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HA

PREFACE

This book has been written with a view to serving two

needs; that of biologists, economists, educators and psycholo-

gists, who know little of higher mathematics, possibly care less,

and who use statistical methods merely as a device to portray

the facts of their group investigations; and that of those in the

same fields who resort to mathematics to aid in the discovery

of new truths.

The elementary statistical needs in the four fields men-

tioned seem to me to be the same and it is my aim to meet

those needs and provide a foundation which will serve for ad-

vanced work in any one of them.

The approach to the essential principles developed is through

concrete problems, only varying from this where simplicity of

problems or the necessity for conserving space warrants.

In order to provide a rigorous foundation for further statis-

tical research — which would immediately take the economist,

educator, or psychologist as well as the biologist into the fer-

tile field developed by Karl Pearson and his co-workers — the

notation follows that of the English school, making such sim-

plifications as are possible for the immediate problems, but en-

deavoring at no time to introduce a symbol, an approximation,

or a lax proof which would have to be unlearned in undertak-

ing more advanced work. The statistician cannot fail to note

that the sheer visual weight of symbol, so appalling to the tyro,

has been genuinely reduced by the introduction of a few new

symbols in connection with multiple correlation.

The fields represented by various correlation and other

measures whose probable errors are unknown has been treated

very succinctly. I can see no value except at times a slightly

greater ease of manipulation, in using a measure whose prob-

able error cannot be calculated if one with a known probable

V
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vi

PREFACE

error and serving the same purpose exists. I have, therefore,

simply included and denned such measures for those desirous

of using them, without deriving or attempting to justify them.

I particularly request the critical analysis by fellow statisti-

cians of my determinations of probable errors, and such char-

ity in reporting shortcomings as may be due one who has

acted upon the policy that as shrewd an estimate as possible

of the probable error of a statistical constant is better than no

estimate at all. The derivation of probable error formulas has

been one of the most difficult undertakings of this text and I

cannot expect that the results are faultless.

My statistical training has been rather desultory and it has

occasionally been impossible for me to give due credit to the

discoverers of well known formulas.

I would, however, say that my greatest inspiration has been

the product of that master analyst, Karl Pearson, and that

the English school entire has been most contributive. My

greatest indebtedness to men in America is to my teachers,

Henry Lewis Rietz and Charles C. Grove, for enlightenment

upon theoretical points and to Edward L. Thorndike for sug-

gestions as to problems in need of statistical analysis.

T. L. K.
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STATISTICAL METHOD

CHAPTER I

THE TABULATION AND PLOTTING OF SERIES

Section 1. Introduction

Two occasions for resort to statistical procedure, the one

dominated by a desire to prove a hypothesis, and the other by

a desire to invent one, have led to two schools of statisticians.

The first school is that represented by mathematicians who

start with certain elementary principles and deduce therefrom

facts of distribution, frequency and relationship. In so far as

observed situations parallel these conclusionsthesameelementary

principles are supported as applying to the data in hand. One

weakness of this approach lies in the fact that a number of

causes — different sets of elementary principles — may result in

substantially the same net result. A still greater weakness is

that it is essentially a deductive procedure and relatively sterile

in suggesting new causes — in inspiring creative inferences. It

is fundamentally a method of proof and not one of invention; and

just because it is a method of proof, it has a permanent place in

statistical method. It must, however, if in the service of the

social and biologic sciences, be but a handmaid to the creative

genius of mathematical analysis and induction.

The second school is best represented by those biometricians

and economists who start with observed data and endeavor so

to group them and treat them that the constant features of the

data are made apparent. This is a process of statistical

analysis. It may at times be expected to be an involved process,

for social phenomena are complex. Data are frequently warped

to fit statistical convenience, but if statistics is to realize its

high destiny, procedure must be flexible, for only when the

method is mobile can it fit immobile data. The accurate

i
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STATISTICAL METHOD

measurement of those features of phenomena which are excep-

tional is the unique province of statistical analysis.

The method of approach in this text is inductive, starting

with data and deriving constants, and will not give the nou-

menal satisfaction that comes from tossing coins, throwing

dice, and sorting cards, thus obtaining distributions which

approach an ideal standard.

Mathematical statistics form very much of a unit, and it

is impossible to treat fully of topics in an order which does

not call in earlier chapters for concepts developed later. The

genuine unity of statistics is made apparent by these inter-

relationships, and I have not attempted to avoid them. Terms

used in an earlier part of the text than that in which derived

are usually unambiguous on account of the context, but should

there be any difficulty in understanding, the reader is directed

to the bold face references given in the index and to the list

of mathematical terms and symbols given in the Appendix.

Section 2. Statistical Series

The treatment of this and the succeeding section largely

follows that of Day (1919 and 1920).

A statistical series is a succession of facts having some

common characteristic. A series may be thought of as either

giving (1) a location in time, (2) a location in space, (3) an

indication of qualitative difference, or (4) of quantitative

differences.

(1) Trends in prices, rates of growth, fatigue, learning and

forgetting curves, diurnal changes, etc., are illustrations of

the magnitude of a variable with reference to time. Temporal

series have certain characteristics which necessitate a technique

in their interpretation which is peculiar to them. Any time

series of appreciable duration (in studying etheric vibrations

.001 of a second would be a very appreciable duration) may be

expected to show periodic fluctuations. As a consequence one

of two procedures is necessary, dependent upon whether (a)

it is desired to study the changes within a certain cyclical

period, or (b) to study trends independent of such periodic

changes. Illustrations will make the problem clear:
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THE TABULATION AND PLOTTING OF SERIES 3

(a) Let it be required to ascertain the nature of the load of

an electric power generating plant during a twenty-four-hour

period. The current consumed per hour for some one day

could be tabulated or plotted. The result would have only

such accuracy as would result from a single day's sampling.

To obtain a more reliable picture, a number of days could be

combined and the tabulation made showing the average load

for each hour of the twenty-four. Obviously error might

creep in here, for the load on a Monday would be quite different

from that on a Saturday or Sunday and perhaps different from

that on the other days of the week. With due allowance for

holidays, probably a very satisfactory idea of the hourly

fluctuations of the Monday load could be obtained by pooling

results for several Mondays. Differences in daylight, tempera-

ture, etc., would make it unsound to combine all the Mondays

in the year. The problem cited is typical of temporal series

problems and the principle that should guide one in pooling

results should be to group as wide a range of data as are typical

with respect to the characteristic under investigation, but not

affected by other seasonal or systematic tendencies.

(b) Let it be required to ascertain the nature of the seasonal

fluctuations of the load. In this case a tabulation by weekly

units would be the best as this would completely suppress both

Saturday and Sunday and hourly idiosyncrasies. With this

in mind it is seen that a tabulation by six or eight day or

monthly periods would not be as satisfactory as weekly or

bi-weekly periods. The principle to follow is to use such a

temporal unit as equals or is an integral multiple of the period

within which occur the tendencies which it is desired to

suppress.

A second characteristic of a temporal series arises from the

general lack of significance of the absolute value of a function

at a given time. Interpretation depends upon the relation

of the function at one time to its magnitude at a second time.

This fact has led to the use of index numbers, or ratios of

magnitudes. The magnitude at a stipulated time is considered

basic and used as the denominator of all the ratios. The index

number is not limited to temporal series, but it is more char-

acteristic and more generally serviceable with them than with
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STATISTICAL METHOD

other series. Many considerations enter into the choice of

the base, but if there is one time, such as a certain year, which

more than any other shows a constant condition of the function,

or an ideal or desirable condition, it will have special value as

the base.

(2) Just as index and periodic concepts are fruitful in in-

terpreting temporal series, so is the map essential in portraying

spatial series. Many spatial series show both qualitative and

quantitative differences, in which case considerable ingenuity

is needed to devise a map with cross sectioning, or color scheme,

to portray the essential facts. Spatial series are intrinsically

more amenable to graphic treatment, and less to numerical

treatment, than temporal or quantitative series. The maps of

the U. S. Coast and Geodetic Survey, of the Weather Bureau,

and of the Census Bureau show the completeness, variety and

detail of portrayal possible. The groupings of territories in

spatial series and the subdivision of areas may follow conven-

tional procedure or the peculiar needs of the problem. The

order adopted by the Census Bureau in giving population

statistics is as follows:

TABLE I

New England

Maine

New Hampshire

Vermont

Massachusetts

Rhode Island

Connecticut

West North Central {continued)

Missouri

North Dakota

South Dakota

Nebraska

Kansas

East North Central

Ohio

Indiana

Illinois

Michigan

Wisconsin

Middle Atlantic

New York

New Jersey

Pennsylvania

South Atlantic

Delaware

Maryland

District of Columbia

Virginia

West Virginia

North Carolina

South Carolina

Georgia

Florida

West North Central

Minnesota

Iowa

East South Central

Kentucky

Tennessee

Alabama
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THE TABULATION AND PLOTTING OF SERIES 5

TABLE I (continued)

East South Central (continued)

Mississippi

West South Central

Arkansas

Louisiana

Oklahoma

Texas

Mountain

Montana

Idaho

Wyoming

Mountain (continued)

Colorado

New Mexico

Arizona

Utah

Nevada

Pacific

Washington

Oregon

California

(3) Qualitative series are those in which the classification

is based upon the presence or absence of certain qualities.

They lead to categorical distributions and are treated statisti-

cally by means of the probabilities of frequencies, and by

measures of relationship dependent upon the same — con-

tingency coefficients, etc. The variability of a frequency is

the basic concept in the statistics of qualitative series.

(4) Quantitative series are those in which the classification is

based upon the degree to which some measured trait is present.

They are the most amenable to numerical treatment and their 11

consideration comprises the bulk of this text. The variability

of a distribution is the most basic concept in the statistics of

quantitative series.

Life's problems do not confine themselves to single series,

and certain methods have been developed for handling problems

which are complexes of two or more of the four types men-

tioned, but it is well to recognize that in general the problem

and the method are functions of a single series.

Section 3. Construction of Statistical Tables

The chapter which follows this deals with graphic methods

and is concerned with charts, diagrams, graphs, etc., con-

stituting pictorial representations of statistical series. The

statistical table is quite different. Its purpose is not directly

to give a picture of a sequence, but to provide the basic data

from which such a picture, or at least the outstanding features

of such a picture, may be determined and visualized if desired.
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STATISTICAL METHOD

The statistical table is simply a shorthand statement of facts.

If a thousand or so facts of the sort, "The population of Aaber

County is 4000;" "The population of Anthony County is

3200;" "The population of Avery County is 4800;" etc.,

etc., are to be presented, they can not only be more concisely

shown by tabulation, but several thousand additional facts,

such as "The population of Anthony County is 800 larger than

that of Aaber County" are presented at the same time and in

an agreeably compact manner. The desire to accomplish

double, triple, or manifold presentation by a single tabular

arrangement is the desideratum which imposes conditions and

determines appropriateness of procedure.

The same facts in regard to population are shown in the

following five tables, and while not exhausting the possibilities

of presentation these will suffice to show the wide option which

exists in presenting very simple data.

