985 0.3193 0 0.1976 0.1976 0.4163 0.7125 1.0638

1.1581 1.1334 0.7961 0.5169 0.1976 0 0.0000 0.2187 0.5149 0.8662

1.1581 1.1334 0.7961 0.5169 0.1976 0.0000 0 0.2187 0.5149 0.8662

1.0358 1.0606 1.0148 0.7355 0.4163 0.2187 0.2187 0 0.2963 0.6475

0.7396 0.7643 1.1016 1.0318 0.7125 0.5149 0.5149 0.2963 0 0.3513

0.3883 0.4131 0.7503 1.0296 1.0638 0.8662 0.8662 0.6475 0.3513 0

vaf =

0.7190

outperm =

4 5 6 7 8 9 10 1 2 3

addcon =

-0.7964

The plotting function circularplot.m

To assist in the visualization of the results from a circular unidimensional
scaling, the M-function called circularplot.m, provides the coordinates of
a scaling around a circular structure plus a plot of the (labeled) objects
around the circle. The usage syntax is

[circum,radius,coord,degrees,cumdegrees] = ...

circularplot(circ,inperm)

The coordinates are derived from the n×n interpoint distance matrix (around
a circle) given by circ; the positions are labeled by the order of objects given
in inperm. The output consists of a plot, the circumference of the circle
(circum) and radius (radius); the coordinates of the plot positions (coord),
and the degrees and cumulative degrees induced between the plotted positions
(in degrees and cumdegrees). The positions around the circle are numbered

32

from 1 (at the ‘noon’ position) to n, moving clockwise around the circular
structure.

As an example, Figure 4 provides an application of circularplot.m to
the just given example of unicirac.m. The text output also appears below:

>> [circum,radius,coord,degrees,cumdegrees] = circularplot(find,outperm)

circum =

2.4126

radius =

0.3840

coord =

0 0.3840

0.0247 0.3832

0.3107 0.2256

0.3821 -0.0380

0.2293 -0.3080

0.0481 -0.3810

0.0481 -0.3810

-0.1649 -0.3468

-0.3600 -0.1336

-0.3254 0.2038

degrees =

0.0644

0.8783

0.7273

0.8315

0.5146

0.0000

0.5695

0.7716

0.9148

1.0113

cumdegrees =

0.0644

0.9428

1.6700

2.5015

3.0161

3.0161

3.5856

4.3571

5.2719

6.2832

33

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4 4 5

6

7

8

910
1

2

3

Figure 4: Two-dimensional Circular Plot for the morse digits Data Obtained Using circu-
larplot.m.

34

5.1.2 Using unicirac.m on the Supreme Court Proximity Matrix

To illustrate the use of CUS when a data set is well-represented by LUS,
as is supreme_agree, a verbatim output is provided below. This shows the
common occurrence of a very large spacing constructed between the first and
last justices, and one that is much larger than the others. The CUS model
tries, more-or-less, to mimic a LUS model as best it can.

>> [find,vaf,outperm,addcon] = unicirac(supreme_agree,randperm(9),3)

find =

0 0.0837 0.6183 0.6183 0.3822 0.3374 0.2893 0.0421 0.0421

0.0837 0 0.5346 0.5346 0.4658 0.4211 0.3730 0.1258 0.1258

0.6183 0.5346 0 -0.0000 0.1349 0.1797 0.2278 0.4749 0.4749

0.6183 0.5346 -0.0000 0 0.1349 0.1797 0.2278 0.4749 0.4749

0.3822 0.4658 0.1349 0.1349 0 0.0448 0.0929 0.3400 0.3400

0.3374 0.4211 0.1797 0.1797 0.0448 0 0.0481 0.2953 0.2953

0.2893 0.3730 0.2278 0.2278 0.0929 0.0481 0 0.2472 0.2472

0.0421 0.1258 0.4749 0.4749 0.3400 0.2953 0.2472 0 0.0000

0.0421 0.1258 0.4749 0.4749 0.3400 0.2953 0.2472 0.0000 0

vaf =

0.9434

outperm =

2 1 9 8 7 6 5 3 4

addcon =

-0.2286

5.1.3 Using uniscalqa.m on the Morse Code Proximity Matrix

To now illustrate the use of a LUS model when the data are nicely inter-
pretable with a CUS structure, as is morse_digits (displayed in Figure 4),
we show the application on the latter data matrix of both uniscalqa.m and
linfitac.m. The vaf for the constructed LUS structure is 58.53% compared
with 70.51% for the CUS result given earlier. The output permutation of [10
9 1 8 2 7 6 3 4 5], however, now simply represents a projection of the symbols
on a vertical axis imposed on the circular plot of Figure 4. In other words,
we lose the nice circular interpretation of the data – a not uncommon result
for this type of proximity matrix.

>> load morse_digits.dat

35

>> [outperm,rawindex,allperms,index,coord,diff] = uniscalqa(morse_digits,targlin(10),randperm(10),2)

outperm =

10 9 1 8 2 7 6 3 4 5

rawindex =

174.3040

index =

14

coord =

-1.3120

-1.1530

-0.8880

-0.5570

-0.2110

0.1350

0.5170

0.7990

1.2070

1.4630

diff =

14.3915

>> [fit,vaf,coord,addcon] = linfitac(morse_digits,outperm)

fit =

0 0 0.0511 0.1865 0.3370 0.4874 0.6738 0.7602 0.9726 1.0330

0 0 0.0511 0.1865 0.3370 0.4874 0.6738 0.7602 0.9726 1.0330

0.0511 0.0511 0 0.1354 0.2858 0.4362 0.6227 0.7091 0.9215 0.9819

0.1865 0.1865 0.1354 0 0.1504 0.3008 0.4872 0.5737 0.7861 0.8465

0.3370 0.3370 0.2858 0.1504 0 0.1504 0.3368 0.4232 0.6357 0.6961

0.4874 0.4874 0.4362 0.3008 0.1504 0 0.1864 0.2728 0.4852 0.5457

0.6738 0.6738 0.6227 0.4872 0.3368 0.1864 0 0.0864 0.2988 0.3592

0.7602 0.7602 0.7091 0.5737 0.4232 0.2728 0.0864 0 0.2124 0.2728

0.9726 0.9726 0.9215 0.7861 0.6357 0.4852 0.2988 0.2124 0 0.0604

1.0330 1.0330 0.9819 0.8465 0.6961 0.5457 0.3592 0.2728 0.0604 0

vaf =

0.5853

coord =

-0.4502

-0.4502

-0.3990

-0.2636

-0.1132

0.0372

36

0.2236

0.3100

0.5225

0.5829

addcon =

-0.9779

6 LUS for Two-Mode (Rectangular) Proximity Data

The proximity data considered thus far for obtaining some type of structure,
such as a LUS or CUS, have been assumed to be on one intact set of objects,
S = {O1, . . . , On}, and complete in the sense that proximity values are present
between all object pairs. Suppose now that the available proximity data are
two-mode, and between two distinct object sets, SA = {O1A, . . . , OnaA} and
SB = {O1B, . . . , OnbB}, containing na and nb objects, respectively, given by
an na×nb proximity matrix Q = {qrs}. Again, we assume that the entries in
Q are keyed as dissimilarities, and a joint structural representation is desired
for the combined set SA ∪SB. We might caution at the outset of the need to
have legitimate proximities to make the analyses to follow very worthwhile or
interpretable. There are many numerical elicitation schemes where subjects
(e.g., raters) are asked to respond to some set of objects (e.g., items). If the
elicitation is for, say, preference, then proximity may be a good interpretation
for the numerical values. If, on the other hand, the numerical value is merely
a rating given on some more-or-less objective criterion where only errors of
observation induce the variability from rater to rater, then probably not.

To have an example of a two-mode data set that might be used in our
illustrations, we extracted a 5×4 section from our supreme_agree proximity
matrix. The five rows correspond to the judges, {St,Gi,Oc,Re,Th}; the four
columns to {Br,So,Ke,Sc}; the corresponding file, supreme_agree5x4.dat,
has contents:

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

Because of the way the joint set of row and columns objects is numbered, the

37

five rows are labeled from 1 to 5 and the four columns from 6 to 9. Thus,
the correspondence between the justices and numbers differs from earlier
applications: 1:St; 2:Gi; 3:Oc; 4:Re; 5:Th; 6:Br; 7:So; 8:Ke; 9:Sc

6.1 Reordering Two-Mode Proximity Matrices

Given an na × nb two-mode proximity matrix, Q, defined between the two
distinct sets, SA and SB, it may be desirable to reorder separately the rows
and columns of Q to display some type of pattern that may be present in
its entries, or to obtain some joint permutation of the n (= na + nb) row
and column objects to effect some further type of simplified representation.
These kinds of reordering tasks will be approached with a variant of the
quadratic assignment heuristics of the earlier LUS discussion applied to a
square, (na + nb)× (na + nb), proximity matrix, P(tm), in which a two-mode
matrix Q(dev) and its transpose (where Q(dev) is constructed from Q by devi-
ating its entries from the mean proximity), form the upper-right- and lower-
left-hand portions, respectively, with zeros placed elsewhere. (This use of zero
in the presence of deviated proximities, appears a reasonable choice generally
in identifying good reorderings of P(tm). Without this type of deviation strat-
egy, there would typically be no ‘mixing’ of the row and column objects in
the permutations that we would identify for the combined [row and column]
object set.) Thus, for 0 denoting (an appropriately dimensioned) matrix of
all zeros,

P(tm) =

 0na×na

Q(dev)na×nb

Q′
(dev)nb×na

0nb×nb

 ,

is the (square) n× n proximity matrix subjected to a simultaneous row and
column reordering, which in turn will induce separate row and column re-
orderings for the original two-mode proximity matrix Q.

The M-file, ordertm.m, implements a quadratic assignment reordering
heuristic on the derived matrix P(tm), with usage

[outperm,rawindex,allperms,index,squareprox] = ...

ordertm(proxtm,targ,inperm,kblock)

where the two-mode proximity matrix proxtm (with its entries deviated from
the mean proximity within the use of the M-file) forms the upper-right-

38

and lower-left-hand portions of a defined square (n × n) proximity matrix
(squareprox) with a dissimilarity interpretation, and with zeros placed else-
where (n = number of rows + number of columns of proxtm = na +nb); three
separate local operations are used to permute the rows and columns of the
square proximity matrix to maximize the cross-product index with respect
to a square target matrix targ: (a) pairwise interchanges of objects in the
permutation defining the row and column order of the square proximity ma-
trix; (b) the insertion of from 1 to kblock (which is less than or equal to
n − 1) consecutive objects in the permutation defining the row and column
order of the data matrix; (c) the rotation of from 2 to kblock (which is less
than or equal to n − 1) consecutive objects in the permutation defining the
row and column order of the data matrix. The beginning input permutation
(a permutation of the first n integers) is inperm; proxtm is the two-mode
na × nb input proximity matrix; targ is the n× n input target matrix. The
final permutation of squareprox is outperm, having the cross-product index
rawindex with respect to targ; allperms is a cell array containing index

entries corresponding to all the permutations identified in the optimization
from allperms{1} = inperm to allperms{index} = outperm.

In the example to follow, ordertm.m, is used on the supreme_agree5x4

dissimilarity matrix. The square equally-spaced target matrix is obtained
from the LUS utility, targlin.m. The (reordered) matrix, squareprox (using
the permutation, outperm), shows clearly the unidimensional pattern for a
two-mode data matrix that will be explicitly fitted in the next section of this
chapter. The order of the justices is as expected in the new coding scheme,
except for the minor inversion of Th:5 and Sc:9 — St:1 Â Br:6 Â Gi:2 Â So:7
Â Oc:3 Â Ke:8 Â Re:4 Â Th:5 Â Sc:9

>> load supreme_agree5x4.dat

>> supreme_agree5x4

supreme_agree5x4 =

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

>> [outperm,rawindex,allperms,index,squareprox] = ordertm(supreme_agree5x4,targlin(9),randperm(9),3)

outperm =

39

1 6 2 7 3 8 4 5 9

rawindex =

14.1420

index =

17

>> squareprox(outperm,outperm)

ans =

0 -0.1690 0 -0.0990 0 0.1710 0 0 0.3910

-0.1690 0 -0.1890 0 -0.0190 0 0.1010 0.2910 0

0 -0.1890 0 -0.2490 0 0.0410 0 0 0.2510

-0.0990 0 -0.2490 0 -0.0190 0 0.0910 0.2410 0

0 -0.0190 0 -0.0190 0 -0.1390 0 0 -0.0090

0.1710 0 0.0410 0 -0.1390 0 -0.2390 -0.0590 0

0 0.1010 0 0.0910 0 -0.2390 0 0 -0.1290

0 0.2910 0 0.2410 0 -0.0590 0 0 -0.2590

0.3910 0 0.2510 0 -0.0090 0 -0.1290 -0.2590 0

6.2 Fitting a Two-Mode Unidimensional Scale

It is possible to fit unidimensional scales to two-mode proximity data based on
a given permutation of the combined row and column object set. Specifically,
if ρ(·) denotes some given permutation of the first n integers (where the
first na integers denote row objects labeled 1, 2, . . . , na, and the remaining nb

integers denote column objects, labeled na + 1, na + 2, . . . , na + nb (= n)), we
seek a set of coordinates, x1 ≤ x2 ≤ · · · ≤ xn, such that using the reordered
square proximity matrix, P(tm)

ρ0
= {p(tm)

ρ0(i)ρ0(j)}, the least-squares criterion

n∑

i,j=1
wρ0(i)ρ0(j)(p

(tm)
ρ0(i)ρ0(j) − |xj − xi|)2,

is minimized, where wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both
column objects, and = 1 otherwise. The entries in the matrix fitted to P(tm)

ρ0

are based on the absolute coordinate differences (and which correspond to
nonzero values of the weight function wρ0(i)ρ0(j)), and thus satisfy certain linear
inequality constraints generated from how the row and column objects are
intermixed by the given permutation ρ0(·). To give a schematic representation
of how these constraints are generated, suppose r1 and r2 (c1 and c2) denote

40

two arbitrary row (column) objects, and suppose the following 2 × 2 matrix
represents what is to be fitted to the four proximity values present between
r1, r2 and c1, c2:

c1 c2

r1 a b

r2 c d

Depending on how these four objects are ordered (and intermixed) by the
permutation ρ0(·), certain constraints must be satisfied by the entries a, b, c,
and d. The representative constraints are given schematically below according
to the types of intermixing that might be present:

(a) r1 ≺ r2 ≺ c1 ≺ c2 implies a + d = b + c;
(b) r1 ≺ c1 ≺ r2 ≺ c2 implies a + c + d = b;
(c) r1 ≺ c1 ≺ c2 ≺ r2 implies a + c = b + d;
(d) r1 ≺ r2 ≺ c1 implies c ≤ a;
(e) r1 ≺ c1 ≺ c2 implies a ≤ b.