TABLE II TABLE III

Populations and Areas of Counties Areas and Populations of Counties

Popula-

Area

Area

Popula-

Counties

tion

IN SQ.

Counties

in Sq.

tion

1920

Miles

Miles

1920

Aaber

4,000

480

Aaber

480

4,000

Anthony

3,200

400

Anthony

400

3,200

Avery . .

4,800

800

Avery

800

4,800

Bascomb

16,000

700

Bascomb

700

16,000

Brown

3,000

600

Brown

600

3,000

TABLE

IV

TABLE

V

TABLE

VI

Counties arranged ac- Counties arranged ac- Counties arranged ac-

cording to Population cording to Population cording to Population

Popula-

Popula-

Popula-

Counties

tion

Counties

tion

tion

Counties

1920

1920

192a

Brown

. 3.ooo

Bascomb .

. 16,000

16,000

Bascomb

Anthony

. 3,200

Avery .

. 4,800

4,800

Avery

Aaber .

. 4,000

Aaber . .

. 4,000

4,000

Aaber

Avery . .

. 4,800

Anthony .

. 3.20O

3.200

Anthony

Bascomb

. 16,000

Brown

. 3.O0O

3.000

Brown
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THE TABULATION AND PLOTTING OF SERIES 7

As judged by a single purpose no two of the tables given

are equally meritorious. If the table is to be used more

frequently in abstracting information about various counties

than as a means of comparing counties, i.e., if it is a reference

table and not one pointing some conclusion, the items in the

stub (the first column) should be arranged alphabetically as

in Tables II and III in order to facilitate the finding of items

desired. If populations are more likely to be studied than

areas, Table II is preferable to Table III, as the Population

column holds a dominant position in Table II.

Should it be intended that the table be not primarily a refer-

ence table arranged to simplify the extraction of items of in-

formation, but, let us say, to point conclusions with reference to

populations, Tables IV, V, or VI are preferable to Tables II

or III. If counties of large population are the chief con-

sideration, Table V is preferable to Table IV, as the first row of

a table ranks higher in dominance than successive rows. Next

in importance is the last row. Totals or averages are, because

of their importance, frequently placed in the first row, but if

other items demand this position or if captions (headings of

columns) are less readily interpreted when separated from the

body of the table by a row of totals or averages, then the

bottom row may be used.

As a means of pointing conclusions dependent upon popula-

tions Table VI is to be preferred to Tables IV or V, as the popu-

lation data hold the dominant position in Table VI.

In general one should so draw up the table that the items in

the stub and the captions constitute the argument or informa-

tion with which the table is entered, and so that the column

and row next to the stub and captions contain the most impor-

tant items to be obtained from the table. Rows and columns

more removed from these dominant positions should contain

less important data, except that the last row and last column

may be given to data of first or second importance.

Such Tables as II and III are primary or general purpose

tables, since they contain the raw data without abridgment,

and may be used for various purposes. Such Tables as IV, V,

and VI are derived from primary tables, such as II and III,

and by emphasizing certain facts serve a special purpose.
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STATISTICAL METHOD

These two types of tables should be recognized The special

purpose table is always published because it conveys the point

of the study. The general purpose table should always be

published also, as it provides the only means of checking the

author and of discovering if other or further conclusions can

be drawn. Several tables and many calculations may be in-

volved between the primary and the final derived table. If

full description of these intermediate steps be given it is not

essential that these intervening tables and calculations be

published.
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CHAPTER II

GRAPHIC METHODS

Section 4. The H1stogram and Frequency Polygon

The picturing of facts, when the nature of the data permits,

conveys a readier comprehension than is possible from any

array of figures. The accurate graphic portrayal of data is

therefore the problem of this chapter.

Since there are but two dimensions to the surface of a sheet

of paper, ordinarily but two series of facts are shown in a single

graph. Consider the accompanying data giving the maximum

temperatures recorded by the Weather Bureau for each day

in July and August, 1917, for New York City.

TABLE VII

Maximum Temperature for Each Day

July l-Aug. jo, 1017

N. Y. City

July 1

80

July 17

87

Aug. 1

98

Aug. 17

85

2

88

18

80

2

96

18

80

3

74

19

77

3

83

19

81

4

78

20

83

4

80

20

84

5

81

21

81

5

82

21

85

6

80

22

86

6

82

22

80

7

79

23

86

7

88

23

7<,

8

70

24

86

8

78

24

83

9

75

25

84

9

83

25

82

10

65

26

85

10

80

26

74

11

66

27

90

11

82

27

82

12

71

28

80

12

83

28

80

13

81

29

81

13

83

29

83

l4

81

30

95

14

78

30

81

15

75

31

98

l5

81

31

75

16

85

16

80

9
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io STATISTICAL METHOD

TABLE VIII

Tally Sheet

Tem-

No. of Days

Tem-

No. of Days

pera-

with Given

pera-

with Given

tures

Temperature

tures

Temperatures

65

1

82

H-H

66

1

83

l-l-l-l !1

67

84

1 1

68

85

MM

69

86

1 1 1

70

1

87

1

71

1

88

! 1

72

89

73

90

1 .

74

1

91

75

1 1

92

76

93

77

94

78

1 1

95

79

1

96

1

80

H-H H-H

97

81

l-l-l-l 1 1 1

98

1 1

If it is desired to study diurnal changes in maximum tempera-

tures a graph could be made in which the abscissa (the hori-

zontal dimension) represents the days in order, July 1, July 2,

etc., and the ordinate (the vertical dimension) represents the

temperatures in order, o°, i°, 2°, etc. For July 1 the ordinate

would be 80, for July 2, 88, etc. A line connecting the suc-

cessive ordinates would give a picture of the changes in maxi-

mum temperature throughout the two months. Or, it may be

desired to disregard the sequence of the days and obtain a

general idea of what constitutes the maximum temperatures

for days in New York during July and August. In this case

the abscissa will represent temperatures and the ordinate the

number of days. To do this, Table VIII is first made out

from the data in Table VII and then plotted as shown in

Charts I or II.

Chart I is a histogram or a pictorial representation by means

of rectangles, telling precisely the same story as a table of

frequencies, such as Table VIII. Chart II is a frequency

polygon. It is not a series of discrete elements as are the raw,

gross, or original, measures, but a closed figure, each part of
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which is connected with the next, giving the idea of continuity

in the measures. Each of these graphic forms has its ad-

vantages; the histogram in case heights of rectangles are to

be accurately compared; and the frequency polygon if the

idea of continuity is desirable. Note that in drawing the

frequency polygon points a and c are connected and not

points b and c

i-

^ to

0 C a

1 I 3

5 k

% i«

r *-*

it'

o | °

Chart I

His+oorajn sViowmb maximum T'empefo-fures

for days from July I -Aug 1.13I7 Hew^TorKCity

6413 St C1t6 69 TO II It tin15 1477 18 790061 K 83 M(B St 87 SB SS 30 91 3t 33 94 35 3t JI

Te m pera.+u res

Chart II

6.

E

DO 8

I 6

Frequency Polygon -for sftjne do~+a-

VTTJ

m

m

6»C5«C7eB 69TOTI TIB T4 T5 * 77 76 13 8001 BE B3»*BSet«T OB SI 30 31 S 33 S«-3591 97 3635

"Temper ejfu res

Great care should be taken to insure that the graph agrees

with the labels of the coordinates. Note that the class index

"65" designates the mid-point of the interval, the lower limit

of which is 64.5 and the upper limit 65.5; that in the polygon,

point c is directly above the class index 65, and that in the

histogram the class index 65 designates the mid-point of the

horizontal dimension of the rectangle.
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STATISTICAL METHOD

It is allowable to label the beginning and end of the interval.

In such case the histogram or polygon would be drawn exactly

as given and point b would be labeled "64.5" and under no

circumstances "65."

It has become somewhat customary in educational fields

to speak of a child as solving 10 problems in a speed test,

meaning thereby that 10 problems were solved and the 11th

started but not finished when time was called. In plotting

the distribution of scores the designating number, 10, has been

placed at the beginning of the interval. No objection should

be made to this were the numerical computations in harmony

with this procedure, but very generally such scores have been

treated as exactly 10.0 in calculating arithmetical averages

with the result that the curve and the constants computed

from the data do not agree. Not uncommonly such scores

have been treated as 10.o scores in calculating means and as

10.5 scores in calculating medians, with the result that a com-

parison of mean and median scores gives an entirely erroneous

impression as to the skewness of the data. This faulty pro-

cedure has probably been followed unwittingly, but unfortu-

nately with the sanction of teachers. The following is quoted

from page 50 of the Second Year Book — Division of Educa-

tional Research, Los Angeles, July 1919:

"LESSON SIX —THE ARITHMETIC MEAN

Method of Finding the Mean

No. Problems No. Pupils

12 3 3 X 12 = 36

-" 5 5 X u = 55

10 7 7 X 10 = 70

9 4 4 X 9 = 36

8 2 2 X 8 = 16

21 213

213 divided by 21 equals 10.14 the mean. The median in the

same distribution would be 10.64." In this lesson problem

the mean is in error if 12 implies the interval 12.0 to 13.0 and

the median (see Section 12) is in error if it implies the interval

11.5 to 12.5. The error here cited probably grew out of an

error in labeling a distribution. Uniformity is needed, and

it would be in harmony with well-nigh universal procedure in
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the physical and biological fields to consider a score of 10 as

being also a class index, or mid-point of an interval. Should

this lower the grade of a few million school children by one half

a point no harm would be done and the great advantage of

having the recorded test score measures exactly those to be

used in calculating means, standard deviations, correlations,

etc., and of having the recorded measures also the class indexes

in graphs is attained. Throughout this text a score no matter |

how derived originally is uniformly to be interpreted as cover-

ing an interval extending from half a unit below to half a unit

above. The accompanying data provide a nice problem in

plotting where the distribution is decidedly asymmetrical;

where a part of the distribution is lacking; where the class

intervals (i.e., range covered by successive groups) are unequal;

and where the existence of a few excessively extreme measures

makes it impossible to select coordinates (abscissas and ordi-

nates) which satisfactorily reveal the entire distribution.

TABLE IX TABLE X

British Income-lax Payers— 1914

American Consular Report, May, 1915

Income No' 2^sEss" Income

£ 160 to

200

257,499

£ 0 to

40

150,000

200

300

237.434

40

80

750,000

300

400

85.557

80

120

1,680,000

400

500

46,063

130

160

1,400,000

500

600

23.4"

l60

200

400,000

600

700

13,383

20O

300

390,000

700

800

10,250

300

4OO

97,000

800

900

5,779

4OO

500

49,000

900

1,000

7,445

5O0

Goo

24,000

1,000

2,000

16,363

6O0

700

14,000

2,000

3,000

3.381

700

800

IO.OOO

6,000

3,000

4,000

1,231

800

900

4,000

5,000

678

9O0

1,000

7,000

5,000

10,000

882

I.OOO

2,000

17,000

10,000 and over

390

2,0OO

3,000

3,000

3.0O0

4,000

1,000

709,746

4,000

5,000

5,000

10,000

700

goo

ic,ooo and over

400

Notice that the first class interval covers a range of £40

while the next to the last extends over £5000 and that the last

interval . extends over an amount not recorded but probably
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as large as £100,000. No scale which will satisfactorily picture

the £40 class interval will be satisfactory for a £100,000

interval. The curve below (not the insert curve) pictures as

much of the distribution as possible. Even with an interval

of £1000 to a distance of one-half inch, space does not permit

of showing the last interval. Having omitted this class it is

necessary to make note of the fact as has been done in the

lower right hand corner of the chart.

Ssooo-i

» aoooj

O

51

I

3000

JO

§ zooo]

>

~c loooj

i

6

Chart III

Distribution of Incomes in Great Britain

LanqeCurvo-fromAm.ConsolarReporf,Mat| 19I5

InsertCurve-H^pothetical.coverinqall Incomes

* • 19 h n n s jVsW

- *• a » rn

Income in Pounds

zooo 3obo -4000 3ooo 6000 TOO

Income in Fbunds

Since the first interval is £40, the second £100, the tenth

£ 1000 and the fourteenth £5000 it is impossible to plot ordinates

proportionate to the frequencies: 257,499; 237,434; 16,363;

and 882; and truly picture the situation. Some account must

be taken of the difference in size of intervals, for the ordinate

should represent the number of cases per unit interval. Ac-

cordingly 257,499 has been divided by the interval represented,

40, giving 6437, the number of persons per range of £1; 237,434
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divided by 100, giving 2374, etc., which quotients are the

heights of the ordinates representing the respective classes.

The ordinates have been joined by a smooth line to empha-

size, even more than does the frequency polygon, the idea of

continuity. A polygon or histogram is generally to be pre-

ferred, as it is less likely to be misleading.

Having the data of Table IX for incomes above £160 it is

possible to make a sufficiently close estimate of the total

distribution of wealth in Great Britain as to suggest what the

major features of the actual distribution would be. Let us

therefore assume the total distribution of wealth to be as

recorded in Table X and investigate its salient features.

The plot of the data of Table X is given in the insert. Since

the abscissa scale is much larger than before it has been impos-

sible to plot the entire distribution without breaks. These

breaks are indicated, as should always be the case, by prominent

pairs of zig-zag lines. Note that the ordinates, which were

obtained as before, are plotted at the mid-points of the intervals,

e.g., there are 390,000 individuals receiving incomes from

£200-£300, or 3900 per £1 of the range. This ordinate,

3900, is erected at £250, the class index and also the mid-

point of the interval.

The shape of the curve indicates that there were more than

3900 per £1 for incomes between £200 and £250 and less than

this number per £ for amounts between £250 and £300.

It may also be noted that since a curved line connects the

points, the area lying under the curve and between £200 and

£300 will not total exactly 390,000 as it should. In curves

smoothed by visual inspection such inaccuracy is practically

unavoidable. For these particular data a frequency polygon

would be still less satisfactory as it would indicate a mode at

£100 whereas, assuming the hypothetical data to be correct,

the mode is somewhat above that amount. A histogram would

give the most accurate presentation, but would be less satis-

factory in other respects. The total area in a given histogram

interval is accurate, but the rectangular distribution within

the interval indicated by the histogram may be quite inaccurate

if the interval is large.
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Section 5. The T1me Chart; Relat1ve T1me Chart; and

Chart of Ratios

Charts have been presented in which the ordinates were

frequencies and the abscissas amounts in a gross score. Such

graphs are ordinarily characterized by small frequencies at

either end of the distribution and a single mode somewhere in

between. If, however, frequencies are plotted as ordinates,

and periods of time as abscissas, a different type of curve

is found, for generally with the passage of time the function

continues to grow or at least persist. The following data and

chart are characteristic:

Chart IV

Grow+h in Fbpula.Tion

mme me ieno imo nso <9oo isio lezo

Note that the right hand axis is labeled from the bottom up.

Simplicity and clearness can frequently be obtained by labeling

the lines in a chart and omitting the legend.
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TABLE XI

Population in Thousands

1850

i860

1870

1880

1800

1000

1910

1020

Calif.

93

380

560

865

1,213

1,485

2,378

3,427

Ore. . .

13

91

175

318

414

673

783

Wash.

12

24

75

357

5i8

1,142

1,357

U. S.

Entire

23,192

31,443

38,558

50,156

62,948

75,995

91.972

105,7"

The graph shown illustrates the use of a single set of abscissas

and two sets of ordinates for the plotting of two kinds

of curves upon the same chart; (1) population of the United

States in millions and (2) population of States in hundred

thousands. This method is usually very misleading and the

present illustration is no exception. Double ordinate charts

can be used with less error if, going with changes in time

there are changes in the general direction of the curve, i.e.,

if it rises and falls, for then if a second curve also showing such

fluctuations in direction of trend is plotted on the same chart

it is possible to compare the one with the other as to direction

of fluctuation, but it is not possible at all accurately to com-

pare them as to magnitude of fluctuation. The method should

be used with very great parsimony and precaution.

For the chart shown the comparisons which can validly be

made are those of absolute growth between state and state.

The curve for the entire United States confuses rather than

helps in the comparison. Absolute growth in the United

States cannot be compared with absolute growth in the states

as the scale is 1/50 that used for the states. Relative growth

in the United States and in the states cannot be determined

by comparing the slopes of the curves — e.g., the slope of

the curve for the United States between 1900 and 1910 is

steeper than that for Oregon for the same years, but the per-

centage growth for that period for the United States is

21 S9l972 - 75995 x IOO\ which is less than the percentage

V 75995 /

growth for Oregon, 63 (— ~ 414 X 100). Likewise it is ap-

\ 414 /
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parent that relative growth of state and state is not shown by

these graphs.

The Relative Time Chart

Relative growth could be shown by plotting the populations

for the several years in terras of some one year as a base, or

"relative." For the data in hand this would be unsatisfactory

for no matter what year is taken as the relative (e.g., 1850, . . .

1910, 1920) the resulting graph would be difficult of accurate

and significant interpretation. If change over a short period

only is under consideration, relative curves reveal significant

tendencies, especially if the measures, in particular the base

measure, are large with respect to fluctuations.

The following data permit of portrayal in graphs, either in

terms of original scores or as ratios.

TABLE XII

Chicago Data *

U. S. Entire

Av. Yearly

Retail

Unio

Painters

n Wage peb.

Hour

Carpenters

Year

Dunn's

Wholesale

Price Index

Price

Round

Linotype

Operators

Steak

1907 . .

IO7.264

143*

50 i

50 i

56 3*5

1908 .

II3.282

14.9

5o

5o

563

1909 . .

111.848

15 9

55

50

56.3

1910 .

123 434

16.2

60

50

60

1911 .

115.102

15 9

60

5o

60

1912 .

123 438

19.1

60

5o

65

1913 . .

120.832

20.2

65

50

65

1914 . .

124.528

22.3

70

50

65

1915 . .

124.168

21.2

70

50

65

1916 . .

137.666

22.6

70

50

7o

* U. S. Dept. of Labor, Bur. of Labor Statistics. Union Scale of Wages and Hou^s of

Labor. 1916.

Chart V is a graph of the data of Table XII and Chart VI

of Table XII a. In Chart V there are various breaks in the

vertical scales permitting the use of three different sets of

values. The location of the word "Date" in Chart VI is

preferable to that in Chart V.
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TABLE XII a

(Prices and wages expressed as ratios* 1907 as base)

Chicago Data

Dunn's

Wholesale

Price

Index

Average

Yearly

Retail

Price

Round

Steak

Union Wage per Hour

Retail

Relative

Price

Yeah

Painte1s

Linotype

Operators

Carpenters

22 Common

Articles

of Food

1907 . .

IOO

IOO

IOO

IOO

IOO

IOO

1908 . .

106

104

IOO

IOO

IOO

1909 . .

104

III

11o

IOO

IOO

I09

I9IO . .

l15

"3

120

IOO

107

"3

[9II . .

107

III

120

IOO

107

"3

1912 . .

"5

134

120

IOO

115

121

1913 .

"3

141

130

IOO

"5

120

1914 . .

116

156

140

IOO

115

124

1915 . .

116

148

140

IOO

115

124

1916 . .

128

158

140

IOO

124

138

* The decimal point is omitted, as usual, so that a ratio of "106" means a six per cent

increase.

Chart V

increase in Wholesale Prices. g

Retail Prices, and Waqes 4 g

I307 'oe -09 "lO 'II 'iZ '15 -14 'IS I9l«>
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Chart VI

Incre&se in Wholesale Prices,Re+ajI

Prices fiscWaJ^es — Relative +o 1907.

<0

1)

ISO

i

ISO

<>

u*o

i

ISO

t-

o

IZO

c

0

IIO

5

Q

IOO

90

-Re+Ail-S+eaJs.

-Re+a-il-ZZ Ar+icUs —

-*Wa£e*-Lino4-ype Op.

-o Wak-gas-Ca^r pen+er»._^

V

I90T '06 '03 'IO 'll '12 '13

'V4 *I5 191*

Neither of the accompanying graphic presentations is with-

out serious drawbacks. From Chart V it is possible to infer

that the retail price of round steak and wholesale prices of

food products both dropped from 1910 to 1911 but it is not

possible to judge which suffered the greatest relative decline.

Chart VI does show that relative to 1907 wholesale prices

suffered most.

Chart VI gives the impression that painters are better off

than carpenters, — relative to condition in 1907 they are,

but in no other sense as Table XII shows. A relative table

or chart shows facts relative to condition at date of base and

nothing else, which is a point that must be stressed or it will

be overlooked by the untrained reader. A gross measure-

ment table, or chart, reveals gross changes and directions of

relative changes but not the magnitude of relative changes.

Another inaccuracy which is commonly present in ratio

measures and accordingly in charts based upon them, is due
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to the fact that variations in ratios are frequently large with

respect to the base used. Prices may increase or cities grow

101, 200 . . . 1000 per cent, but it is impossible for them to

decrease by such amounts. A change in ratio from 50 to 100

means more than a change from 100 to 150 though they show

up the same when plotted. Similarly in terms of genuine sig-

nificance; to pass from a ratio of 20 to one of 30 is greater than

to pass from one of 30 to one of 40.

To illustrate certain of the tricky features to be guarded

against in the use of ratios the following data and graphs are

given:

6C

00

40

ac

fib

10

o

Chart VII

Percentage of

Male "Teachers in

the Hi£h Schools

i^00 ef0

Ratio Chart

eoo.coo

t73;cco

150,000

IMiOOO

100,000

73,000

60i000

£,500

0

Chart VII a

Number of

Male Teachers in

the Hi£h Schools

_i 1

IQOO 1810

Grose Frequency

Chore.

TABLE XIII

Number of Teachers in the Public High Schools of the U. S.

Report of the Commissioner of Education, 1013, v. 2, pp. 0-10

1000

1010

Men . .

10,172 = 50 per cent of total

49.931 more exactly

10,200 = 50 per cent of total

18,890 = 45 per cent of

total

45-336 more

exactly

Women

Totals

20,372

22,777 ~ 55 per cent of

total

41,667
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From a casual glance at these charts it would be hard to

realize that they are both accurate representations of the

same data. A few pertinent questions might be asked:

(1) If the tendency shown by the ratio chart (tendency

based upon the actual data for 1900 and 1910) continues,

what will be the proportion of male teachers in the year 2000?