The confirmatory unidimensional scaling of a two-mode proximity matrix
(based on iterative projection using a given permutation of the row and col-
umn objects) is carried out with the M-file, linfittm, with usage

[fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

Here, proxtm is the two-mode proximity matrix, and inperm is the given or-
dering of the row and column objects pooled together; fit is an na×nb matrix
of absolute coordinate differences fitted to proxtm(rowperm,colperm), with
diff being the (least-squares criterion) sum of squared discrepancies between
fit and proxtm(rowperm,colperm); rowperm and colperm are the row and
column object orderings derived from inperm. The (na + nb) = n coordi-
nates (ordered with the smallest such coordinate value set at zero) are given
in coord. The example given below uses the permutation obtained from
ordertm.m on the data matrix supreme_agree5x4.

>> inperm = [1 6 2 7 3 8 4 5 9]

inperm =

1 6 2 7 3 8 4 5 9

41

>> [fit,diff,rowperm,colperm,coord] = linfittm(supreme_agree5x4,inperm)

fit =

0.1635 0.2895 0.6835 1.0335

0.0865 0.0395 0.4335 0.7835

0.4065 0.2805 0.1135 0.4635

0.6340 0.5080 0.1140 0.2360

0.7965 0.6705 0.2765 0.0735

diff =

0.2849

rowperm =

1

2

3

4

5

colperm =

1

2

3

4

coord =

0

0.1635

0.2500

0.2895

0.5700

0.6835

0.7975

0.9600

1.0335

In complete analogy with the LUS discussion (where the M-file, linfitac.m,
generalizes linfit.m by fitting an additive constant along with the absolute
coordinate differences), the more general unidimensional scaling model can
be fitted with an additive constant using the M-file, linfittmac.m. Specif-
ically, we now seek a set of coordinates, x1 ≤ x2 ≤ · · · ≤ xn, and an ad-
ditive constant c, such that using the reordered square proximity matrix,
P(tm)

ρ0
= {p(tm)

ρ0(i)ρ0(j)}, the least-squares criterion

n∑

i,j=1
wρ0(i)ρ0(j)(p

(tm)
ρ0(i)ρ0(j) + c− |xj − xi|)2,

42

is minimized, where again wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or
both column objects, and = 1 otherwise. The M-file usage is

[fit,vaf,rowperm,colperm,addcon,coord] = ...

linfittmac(proxtm,inperm)

and does a confirmatory two-mode fitting of a given unidimensional order-
ing of the row and column objects of a two-mode proximity matrix, proxtm,
using the Dykstra-Kaczmarz iterative projection least-squares method. In
comparison, the M-file linfittmac.m differs from linfittm.m by including
the estimation of an additive constant, and thus allowing vaf to be legiti-
mately given as the goodness-of-fit index (as opposed to just diff as we did in
linfittm.m). Again, inperm is the given ordering of the row and column ob-
jects together; fit is an na (number of rows) by nb (number of columns) ma-
trix of absolute coordinate differences fitted to proxtm(rowperm,colperm);
rowperm and colperm are the row and column object orderings derived from
inperm. The estimated additive constant, addcon, can be interpreted as
being added to proxtm (or alternatively, subtracted from the fitted matrix
fit).

The same exemplar permutation is used below (as for linfittm.m); follow-
ing the MATLAB output that now includes the additive constant of −.2132
and the vaf of .9911, the two unidimensional scalings (in their coordinate
forms) are provided in tabular form with an explicit indication of what is a
row object (R) and what is a column object (C).

>> [fit,vaf,rowperm,colperm,addcon,coord] = linfittmac(supreme_agree5x4,[1 6 2 7 3 8 4 5 9])

fit =

0.0974 0.1405 0.4469 0.6325

0.0431 0 0.3064 0.4920

0.2594 0.2163 0.0901 0.2757

0.3803 0.3372 0.0309 0.1548

0.5351 0.4920 0.1856 0

vaf =

0.9911

rowperm =

1

2

43

Table 3: The Two Unidimensional Scalings of the supreme agree5x4 Data Matrix.

justice number R or C no constant with constant
St 1 R .0000 .0000
Br 6 C .1635 .0974
Gi 2 R .2500 .1405
So 7 C .2895 .1405
Oc 3 R .5700 .3568
Ke 8 C .6835 .4469
Re 4 R .7975 .4777
Th 5 R .9600 .6325
Sc 9 C 1.0335 .6325

3

4

5

colperm =

1

2

3

4

addcon =

-0.2132

coord =

0

0.0974

0.1405

0.1405

0.3568

0.4469

0.4777

0.6325

0.6325

7 Order-Constrained Partition Construction

The classification task considered in the present section is one of constructing
an (optimal) ordered partition for a set of n objects, S = {O1, . . . , On},

44

defined by a collection of M mutually exclusive and exhaustive subsets of S,
denoted S1, S2, . . . , SM , for which an order is imposed on the placement of the
classes, S1 ≺ S2 ≺ · · · ≺ SM , and also a prior order is present for the objects
within classes. Again, the data available to guide this search are assumed to
be in the form of an n×n symmetric proximity matrix P = {pij}. In general,
the identification of an optimal ordered partition for S will be carried out
by the maximization of an index of merit intended to measure how well a
given ordered partition reflects the data in P. The initial constraining object
order will be constructed with the (heuristic) unidimensional scaling routine,
uniscalqa.m, discussed in Section 2.2.

A merit measure can be developed directly based on a coordinate rep-
resentation for each of the M ordered classes, S1 ≺ S2 ≺ · · · ≺ SM , that
generalizes the use of the single term

∑
i(t

(ρ)
i)2 for a unidimensional scaling

discussed in Section 2. Here, M coordinates, x1 ≤ · · · ≤ xM , are to be
identified so that the residual sum-of-squares

∑

k≤k′

∑

ik∈Sk, jk′∈Sk′
(pikjk′− | xk′ − xk |)2,

is minimized (the notation pikjk′ indicates those proximities in P defined be-
tween objects with subscripts ik ∈ Sk and jk′ ∈ Sk′). Define each of the
sets, Ω1, . . . , ΩM , by the n subsets of S that contain the first i objects,
{O1, . . . , Oi}, for 1 ≤ i ≤ n; a transformation of an entity in Ωk−1 (say,
Ak−1) to one in Ωk (say, Ak) is possible if Ak−1 ⊂ Ak.

A direct extension of the argument that led to optimal coordinate repre-
sentation for single objects would require the maximization of

M∑

k=1
(

1

nk
)(G(Ak − Ak−1))

2, (10)

where G(Ak − Ak−1) =

∑

k′∈Ak−Ak−1

∑

i′∈Ak−1

pk′i′ −
∑

k′∈Ak−Ak−1

∑

i′∈S−Ak

pk′i′,

and nk denotes the number of objects in Ak − Ak−1. If an optimal ordered
partition that maximizes (10) is denoted by S∗1 ≺ · · · ≺ S∗M , the optimal

45

coordinates for each of the M classes can be given as

x∗k = (
1

nnk
)G(S∗k), (11)

where x∗1 ≤ · · · ≤ x∗M , and
∑

k nkx
∗
k = 0. The residual sum-of-squares has the

form
∑

i<j

p2
ij − (

1

n
)

∑

k

(
1

nk
)(G(S∗k))

2. (12)

7.1 The Dynamic Programming Implementation

Given the proximity matrix, P, suppose we have a constraining object order,
assumed without loss of generality, for now, to be the identity order, and
used to label the rows and columns of P. An order constrained clustering
consists of finding a set of M classes, S1, . . . , Sk, . . . , SM , having nk objects
in Sk and where the objects in Sk are consecutive:

{On1+···+nk−1+1, On1+···+nk−1+2, . . . , On1+···+nk−1+nk
}.

A recursive dynamic programming strategy can be used to solve this task that
we implement in the M-file, orderpartitionfnd.m. In the session recorded
below, we give the help information for this M-file (as well as in the Ap-
pendix) and run it on the supreme_agree data with a constraining identity
permutation on the objects obtained from the previous unidimensional scal-
ing. Generally, the class membership into from 1 to n ordered classes is given
by the two n× n matrices of membership and permmember with rows corre-
sponding to the number of ordered classes constructed and columns to the
objects. The identity permutation also labels the columns of membership;
the constraining object order labels the columns of permmember (in this ex-
ample, these two permutations happen to be the same). The two vectors
of objectives and residsumsq contain, respectively, the values maximized
in (10) and the corresponding residual sums-of-squares from (12). We will
continue with the interpretation after the verbatim output from the session
is provided.

>> load supreme_agree.dat

>> help orderpartitionfnd.m

46

ORDERPARTITIONFND uses dynamic programming to

construct a linearly constrained cluster analysis that

consists of a collection of partitions with from 1 to

n ordered classes.

syntax: [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(prox,lincon)

PROX is the input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation); LINCON is the given

constraining linear order (a permutation of the integers from

1 to n).

MEMBERSHIP is the n x n matrix indicating cluster membership,

where rows correspond to the number of ordered clusters,

and the columns are in the identity permutation input order

used for PROX. PERMMEMBER uses LINCON to reorder the columns

of MEMBERSHIP.

OBJECTIVES is the vector of merit values maximized in the

construction of the ordered partitions; RESIDSUMSQ is the

vector of residual sum of squares obtained for the ordered

partition construction. CLUSMEASURE is the n x n matrix

(upper-triangular) containing the cluster measures for contiguous

object sets; the appropriate values in CLUSMEASURE are added

to obtain the values optimized in OBJECTIVES; CLUSCOORD is also

an n x n (upper-triangular) matrix but now containing the coordinates

that would be would be used for all the (ordered)

objects within a class.

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,[1 2 3 4 5 6 7 8 9])

membership =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

objectives =

0

73.8432

83.2849

86.9479

88.1095

88.6861

89.0559

89.2241

89.3166

permmember =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

47

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

clusmeasure =

23.6196 32.8860 38.7361 41.0240 30.0125 19.4400 10.2972 2.4865 0

0 10.5625 17.5232 21.0675 13.6530 7.0567 2.1961 0.0229 2.9524

0 0 7.1289 11.0450 5.7132 1.8090 0.0289 2.2204 9.3960

0 0 0 4.1209 1.0804 0.0001 1.3110 7.9885 19.3681

0 0 0 0 0.3136 2.0201 6.2208 17.4306 32.8192

0 0 0 0 0 2.1025 7.0688 20.2280 37.5156

0 0 0 0 0 0 5.3361 20.0978 38.8800

0 0 0 0 0 0 0 16.2409 36.0401

0 0 0 0 0 0 0 0 19.8916

cluscoord =

-0.5400 -0.4506 -0.3993 -0.3558 -0.2722 -0.2000 -0.1348 -0.0619 0

0 -0.3611 -0.3289 -0.2944 -0.2053 -0.1320 -0.0672 0.0063 0.0675

0 0 -0.2967 -0.2611 -0.1533 -0.0747 -0.0084 0.0676 0.1287

0 0 0 -0.2256 -0.0817 -0.0007 0.0636 0.1404 0.1996

0 0 0 0 0.0622 0.1117 0.1600 0.2319 0.2847

0 0 0 0 0 0.1611 0.2089 0.2885 0.3403

0 0 0 0 0 0 0.2567 0.3522 0.4000

0 0 0 0 0 0 0 0.4478 0.4717

0 0 0 0 0 0 0 0 0.4956

residsumsq =

10.3932

2.1884

1.1393

0.7323

0.6033

0.5392

0.4981

0.4794

0.4691

To interpret this example further, it appears that five ordered classes may
be a good ‘stopping point’ for the clustering process — moving to four gives
a noticeable drop in the achievable objective function value. The fifth row of
membership is the vector 5 4 4 4 3 2 2 1 1, and thus the justice partition-
ing of {{St},{Br, Gi, So},{Oc},{Ke,Re},{Sc,Th}}, clearly placing O’Connor
in a separate ‘swing’ class. The objectives value for this partition is 88.1095,
and can be reconstructed from the values in clusmeasure that delineate the
extent of the various classes, i.e., the values in this matrix at positions (1,1),
(2,4), (5,5), (6,7), (8,9): 23.6196 + 21.0675 + .3136 + 7.0688 + 36.0401 =

48

88.1096 (≈ 88.1095 to rounding). The coordinates for the classes are given
in these same positions in the matrix cluscoord: −.5400; −.2944; .0622;
.2089; .4717. Weighting these by the class sizes of 1, 3, 1, 2, 2, respectively,
and then summing, gives the value (to rounding) of 0.0 (i.e., the constraint
∑

k nkx
∗
k = 0 is satisfied). Finally, the residual sum-of-squares of .6033 is re-

constructible from (12) as 10.3932− (1/9)88.1096, where 10.3932 is
∑

i<j p2
ij,

and is always given as the first entry in residsumsq corresponding to only
one class that must be placed at a coordinate value of 0.0 (because of the
constraint

∑
k nkx

∗
k = 0).