Answer .03981.

(2) If the tendency shown by the gross frequency chart

(tendency based upon the same actual data) continues, how

many male high school teachers will there be in the year 2000?

Answer 97,352.

(3) With the proportion as shown in your answer to ques-

tion (1) and the number of male teachers as given in your

answer to question (2), how many women teachers would there

be in the high schools in the year 2000? Answer 2,348,064.

If the reader sees through this situation he appreciates one

of the fallacies likely to arise through the use of proportions.

Another occurs in combining ratios

Time Ratios

To average a number of ratios to obtain a single index, in

general leads to an error. This will be considered later, but

to illustrate the fact that ratios do not group themselves in

a symmetrical manner around their own mean, the following

data from Mitchell are given as quoted by Secrist. (1917,

p. 312.) They also provided the material for an important

problem in plotting.

It will be noticed that the class intervals extend over ranges

of two units, e.g., there are five class intervals in covering a rise

in prices from 10 per cent to (but not including) 20 per cent.

With no direction to the contrary it is to be presumed that the

class designated in the table by "54 - 55.9" includes all

measures with values between the limits 53.95 and 55.95;

that the next class includes measures between 51.95 and 53.95;

etc. This is to say that presumably the data have been recorded

to but one decimal place so that such measures as 53.86 and

53.92 are called 53.9 and a measure such as 53.96 is recorded

as 54.0. If the recorder encountered a measure 53.95 he had

to arbitrarily decide whether it would be called 53.9 or 54.0.
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TABLE XIV

Distribution of 5575 Cases of Change in the Wholesale Prices of Commodities

from One Year to the Next

Per Cent of Change

from the Average

Price of the

Preceding Year

(Falling Prices)

Per Cent of Change

from the Average

Price of the

Preceding Year

(Rising Prices)

Number of

Cases

Number of

Cases

54-55-9

I

i4-l5-9

16-17.9

18-19.9

20-21.9

22-23.9

24-25.9

26-27.9

28-29.9

30-3I-9

32-33-9

34-35-9

36-37-9

38-39-9

40-41.9

106

I02

5o-5i-9

48-49.9

46-47.9

44-45-9

42-43-9

40-41.9

I

I

I

73

65

45

47

29

30

22

2

38-39-9

36-37-9

34-35-9

32-33-9

30-31 -9

28-29.9

26-27.9

4

5

5

7

10

\7

18

11

I7

14

6

10

II

5

I

4

3

I

6

4

7

16

24-25-9

22-23.9

20-21.9

18-19.9

16-17.9

27

17

32

39

45

71

76

107

120

42-43-9

44-45-9

46-47.9

48-49.9

50-51-9

52-53-9

54-55-9

56-57-9

58-59-9

60-61.9

I4-15-9

12-13.9

10-11.9

173

200

8- 9.9

6- 7.9

238

329

375

405

697

4- 5-9

66-67.9

68-69.9

70-71.9

72-73-9

74-75-9

4

2- 3-9

Under 2

No change

3

I

(Rising Prices)

Under 2

2- 3-9

4- 5-9

6- 7.9

4

I

410

355

356

261

80-81.9

82-83.9

84-85.9

86-87.9

I

I

I

I

8- 9-9

10-11.9

12-13.9

237

167

"5

100-101.9

102-103.9

I

5,578

I

For the data in hand it is not known how such a case would

have been decided, but a very good rule to follow is to always

assign such a critical measure to the even instead of the odd
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value, i.e., the measures 53.95, 54-05, 54-iS. S4-»5, 54-35 and

54.45 would be assigned as 54.0, 54.0, 54.2, 54.2, 54.4 and 54.4

respectively. It will be noticed that in the long run this

introduces no systematic error for the $ is thrown away as

often as it is added. It does result in a slight piling up of the

even measures, but that is generally inconsequential, whereas

the adding of a half every few measures would result in a

cumulative error which might be serious.

If the class intervals run in order from 53.95 to 55.95, 51.95

to 53.95, . . . 1.95 to 3.95 it is found that the next frequency,

in order to extend over the same range, would be from — .05 to

1.95, i.e., from an increase in price of .05 per cent to a decrease

of 1.95 per cent. This, however, cannot be the case, as a very

large frequency, 697, is recorded for "no change." The way

the data are recorded would suggest a class interval correspond-

ing to "no change," but this cannot be so, as the intervals on

either side preempt the space. In plotting the data, therefore,

the "no change" interval must be squeezed out and its fre-

quency, 697, distributed between the neighboring classes. We

will assign 348 to the "under 2 — Falling prices" interval, and

the remainder, 349, to the "under 2 — Rising prices" interval.

There still is a slight discrepancy (.05) in the ranges of these

two middle intervals; but as it cannot be positively accounted

for without recourse to the original data it is passed over.

For convenience in tabulation and plotting we will consider

the first class interval to extend from 54.00 to 56.00 and to

have its mid-point or class symbol 55.00, the second a mid-

point at 53.00, etc., and the frequencies as before.

The frequency polygon seems better suited to the data in

hand, as it gives the impression of a more pronounced mode

than would a histogram and in this case this feature should

be emphasized.

Three ways of connecting the points of a distribution have

been presented: (a) by drawing a histogram — Chart I;

(b) by drawing a frequency polygon — Chart II; (c) by draw-

ing a smooth curve through or near all the points which fits

the data as nearly as can be determined visually — Chart

III. A fourth way (d) is to plot from smoothed data; and a

fifth (e) is by mathematically determining the equation of
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the curve which best fits the data and plotting the same.

This last method is discussed in Chapter VII. Methods (a),

(b) , and (e) preserve areas, i.e., the total area under the curve

is equal to the population, or number of cases. Method (e)

also preserves other important features. In using method

(c) there should be a definite attempt to preserve areas; that is,

TABLE XV

Per Cent

of Change

Class Interval

of 4 Per Cent

Per Cent

of Change

Class Interval

of 4 Per Cent

fROM THE

Number

fROM THE

Number

of

Cases

Average

Price of

the Pre-

ceding

Year

of

Per Cent

Number

of

Cases

Average

Price of

the Pre-

ceding

Year

Per Cent

Number

of

Cases

Cases

of

Change

of

Change

-56

I

- 5

329

-55

I

- 4

704

—

—

- 3

375

- 52

I

— 1

753

- 51

I

O

1512

-43

I

1

759

-48

2

3

355

-47

I

4

711

-45

2

5

356

- 44

6

7

261

-43

4

8

498

-41

5

9

237

-40

10

11

167

-39

5

12

283

- 37

7

13

"5

-36

17

15

106

-35

10

16

208

-33

7

17

102

- 32

23

19

73

-31

16

20

138

- 29

27

21

65

- 28

44

23

45

- 27

17

24

92

- 25

32

25

47

- 24

71

27

29

- 23

39

28

59

— 21

45

29

30

— 20

116

31

22

- 19

71

32

39

- 17

76

33

17

- 16

183

35

18

- 15

107

36

29

- 13

120

37

11

— 12

293

39

17

— 11

173

40

31

- 9

200

41

14

- 8

438

43

6

- 7

238

44

16
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TABLE XV (continued)

Per Cent

Class Interval

Per Cent

Class Interval

of Change

of 4 Per Cent

of Change

of 4 Per Cent

FROM THE

Number

fROM THE

Number

Average

Of

Average

of

Price op

the Pre-

Cases

Per Cent

of

Number

Price of

the Pre-

Cases

Per Cent

Number

of

Cases

Of

Of

Cases

ceding

Change

ceding

Change

Year

Year

45

10

1 73

4

47

II

75

I

48

16

—

—

76

I

49

5

80

I

5i

I

52

5

81

83

I

I

53

4

84

2

55

3

56

4

85

87

I

I

57

i

88

I

59

6

6o

IO

—

—

92

0

6i

4

96

O

64

o

IOI

I

IOO

I

67

4

68

7

103

I

104

I

69

3

71

I

72

5

5-578

5.578

Chart VIII
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if the curve as drawn lies above any point it should lie below

some other, or, more accurately, the sum of the vertical distances

which it lies above points in the actual distribution should

equal the sum of the distances which it lies below other points.

In drawing a free curve for incomes, Chart III, the preserva-

tion of total area is a difficult thing to insure, but for maximum

temperatures, Chart I, it can be accomplished with fair accuracy

and little trouble. The personal element which enters into

method (c) generally makes it inadvisable for published work;

but for original, hasty and personal research it may well be

the one most frequently used.

Section 6. Smoothing Data

The smoothing of data preparatory to plotting (Method c)

may be illustrated by the accompanying records of the U. S.

Weather Bureau for New York City:

TABLE XVI

Mean Monthly Temperatures for 1017

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

32.4 27.8 38.7 47.2 53.2 68.3 74.1 74.6 63.0 52.0 41.2 25.0

We have here a temporal series, and as is frequently the

case, periodic fluctuations are shown. To obtain a general

idea of variations within the year the curve at the end of

December should join on to the curve at the beginning of

January, as indicated below in Chart IX drawn by Method (c).

It will be noticed that in the 1917 data there is a minor mode

in January and a major mode in August. As such bi-modality

is not typical we will smooth by means of the moving average

method and plot the resulting series. The moving average

method consists of replacing original items by averages of a

certain number of class frequencies. In the present problem

we will average the frequencies for two neighboring class

intervals and assign the result to the point midway between

the two frequencies. If we consider the averages for each

month as belonging to the 15th day of the month, we can

take the average of the temperatures for January and February

and assign this average to the end of January or the first of

February. Next the February and March temperatures are

averaged and the result assigned to March 1. Continuing
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throughout the series, finally averaging the temperatures for

December and January, gives the data of Table XVI, indi-

cated on Chart IX by the x's.

Chart IX

BBBBBB BBBB9B

Ii i X H ftt 2 I I

TABLE XVI-a

Mean Smoothed Temperatures for 1917

Ja. 1 F. 1 M. i A. 1 M. 1 J. 1 J. 1 A. 1 S. 1 O. I N. 1 D. 1

28.7 30.1 33.2 43.0 50.2 60.8 71.2 74.4 68.3 57.5 46.6 33.1

The reason this process is called that of taking a "moving

average" would be better exemplified if groups of three or

more items were averaged, in which case each successive sum

is obtained from the preceding one by dropping one item and

adding a second. It will be noticed that this curve has but a

single mode, is much more regular than the curve from the

original data, and does not have as high a maximum or as low

a minimum, which fact is a necessary consequence of the

method of smoothing. Moreover, it represents the annual

fluctuations better than the curve from the original data, as is

shown by comparing it with the dotted line based upon the

records for the 47 years from 1871-1917, given herewith:

TABLE XVII

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

31.0 30.5 37-8 48- 7 59-8 68.8 74.0 72.6 66.4 55.7 43.9 34.0

Since the average of two unequal numbers is never as large

as the larger or as small as the smaller of the two, the smoothing
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process tends to flatten a curve out and lower modes. If the

data are particularly irregular it is frequently desirable to do

this to reveal a general trend, but it should be borne in mind

that something of significance is always lost in the process of

smoothing. Numerical calculations should never be made from

TABLE XVIII

Distribution of Marks given to Women in 8 Elective College Subjects. Below

60 Failure; 60-74 Condition

(Taken from Mary Theodora Whitley, A Statistical Study of College Marks

— Master's Dissertation, Columbia, 1906)

/

/

/

/

/

/

Grade

(Fre-

quency)

Av. of

Three

Av. of

Five

Av. of

Fifteen

Grade

(Fre-

quency)

Av. of

Three

Av. of

Five

kv. Of

Fifteen

43

44

.07

75

76

77

78

79

80

81

82

27

7

11

16

16

II.7

150

11-3

14-3

29 0

9-

4

12.4

II.13

l3-47

14-33

18.00

20.00

22.80

26.07

27-53

32.07

3200

45

.06

.07

.06

.07

.13

.14

-13

.14

.13

.53

.54

-53

.53

.54

-93

.93

1.17

1.20

1.27

2.07

15-

4

21.0

20.0

20.4

24.6

24.2

26.8

32.6

38.6

41.2

43-0

48-

4

46

47

48

.2

.2

.2

.2

.2

.2

.2

.2

.2

.2

1.2

1.2

1.2

1.2

1.2

1-

4

1-

4

55

2

243

23-

4

173

21.3

49

50

5l

52

53

54

55

56

57

58

59

60

61

62

-3

4

.3

83

84

13

37

14

68

39-7

85

86

37-7

34- 73-

37.00

.3

-

4

.3

3i

43

50

23

95

6

52

50

17

63

23

11

47-3-

I

87

88

89

90

91

92

93

94

95

96

41-3

37-07

37.60

39.00

38.87

36.73

38.7

56.0

43-

4

45-2

45-2

44.0

37-6

41.0

32.8

23.8

20.6

8.0

63

64

6

2.0

2.0

2.0

41-3

510

36.0

39-7

43-3

34-

4

323

13.0

35- 87

31-33

29.26

26.40

2307

21-53

15.20

14.80

65

66

7

2- 3

24

1.8

2.2

2.13

2.20

2.27

97

98

67

68

69

70

2

2

1

3- o

1-3

1-7

5-3

5-o

5-0

1.0

1.0

97

2-

4

3-6

3-8

3-6

3-

4

34

6.2

2- 33

99

100

101

102

103

104

5

1

5-7

2.0

3-

4

1.2

.2

3- 73

4.20

.3

"-33

8.00

6.87

2.67

71

13

1

1

1

1

4- 93

6.00

7.07

72

113

.40

.07

73

74

7-

4

10.27

10.40

io5

106

773-

773-

773-

773-

smoothed data, as a spurious consistency in the findings may be

introduced and significance of the original data may be hidden.
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The possibilities and limitations of smoothing will be better

illustrated by application to the data of Table XVIII which

are decidedly multi-modal.

In the accompanying Chart X, the histogram represents

the original data; the smoothed average-of-three curve is not

Chart X

Distribution of 5chool Grades

Is

u —

I"

Z It

— Graph from ordinal data

— Graph from •moathed data. Av^e of 3.

rto Avfra of 13

Grades Received

shown; the ordinates of the smoothed average-of-five curve

are represented by dots; and the ordinates of the smoothed

average-of-fifteen curve are represented by o's.

The curve from the original data has fourteen modes, ten

of them located at grades divisible by five and four located

halfway between such grades. It seems that many teachers

do not grade on a percentile scale in units smaller than five

per cent, and that most of the remainder do not grade in units

less than two and one half per cent. An examination of the

frequencies in the average-of-three column shows that these

minor modes, which occurred about every 2^ units, have been
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smoothed out by the process of averaging three neighboring

measures, but that all the major modes persist though they

occasionally are no longer exactly five units apart. It is

found, by reference to the plotted distributions, that it requires

the smoothed average-of-five curve (.---) to smooth out

the modes periodically occurring every five units. It is also

apparent that the smoothed average-of-fifteen curve has

flattened the mode at 90 and spread out the extreme measures

altogether too much. It is therefore a desirable rule, when

smoothing must be resorted to, to average such a number of

neighboring groups as just cover the periodicity which it is

desired to smooth out. If the data show great irregularity,

rather than periodicity, it is better to average too small a num-

ber of groups than too large a number. In the case in hand

there is no doubt that the smoothing by averaging five class

frequencies is the preferable method, but even so, something

of significance, as is always the case, has been lost by the

smoothing: To illustrate; the percentage of failures shown by

the smoothed data, .57 per cent, is over twice as large as was

in reality the case, — .26 per cent.

Section 7. The Ogive Curve

When it is desired to determine the number of cases or per

cent of the population lying below a certain record, it can be

readily done if a curve is plotted showing sums of the fre-

quencies of all measures below designated amounts of the

trait. The method may be illustrated by the data of Table I.

The first two columns below repeat that table; the third column

is obtained by cumulating the frequencies in column two.

The 1 in column three recorded opposite 65.5 means that one

day (out of the 62) had a temperature less than 65.5. It will

be noticed that two days had temperatures less than 66.5,

or 67.5, or 68.S, or 69.5. In such a case it is sounder to assign

the 2 to the point midway between the 65.5 and the 69.5 than

to any other point in this stretch. Accordingly it is recorded

in column three that 2 days had temperatures less than 68.0.

Continuing there are 3 days with temperatures less than 70.5;

4 with less than 72.5, etc. Finally it is to be noted that the

last point is indeterminate, i.e., 62 days had temperatures

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



3*

STATISTICAL METHOD

less than 98.5, or 99.5, or 100.5, etc. It is impossible to deter-

mine from finite data what is the maximum temperature below

which the temperatures for all days lie. It is of course also

impossible to determine what is the minimum temperature

above which the temperatures for all days lie. For this

TABLE XIX

Distribution of Daily Maximum Temperatures, July and August,

New York City, 1917

1

No. of

Days

Cumula-

Cumula-

No. of

Days

Cumula-

Cumula-

tions

Temper-

with

tions

tions

Expressed

in Per-

centages

Temper-

with

tions

Expressed

atures

Given

Temper-

ature

Of

atures

Given

Temper-

ature

of

in Per-

centages

No. of

Days

No. Of

Days

65

I

45

72.6

65-5

I

1.6

84

2

66

I

47

75-8

66.5

85

4

67

51

82.3

68

2

3-2

86

3

69

54

87.I

70

I

3

4.8

87

I

55

88.7

71

I

88

2

72

4

6.4

89

57

91.9

73

74

2

6

9-7

90

91

1

75

3

9

14-5

92

58

93-6

76

1

10

16.1

93

94

77

1

11

17-7

95

I

59

95-2

78

3

96

1

14

22.6

97

60

96.8

79

1

15

24.2

98

2

62?

80

10

25

4o-3

99

62?

81

8

33

53-2

100

62?

82

5

38

61.3

IOI

83

7

reason the zero and one hundred percentile points for this

ogive curve are not plotted. This should be the case for all

ogive curves — the common practice of plotting the lowest
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and highest recorded data as the o and 100 percentiles being

inaccurate and confusing.

Column four gives the same data as column three, expressed

in percentages of the total frequency. In the accompanying

graph the ordinates are the cumulative frequencies in per-

centages and the abscissas are the temperatures as shown:

Chabt XI

Dailq Maximum Temperatures

Julu&Auqus+ 1917-NewYork

O 16 to 50 3o 3o fcO TD OO SO 160

Ffcrcen+oqe of days fallinq short of qiven temp

It is interesting to note that the relatively irregular data

used has resulted in a fairly regular ogive curve, and that,

without any smoothing. The ogive curve facilitates interpre-

tation, e.g., it is immediately read from the curve that:

5 per cent of the days do not attain a temperature of 710

75°

78°

81°

88°

95°

have maximum temperatures between 79.50

10

20

50

90

95

50

and 84.5'

etc.. etc.

Or, interpolating the other way:

A temperature of 95 or more is reached on 5 per cent of the days

"8521 ""'

"75""87 J" """ "etc.

The ogive curve may also be used to determine the mode,

for if a smooth curve (not a polygon as here shown) is drawn

through or near the points given and a ruler rotated so as to

be tangent to the curve at successive points, that point at
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which the ruler ceases turning in one direction and starts to

turn in the other (called the point of inflection) is the modal

point, its value being read from the ordinate measures on the

margin. Applying this method to these particular data the

mode is found to be very close to 8i°. The more important

measures revealed by the curve are the median, or 50-percentile,

the semi-interquartile range more briefly called the quartile

deviation, or one half the distance between the upper and

lower quartiles, the 10-percentile, the 90-percentile and the

10-90-percentile range. For the data in hand these are re-

spectively 8i°, 79.5°, 84.5°, 2.5°, 75°, 88° and 130.

Section 8. The Growth Curve

The accompanying table gives smoothed scores in a reasoning

test as given by Kelley (1917). Plotted they give a typical

growth curve.

TABLE XX

Adult

Age . . 7.0 8.3 9.4 10.5 11.8 13.0 14.1 15.3 16.5 17.8 19.2

Score on

Trabue

Scale . 1.1 2.2 3.7 6.1 6.5 7.2 7.3 7.8 8.5 8.9 9.4

Chart XII

GrowTh Curve in Reajsomn^ lesr Abi I i+y
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This particular curve is interesting in that it snows a flatten-

ing at ages 13 and 14, which is not at all characteristic of growth

curves of mental traits, but as the units of measurement,

instead of intrinsic ability, could conceivably account for the

phenomena the curve does not prove, but merely suggests,

that there is a pubertal disturbance. For the purpose of the

present statistical treatment no attention need be paid to the

double inflection of the curve.

Rotating the curve through 90° and looking at it in a mirror

(as pictured in Chart XIII) shows its general resemblance to

an ogive curve. It was possible in the case of daily tempera-

tures to cumulate scores and obtain ogive curve data. By

the reverse process it is possible from the ogive data to obtain

the original distribution of temperatures. By parity of opera-

tion it is possible to obtain measures of growth increments

from an original growth curve. The growth curve may be

plotted as herewith:

Chart XIII

Thinking of the abscissas as sums of increments of reasoning

ability and recalling that the graph is for an average individual,

whose maximum development or accumulation is to 94 of such

increments (i.e., the total population of increments is 94) the

graph may be read: At age 7 the individual possesses 11

increments of reasoning ability; at age 10, 50 increments,
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etc. This may be an awkward way of interpreting growth,

but if it is desired to think of growth as a sum of increments it

immediately suggests the determination of the increments

added during each year of life as follows:

TABLE XXI

Age

Score

Yearly Growth

Increment

Age

0

0

0

.5 (from 0-1)

I

0

.5 -

1.5 (from 1-2)

3

I

.5 +

2.5 (from 2-3)

2 —

3.5 (from 3-4)

5

5

2 +

4.5 (from 4-5)

3 -

5.5 (from 5-6)

7

ii

3 +

6.5 (from 6-7)

8

19

8

7.5 (from 7-8)

9

31

12

8.5, etc.