7.2 Two Utility Functions For Coordinate Estimation

When constructing ordered partitions through optimizing the measure in
(10), the coordinates were generated as a byproduct through the closed-form
expression in (11). For some extensions we contemplate, and particularly
to multiple dimensions and the imposition of ordered partitions on each,
it would be useful to have a fitting mechanism that would not depend on
the presence of nonnegative proximities. To this end we provide two util-
ity M-files, linfit_tied.m and linfitac_tied.m, that for a given ordered
partition and underlying constraining object order, will fit the M coordi-
nates, x1 ≤ · · · ≤ xM (and an additional additive constant c in the case of
linfitac_tied.m) by minimizing

∑

k≤k′

∑

ik∈Sk, jk′∈Sk′
(pikjk′ − (| xk′ − xk | − c))2.

The MATLAB session below includes the help comments for each M-
file and fits the five-class ordered partition found earlier. For both M-files,
the supreme_agree proximity matrix is used, along with a constraining or-
der in inperm (here, the identity), and the pattern of tied coordinates im-
posed in order along the continuum (given as the fifth row of permmember,
[5 4 4 4 2 2 1 1]).

>> load supreme_agree.dat

>> help linfit_tied.m

LINFIT_TIED does a confirmatory fitting of a given

unidimensional order using Dykstra’s

49

(Kaczmarz’s) iterative projection least-squares method. This

includes the possible imposition of tied coordinates.

syntax: [fit, diff, coord] = linfit_tied(prox,inperm,tiedcoord)

INPERM is the given order;

FIT is an $n \times n$ matrix that is fitted to

PROX(INPERM,INPERM) with least-squares value DIFF;

COORD gives the ordered coordinates whose absolute

differences could be used to reconstruct FIT; TIEDCOORD

is the tied pattern of coordinates imposed (in order)

along the continuum (using the integers from 1 up to n

to indicate the tied positions).

>> [fit,diff,coord] = linfit_tied(supreme_agree,[1 2 3 4 5 6 7 8 9],[5 4 4 4 3 2 2 1 1])

fit =

0 0.2456 0.2456 0.2456 0.6022 0.7489 0.7489 1.0117 1.0117

0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

0.6022 0.3567 0.3567 0.3567 0 0.1467 0.1467 0.4094 0.4094

0.7489 0.5033 0.5033 0.5033 0.1467 0 0 0.2628 0.2628

0.7489 0.5033 0.5033 0.5033 0.1467 0 0 0.2628 0.2628

1.0117 0.7661 0.7661 0.7661 0.4094 0.2628 0.2628 0 0

1.0117 0.7661 0.7661 0.7661 0.4094 0.2628 0.2628 0 0

diff =

0.6032

coord =

-0.5400

-0.2944

-0.2944

-0.2944

0.0622

0.2089

0.2089

0.4717

0.4717

>> help linfitac_tied.m

LINFITAC_TIED does a confirmatory fitting of a given unidimensional order

using the Dykstra--Kaczmarz iterative projection

least-squares method, but differing from linfit_tied.m in

including the estimation of an additive constant. This also allows

the possible imposition of tied coordinates.

syntax: [fit, vaf, coord, addcon] = linfitac_tied(prox,inperm,tiedcoord)

INPERM is the given order;

FIT is an $n \times n$ matrix that is fitted to

PROX(INPERM,INPERM) with variance-accounted-for VAF;

COORD gives the ordered coordinates whose absolute differences

could be used to reconstruct FIT; ADDCON is the estimated

additive constant that can be interpreted as being added to PROX.

50

TIEDCOORD is the tied pattern of coordinates imposed (in order)

along the continuum (using the integers from 1 up to n

to indicate the tied positions).

>> [fit,vaf,coord,addcon] = linfitac_tied(supreme_agree,[1 2 3 4 5 6 7 8 9],[5 4 4 4 3 2 2 1 1])

fit =

0 0.1435 0.1435 0.1435 0.3981 0.4682 0.4682 0.6289 0.6289

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.3981 0.2546 0.2546 0.2546 0 0.0701 0.0701 0.2308 0.2308

0.4682 0.3247 0.3247 0.3247 0.0701 0 0 0.1607 0.1607

0.4682 0.3247 0.3247 0.3247 0.0701 0 0 0.1607 0.1607

0.6289 0.4854 0.4854 0.4854 0.2308 0.1607 0.1607 0 0

0.6289 0.4854 0.4854 0.4854 0.2308 0.1607 0.1607 0 0

vaf =

0.9671

coord =

-0.3359

-0.1924

-0.1924

-0.1924

0.0622

0.1323

0.1323

0.2930

0.2930

addcon =

-0.2297

As can be seen in the preceding output, the coordinates given earlier for the
five-class ordered partition can be retrieved using linfit_tied.m along with
the least-squares loss value, diff, of 0.6032 (this is within a .0001 rounding
error of the previously given five-class residual sum-of-squares of 0.6033).
In incorporating the estimation of an additive constant, c, as part of the
model that is fitted with linfitac_tied, a legitimate variance-accounted-
for (V AF) measure can be given and used in place of the unnormalized
least-squares loss value (usually denoted as vaf). Here, we would define the
V AF measure as

V AF = 1−
∑

k≤k′
∑

ik∈Sk, jk′∈Sk′(pikjk′ − (| xk′ − xk | − c))2

∑
i<j(pij − p̄)2 , (13)

51

where p̄ is the mean of the off-diagonal proximities in P. The argument for
the legitimacy of a V AF measure follows the same logic as being able to
use a V AF measure only in a multiple regression that includes an additive
constant (and therefore, the least-squares structure is not forced to go through
the origin).

The normalized V AF measure may help in deciding when an unacceptable
drop is present when going from one ordered partition to another. Based on
running the MATLAB script given below, we can generate the following table:

Number of Ordered Classes Variance-Accounted-For

9 .9796
8 .9796
7 .9786
6 .9708
5 .9671
4 .9446
3 .8513
2 .6759
1 .0000

As can be seen, the five-class partition has a very high V AF of .9671, and
there is a somewhat precipitous drop of over 2% in going to one fewer; also,
in going the complete way from nine classes to five, we have a drop of only
slightly larger than 1%. So, based on this reasoning, the five-class ordered
partition might be considered the ‘stopping place’ of choice.

>> load supreme_agree.dat

>> identityperm = [1 2 3 4 5 6 7 8 9];

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,identityperm);

>> for i = 1:9

tiedcoord = permmember(10-i,:);

[fit,vaf,coord,addcon] = linfitac_tied(supreme_agree,identityperm,tiedcoord);

fits{i} = fit;

vafs{i} = vaf;

52

coords{i} = coord; addcons{i} = addcon;

end

>> for i = 1:9

vaf = vafs{i}

end

vaf =

0.9796

... (output deleted)

vaf =

0.6759

vaf =

0

7.3 Extensions to Generalized Ultrametrics

As we construct a collection of T ordered partitions of S into anywhere from
1 to n classes, and where each class within a partition defines a consecutive
set of objects with respect to some fixed ordering of the n objects, denote the
T partitions as P1,P2, . . . ,PT . Here, P1 is a partition containing n classes,
PT includes only a single class, and Pt−1 has more classes than Pt for t ≥ 2.
Based on P1,P2, . . . ,PT−1, if a corresponding collection of n × n 0/1 dis-
similarity matrices P1, . . . ,PT−1 is constructed, where a 0 in Pt indicates
an object pair defined within a class in Pt, and 1 otherwise, then for any
collection of nonnegative weights α1, . . . , αT−1, the dissimilarity matrix, say,
Pα = {p(α

ij)} ≡ ∑T−1
t=1 αtPt, defines a metric on the objects (based on the

observation that sums of metrics are metric [but with the possible extension
that allows some dissimilarities to be zero for nonidentical objects]). (We
don’t consider the partition PT defined by one class since the corresponding
PT would be identically zero and thus provides no contribution to the defining
sum of weights.) Depending on the constraints placed on P1,P2, . . . ,PT−1,
more restrictive forms for the metric defined by Pα ensue; and specific to
the restrictions made, it may be possible to retrieve P1,P2, . . . ,PT−1 and
α1, . . . , αT−1 given only Pα, provide convenient graphical representations for

53

the collection P1,P2, . . . ,PT−1, or somehow to approach the task of construct-
ing P1,P2, . . . ,PT−1 and α1, . . . , αT−1 from some given proximity matrix P
so that Pα approximates P in some explicitly defined sense.

The obvious prime exemplar for this type of structure just discussed would
be when Pt is formed from Pt−1 by uniting two or more classes in the
latter. The entries in Pα then satisfy the ultrametric inequality (p

(α)
ij ≤

max{p(α)
ik , p

(α)
jk } for all Oi, Oj, Ok ∈ S), the partition hierarchy and the weights

are retrievable given only Pα, and a representation of the hierarchical clus-
tering can be given in the form of what is usually called a dendrogram.
In a more general context where P1,P2, . . . ,PT−1 are merely restricted to
be ordered partitions, each defined by classes contiguous with respect to
some given ordering for the objects in S, the entries in the matrix Pα sat-
isfy (at the least) the anti-Robinson condition (i.e., if Oi ≺ Oj ≺ Ok, then

p
(α)
ik ≥ max{p(α)

ij , p
(α)
jk }, and can be constructed by sums of subsets of a collec-

tion of nonnegative weights α1, . . . , αT−1, just as in the more restrictive ultra-
metric context. Thus, although the same number of weights may be needed
to construct Pα as for an ultrametric, the structures definable through or-
dered partitions restricted only by the class contiguity constraint are broader
than those possible through the concept of an ultrametric.

To illustrate the fitting process for a collection of ordered partitions, we
use the membership matrix obtained from orderpartitionfnd.m as an input
argument to orderpartitionfit.m, where the latter provides a least-squares
approximation to a proximity matrix based on a given collection of partitions
with ordered classes. Note that we must remove the first row of membership
that is output from orderpartitionfnd.m before it is used as an input argu-
ment for orderpartitionfit.m. This removes the one-class ordered parti-
tion that adds nothing to the fitting but actually causes difficulty in our non-
negative least-squares routine. The latter M-file is based on the Wollan and
Dykstra (1987) Fortran subroutine code that we have rewritten and included
as an M-file called dykstra.m (this is called by orderpartitionfit.m).

The MATLAB session recorded below includes the help information for
orderpartitonfit.m and should be relatively self-explanatory. Because the
ordered partitions here happen to be hierarchically nested, the resulting fitted

54

matrix given is an ultrametric (with vaf of .7339), and built up from the
partition weights given in weights.

>> load supreme_agree.dat

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,[1 2 3 4 5 6 7 8 9]);

>> membership = membership(2:9,:);

>> membership

membership =

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

>> help orderpartitionfit.m

ORDERPARTITIONFIT provides a least-squares approximation to a proximity

matrix based on a given collection of partitions with ordered classes.

syntax: [fit,weights,vaf] = orderpartitionfit(prox,lincon,membership)

PROX is the n x n input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation); LINCON is the given constraining

linear order (a permutation of the integers from 1 to n).

MEMBERSHIP is the m x n matrix indicating cluster membership, where

each row corresponds to a specific ordered partition (there are

m partitions in general);

the columns are in the identity permutation input order used for PROX.

FIT is an n x n matrix fitted to PROX (through least-squares) constructed

from the nonnegative weights given in the m x 1 WEIGHTS vectors

corresponding to each of the ordered partitions. VAF is the variance-

accounted-for in the proximity matrix PROX by the fitted matrix FIT.

>> [fit,weights,vaf] = orderpartitionfit(supreme_agree,[1 2 3 4 5 6 7 8 9],membership)

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2550 0.2550 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2550 0 0.2550 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2550 0.2550 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2550 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2550 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

weights =

0.2388

0.0383

0.0533

0.0550

0

55

0

0.0450

0.2100

vaf =

0.7339

8 Some Possible LUS and CUS Generalizations

8.1 Additive Representation Through Multiple Structures

The use of multiple structures to represent additively a given proximity ma-
trix, whether they come from a LUS or CUS model, proceeds directly through
successive residualization and iteration. We restrict ourselves to the fitting
of two such structures but the same process would apply for any such num-
ber. Initially, a first matrix is fitted to a given proximity matrix and a first
residual matrix obtained; a second structure is then fitted to these first resid-
uals, producing a second residual matrix. Iterating, the second fitted matrix
is now subtracted from the original proximity matrix and a first (re)fitted
matrix obtained; this first (re)fitted matrix in turn is subtracted from the
original proximity matrix and a new second matrix (re)fitted. This process
continues until the vaf for the sum of both fitted matrices no longer changes
substantially.

The M-files, biscalqa.m and biscaltmac.m fit (additively) two LUS struc-
tures in the least-squares sense for, respectively, one and two-mode proximity
matrices; bicirac.m fits two CUS models. The explicit usages are

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...
biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

[find,vaf,targone,targtwo,outpermone,outpermtwo,rowpermone,colpermone,rowpermtwo, ...
colpermtwo,addconone,addcontwo,coordone,coordtwo,axes] = ...

biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

[find,vaf,targone,targtwo,outpermone,outpermtwo,addconone,addcontwo] = ...
bicirac(prox,inperm,kblock)

where (in biscalqa.m) prox is the input proximity matrix (with a zero
main diagonal and a dissimilarity interpretation); targone is the input tar-

56

get matrix for the first dimension (usually with a zero main diagonal and
a dissimilarity interpretation representing equally-spaced locations along a
continuum); targtwo is the input target matrix for the second dimension;
inpermone is the input beginning permutation for the first dimension (a
permutation of the first n integers); inpermtwo is the input beginning per-
mutation for the second dimension; the insertion and rotation routines use
from 1 to kblock (which is less than or equal to n−1) consecutive objects in
the permutation defining the row and column orders of the data matrix. The
switch variable, nopt, controls the confirmatory or exploratory fitting of the
unidimensional scales; a value of nopt = 0 will fit in a confirmatory manner
the two scales indicated by inpermone and inpermtwo; a value of nopt = 1

uses iterative QA to locate the better permutations to fit; outpermone is
the final object permutation for the first dimension; outpermtwo is the final
object permutation for the second dimension; coordone is the set of first
dimension coordinates in ascending order; coordtwo is the set of second di-
mension coordinates in ascending order; addconone is the additive constant
for the first dimension model; addcontwo is the additive constant for the
second dimension model; vaf is the variance-accounted-for in prox by the
bidimensional scaling.

In biscaltmac.m, proxtm is the input two-mode proximity matrix with
a dissimilarity interpretation; find is the least-squares optimal matrix (with
variance-accounted-for of vaf) to proxtm and is the sum of the two matrices,
targone and targtwo, based on the two row and column object orderings
given by the ending permutations, outpermone and outpermtwo, and in turn,
rowpermone and rowpermtwo, and colpermone and colpermtwo. The n× 2
matrix axes gives the plotting coordinates for the combined row and column
object set. For bicirac, inperm is the single starting permutation for both
circular structures.

Because of a later Toolbox now being constructed, we will not give an
explicit illustration here of using two fitted structures to represent a proxim-
ity matrix. Also, the primary data set we have been using, supreme_agree,
is not a particularly good example for multiple structures because only one
such device is really needed to explain everything present in the data. More
suitable proximity matrices would probably themselves be obtained by a mix-

57

ture or aggregation of other proximity matrices, reflecting somewhat different
underlying structures; hopefully, these could be ‘teased apart’ in an analysis
using multiple additive structures.

8.2 Individual Differences

One aspect of the given M-files introduced in earlier sections but not empha-
sized, is their possible use in the confirmatory context of fitting individual dif-
ferences. Explicitly, we begin with a collection of, say, N proximity matrices,
P1, . . . ,PN , obtained from N separate sources, and through some weighting
and averaging process, construct a single aggregate proximity matrix, PA.
On the basis of PA, suppose a LUS or CUS structure is constructed; we la-
bel the latter the ‘common space’ consistent with what is usually done in
the (weighted) Euclidean model in multidimensional scaling. Each of the N

proximity matrices can then be used in a confirmatory fitting of a LUS (with,
say, linfitac.m) or a CUS (with, say, cirfitac.m). A very general ‘sub-
ject/private space’ is generated for each source, and where the coordinates
are unique to that source, subject only to the order constraints of the group
space. In effect, we would be carrying out an individual differences analysis
by using a ‘deviation from the mean’ philosophy. A group structure is first
identified in an exploratory manner from an aggregate proximity matrix; the
separate matrices that went into the aggregate are then fit in a confirmatory
way, one-by-one. There does not seem to be any particular a priori advantage
in trying to carry out this process ‘all at once’; to the contrary, the simplicity
of the deviation approach and its immediate generalizability to a variety of
possible structural representations, holds out the hope of greater substantive
interpretability.

8.3 Incorporating Transformations of the Proximities

In the use of either a one- or two-mode proximity matrix, the data were
assumed ‘as is’, and without any preliminary transformation. It was noted
that some analyses leading to negative values might be more pleasingly in-
terpretable if an additive constant could be fitted along with the LUS or
CUS structures. In other words, the structures fit to proximity matrices then

58

have an invariance with respect to linear transformations of the proximities.
A more general transformation will be discussed briefly in a later section
where a centroid (metric), fit as part of the whole representational structure,
has the effect of double-centering (i.e., making the rows and columns sum to
zero). Considering the input proximity matrix deviated from the centroid,
zero sums are present within rows or columns. The analysis methods could
iterate between fitting a LUS or CUS structure and a centroid, attempting to
squeeze out every last bit of VAF. Maybe a more direct strategy (and one that
would most likely not affect substantive interpretations materially) would be
to initially double-center (either a one- or two-mode matrix), and then treat
the later to the analyses we wish to carry out, without again revisiting the
double-centering operation during the iterative process.

A more serious consideration of proximity transformation would involve
monotonic functions of the type familiar in nonmetric multidimensional scal-
ing. We provide two utilities, proxmon.m and proxmontm.m, that will allow
the user a chance to experiment with these more general transformations for
both one- and two-mode proximity matrices (as we did briefly in Section 3.2).
The usage is similar for both M-files in providing a monotonically transformed
proximity matrix that is closest in a least-squares sense to a given (usually
the structurally fitted) matrix:

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

[monproxpermuttm,vaf,diff] = proxmontm(proxpermuttm,fittedtm)

Here, proxpermut (proxpermuttm) is the input proximity matrix (which may
have been subjected to an initial row/column permutation, hence the suffix
permut), and fitted (fittedtm) is a given target matrix (typically the rep-
resentational matrix such as the identified ultrametric); the output matrix,
monproxpermut (monproxpermuttm), is closest to fitted (fittedtm) in a
least-squares sense and obeys the order constraints obtained from each pair of
entries in (the upper-triangular portion of) proxpermut or proxpermuttm. As
usual, vaf denotes ‘variance-accounted-for’ but here indicates how much vari-
ance in monproxpermut (monproxpermuttm) can be accounted for by fitted

(fittedtm); finally, diff is the value of the least-squares loss function and

59

is one-half the squared differences between the entries in fitted (fittedtm)
and monproxpermut (monproxpermuttm).

8.4 Finding and Fitting Best LUS Structures in the Presence of
Missing Proximities

The various M-files discussed thus far have required proximity matrices to
be complete in the sense of having all entries present. This was true even
for the two-mode case where the between-set proximities are assumed avail-
able although all within-set proximities were not. Two different M-files are
mentioned here (analogues of order.m and linfitac.m) allowing some of the
proximities in a symmetric matrix to be absent. The missing proximities are
identified in an input matrix, proxmiss, having the same size as the input
proximity matrix, prox, but otherwise the syntaxes are the same as earlier:

[outperm,rawindex,allperms,index] = ...

order_missing(prox,targ,inperm,kblock,proxmiss)

[fit,vaf,addcon] = linfitac_missing(prox,inperm,proxmiss)

The proxmiss matrix guides the search and fitting process so the missing data
are ignored whenever they should be considered in some kind of comparison.
Typically, there will be enough other data available that this really doesn’t
pose any difficulty.

As an illustration of the M-files just introduced, Table 4 provides data on
the ten supreme court justices present at some point during the 2005/6 term,
and the percentage of times justices disagreed in non-unanimous decisions
during the year. (These data were in the New York Times on July 2, 2006,
as part of a ‘first-page, above-the-fold’ article bylined by Linda Greenhouse
entitled ‘Roberts Is at Court’s Helm, But He Isn’t Yet in Control’.) There
is a single missing value in the table between O’Connor (Oc) and Alito (Al)
because they shared a common seat for the term until Alito’s confirmation
by Congress. Roberts (Ro) served the full year as Chief Justice so no missing
data entries involve him. As can be seen in the verbatim output to follow,
an empirically obtained ordering (presumably from ‘left’ to ‘right’) using
order_missing.m is

60

St So Br Gi Oc Ke Ro Sc Al Th
1 St .00 .28 .32 .31 .43 .62 .74 .70 .87 .76
2 So .28 .00 .17 .36 .14 .50 .61 .64 .64 .75
3 Br .32 .17 .00 .36 .29 .57 .56 .59 .65 .70
4 Gi .31 .36 .36 .00 .43 .47 .52 .61 .59 .72
5 Oc .43 .14 .29 .43 .00 .43 .33 .29 * .43
6 Ke .62 .50 .57 .47 .43 .00 .29 .35 .13 .41
7 Ro .74 .61 .56 .52 .33 .29 .00 .12 .09 .18
8 Sc .70 .64 .59 .61 .29 .35 .12 .00 .22 .16
9 Al .87 .64 .65 .59 * .13 .09 .22 .00 .17

10 Th .76 .75 .70 .72 .43 .41 .18 .16 .17 .00

Table 4: Dissimilarities Among Ten Supreme Court Justices for the 2005/6 Term. The
Missing Entry Between O’Connor and Alito is Represented With an Asterisk.

1:St Â 4:Gi Â 3:Br Â 2:So Â 5:Oc Â 6:Ke Â 7:Ro Â 8:Sc Â 9:Al Â 10:Th

suggesting rather strongly that Kennedy will most likely now occupy the mid-
dle position (although possibly shifted somewhat to the right) once O’Connor
is removed from the court’s deliberations. The best-fitting LUS structure ob-
tained with linfitac_missing.m has VAF of 86.78%, and is given in Table 5
plotted with linearplot. Notice that because of the missing values in fit,
the coordinates were entered ‘by hand’ in the vector coord before plotted
with linearplot.

>> load supreme_agree_2005_6.dat

>> load supreme_agree_2005_6_missing.dat

>> supreme_agree_2005_6

supreme_agree_2005_6 =

0 0.2800 0.3200 0.3100 0.4300 0.6200 0.7400 0.7000 0.8700 0.7600

0.2800 0 0.1700 0.3600 0.1400 0.5000 0.6100 0.6400 0.6400 0.7500

0.3200 0.1700 0 0.3600 0.2900 0.5700 0.5600 0.5900 0.6500 0.7000

0.3100 0.3600 0.3600 0 0.4300 0.4700 0.5200 0.6100 0.5900 0.7200

0.4300 0.1400 0.2900 0.4300 0 0.4300 0.3300 0.2900 0 0.4300

0.6200 0.5000 0.5700 0.4700 0.4300 0 0.2900 0.3500 0.1300 0.4100

0.7400 0.6100 0.5600 0.5200 0.3300 0.2900 0 0.1200 0.0900 0.1800

0.7000 0.6400 0.5900 0.6100 0.2900 0.3500 0.1200 0 0.2200 0.1600

0.8700 0.6400 0.6500 0.5900 0 0.1300 0.0900 0.2200 0 0.1700

0.7600 0.7500 0.7000 0.7200 0.4300 0.4100 0.1800 0.1600 0.1700 0

>> supreme_agree_2005_6_missing

supreme_agree_2005_6_missing =

0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

61

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0

>> [outperm,rawindex,allperms,index] = ...

order_missing(supreme_agree_2005_6,targlin(10),randperm(10),3,supreme_agree_2005_6_missing);

>> outperm

outperm =

1 4 3 2 5 6 7 8 9 10

>> [fit, vaf, addcon] = linfitac_missing(supreme_agree_2005_6,outperm,supreme_agree_2005_6_missing)

fit =

0 0.0967 0.1553 0.1620 0.3146 0.4873 0.5783 0.5783 0.5983 0.6490

0.0967 0 0.0587 0.0653 0.2179 0.3906 0.4816 0.4816 0.5017 0.5523

0.1553 0.0587 0 0.0067 0.1593 0.3320 0.4230 0.4230 0.4430 0.4936

0.1620 0.0653 0.0067 0 0.1526 0.3253 0.4163 0.4163 0.4363 0.4870

0.3146 0.2179 0.1593 0.1526 0 0.1727 0.2637 0.2637 -0.1567 0.3343

0.4873 0.3906 0.3320 0.3253 0.1727 0 0.0910 0.0910 0.1110 0.1616

0.5783 0.4816 0.4230 0.4163 0.2637 0.0910 0 0 0.0200 0.0707

0.5783 0.4816 0.4230 0.4163 0.2637 0.0910 0 0 0.0200 0.0707

0.5983 0.5017 0.4430 0.4363 -0.1567 0.1110 0.0200 0.0200 0 0.0506

0.6490 0.5523 0.4936 0.4870 0.3343 0.1616 0.0707 0.0707 0.0506 0

vaf =

0.8678

addcon =

-0.1567

>> coord = [.0000,.0967,.1553,.1620,.3146,.4873,.5783,.5783,.5983,.6490]

coord =

0 0.0967 0.1553 0.1620 0.3146 0.4873 0.5783 0.5783 0.5983 0.6490

>> inperm = [1 4 3 2 5 6 7 8 9 10]

inperm =

1 4 3 2 5 6 7 8 9 10

>> [linearlength] = linearplot(coord,inperm)

linearlength =

0.6490

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 4 32 5 6 78 9 10

Figure 5: The LUS Representation for the supreme agree 2005 6 Proximities Using lin-
earplot.m with the Coordinates Constructed from linfitac missing.m.

8.5 Obtaining Good Object Orders Through a Dynamic Program-
ming Strategy

We have relied on the QA optimization formulation (as in uniscalqa.m) to
obtain a basic LUS representation (or when necessary, a constraining order).
Usually, this usage is sufficient to generate a very good object ordering, es-
pecially when the routine is initiated a number of times randomly and the
best local optimum chosen. In those instances in which one may wish to
explore further the adequacy of a particular ordering in terms of the best
achievable (possibly when the proximity matrix is rather large), the M-file,
class_scaledp.m, is made available. Here, it is possible to form given classes
of the object set S to be sequenced (or possibly, to delete some of the ob-
jects from consideration altogether), and use a dynamic programming (DP)
strategy guaranteeing global optimality for the constructed ordering of the
classes. The optimization criterion is the same as in Section 2 (i.e.,

∑
i(t

ρ
i)

2),
but now the index is taken over the number of object classes formed. Given
the limitations on storage demanded by the implemented DP recursion, the
method is limited to, say, twenty or fewer object classes.

63

The syntax for this optimization strategy is

[permut,cumobfun] = class_scaledp(prox,numbclass,membclass)

Here, prox (as usual) is the n×n input proximity matrix with a dissimilarity
interpretation; numbclass is the number of object classes to be sequenced;
membclass is an n × 1 vector containing the input class membership and
includes all the integers from 1 to numbclass, with zeros when objects are
to be deleted from consideration. The output vectors are permut (the order
of the classes in the optimal permutation), and cumobfun (the cumulative
values of the objective function for the successive placements of the objects
in the optimal permutation).

In the example below on supreme_agree, the number of classes is cho-
sen to be nine, the same as the number of objects; the classes are num-
bered 1 to 9 just like the original objects, so the membclass vector is merely
[1 2 3 4 5 6 7 8 9]. What can be inferred from the identity permutation
being found for permut is that we have been using the globally optimum
result throughout.