10

50

19

9-5

ii

62

12

10.5

12

67

5

".5

13

71

4

12-5

14

73

2

13-5

15

76

3

14-5

16

82

6

15-5

17

87

5

16.5

18

90

3

17-5

Adult

94

4

? (from 18-adulthood)

94

These growth increments plotted in the form of an ordinary

frequency polygon give the following figure:

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



GRAPHIC METHODS 37

Chart XIV

Distribution of Yearly Growth Increments in a Reasoning Test

0 / 2 3 1 J6 is 1 a 11 a 13 m is a 17 « it to a

Age

The bi-modality of the growth increment curve is of course a

consequence of the double inflection of the growth curve. Since

the constants of this increment curve (mean, skewness, standard

deviation, etc.) can be readily calculated, the curve has certain

advantages over the growth curve. It should be a very con-

venient form in which to present data for purposes of studying

variability in rate of growth, variability in price changes, etc.

In dealing with functions in which there is a loss in a given

period, e.g., when an individual weighs less in one year than in

the preceding, negative frequencies arise. These need cause

no trouble if treated strictly algebraically and the negative sign

preserved.

Brown and Thomson (1921) have shown that the standard

deviations of the class frequencies of such a curve are not given

by the ordinary formula [Formula 25].

Section 9. The Graphic Representation of Categorical

Measures

The graphs thus far have pictured the frequencies or amounts

of a quantitative or temporal variable, but if the frequencies of

categorical measures are desired a different procedure is neces-

sary. For example, if desired to represent the number of
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days which lie in the following categories, (a) clear, (6) cloudy,

(c) rainy, a large number of devices are possible. The signifi-

cant feature to be portrayed in this as in all qualitative series

is the magnitude of each category with reference to the others,

or the proportions which each bears to the whole. This may

be shown by appropriate lengths of lines constituting what is

called a "bar diagram," by heights of shaded rectangles, by

sectors of the required number of degrees, by appropriate

number of discrete objects, men, bushels, ships, etc. The

essence of an accurate portrayal lies in having the representa-

tions of the two or more items alike in every respect except one

and differing in that one by the required amounts.

If the population of Texas is 5 million and that of Georgia

3 million and if a man, representing Texas, is pictured beside

a child, three fifths as tall, representing Georgia, the impression

conveyed is entirely erroneous. The heights are in the ratio

of 5:3, but the areas covered by the figures are approximately

in the ratio of 25:9. However the situation is even worse than

this for the weight of a man as pictured is to the weight of a

child as pictured approximately as 125:27 and one is inclined,

in so far as the pictures mean a man and a child, to make just

such a comparison.

If three dimensional objects are pictured upon a two dimen-

sional surface to convey a one dimensional relation the objects

should be identical in size and differ only in number. In the

illustration mentioned, Texas could be represented by a row

of five men and Georgia by a row of three. The use of men in

picturing population, of sectors of a dollar in showing the items

of a budget, of bales of cotton in picturing cotton production,

etc., are conventional and expressive modes of presentation.

Accuracy of presentation is favored by the use of rectangles of

different lengths, but as independence of a heading may be

accomplished by a proper choice of object for picturization,

this method has certain indubitable advantages. However,

if a two or three dimensional object is pictured either (a) all

the dimensions except one should be kept constant and that

one vary in the proportions desired, or (6) all dimensions should

be the same and the number of objects vary. As an illustra-

tion of (a) the amount of paving in two cities could be repre-
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sented by the pictured lengths of two roads, the amount of

coal produced by trains of gondola cars of different lengths,

or the number of fish in the lakes at two resorts by angle worms

of different lengths, etc.

It is occasionally possible to represent not only the relative

size of two categories but also their special temporal or spatial

relation by graphic means. This is very prettily illustrated

by the accompanying figure from Perry. (C. A. Perry, Educa-

tional Extension. Quoted by Rugg, 1917.)

Chart XV

Environment of a Minor

A cross section at any age reveals the proportions of time

spent in the various ways, but it does more than this, as it re-

veals the temporal relations of these proportions.

If one considers how many pages of writing matter would be

required to convey an idea of all the relationships shown in

Chart XV he will appreciate the art involved in graphic

presentation. If he will likewise consider that a written

presentation would probably be obscure and dreary reading

and that the joy of discovery belongs to one who studies an

ingenious chart, he will appreciate that the graphic method

at its best has far greater advantages than those of simply

saving space and time.

The last figure conveyed information as to three different

items, (a) age, (6) time spent in different activities, and (c) the

temporal disposition with reference to each other of different

activities. It is thus a complex series, being quantitative,

qualitative and temporal.
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Accompanying is a block presentation of a complex series.

It conveys information as to three different things, (a) date,

(b) numbers of immigrants, and (c) country of birth.

Chart XVI

IMMIGRATION

In thousands

by 5 year periods

1891 to 1910

from US Alien

Immigration Statistics

This information is fully presented in the figure, but it very

frequently is impossible clearly to present a three-dimensional

situation by a picturization of a three-dimensional figure, for

commonly a part of the figure would obscure other essential

parts. The large immigration from Germany in 1891-95 almost

hides the block showing the immigration from Germany in

1896-1900, but as it does not completely hide it the relation-

ships are readily- apprehended. However, if the immigration
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from Russia had also been larger in 1891-95 than in 1896-

1900, the block for the latter period would not have been

visible and the method would have been unsatisfactory.

Another device for presenting such data is given below:

Chart XVII

IMMIGRATION IN THOUSANDS BY FIVE YEAR PERIODS

1891 TO 1910

I ||to£ I Ut»B

rtoa

K)toll

ltt.3

II Ult

ITALY

AUSTRIA

HUNGARY

RUSSIA

GERMANY

1896-1900

I901 -1905

1906-1910

This is a more flexible method than the preceding, as there is

no possibility of one block covering up another, but it requires

a coarse grouping in the measure represented by the cross-

hatchings, or shadings, and in general its features are not out-

standing as are those of the preceding figure.

In the block figure the last three countries are in the order

demanded by geographical position of the countries. An addi-

tional fact, such as the numbers of literate and illiterate immi-

grants, could be represented by shadings of appropriate areas

upon the tops of the blocks. Still another, such as age, or sex,

or vocation, could be shown by the color of the ink used in the

cross-hatching. Even this does not exhaust the possibilities

of graphic presentation upon a single two-dimensional surface.
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It is difficult to give a summary of the principles underlying

graphic portrayal as they differ with the number of dimensions

presented and with the continuous or discrete nature of the

data, but the recommendations contained in the preliminary

report of the joint committee on standards of graphic presenta-

tion are of broad applicability. This committee represented a

wide field of statistica1 workers and was formed upon the invita-

tion of the American Society of Mechanical Engineers. Its

recommendations as given by Haskell (1919) are:

1. The general arrangement of a diagram should proceed

from left to right.

2. Where possible represent quantities by linear magnitude,

as areas or volumes are more likely to be misinterpreted.

3. For a curve the vertical scale, whenever practicable, should

be so selected that the zero line will appear in the diagram.

4. If the zero line of the vertical scale will not normally

appear in the curve diagram, the zero line should be shown by

the use of a horizontal break in the diagram.

5. The zero lines of the scales for a curve should be sharply

distinguished from the other coordinate lines.

6. For curves having a scale representing percentages, it

is usually desirable to emphasize in some distinctive way the

100% line or other line used as a basis of comparison.

7. When the scale of the diagram refers to dates, and the

period represented is not a complete unit, it is better not to

emphasize the first and last ordinates, since such a diagram

does not represent the beginning and end of time.

8. When curves are drawn on logarithmic coordinates, the

limiting lines of the diagram should each be at some power of

10 on the logarithmic scale.

9. It is advisable not to show any more coordinate lines than

necessary to guide the eye in reading the diagram.

10. The curve lines of a diagram should be sharply dis-

tinguished from the ruling.

11. In curves representing a series of observations, it is

advisable, whenever possible, to indicate clearly on the diagram

all points representing the separate observations.

12. The horizontal scale for curves should usually read from

left to right and the vertical scale from bottom to top.
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13. Figures for the scale of a diagram should be placed at

the left and at the bottom or along the respective axes.

14. It is often desirable to include in the diagram the numeri-

cal data or formulae represented.

15. If numerical data are not included in the diagram it is

desirable to give the data in tabular form accompanying the

diagram.

16. All lettering and all figures in a diagram should be placed

so as to be easily read from the base as the bottom, or from the

right-hand edge of the diagram as the bottom.

17. The title of a diagram should be made as clear and com-

plete as possible. Sub-titles or descriptions should be added

if necessary to insure clearness.

PROBLEMS

1. Smooth the temperature data by means of a moving average of three

class frequencies and plot. What is the modal value?

2. Express the populations of California, Oregon and Washington as

indexes with 1900 as base. Which state showed the greatest relative

growth in the decade 1900-1910?

3. Chart VI shows that relative to 1907 retail prices of steak in Chicago

did not advance as fast as wholesale prices. Choosing each year in turn

as base, determine the relative increase in the wholesale prices and the

retail prices of steak for the succeeding year, and answer the question,

"In how many years did retail price advances fail to keep pace with

wholesale price advances?" Using data in the last column of Table XII a

answer the same question with reference to Wholesale prices and Retail

prices of 22 common articles.

4. (a) Plot an Ogive curve for the raw data of Table XVIII and on the

same paper (6) an Ogive curve for the same data as smoothed by a moving

average of fifteen class frequencies.

5. Plot hypothetical data giving incomes in Great Britain in the form of

an Ogive curve. What is the mode? Fill out the following table:

Incomes Received by Successive Percentiles

Percentiles 1 5 10 20 25 30 40 50 60 75 80 90 95 99

Incomes

6. Save work for future reference.
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CHAPTER III

THE MEASUREMENT OF CENTRAL TENDENCIES

Section 10. Averages

A tabulation of the data pertaining to a distribution pre-

sents all the facts, and a histogram or frequency polygon makes

possible the visualization of this detail. Ordinarily, however,

the detail is so great that it cannot be interpreted. In this

case certain measures of the total distribution are serviceable

in summarizing the data. The most important of these are

averages, or measures of central tendency. The most signifi-

cant averages are (a) the mean [more accurately the arithmetic

mean], (b) the median, (c) the mode, (d) the geometric mean,

and (e) the harmonic mean. Note that these are all averages.

The word "average" is frequently used synonymously with

mean (arithmetic mean). It will occasionally be used in this

text in such expressions as "the average of the means," in

order to avoid the more accurate but awkward expression

"the mean of the means." Ordinarily "mean" will be used

consistently to designate the arithmetic mean, and "average"

as synonymous with "measure of central tendency," thus

meaning any one of the five measures listed above.

The most important single item of information to be known

about a distribution is what it is a distribution of.

The second in importance is the number of cases in the distri-

bution, or, as it is usually expressed, the population.

The third, is to know some measure of central tendency,

some average.

The fourth, to know some measure of the degree to which

the measures scatter, or lie above and below the average, i.e.

to know a measure of dispersion or deviation from the average.