>> load supreme_agree.dat

>> [permut,cumobfun] = class_scaledp(supreme_agree,9,[1 2 3 4 5 6 7 8 9])

permut =

1

2

3

4

5

6

7

8

9

cumobfun =

23.6196

34.1821

41.3110

45.4319

45.7455

47.8480

53.1841

69.4250

89.3166

64

8.6 Extending LUS and CUS Representations Through Additively
Imposed Centroid Matrices

In the companion Toolbox on Cluster Analysis mentioned earlier, the notion
of a matrix representing an additive tree was introduced and characterized
by a certain four-point condition that its entries must satisfy. Alternatively,
it was noted that any such matrix could be represented (in many ways)
as a sum of two matrices, say U = {uij} and C = {cij}, where U is an
ultrametric matrix (and whose entries satisfy a certain three-point condition),
and cij = gi + gj for 1 ≤ i 6= j ≤ n, and cii = 0 for 1 ≤ i ≤ n, based on some
set of values, g1, . . . , gn. We will call C a centroid metric, for convenience
(and will continue to do so even though some entries in C may be negative
because of possible negative values for g1, . . . , gn).

Computationally, one can construct a best-fitting additive tree matrix by
using the sum of an ultrametric and centroid metric, and (through residual-
ization) carry out an iterative fitting strategy using the two structures. As
noted earlier, this would try to squeeze out every last bit of VAF we could.
The same type of approach could be implemented with a replacement of the
ultrametric structure by one based on LUS (or CUS). Whether all of this it-
erative fitting is really worth it from a substantive interpretation perspective,
is questionable. A simpler alternative would be to merely fit best centroid
metrics to either the given one- or two-mode proximity matrix; residualize
the matrix from the centroid structure; and then treat the residual matrix
to whatever representation device one would wish. The syntax for the two
centroid fitting M-files is as follows (both implement closed-form expressions
for the least-squares solutions):

[fit,vaf,lengths] = centfit(prox)

[fit,vaf,lengths] = centfittm(proxtm)

In both cases, fit is the least-squares approximation matrix with VAF given
by vaf. For centfit.m, the n values defining the centroid metric are given in
lengths; in centfittm.m, the row values are followed by the column values
for the defining centroid metric.

65

As examples in the output below on supreme_agree and supreme_agree5x4,
the residual matrix from the best-fitting centroid is subjected to a LUS. One
can still see in the results most of the previously given interpretations. We
might note that in the process of residualization, the matrices so produced
sum to zero within each row or column, so we have effectively double-centered
the matrices by the residualization process.

>> load supreme_agree.dat

>> load supreme_agree5x4.dat

>> [fit,vaf,lengths] = centfit(supreme_agree)

fit =

0 0.6186 0.6043 0.5871 0.5657 0.5557 0.5643 0.6814 0.6829

0.6186 0 0.4829 0.4657 0.4443 0.4343 0.4429 0.5600 0.5614

0.6043 0.4829 0 0.4514 0.4300 0.4200 0.4286 0.5457 0.5471

0.5871 0.4657 0.4514 0 0.4129 0.4029 0.4114 0.5286 0.5300

0.5657 0.4443 0.4300 0.4129 0 0.3814 0.3900 0.5071 0.5086

0.5557 0.4343 0.4200 0.4029 0.3814 0 0.3800 0.4971 0.4986

0.5643 0.4429 0.4286 0.4114 0.3900 0.3800 0 0.5057 0.5071

0.6814 0.5600 0.5457 0.5286 0.5071 0.4971 0.5057 0 0.6243

0.6829 0.5614 0.5471 0.5300 0.5086 0.4986 0.5071 0.6243 0

vaf =

0.1908

lengths =

0.3700 0.2486 0.2343 0.2171 0.1957 0.1857 0.1943 0.3114 0.3129

>> residual_supreme_agree = supreme_agree - fit

residual_supreme_agree =

0 -0.2386 -0.2643 -0.2171 0.1043 0.0843 0.1857 0.1786 0.1671

-0.2386 0 -0.2029 -0.1757 0.0057 0.0957 0.1271 0.1900 0.1986

-0.2643 -0.2029 0 -0.2314 0.1000 0.0900 0.1414 0.1743 0.1929

-0.2171 -0.1757 -0.2314 0 0.0371 0.0971 0.1486 0.1614 0.1800

0.1043 0.0057 0.1000 0.0371 0 -0.0514 -0.1000 -0.0471 -0.0486

0.0843 0.0957 0.0900 0.0971 -0.0514 0 -0.1500 -0.0771 -0.0886

0.1857 0.1271 0.1414 0.1486 -0.1000 -0.1500 0 -0.1657 -0.1871

0.1786 0.1900 0.1743 0.1614 -0.0471 -0.0771 -0.1657 0 -0.4143

0.1671 0.1986 0.1929 0.1800 -0.0486 -0.0886 -0.1871 -0.4143 0

>> [fit,vaf,lengths] = centfittm(supreme_agree5x4)

fit =

0.5455 0.5355 0.4975 0.5915

0.4355 0.4255 0.3875 0.4815

0.4255 0.4155 0.3775 0.4715

0.4280 0.4180 0.3800 0.4740

0.5255 0.5155 0.4775 0.5715

vaf =

66

0.1090

lengths =

0.3080

0.1980

0.1880

0.1905

0.2880

0.2375

0.2275

0.1895

0.2835

>> residual_supreme_agree5x4 = supreme_agree5x4 - fit

residual_supreme_agree5x4 =

-0.2455 -0.1655 0.1425 0.2685

-0.1555 -0.2055 0.1225 0.2385

0.0245 0.0345 -0.0475 -0.0115

0.1420 0.1420 -0.1500 -0.1340

0.2345 0.1945 -0.0675 -0.3615

>> [outperm,rawindex,allperms,index] = order(residual_supreme_agree,targlin(9),randperm(9),3);

>> outperm

outperm =

9 8 7 6 5 2 4 3 1

>> [fit,vaf,coord,addcon] = linfitac(residual_supreme_agree,outperm)

fit =

0 0 0.0420 0.0999 0.1647 0.4064 0.4185 0.4226 0.4226

0 0 0.0420 0.0999 0.1647 0.4064 0.4185 0.4226 0.4226

0.0420 0.0420 0 0.0579 0.1227 0.3643 0.3765 0.3806 0.3806

0.0999 0.0999 0.0579 0 0.0648 0.3065 0.3186 0.3227 0.3227

0.1647 0.1647 0.1227 0.0648 0 0.2417 0.2538 0.2579 0.2579

0.4064 0.4064 0.3643 0.3065 0.2417 0 0.0121 0.0162 0.0162

0.4185 0.4185 0.3765 0.3186 0.2538 0.0121 0 0.0041 0.0041

0.4226 0.4226 0.3806 0.3227 0.2579 0.0162 0.0041 0 0

0.4226 0.4226 0.3806 0.3227 0.2579 0.0162 0.0041 0 0

vaf =

0.9288

coord =

-0.2196

-0.2196

-0.1776

-0.1198

-0.0549

0.1867

0.1989

0.2030

0.2030

67

addcon =

0.2232

>> [outperm,rawindex,allperms,index,squareprox] = ordertm(residual_supreme_agree5x4,targlin(9),randperm(9),3);

>> outperm

outperm =

6 1 7 2 3 8 4 5 9

>> [fit,vaf,rowperm,colperm,addcon,coord] = linfittmac(residual_supreme_agree5x4,outperm)

fit =

0 0.0000 0.3363 0.4452

0.0000 0 0.3363 0.4452

0.2249 0.2249 0.1114 0.2204

0.3671 0.3671 0.0308 0.0782

0.4452 0.4452 0.1089 0

vaf =

0.9394

rowperm =

1

2

3

4

5

colperm =

1

2

3

4

addcon =

0.2094

coord =

0

0

0.0000

0.0000

0.2249

0.3363

0.3671

0.4452

0.4452

The two M-files, cent_linearfit.m and cent_linearfnd.m, illustrated

68

below are of the ‘squeezing as much VAF as possible’ variety for the sum
of a centroid and a LUS model for a symmetric proximity matrix. The M-
files differ in that cent_linearfnd.m finds a best order to use for the LUS
component; cent_linearfit.m allows one to be imposed. The syntax for
the two files are:

[find,vaf,outperm,targone,targtwo,lengthsone,coordtwo, ...

addcontwo] = cent_linearfnd(prox,inperm)

[find,vaf,outperm,targone,targtwo,lengthsone,coordtwo, ...

addcontwo] = cent_linearfit(prox,inperm)

Here, prox is obviously the input dissimilarity matrix; inperm is the given
constraining order in cent_linearfit.m, and the beginning input order (pos-
sibly random) for cent_linearfnd.m. For output, find is the found least-
squares approximation of prox with VAF of vaf; the found or given constrain-
ing order is outperm; targtwo is the linear unidimensional scaling component
of the decomposition defined by the coordinates in coordtwo with additive
constant addcontwo.

>> [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = cent_linearfnd(supreme_agree,randperm(9))

find =

0 0.2109 0.3292 0.4051 0.4736 0.7295 0.7064 0.8659 0.7302

0.2109 0 0.3307 0.4065 0.4750 0.7309 0.7078 0.8673 0.7317

0.3292 0.3307 0 0.2483 0.3168 0.5727 0.5496 0.7091 0.5734

0.4051 0.4065 0.2483 0 0.2745 0.5303 0.5072 0.6668 0.5311

0.4736 0.4750 0.3168 0.2745 0 0.4965 0.4734 0.6329 0.4972

0.7295 0.7309 0.5727 0.5303 0.4965 0 0.2555 0.4150 0.2794

0.7064 0.7078 0.5496 0.5072 0.4734 0.2555 0 0.3628 0.2271

0.8659 0.8673 0.7091 0.6668 0.6329 0.4150 0.3628 0 0.3398

0.7302 0.7317 0.5734 0.5311 0.4972 0.2794 0.2271 0.3398 0

vaf =

0.9856

outperm =

8 9 7 6 5 2 4 1 3

targone =

0 0.4720 0.4520 0.4688 0.4861 0.5051 0.4674 0.6035 0.4619

0.4720 0 0.4535 0.4702 0.4875 0.5066 0.4689 0.6050 0.4633

69

0.4520 0.4535 0 0.4503 0.4676 0.4866 0.4489 0.5850 0.4434

0.4688 0.4702 0.4503 0 0.4844 0.5034 0.4657 0.6018 0.4601

0.4861 0.4875 0.4676 0.4844 0 0.5207 0.4830 0.6191 0.4775

0.5051 0.5066 0.4866 0.5034 0.5207 0 0.5020 0.6381 0.4965

0.4674 0.4689 0.4489 0.4657 0.4830 0.5020 0 0.6004 0.4588

0.6035 0.6050 0.5850 0.6018 0.6191 0.6381 0.6004 0 0.5949

0.4619 0.4633 0.4434 0.4601 0.4775 0.4965 0.4588 0.5949 0

targtwo =

0 0 0.1383 0.1974 0.2486 0.4855 0.5000 0.5235 0.5295

0 0 0.1383 0.1974 0.2486 0.4855 0.5000 0.5235 0.5295

0.1383 0.1383 0 0.0591 0.1103 0.3472 0.3617 0.3852 0.3912

0.1974 0.1974 0.0591 0 0.0512 0.2881 0.3026 0.3261 0.3321

0.2486 0.2486 0.1103 0.0512 0 0.2369 0.2514 0.2749 0.2809

0.4855 0.4855 0.3472 0.2881 0.2369 0 0.0146 0.0380 0.0440

0.5000 0.5000 0.3617 0.3026 0.2514 0.0146 0 0.0234 0.0294

0.5235 0.5235 0.3852 0.3261 0.2749 0.0380 0.0234 0 0.0060

0.5295 0.5295 0.3912 0.3321 0.2809 0.0440 0.0294 0.0060 0

lengthsone =

0.2353 0.2367 0.2168 0.2335 0.2508 0.2699 0.2322 0.3683 0.2266

coordtwo =

-0.2914

-0.2914

-0.1531

-0.0940

-0.0428

0.1940

0.2086

0.2321

0.2380

addcontwo =

0.2611

>> [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...

cent_linearfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

find =

0 0.3798 0.3707 0.3793 0.6305 0.6644 0.7067 0.8635 0.8650

0.3798 0 0.2492 0.2578 0.5090 0.5429 0.5852 0.7420 0.7435

0.3707 0.2492 0 0.2427 0.4939 0.5278 0.5701 0.7269 0.7284

0.3793 0.2578 0.2427 0 0.4665 0.5003 0.5427 0.6995 0.7009

0.6305 0.5090 0.4939 0.4665 0 0.2745 0.3168 0.4736 0.4750

0.6644 0.5429 0.5278 0.5003 0.2745 0 0.2483 0.4051 0.4065

0.7067 0.5852 0.5701 0.5427 0.3168 0.2483 0 0.3292 0.3307

0.8635 0.7420 0.7269 0.6995 0.4736 0.4051 0.3292 0 0.2109

0.8650 0.7435 0.7284 0.7009 0.4750 0.4065 0.3307 0.2109 0

vaf =

0.9841

70

outperm =

1 2 3 4 5 6 7 8 9

targone =

0 0.6241 0.6120 0.6026 0.6153 0.5980 0.5812 0.5997 0.6012

0.6241 0 0.5035 0.4941 0.5068 0.4895 0.4727 0.4913 0.4927

0.6120 0.5035 0 0.4821 0.4947 0.4774 0.4606 0.4792 0.4806

0.6026 0.4941 0.4821 0 0.4853 0.4680 0.4512 0.4698 0.4712

0.6153 0.5068 0.4947 0.4853 0 0.4806 0.4639 0.4824 0.4838

0.5980 0.4895 0.4774 0.4680 0.4806 0 0.4466 0.4651 0.4665

0.5812 0.4727 0.4606 0.4512 0.4639 0.4466 0 0.4483 0.4498

0.5997 0.4913 0.4792 0.4698 0.4824 0.4651 0.4483 0 0.4683

0.6012 0.4927 0.4806 0.4712 0.4838 0.4665 0.4498 0.4683 0

targtwo =

0 0.0130 0.0160 0.0341 0.2726 0.3238 0.3829 0.5212 0.5212

0.0130 0 0.0030 0.0211 0.2596 0.3108 0.3699 0.5082 0.5082

0.0160 0.0030 0 0.0180 0.2566 0.3078 0.3669 0.5051 0.5051

0.0341 0.0211 0.0180 0 0.2385 0.2897 0.3488 0.4871 0.4871

0.2726 0.2596 0.2566 0.2385 0 0.0512 0.1103 0.2486 0.2486

0.3238 0.3108 0.3078 0.2897 0.0512 0 0.0591 0.1974 0.1974

0.3829 0.3699 0.3669 0.3488 0.1103 0.0591 0 0.1383 0.1383

0.5212 0.5082 0.5051 0.4871 0.2486 0.1974 0.1383 0 0

0.5212 0.5082 0.5051 0.4871 0.2486 0.1974 0.1383 0 0

lengthsone =

0.3663 0.2578 0.2457 0.2363 0.2490 0.2317 0.2149 0.2334 0.2349

coordtwo =

-0.2316

-0.2186

-0.2156

-0.1976

0.0410

0.0922

0.1513

0.2895

0.2895

addcontwo =

0.2574

8.7 Fitting the LUS Model Through Partitions Consistent With
a Given Object Order

To show there may be several ways to approach a particular (least-squares)
fitting task, a general M-file is available, partitionfit.m, that provides a

71

least-squares approximation to a proximity matrix based on a given collection
of partitions. In the syntax

[fitted,vaf,weights,end_condition] = partitionfit(prox,member)

the input dissimilarity matrix is prox; member is the m×n matrix indicating
cluster membership, where each row corresponds to a specific partition (there
are m partitions in general); the columns of member are in the same input
order used for prox. For output, fitted is an n × n matrix approximating
prox (through least-squares) constructed from the nonnegative weights vec-
tor corresponding to the partitions. The VAF value, vaf, is for the proximity
matrix, prox, compared to fitted. The end_condition flag should be zero
for a normal termination.

As an example below, the least-squares fitting of the identity permutation
on supreme_agree with linfitac.m is replicated with partitionfit.m. The
central matrix is member, where the first eight rows correspond to the eight
separations between the justices along the line (in the jargon of graph theory,
we have eight ‘cuts’ of a graph, each defined by two disjoint [and exhaustive]
subsets, and characterized by a 0/1 dissimilarity matrix with 1’s indicating
objects present across the two separate subsets). The last row of member is
the disjoint partition representing an additive constant, and producing a sin-
gle 0/1 dissimilarity matrix with all 1’s in the off-diagonal positions. Thus,
to move from one object to another along the continuum, the various ‘gaps’
must be traversed separating the two objects. To construct the approxima-
tion, the weights attached to the gaps are summed to produce the complete
path; an additional additive constant is then imposed. Because we are using
nonnegative least-squares to obtain that weights and the additive constant,
an obtained zero value for the additive constant (i.e., we have an estimation
at the boundary) suggests the need to augment the original proximities by a
positive value before partitionfit.m is used.

>> load supreme_agree.dat

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree,1:9)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

72

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

>> member = [1 9 9 9 9 9 9 9 9;1 1 9 9 9 9 9 9 9;1 1 1 9 9 9 9 9 9;1 1 1 1 9 9 9 9 9;1 1 1 1 1 9 9 9 9;

1 1 1 1 1 1 9 9 9;1 1 1 1 1 1 1 9 9;1 1 1 1 1 1 1 1 9;1 2 3 4 5 6 7 8 9]

member =

1 9 9 9 9 9 9 9 9

1 1 9 9 9 9 9 9 9

1 1 1 9 9 9 9 9 9

1 1 1 1 9 9 9 9 9

1 1 1 1 1 9 9 9 9

1 1 1 1 1 1 9 9 9

1 1 1 1 1 1 1 9 9

1 1 1 1 1 1 1 1 9

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member)

fitted =

0 0.3485 0.3645 0.3871 0.6264 0.6769 0.7240 0.8663 0.8663

0.3485 0 0.2340 0.2567 0.4960 0.5464 0.5936 0.7359 0.7359

0.3645 0.2340 0 0.2407 0.4800 0.5305 0.5776 0.7199 0.7199

0.3871 0.2567 0.2407 0 0.4574 0.5078 0.5549 0.6972 0.6972

0.6264 0.4960 0.4800 0.4574 0 0.2685 0.3156 0.4579 0.4579

0.6769 0.5464 0.5305 0.5078 0.2685 0 0.2651 0.4075 0.4075

0.7240 0.5936 0.5776 0.5549 0.3156 0.2651 0 0.3603 0.3603

0.8663 0.7359 0.7199 0.6972 0.4579 0.4075 0.3603 0 0.2180

0.8663 0.7359 0.7199 0.6972 0.4579 0.4075 0.3603 0.2180 0

vaf =

0.9796

73

weights =

0.1304

0.0160

0.0227

0.2393

0.0504

0.0471

0.1423

0

0.2180

end_condition =

0

9 Comparing Categorical (Ultrametric) and Continu-

ous (LUS) Representations for a Proximity Matrix

One of the basic tasks of data analysis for proximity matrices lies in the
choice of representation, and in particular, whether it should be ‘continu-
ous’, as reflected in LUS, or ‘categorical’, as in the construction of a best-
fitting ultrametric. These latter discrete or categorical models are the main
topic of a companion Cluster Analysis Toolbox, and the reader is referred
to this source for specifics. Here, we demonstrate the use of imposing a
constraining object order on the analysis performed that is either given (in
cat_vs_con_orderfit.m), or is found (in cat_vs_con_orderfnd.m). In ei-
ther case, a best-fitting anti-Robinson (AR) matrix is first identified based on
the constraining order (either given or found), recalling that an AR matrix
is characterized by its entries never decreasing (and usually increasing) as
we move away from the main diagonal within a row or a column. Treating
this latter AR matrix as if it were the input proximity matrix, both a best-
fitting LUS and ultrametric structure is then identified, respecting the given
or found constraining order. We note, in particular, that the AR constraints
imposed are weaker than those for a LUS or ultrametric model, and the AR
defining inequalities are actually implicit in those for the stricter represen-
tations. This implies that one can proceed, without loss of any generality,
to obtain a LUS or ultrametric structures from the best-fitting AR matrix
treated as the input proximity matrix. The ‘successive averaging’ necessary

74

for a least-squares AR matrix is also part of and is needed to generate best
LUS or ultrametric approximations.

Generally, LUS and ultrametric structures can themselves be put into AR
forms. So, in this sense, both continuous and discrete representations are
part of a broader representational device that places an upper-bound on how
well a given proximity matrix can be represented by either a continuous or
discrete structure. For example, in its use below on the supreme_agree

data matrix, cat_vs_con_orderfnd.m finds the identity permutation as the
constraining permutation and gives a VAF of 99.55% for the best-fitting AR
matrix. The LUS model VAF of 97.96% is trivially less than that for the
AR form; in contrast, the ultrametric VAF of 73.69% is quite a drop. Given
these comparisons, one might argue that a continuous representation does
much better than a categorical one, at least for this particular proximity
matrix.

The syntax for the two M-files is very similar:

[findultra,vafultra,vafarob,arobprox,fitlinear,vaflinear,...

coord,addcon] = cat_vs_con_orderfit(prox,inperm,conperm)

[findultra,vafultra,conperm,vafarob,arobprox,fitlinear,...

vaflinear,coord,addcon] = cat_vs_con_orderfnd(prox,inperm)

As usual, prox is the input dissimilarity matrix and inperm is a start-
ing permutation for how the ultrametric constraints are searched for; in
cat_vs_con_orderfnd.m, inperm also initializes the search for a constraining
order. The permutation, conperm, in cat_vs_con_orderfit.m is the given
constraining order. As output, findultra is the best ultrametric found with
VAF of vafultra; arobprox is the best AR form identified with a VAF of
vafarob; fitlinear is the best LUS model with VAF of vaflinear with
coord containing the coordinates and addcon the additive constant. For
cat_vs_con_orderfnd.m, the identified constraining order, conperm, is also
given as an output vector.

>> load supreme_agree.dat

>> [findultra,vafultra,conperm,vafarob,arobprox,fitlinear,vaflinear, ...

coord,addcon] = cat_vs_con_orderfnd(supreme_agree,randperm(9))

75

findultra =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vafultra =

0.7369

conperm =

1 2 3 4 5 6 7 8 9

vafarob =

0.9955

arobprox =

0 0.3600 0.3600 0.3700 0.6550 0.6550 0.7500 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5300 0.5700 0.7500 0.7600

0.3600 0.2800 0 0.2200 0.4900 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.6550 0.5300 0.5100 0.5000 0.3100 0 0.2300 0.4150 0.4150

0.7500 0.5700 0.5700 0.5600 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7500 0.7200 0.6900 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0

fitlinear =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaflinear =

0.9796

coord =

-0.3462

-0.2158

-0.1998

76

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

There is one somewhat unresolved issue as to whether the LUS and ul-
trametric representations incorporate the same number of ‘weights’, because
otherwise, direct comparison of VAF values may be considered problematic.
We argue that, indeed, the number of weights are the same; there are n− 1
distinct values in an ultrametric matrix and n− 1 separations along a line in
a LUS model. The one additional additive constant for LUS that is needed
to insure invariance to linear transformations of the proximities, should not
count against the representation. The ultrametric model automatically has
such invariance, and should not be given an inherent advantage just because
of this.

9.1 Comparing Equally-Spaced Versus Unrestricted Representa-
tions for a Proximity Matrix

The fitting strategies offered by linfitac.m and cirfitac.m (as well as
ultrafit.m from the companion Cluster Analysis Toolbox), all allow un-
equal spacings to generate the least-squares approximations. This, in effect,
requires multiple weights to be constructed. At times, it may be of interest
to see how a much simpler model might fair, based only on one ‘free weight’.
In LUS, we would have equal spacings along a line; for CUS, there would be
equal spacings around a circular structure; and for an ultrametric, only mul-
tiples of the integer-valued levels (typically, n minus the number of classes
in a partition) at which new subsets are formed. In the examples below
of eqspace_linfitac.m, eqspace_cirfitac.m, and eqspace_ultrafit.m,
the addition of the prefix ‘eq’ shows the vaf, fit, or addcon for the equally-
spaced alternatives. (All of the latter, we might add, are based on simple
regression, rather than on any iterative fitting strategy.) The usual non-
equally-spaced alternatives are also given for comparison. We found the high

77

VAF of 83.83% interesting for the equally-spaced LUS model; it is remarkable
that only one weight is necessary to generate such a value.

>> load supreme_agree.dat

>> [fit, vaf, coord, addcon, eqfit, eqvaf, eqaddcon] = ...

eqspace_linfitac(supreme_agree,1:9)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

eqfit =

0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154 0.6013 0.6872

0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154 0.6013

0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154

0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295

0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436

0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577

0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718

0.6013 0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859

0.6872 0.6013 0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0

eqvaf =

0.8383

eqaddcon =

78

-0.2181

>> load morse_digits.dat

>> [fit, vaf, addcon, eqfit, eqvaf, eqaddcon] = ...

eqspace_cirfitac(morse_digits,[4 5 6 7 8 9 10 1 2 3])

fit =

0 0.0247 0.3620 0.6413 0.9605 1.1581 1.1581 1.0358 0.7396 0.3883

0.0247 0 0.3373 0.6165 0.9358 1.1334 1.1334 1.0606 0.7643 0.4131

0.3620 0.3373 0 0.2793 0.5985 0.7961 0.7961 1.0148 1.1016 0.7503

0.6413 0.6165 0.2793 0 0.3193 0.5169 0.5169 0.7355 1.0318 1.0296

0.9605 0.9358 0.5985 0.3193 0 0.1976 0.1976 0.4163 0.7125 1.0638

1.1581 1.1334 0.7961 0.5169 0.1976 0 0.0000 0.2187 0.5149 0.8662

1.1581 1.1334 0.7961 0.5169 0.1976 0.0000 0 0.2187 0.5149 0.8662

1.0358 1.0606 1.0148 0.7355 0.4163 0.2187 0.2187 0 0.2963 0.6475

0.7396 0.7643 1.1016 1.0318 0.7125 0.5149 0.5149 0.2963 0 0.3513

0.3883 0.4131 0.7503 1.0296 1.0638 0.8662 0.8662 0.6475 0.3513 0

vaf =

0.7190

addcon =

-0.7964

eqfit =

0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208

0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416

0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624

0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833

0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041

1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833

0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624

0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416

0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208

0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0

eqvaf =

0.5518

eqaddcon =

-0.8371

>> load sc_completelink_integertarget.dat

>> sc_completelink_integertarget

sc_completelink_integertarget =

0 6 6 6 8 8 8 8 8

6 0 4 4 8 8 8 8 8

6 4 0 2 8 8 8 8 8

6 4 2 0 8 8 8 8 8

8 8 8 8 0 5 5 7 7

8 8 8 8 5 0 3 7 7

79

8 8 8 8 5 3 0 7 7

8 8 8 8 7 7 7 0 1

8 8 8 8 7 7 7 1 0

>> [fit,vaf,eqfit,eqvaf] = eqspace_ultrafit(supreme_agree,sc_completelink_integertarget)

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

eqfit =

0 0.4601 0.4601 0.4601 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0 0.3067 0.3067 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0.3067 0 0.1534 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0.3067 0.1534 0 0.6135 0.6135 0.6135 0.6135 0.6135

0.6135 0.6135 0.6135 0.6135 0 0.3834 0.3834 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.3834 0 0.2300 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.3834 0.2300 0 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.5368 0.5368 0.5368 0 0.0767

0.6135 0.6135 0.6135 0.6135 0.5368 0.5368 0.5368 0.0767 0

eqvaf =

0.5927

9.2 Representing an Order-Constrained LUS and an Ultrametric
on the Same Graph

Whenever the same constraining object order is used to generate both a LUS
and ultrametric structure, it is possible to represent them jointly within the
same graphical display. The usual dendrogram showing when the new groups
form in the hierarchical clustering is given for the ultrametric, but the latter
also has its terminal nodes separated according to the coordinates constructed
for the LUS. An example is given in Figure 6 using the supreme_agree data
and the earlier analyses given with cat_vs_con_orderfnd. We believe this
provides a very nice combined representation for both the discrete and con-
tinuous models found for a proximity matrix.