The fifth, to know if the measures are symmetrically dis-

tributed with reference to the average, or if there is a bunching

of measures on one side of the average and a long tailing out

of measures on the other side; i.e., to know a measure of

skewness.
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MEASUREMENT OF CENTRAL TENDENCIES 45

The sixth, to know if the measures are exceptionally densely

grouped at the average, giving a high peak to the frequency

polygon (leptokurtic, i.e., 02 of section 36 is greater than 3.0)

or if the distribution is rather flat in the middle and contracted

at the ends, thus tending toward a rectangular shape; (pla-

tykurtic, i.e., 02 < 3.0) or if they show a mean between those

two conditions as does a normal distribution (mesokurtic,

ft — 3-0); in short, to know a measure of kurtosis.

These are all of the essential measures in the case of a uni-

modal distribution; the next important item would be a

measure of the tendency to have more than a single mode, or

place of dense frequency.

No treatment will be given in succeeding chapters of bi-modal

curves, but if it is noted that uni-modal curves include anti-

modal or U-shaped curves, — those having large frequencies

at the extremes and small frequencies in the middle, as well

as L-shaped curves, rectangular distributions, and all forms

of positive uni-modal curves, it will be seen that the great

majority of distributions found in biology, economics, and

psychology belong to the uni-modal type and that a knowledge

of the six items mentioned above is adequate for all but a small

number of distributions.

Measures of skewness and kurtosis are essential in mathe-

matically fitting curves to observations and are treated of in

Chapter VIII on Curve Fitting. The calculation of averages

is dealt with in this chapter and the relative excellence of the

different averages will be considered in connection with their

probable errors in the next chapter.

Section 11. The Arithmetic Mean

The mean may be defined as the sum of the separate measures

divided by the number of them. This definition immediately

suggests the method of calculation: add the measures and

divide by the population. If an adding machine is available

and other measures of the distribution are not desired, this

method is the most expeditious one to follow. Generally,

however, it is more economical of time first to group the

measures and arrange them according to magnitude, as was

done with the Temperature data, Table VIII. Repeating
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STATISTICAL METHOD

these data we have the first two columns of the accompanying

Table XXII. The third column illustrates one method of

TABLE XXII

Calculation of the Mean

Temper-

atures

Fre-

quencies

Devia-

tions

from

Arbi-

trary

Origin

Grouped

Devia-

tions

from

Arbi-

trary

Origin

Products

Products

Fre-

quencies

X

/

fx

€•

/{

F

r

Ft

65

I

I

65

- 15

- 15

66

69

70

66

- 14

- 14

2

I

- 5

-4

— 10

-4

I

I

70

7I

- 10

- 10

71

72

- 9

- 9

I

- 3

- 3

74

75

76

77

78

79

2

148

225

76

77

234

79

- 6

- 12

3

I

I

- 5

- 15

6

5

- 2

— 12

- 4

- 4

- 3

- 3

3

1

- 2

- 6

-1

- 5

- 1

- 1

80

81

82

83

84

85

86

10

800

648

410

58i

168

340

258

87

176

0

1

2

3

4

5

6

-89~

8

- 34

8

5-

7

2

10

21

23

l3

6

0

1

2

4

3

1

8

20

18

13

12

87

88

7

8

7

2

16

90

1

90

10

10

1

3

3

95

96

1

1

95

96

l5

16

•5

16

2

5

10

98

99

2

196

18

36

2

6

12

62

5,056

81.548

185

-89

62

50

- 34

M=

96

62

16

Correction = 1.548

Arbitrary

Origin = 80.

M = 81.548

Correction

62

= 3 X .258

Correction = .774

Arbitrary

Origin = 81.00

M = 81.774

* Greek alphabet given in appendix.
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MEASUREMENT OF CENTRAL TENDENCIES 47

calculating the mean; the fourth and fifth columns a briefer

method, in that it involves handling smaller numerical magni-

tudes; and the last three columns another method which is

still shorter in case the number of class intervals is large. For

a method of calculating the mean, standard deviation, and

higher moments by means of continued summations see Brown

and Thomson (1921) and Elderton (1905).

The headings of these columns are typical and will be

repeatedly used in subsequent examples:

X (or 10 will be used regularly, as here, to designate gross

scores.

/ (F) designates class frequencies.

£ * (f) designates deviations of scores from an arbitrary

origin, or starting point. In column four, { represents devia-

tions of the gross scores from the arbitrary origin 80, while in

column seven f represents deviations of class intervals each

of which is three times as large as the class interval obtaining

in the gross scores, e.g., from 0-1 in column seven is one f unit

but it is three X units.

x (or y) has not been used in any of the above columns since

it is reserved for a very definite purpose. It will consistently

mean a deviation from the true mean. In the case in hand,

if deviations from 81.548 had been recorded they would have

been designated as x measures. Throughout the rest of this

text x (or y) will mean a deviation from the mean or from an

origin so near to the mean that no attention need be paid to the

fact that it differs slightly from the true mean.

N. One further symbol is universally employed — N (n)

stands for the population. In the present example N = 62.

[n occasionally has other meanings, particularly when it ap-

pears as a subscript or a superscript.]

M is used to designate the mean.

2. The symbol 2 indicates not a measure but an operation.

When placed before a symbol standing for a measure it indi-

cates that the sum of all such measures is to be obtained,

e.g., 2/ means the sum of the frequencies — in the illustration

2/ = 62.

With these definitions in mind it will be seen that the mean

* Greek alphabet given in appendix.
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STATISTICAL METHOD

may be calculated according to any one of the following

formulas: t y

M = ^- (The mean) [i]

This formula is used in case measures are not grouped or

arranged according to magnitude.

M = (The mean).... [i o]

This is the method used in columns two and three. XfX = 5056

and 2/ = 62. These two formulas are really identical, for

XfX simply means that each X is taken as many times as it

occurs. There is no mathematical operation in use in which

the sum of the measures is taken irrespective of the frequencies

in the various classes, so that in subsequent examples will

mean identically the same thing as 2/X and will frequently

be written for the latter as it is more concise. For similar

reasons 2£ will be written for 2/{; 2* for 2/*; 2*' for 2/s2; etc.

M = Arbit. Orig. + ~- (The mean) [1 b]

This is the method illustrated in columns four and five. It is

called the method of moments, i.e., of tendencies to produce

rotation about a point. Moments may be taken about any

origin and if the positive exceed the negative it means that

the origin chosen is too small. Similarly if the negative exceed

the position moments the guessed mean, or arbitrary origin,

is too large and a negative correction is necessary. If the

guessed mean is 80 and calculation shows that there are 96

excess positive moments then, since there are 62 cases in all,

the moment corresponding to each measure should be

96/62 = 1.548 greater than it is in order to make the positive

exactly equal the negative moments. This point where the

moments exactly balance is the mean. Obviously if the guessed

origin is moved by 1.548 units, i.e., if 1.548 be added to 80, a

value will be determined such that if moments about it are

taken the negative and positive moments will exactly balance.

ir a /-> . 1 (Class interval) 2 £ .. .

M - Arbit. Ong. + - ^ —s- (The mean)[i c]

This method is illustrated in the last three columns. It is a

moment method applied to data which have been grouped.

The guessed origin is here 81, the class interval 3, i.e., 3 of the
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MEASUREMENT OF CENTRAL TENDENCIES 49

gross measure units, and 2f = 16. Solving M = 81.774. The

discrepancy between this value and that obtained before is

due to the grouping, — the true value being 81.548 and not

81.774. Such error may be either positive or negative, and,

unless very great precision is demanded, may be disregarded

when the data show no pronounced periodic disturbances and

when the number of class intervals is 12, or greater. (For

considerations leading to the number 12 see section 46.)

It will be noted that there are 11 class intervals in column f.

In the case of distributions which show peculiar local groupings

great care should be exercised in combining class frequencies.

In the case of the College Marks given in Table XVIII a

combining of measures into groups as follows: 50.0—54.9,

55.0—59.9, 60.0—64.9, etc-, and a designating of the middle

points of the groups as lying at 52.5, 57.5, 62.5, etc., would

lead to substantial error in calculating the mean, since the

measures in the groups are not all evenly distributed. To

illustrate: if the 12 measures in the interval 65.0 — 69.9 are

grouped and assigned the value 67.5 an error of 1.33 has been

introduced, for calculation shows that the true mean of these

12 measures is 66.17. An error of .1.33 in a single group would

not be serious, but for the College Marks data the error is

typical of each group, so that a calculation of the mean from

data so grouped would lead to systematic raising of the mean

by an amount between 1 and 2 units. Whenever systematic

local tendencies are apparent in data and grouping is resorted

to, it should be endeavored to so group that the middle of each

group interval corresponds to a local mode; e.g., with the

College Marks the class intervals of the groups should be as

follows: 47.5-52.5, 52.5-57.5, etc., since the mid-points of these

intervals, 50, 55, etc., correspond to local modes and also approxi-

mately to the means of the measures in the group intervals.

The data in Table XXIII reported by the New York State

Industrial Commission and taken from the New York World

of Jan. 27, 1919, are so grouped as to make it impossible

accurately to determine any sort of an average wage. These

data show that 6 per cent of women factory workers receive

from $6-$7.99 a week, but certainly the mean wage of this

group is not $7.00, for in all probability a large number re-
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STATISTICAL METHOD

ceive exactly $6.00, another large group exactly $7.00. while

lesser groups receive wages of $6.50 and $7.50, and but very

occasionally would there be a wage such as $6.49 or $7.99.

Since one end of the interval, $6.00, has a large frequency that

is not balanced by the other end $7.99, the mean of the group

may be expected to lie below §7.00, possibly considerably

below. Similarly the 14 per cent receiving wages from $8.00

to $9.99 presumably receive a mean wage much below $9.00.

It is difficult to group data of this kind without introducing

large error, but if the intervals had run, $6.2S-S6.7S, $6.76-

S7.24, $7.25—$7.75, etc., probably the mid-point of each group

would be close to the mean of the group. An attempt to deter-

mine an average wage from the data as given might easily be

nearly 50 cents in error. The unequal distances covered by

successive intervals in the grouping proposed is a disadvantage

which is more than compensated by having the mid-points and

the means of the groups approximately coincide.

TABLE XXIII

Full-time Earnings of 20,597 Women in Factories and 23,203 in Mercantile

Establishments

Factories

Stores

Per Cent

Per Cent

I

I

7

7

21

23

42

44

59

64

41

36

11

9

In any research the question usually arises whether to group

at all, and, if so, what groupings to make. It has already been

suggested that groupings should not be made which result in

less than twelve classes. This is a lower limit. If the distribu-

tion is pronouncedly asymmetrical, as for example is that

showing incomes in Great Britain, twelve is far too small a

number of classes. The lower end of that curve could not be

at all satisfactorily represented if the income range covered

by each interval should be as large as £100, nor with such

grouping could the arithmetic mean be accurately determined.
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MEASUREMENT OF CENTRAL TENDENCIES 51

A range of £40 for the lower intervals will answer, though a

range of £10 or £20 would be much better. Since incomes

range from about £0 to £200,000 there would be no less than

5000 classes needed to represent the distribution if the class

interval is £40.