80

Figure 6: A Joint Order-Constrained LUS and Ultrametric Representation for the
supreme agree Proximity Matrix

St BGSo Oc Ke Re Sc/Th

i iii i i i i

y

y

y

y

y

y

y

~

-.21 -.22 -.23

-.29
-.31

-.36

-.40

-.64

81

10 Some Bibliographic Comments

There are a number of book-length presentations of (multi)dimensional scal-
ing methods available (encompassing differing collections of subtopics within
the field). We list several of the better ones to consult in the reference section
to follow, and note these here in chronological order: Kruskal & Wish (1978);
Shiffman, Reynolds, & Young (1981); Everitt & Rabe-Hesketh (1997); Car-
roll & Arabie (1998); Cox & Cox (2001); Borg & Groenen (2005); Lattin,
Carroll, & Green (2003); Hand (2004). The items that would be closest to
the approaches taken here with MATLAB and the emphasis on least-squares,
would be the monograph by Hubert, Arabie, and Meulman (2006), and the
reviews by Hubert, Arabie, & Meulman (1997; 2001; 2003); Hubert & Stein-
ley (2005); Steinley & Hubert (in review).

82

References

[1] Borg, I., & Gronenen, P. J. F. (2005). Modern multidimensional scaling
(2nd Ed.). New York: Springer.

[2] Carroll, J. D., & Arabie, P. (1998). Multidimensional scaling. In M. H.
Birnbaum (Ed.), Handbook of perception and cognition, Vol. 3 (pp. 179–
250). San Diego: Academic Press.

[3] Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling (2nd Ed.).
Boca Raton, FL: Chapman and Hall/CRC.

[4] Everitt, B. S., & Rabe-Hesketh, S. (1997). The analysis of proximity
data. New York: Wiley.

[5] Hand, D. J. (2004). Measurement theory and practice. New York: Oxford
University Press.

[6] Hubert, L. J., Arabie, P., & Meulman, J. J. (1997). Linear and circular
unidimensional scaling for symmetric proximity matrices. British Journal
of Mathematical and Statistical Psychology, 50, 253–284.

[7] Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data anal-
ysis: Optimization by dynamic programming. SIAM Monographs on Dis-
crete Mathematics and Applications. Philadelphia: SIAM.

[8] Hubert, L. J., Arabie, P., & Meulman, J. J. (2002). Linear unidimen-
sional scaling in the L2-norm: Basic optimization methods using MAT-
LAB. Journal of Classification, 19, 303–328.

[9] Hubert, L., Arabie, P., & Meulman, J. (2006). The structural repre-
sentation of proximity matrices with MATLAB. ASA-SIAM Series on
Statistics and Applied Probability. Philadelphia: SIAM.

[10] Hubert, L., & Steinley, D. (2005). Agreement among Supreme Court
justices: Categorical vs. continuous representation. SIAM News, 38(8),
4–7.

[11] Lattin, J., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate
data. Pacific Grove, CA: Brooks/Cole.

83

[12] Steinley, D., & Hubert, L. (in review). The construction of order-
constrained partitions with MATLAB: Unidimensional precedents.

[13] Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Newbury
Park, CA: Sage.

[14] Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction
to multidimensional scaling. New York: Academic Press.

[15] Wollan, P. C., & Dykstra, R. L. (1987). Minimizing linear inequality
constrained Mahalanobis distances. Applied Statistics, 36, 234–240.

84

A Header Comments for the M-files Mentioned in the

Text or Used Internally by Other M-files; Given in

Alphabetical Order

arobfit.m

% AROBFIT fits an anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit, vaf] = arobfit(prox, inperm)
%
% PROX is the input proximity matrix ($n \times n$ with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having an anti-Robinson form for
% the row and column object ordering given by INPERM.

arobfnd.m

% AROBFND finds and fits an anti-Robinson
% matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative quadratic
% assignment.
%
% syntax: [find, vaf, outperm] = arobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having an anti-Robinson
% form for the row and column object ordering given by the ending
% permutation OUTPERM. KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine.

bicirac.m

% BICIRAC finds and fits the sum of two circular
% unidimensional scales using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on

85

% permutations identified through the use
% of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% addconone,addcontwo] = bicirac(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX and is the sum of the two
% circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use of the
% iterative quadratic assignment routine and ADDCONONE and ADDCONTWO
% are the two additive constants for the two model components.

biscalqa.m

% BISCALQA carries out a bidimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment.
%
% syntax: [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...
% addconone,addcontwo,vaf] = ...
% biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension
% (usually with a zero main diagonal and a dissimilarity
% interpretation representing equally spaced locations along
% a continuum); TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the first
% dimension (a permutation of the first n integers);
% INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data
% matrix. NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0 will fit in a
% confirmatory manner the two scales

86

% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the
% first dimension; OUTPERMTWO is the final object permutation
% for the second dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second dimension
% coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant for
% the second dimensional model;
% VAF is the variance-accounted-for in PROX by
% the bidimensional scaling.

biscaltmac.m

% BISCALTMAC finds and fits the sum of two linear
% unidimensional scales using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of iterative quadratic
% assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
% addcontwo,coordone,coordtwo,axes] = ...
% biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)
%
% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$
% with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-accounted-
% for of VAF) to PROXTM and is the sum of the two matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size
% in the use of the iterative quadratic assignment routine and
% ADDCONONE and ADDCONTWO are
% the two additive constants for the two model components;
% The n coordinates
% are in COORDONE and COORDTWO. The input permutations are INPERMONE
% and INPERMTWO. The $n \times 2$ matrix AXES gives the
% plotting coordinates for the
% combined row and column object set.

87

% NOPT controls the confirmatory or
% exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will
% fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.

cat vs con orderfit.m

% CAT_VS_CON_ORDERFIT uses a constraining order to fit a best
% ultrametric, anti-Robinson form, and linear unidimensional scale; all
% three of these representations conform to this order.
%
% syntax: [findultra,vafultra,vafarob,arobprox,fitlinear,vaflinear,...
% coord,addcon] = cat_vs_con_orderfit(prox,inperm,conperm)
%
% PROX is the input dissimilarity matrix and INPERM is
% a starting permutation for how the ultrametric constraints are searched.
% The permutation CONPERM is a given constraining order.
% As output, FINDULTRA is the best ultrametric found with VAF of
% VAFULTRA; AROBPROX is the best AR form identified with VAF of
% VAFAROB; FITLINEAR is the best LUS model with VAF of VAFLINEAR with
% COORD constraining the coordinates and ADDCON the additive constant.

cat vs con orderfnd.m

% CAT_VS_CON_ORDERFND finds a constraining order to fit a best
% ultrametric, anti-Robinson form, and linear unidimensional scale; all
% three of these representations conform to this order.
%
% syntax: [findultra,vafultra,conperm,vafarob,arobprox,fitlinear,vaflinear,...
% coord,addcon] = cat_vs_con_orderfnd(prox,inperm)
%
% PROX is the input dissimilarity matrix and INPERM is
% a starting permutation for how the ultrametric constraints are searched.
% The permutation CONPERM is a given order found and used to
% constrain the various representations. FINDULTRA is the best ultrametric
% found with VAF of VAFULTRA; AROBPROX is the best AR form identified
% with VAF of VAFAROB; FITLINEAR is the best LUS model with VAF of VAFLINEAR
% with COORD constraining the coordinates and ADDCON the additive constant.

88

cent linearfit

% CENT_LINEARFIT fits a structure to a proximity matrix by first fitting
% a centroid metric and secondly a linear unidimensional scale
% to the residual matrix where the latter is constrained by a given object order.
%
% syntax: [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...
% cent_linearfit(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation); INPERM is the given
% input constraining order (permutation) which is also given
% as the output vector OUTPERM;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX. TARGTWO is the linear unidimensional scaling
% component of the decomposition defined by the coordinates in COORDTWO
% with additive constant ADDCONTWO;
% TARGONE is the centroid metric component defined by the
% lengths in LENGTHSONE.

cent linearfnd

% CENT_LINEARFND finds fits a structure to a proximity matrix by first fitting
% a centroid metric and secondly a linear unidimensional scale
% to the residual matrix.
%
% syntax: [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...
% cent_linearfnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation); INPERM is the given
% input beginnining order (permutation); the found output vector is OUTPERM;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX. TARGTWO is the linear unidimensional scaling
% component of the decomposition defined by the coordinates in COORDTWO
% with addtive constant ADDCONTWO;
% TARGONE is the centroid metric component defined by the
% lengths in LENGTHSONE.

centfit.m

% CENTFIT finds the least-squares fitted centroid metric (FIT) to
% PROX, the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation).

89

%
% syntax: [fit,vaf,lengths] = centfit(prox)
%
% The n values that serve to define the approximating sums,
% $g_{i} + g_{j}$, are given in the vector LENGTHS of size $n \times 1$.

centfittm.m

% CENTFITTM finds the least-squares fitted two-mode centroid metric
% (FIT) to PROXTM, the two-mode rectangular input proximity matrix
% (with a dissimilarity interpretation).
%
% syntax: [fit,vaf,lengths] = centfittm(proxtm)
%
% The n values (where n = number of rows + number of columns)
% serve to define the approximating sums,
% $u_{i} + v_{j}$, where the u_{i} are for the rows and the v_{j}
% are for the columns; these are given in the vector LENGTHS of size
% $n \times 1$, with row values first followed by the column values.

circularplot.m

% CIRCULARPLOT plots the object set using the coordinates
% around a circular structure derived from the $n \times n$
% interpoint distance matrix around a circle given by CIRC.
% The positions are labeled by the order of objects
% given in INPERM.
%
% syntax: [circum,radius,coord,degrees,cumdegrees] = ...
% circularplot(circ,inperm)
%
% The output consists of a plot, the circumference of the
% circle (CIRCUM) and radius (RADIUS); the coordinates of
% the plot positions (COORD), and the degrees and cumulative
% degrees induced between the plot positions
% (in DEGREES and CUMDEGREES).
% The positions around the circle are numbered from 1
% (at the "noon" position) to n, moving
% clockwise around the circular structure.

cirfit.m

% CIRFIT does a confirmatory fitting of a given order

90

% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
%
% syntax: [fit, diff] = cirfit(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with least-squares value DIFF.

cirfitac.m

% CIRFITAC does a confirmatory fitting (including
% the estimation of an additive constant) for a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using the Dykstra--Kaczmarz
% iterative projection least-squares method.
%
% syntax: [fit, vaf, addcon] = cirfitac(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of
% VAF; ADDCON is the estimated additive constant.

class scaledp.m

% CLASS_SCALEDP carries out a unidimensional seriation or
% scaling of a set of object classes defined for a symmetric proximity
% matrix using dynamic programming.
%
% syntax: [permut,cumobfun] = class_scaledp(prox,numbclass,membclass)
%
% PROX is the ($n \times n$) input proximity matrix (with a zero
% main diagonal and a dissimilarity interpretation);
% NUMBCLASS (= n_{c}) is the number of object classes to be
% sequenced;
% MEMBCLASS is an $n \times 1$ vector containing the input class
% membership and includes all the integers from 1 to NUMBCLASS and
% zeros when objects are to be deleted from consideration;
% PERMUT is the order of the classes in the optimal permutation (say,
% ρ^{*});
% CUMOBFUN gives the cumulative values of the objective function for
% the successive placements of the objects in the optimal permutation:
% $\sum_{i=1}^{k} (t_{i}^{(\rho^{*})})^{2}$ for $k = 1, \ldots, n_{c}$.
%

91

% Initializations: The vectors VALSTORE and IDXSTORE store the
% results of the recursion for the $(2^n_{c})-1$ nonempty subsets of the
% set of classes. The integer positions in these vectors correspond to
% subsets whose binary number equivalents are equal to those integer positions.

eqspace cirfitac.m

% EQSPACE_CIRFITAC does a confirmatory fitting (including
% the estimation of an additive constant) for a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using the Dykstra--Kaczmarz
% iterative projection least-squares method. Also, an equally-spaced
% confirmatory fitting alternative is carried out.
%
% syntax: [fit, vaf, addcon, eqfit, eqvaf, eqaddcon] = ...
% eqspace_cirfitac(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of
% VAF; ADDCON is the estimated additive constant. The equally-spaced
% output alternatives are prefixed with an EQ.

eqspace linfitac.m

% EQSPACE_LINFITAC does a confirmatory fitting of a given unidimensional order
% using the Dykstra--Kaczmarz iterative projection
% least-squares method, but differing from linfit.m in
% including the estimation of an additive constant. Also
% an equally-spaced confirmatory fitting alternative is carried out.
%
% syntax: [fit, vaf, coord, addcon, eqfit, eqvaf, eqaddcon] = ...
% eqspace_linfitac(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT; ADDCON is the estimated
% additive constant that can be interpreted as being added to PROX.
% The equally-spaced output alternatives are prefixed with an EQ.

92

eqspace ultrafit.m

% EQSPACE_ULTRAFIT fits a given ultrametric using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm. Also, an
% equally-spaced confirmatory fitting alternative is carried out using the
% entries in TARG (assumed to be integer-valued reflecting the level at
% which the clusters are formed).
%
% syntax: [fit,vaf,eqfit,eqvaf,eqaddcon] = eqspace_ultrafit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is an ultrametric matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the ultrametric
% constraints implicit in TARG. The equally-spaced output alternatives are
% prefixed with an EQ.

linearplot.m

% LINEARPLOT plots the object set using the ordered coordinates in COORD
% and labels the positions by the order of the objects given in INPERM.
%
% syntax: [linearlength] = linearplot(coord,inperm)
%
% The output value LINEARLENGTH is the sum of the interpoint distances from
% COORD.

linfit.m

% LINFIT does a confirmatory fitting of a given
% unidimensional order using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
%
% syntax: [fit, diff, coord] = linfit(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with least-squares value DIFF;
% COORD gives the ordered coordinates whose absolute
% differences could be used to reconstruct FIT.

93

linfit tied.m

% LINFIT_TIED does a confirmatory fitting of a given
% unidimensional order using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method. This
% includes the possible imposition of tied coordinates.
%
% syntax: [fit, diff, coord] = linfit_tied(prox,inperm,tiedcoord)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with least-squares value DIFF;
% COORD gives the ordered coordinates whose absolute
% differences could be used to reconstruct FIT; TIEDCOORD
% is the tied pattern of coordinates imposed (in order)
% along the continuum (using the integers from 1 up to n
% to indicate the tied positions).

linfitac.m

% LINFITAC does a confirmatory fitting of a given unidimensional order
% using the Dykstra--Kaczmarz iterative projection
% least-squares method, but differing from linfit.m in
% including the estimation of an additive constant.
%
% syntax: [fit, vaf, coord, addcon] = linfitac(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT; ADDCON is the estimated
% additive constant that can be interpreted as being added to PROX.

linfitac missing.m

% LINFITAC_MISSING does a confirmatory fitting of a given unidimensional order
% using the Dykstra--Kaczmarz iterative projection
% least-squares method, but differing from linfit.m in
% including the estimation of an additive constant;also, missing entries
% in the input proximity matrix PROX are given values of zero.
%
% syntax: [fit, vaf, addcon] = ...
% linfitac_missing(prox,inperm,proxmiss)

94

%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% ADDCON is the estimated additive constant that can be interpreted
% as being added to PROX. PROXMISS is the same size as PROX (with main
% diagonal entries all zero); an off-diagonal entry of 1.0 denotes an
% entry in PROX that is present and 0.0 if it is absent.

linfitac tied.m

% LINFITAC_TIED does a confirmatory fitting of a given unidimensional order
% using the Dykstra--Kaczmarz iterative projection
% least-squares method, but differing from linfit_tied.m in
% including the estimation of an additive constant. This also allows
% the possible imposition of tied coordinates.
%
% syntax: [fit, vaf, coord, addcon] = linfitac_tied(prox,inperm,tiedcoord)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT; ADDCON is the estimated
% additive constant that can be interpreted as being added to PROX.
% TIEDCOORD is the tied pattern of coordinates imposed (in order)
% along the continuum (using the integers from 1 up to n
% to indicate the tied positions).

linfittm.m

% LINFITTM does a confirmatory two-mode fitting of a given
% unidimensional ordering of the row and column objects of
% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)
% iterative projection least-squares method.
%
% syntax: [fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)
%
% INPERM is the given ordering of the row and column objects
% together; FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordinate differences that
% is fitted to PROXTM(ROWPERM,COLPERM) with DIFF being the
% (least-squares criterion) sum of squared discrepancies
% between FIT and PROXTM(ROWPERM,COLMEAN);

95

% ROWPERM and COLPERM are the row and column object orderings
% derived from INPERM. The nrow + ncol coordinates
% (ordered with the smallest
% set at a value of zero) are given in COORD.

linfittmac.m

% LINFITTMAC does a confirmatory two-mode fitting of a given
% unidimensional ordering of the row and column objects of
% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)
% iterative projection least-squares method;
% it differs from linfittm.m by including the estimation of an
% additive constant.
%
% syntax: [fit,vaf,rowperm,colperm,addcon,coord] = ...
% linfittmac(proxtm,inperm)
%
% INPERM is the given ordering of the row and column objects
% together; FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordinate differences that
% is fitted to PROXTM(ROWPERM,COLPERM) with VAF being the
% variance-accounted-for. ROWPERM and COLPERM are the row and
% column object orderings derived from INPERM. ADDCON is the
% estimated additive constant that can be interpreted as being
% added to PROXTM (or, alternatively, subtracted
% from the fitted matrix FIT). The nrow + ncol coordinates
% (ordered with the smallest
% set at a value of zero) are given in COORD.

order.m

% ORDER carries out an iterative Quadratic Assignment maximization
% task using a given square ($n x n$) proximity matrix PROX (with
% a zero main diagonal and a dissimilarity interpretation).
%
% syntax: [outperm,rawindex,allperms,index] = ...
% order(prox,targ,inperm,kblock)
%
% Three separate local operations are used to permute
% the rows and columns of the proximity matrix to maximize the
% cross-product index with respect to a given square target matrix
% TARG: pairwise interchanges of objects in the permutation defining
% the row and column order of the square proximity matrix;
% the insertion of from 1 to KBLOCK

96

% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix; the rotation of from 2 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. INPERM is the input beginning permutation (a permutation
% of the first n integers).
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} =
% INPERM to ALLPERMS{INDEX} = OUTPERM.

order missing.m

% ORDER_MISSING carries out an iterative Quadratic Assignment maximization
% task using a given square ($n x n$) proximity matrix PROX (with
% a zero main diagonal and a dissimilarity interpretation; missing entries
% PROX are given values of zero).
%
% syntax: [outperm,rawindex,allperms,index] = ...
% order_missing(prox,targ,inperm,kblock,proxmiss)
%
% Three separate local operations are used to permute
% the rows and columns of the proximity matrix to maximize the
% cross-product index with respect to a given square target matrix
% TARG: pairwise interchanges of objects in the permutation defining
% the row and column order of the square proximity matrix;
% the insertion of from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix; the rotation of from 2 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. INPERM is the input beginning permutation (a permutation
% of the first n integers). PROXMISS is the same size as PROX (with
% main diagonal entries all zero); an off-diagonal entry of 1.0 denotes an
% entry in PROX that is present and 0.0 if it is absent.
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} =

97

% INPERM to ALLPERMS{INDEX} = OUTPERM.

orderpartitionfit.m

% ORDERPARTITIONFIT provides a least-squares approximation to a proximity
% matrix based on a given collection of partitions with ordered classes.
%
% syntax: [fit,weights,vaf] = orderpartitionfit(prox,lincon,membership)
%
% PROX is the n x n input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation); LINCON is the given constraining
% linear order (a permutation of the integers from 1 to n).
% MEMBERSHIP is the m x n matrix indicating cluster membership, where
% each row corresponds to a specific ordered partition (there are
% m partitions in general);
% the columns are in the identity permutation input order used for PROX.
% FIT is an n x n matrix fitted to PROX (through least-squares) constructed
% from the nonnegative weights given in the m x 1 WEIGHTS vectors
% corresponding to each of the ordered partitions. VAF is the variance-
% accounted-for in the proximity matrix PROX by the fitted matrix FIT.

orderpartitionfnd.m

% ORDERPARTITIONFND uses dynamic programming to
% construct a linearly constrained cluster analysis that
% consists of a collection of partitions with from 1 to
% n ordered classes.
%
% syntax: [membership,objectives,permmember,clusmeasure,...
% cluscoord,residsumsq] = orderpartitionfnd(prox,lincon)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation); LINCON is the given
% constraining linear order (a permutation of the integers from
% 1 to n).
% MEMBERSHIP is the n x n matrix indicating cluster membership,
% where rows correspond to the number of ordered clusters,
% and the columns are in the identity permutation input order
% used for PROX. PERMMEMBER uses LINCON to reorder the columns
% of MEMBERSHIP.
% OBJECTIVES is the vector of merit values maximized in the
% construction of the ordered partitions; RESIDSUMSQ is the
% vector of residual sum of squares obtained for the ordered
% partition construction. CLUSMEASURE is the n x n matrix

98

% (upper-triangular) containing the cluster measures for contiguous
% object sets; the appropriate values in CLUSMEASURE are added
% to obtain the values optimized in OBJECTIVES; CLUSCOORD is also
% an n x n (upper-triangular) matrix but now containing the coordinates
% that would be would be used for all the (ordered)
% objects within a class.

ordertm.m

% ORDERTM carries out an iterative
% quadratic assignment maximization task using the
% two-mode proximity matrix PROXTM
% (with entries deviated from the mean proximity)
% in the upper-right- and lower-left-hand portions of
% a defined square ($n x n$) proximity matrix
% (called SQUAREPROX with a dissimilarity interpretation)
% with zeros placed elsewhere (n = number of rows +
% number of columns of PROXTM = nrow + ncol).
%
% syntax: [outperm, rawindex, allperms, index, squareprox] = ...
% ordertm(proxtm, targ, inperm, kblock)
%
% Three separate local operations are used to permute
% the rows and columns of the square
% proximity matrix to maximize the cross-product
% index with respect to a square target matrix TARG:
% pairwise interchanges of objects in the
% permutation defining the row and column
% order of the square proximity matrix; the insertion of from 1 to
% KBLOCK (which is less than or equal to $n-1$) consecutive objects
% in the permutation defining the row and column order of the
% data matrix; the rotation of from 2 to KBLOCK (which is less than
% or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. INPERM is the input beginning permutation (a permutation
% of the first n integers).
% PROXTM is the two-mode $nrow x ncol$ input proximity matrix.
% TARG is the $n x n$ input target matrix.
% OUTPERM is the final permutation of SQUAREPROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1}
% = INPERM to ALLPERMS{INDEX} = OUTPERM.

99

partitionfit.m

% PARTITIONFIT provides a least-squares approximation to a proximity
% matrix based on a given collection of partitions.
%
% syntax: [fitted,vaf,weights,end_condition] = partitionfit(prox,member)
%
% PROX is the n x n input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation); MEMBER is the m x n matrix
% indicating cluster membership, where each row corresponds to a specific
% partition (there are m partitions in general); the columns of MEMBER
% are in the same input order used for PROX.
% FITTED is an n x n matrix fitted to PROX (through least-squares)
% constructed from the nonnegative weights given in the m x 1 WEIGHTS
% vector corresponding to each of the partitions. VAF is the variance-
% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.
% END_CONDITION should be zero for a normal termination of the optimization
% process.

proxmon.m

% PROXMON produces a monotonically transformed proximity matrix
% (MONPROXPERMUT) from the order constraints obtained from each
% pair of entries in the input proximity matrix PROXPERMUT
% (symmetric with a zero main diagonal and a dissimilarity
% interpretation).
%
% syntax: [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)
%
% MONPROXPERMUT is close to the
% $n \times n$ matrix FITTED in the least-squares sense;
% the variance accounted for (VAF) is how
% much variance in MONPROXPERMUT can be accounted for by
% FITTED; DIFF is the value of the least-squares criterion.

proxmontm.m

% PROXMONTM produces a monotonically transformed
% two-mode proximity matrix (MONPROXPERMUTTM)
% from the order constraints obtained
% from each pair of entries in the input two-mode
% proximity matrix PROXPERMUTTM (with a dissimilarity
% interpretation).
%

100

% syntax: [monproxpermuttm, vaf, diff] = ...
% proxmontm(proxpermuttm, fittedtm)
%
% MONPROXPERMUTTM is close to the $nrow \times ncol$
% matrix FITTEDTM in the least-squares sense;
% The variance accounted for (VAF) is how much variance
% in MONPROXPERMUTTM can be accounted for by FITTEDTM;
% DIFF is the value of the least-squares criterion.

proxstd.m

% PROXSTD produces a standardized proximity matrix (STANPROX)
% from the input $n \times n$ proximity matrix
% (PROX) with zero main diagonal and a dissimilarity
% interpretation.
%
% syntax: [stanprox, stanproxmult] = proxstd(prox,mean)
%
% STANPROX entries have unit variance (standard deviation of one)
% with a mean of MEAN given as an input number;
% STANPROXMULT (upper-triangular) entries have a sum of
% squares equal to $n(n-1)/2$.

targcir.m

% TARGCIR produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions
% around a circle: targcircular(i,j) = min(abs(i-j),n-abs(i-j)).
%
% syntax: [targcircular] = targcir(n)

targlin.m

% TARGLIN produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions
% along a line: targlinear(i,j) = abs(i-j).
%
% syntax: [targlinear] = targlin(n)

101

ultrafit.m

% ULTRAFIT fits a given ultrametric using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit,vaf] = ultrafit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is an ultrametric matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the ultrametric
% constraints implicit in TARG.

unicirac.m

% UNICIRAC finds and fits a circular
% unidimensional scale using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative
% quadratic assignment.
%
% syntax: [find, vaf, outperm, addcon] = unicirac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a circular
% anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% The spacings among the objects are given by the diagonal entries
% in FIND (and the extreme (1,n) entry in FIND). KBLOCK
% defines the block size in the use of the iterative quadratic
% assignment routine. The additive constant for the model is
% given by ADDCON.

uniscalqa.m

% UNISCALQA carries out a unidimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment.
%
% syntax: [outperm, rawindex, allperms, index, coord, diff] = ...

102

% uniscalqa(prox, targ, inperm, kblock)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is the input target matrix (usually with a zero main
% diagonal and a dissimilarity interpretation representing
% equally spaced locations along a continuum);
% INPERM is the input beginning permutation (a permutation of the
% first n integers). OUTPERM is the final permutation of PROX
% with the cross-product index RAWINDEX
% with respect to TARG redefined as
% $ = \{abs(coord(i) - coord(j))\}$;
% ALLPERMS is a cell array containing INDEX entries corresponding
% to all the permutations identified in the optimization from
% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.
% The insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. COORD is the set of coordinates of the unidimensional
% scaling in ascending order;
% DIFF is the value of the least-squares loss function for the
% coordinates and object permutation.

103