The distribution of Wholesale Price Indexes is not as

markedly asymmetrical, but it has such a phenomenal peak

at "no change" that a coarse grouping cannot be used, or this

characteristic is hidden. The plotted distribution has 41

classes and 38 of them have frequencies other than zero. As

plotted, the peak at "no change" is less pronounced than it is

in reality and if the grouping were coarser it would be still less

apparent. A slightly coarser grouping would not have very

great effect upon the mean, but it would have decided effect

upon other constants, particularly those measuring kurtosis.

Forty classes is close to the minimum which would be satis-

factory for either graphic or numerical work with wholesale

price index measures.

For graphic presentation of College Marks a grouping into

classes of five units each, with interval limits chosen as already

indicated, would result in a graph nearly as satisfactory as

that based upon the moving average involving five neighboring

classes. Such a grouping leads to but 11 classes, which is too

small for very reliable results. However, groupings into units

of 4, 3, or 2 are not satisfactory, as they do not conform to the

local periodicity, which is five units. A grouping into units

of 2\ would be excellent from the standpoint of statistical

accuracy, but as it would involve splitting the frequencies in

the gross score classes it would be uneconomical of time. All

things considered it would seem advisable to use the gross

score intervals, or, for rough work, a grouping of five gross

score intervals.

The situations presented by Incomes, Price Indexes, and

College Marks are not typical, but illustrative of the more

difficult grouping problems encountered.

Consider the Temperature data, Table XXII, and note that

if two gross score intervals had been grouped the frequencies

in Column F would have been for intervals whose mid-points

would be 65.5, 67.5, 69.5, etc., that when three gross score
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intervals are combined the mid-points are, as shown, 66, 69,

72, etc.; and that in general if an even number of gross score

intervals are combined the mid-points of the resulting intervals

do not coincide with the mid-points of any of the original

intervals but lie halfway between original measures. Ac-

cordingly if an even number of gross score intervals are com-

bined an entirely new table has to be made out. As this

involves work and an additional chance for error it is undesirable

if a grouping of an odd number of intervals will suffice.

As a general rule, applying to distributions not especially

asymmetrical (skew) nor peaked (leptokurtric), (1) an odd

number of gross score classes should be grouped, (2) the number

of classes resulting from grouping should not be less than 12,

and (3) the number of gross score intervals in a group should

equal the number involved in local periods, or divide into such

number without remainder, or be an integral multiple of such

number. Finally in case the distribution is markedly skew or

leptokurtic, conditions (1) and (3) remain the same but (2)

the number of classes should be greater than 12 and great

enough that significant portions of the distribution are revealed

in such detail as is commensurate with their importance.

In determining the number of gross score intervals to be

grouped in ordinary data a serviceable rule to follow is to

subtract the smallest from the largest measure and divide by

twelve. The nearest odd integer below the resulting quotient

is the proper number of gross score intervals to combine. E.g.,

in the case of maximum temperatures (98 — 65V12 = 2.75.

The nearest odd integer below 2.75 is 1. Accordingly the

data are not grouped at all and the gross score intervals of i°

kept as the proper steps. No material inaccuracy would have

been introduced by combining two of the gross score intervals,

but it would have been of questionable economy to do so.

Applying the rule to the College Marks data we have,

(99 - 50)/12 = 4.1. The nearest odd integer below is 3. It

would therefore be appropriate to group three intervals were it

not for the fact that there is a local periodicity extending over

5 gross score intervals. Applying to wholesale price indexes

[103 — ( — S5)]/i2 = 13.2. Since the original scores were

recorded in 2 per cent steps the interval of 13.2 per cent is
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MEASUREMENT OF CENTRAL TENDENCIES 53

equivalent to 6.6 of the gross score intervals. The nearest

odd integer below 6.6 is 5, which would be the proper number

of gross score intervals to combine, were it not for the fact

that the data are very exceptional, having a phenomenal mode.

The proper labeling of class intervals is important in con-

nection with grouping. Class intervals of either grouped or

ungrouped scores should be labeled by recording the lower and

upper limits of the interval, e.g., 75.50-76.50, or by labeling

the mid-point of the interval, e.g., 76.0. If the successive class

intervals are the same the labeling of the mid-point is both

clear and concise. A great deal of needless confusion is caused

by improper labeling of intervals. The writer has found this

especially true with reference to age data, such as the following:

Age

Height

in Cm.

12

140

13

150

H

155

15

160

Score in

Age

Arithmetic

Test

12

18.324

13

20.002

H

2O.980

15

23-545

With data such as these it is a matter of sheer guess whether

the scores correspond to mean ages of 12.0, 13.0, etc., or of 12.5,

13.5, etc. If a single score is recorded for a class interval it

should universally be that of the mid-point of the interval,

and in order to make it unambiguous the labeling figure should

be carried one decimal further than the unit representing the

class interval, e.g., if the above tables had read:

Age

Height

in Cm.

Age

Score in

Arithmetic

Test

I2.o

140

12.5

18.324

130

150

13-5

20.O02

14.0

155

14-5

20.980

15-0

160

15-5

23-545

140 would have been taken as the mean height of individuals

exactly twelve years old, etc., and no uncertainty would arise.G
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Section 12. The Median

The median of a series is the value of the mid-most measure,

hence half the measures composing the series lie above it and

half below.

We will proceed to calculate the median of the daily maximum

temperatures in New York City for July and August, 1917.

The raw data are given in Table VIII. A hasty inspection

shows that the lowest daily maximum temperature is 65° and

the highest 980 and, a priori, knowing of no reason to expect

that the distribution is skew it is assumed that the median

lies about halfway between these two extremes. We will,

therefore, make out a table of frequencies, as shown below:

/

Number of Days Having Temperatures Noted

Temperature below 80 -

of 80 -

81 -

82 -

83 -

84

above 84 -|-!

—I—I—I—I— -l-l-l-l- = isu_

-H-H- = 10/25

III =8

= 51

II -7

H- -H-H- -l-l-l-l- = j5J

62

39

Adding up measures from both ends, it is found that the median

measure lies in the group with temperature 8i°; or, since there

are 62 measures, it lies halfway between the values of the

31st and 3 2d measures. As all measures from the 26th to the

33d inclusive are recorded as 8i°, the 31st and 32d are so

recorded and 8i° may be taken as a rough approximation to

the median. However, it is not to be presumed that the

maximum temperatures on all of the eight days for which

the temperature of 81° has been recorded were exactly 81.00.

It is more reasonable to consider that the average of these

8 temperatures was 81 and that they ranged all the way from

80.5 to 81.5. Furthermore, since this interval is small with

reference to the entire range of temperatures, 34°, we may

with satisfactory warrant consider that these 8 measures are

evenly distributed over the interval 80.5-81.5, as shown in

the diagram on page 55.
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1 26th 1 27th

28 th 1 29th

30 th

31 St

32nd

33 rd

| MEASURE | MEASURE

MEASURE MEASURE

MEASURE

MEASURE

MEASURE

MEASURE

f?|R§8§S§8

§S§SS3 3 <oS

TEMPERATURES

It is immediately seen that the temperature midway between

the 31st and 32d measures is 81.25°. This is therefore the

median sought.

This method is not the best possible, but gives a good

determination for all practical purposes. For other methods

see Bowley (1907). The best possible median is determined

by mathematically fitting a curve to the observations and then

integrating (or summing areas) from one end of the curve up

to the point giving one half the total area. As thus determined

the median is a function not only of position above or below

a certain class value, but also of the distances of the measures

above and below this median class, because the magnitude of

each of the measures from the lowest to highest enters into the

determination of the equation which fits the distribution.

Following in principle this integrating method, a median

may be determined mechanically from a carefully plotted

frequency polygon by the use of a planimeter. A guess is

made as to the median and a perpendicular erected. The

planimeter is run around the boundary of the area thus cut

off and the result noted. If the area recorded by the instru-

ment is not exactly one half the total area an adjusted guess

as to the median is made and the process repeated. This

may be continued until the desired degree of accuracy is ob-

tained. Continuing the preceding illustration: If 63 days

had been considered, and if the temperature of the added day

had been greater than 81° there would have been one measure,

the 32d, which would have had just as many measures below

it as above, and the temperature corresponding to the middle

of this mid measure, 81.3125°, would be the median. The

median, or mid measure, may therefore be defined as the value

of the (N + 1)/2 measure, but as the value of a measure is

the value of its mid-point, this is equivalent to saying that the

median is the limit of the range covered by N/2 measures
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STATISTICAL METHOD

counted either down from the top or up from the bottom. The

method pursued in the calculation of a median may be sum-

marized and expressed in a formula as follows:

1. Arrange the measures in order of magnitude and list the

frequencies for each class interval, grouping such intervals as

are well below, or well above the median interval.

2. Let N = the total number of cases, i.e., the sum of the

frequencies of all the classes.

3. Determine the class in which the (N-\- O/2 measure

lies. If it lies between two classes, as sometimes happens when

N is even, the common boundary of these two classes is the

median and no further calculation is necessary. (The infre-

quent case when these two classes do not have a common

boundary is treated in the next paragraph.)

4. Let / = the frequency of this class.

5. Let 1 = the class interval, or range covered by the median

class.

6. Let F = the sum of the frequencies of all the classes below

this class.

Let F' = the sum of the frequencies of all the classes above

this class.

7. Let v = the value of the lower boundary of this class.

v' = the value of the upper boundary of this class.

8. Let Mdn = the median value. Then

J from above down) [2 a]

These two values of the median will be identical.

Using the first of these formulas to calculate the median of

the maximum temperatures we have the following:

N = 62

/ = 8

i = 1 (i.e., i°)

F = 25 (frequencies below the median class)

v = 80.5 (lower boundary)

Mdn = 80.5 + ~ 25 1 = 81.25

Mdn = v +

j (Median calculated

from below up)..

Mdn = v' - -

i (Median calculated
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Or again, using the second of these formulas and calculating

from above down:

N, f, and i as above

F' = 29 (frequencies above the median class

v' = 81.5 (upper boundary)

Mdn - 81.5 - 31 ~ 29 1 = 81.25

All cases have been covered by steps 1 to 8 except when the

median lies between two classes which do not have a common

boundary, as in the accompany-

ing illustration: Here the ~

(N + 1)/2 measure lies between

classes c and e, but the upper limit 1

of class c, 5.5, is not at the same 3

time the lower limit of class e, Q

6.5. The median value might be 2

considered to lie anywhere be- j

tween 5 5 and 6.5, but the most —

reasonable procedure is to call it

the average of these two values.

The median is therefore (5.5 + 6.5)/2 = 6.0. With this under-

standing every distribution yields a single value for the median.

If this value has been calculated from the bottom up it is well

to check by calculation from the top down.

Section 13. Percentiles

The median is the value below which 50 per cent of the

measures lie. It is, therefore, the 50-percentile. Similarly

the 10-percentile is the value below which 10 per cent of the

measures lie, etc. The derivation which gave the formula

for the calculation of the median may readily be generalized

so as to provide a formula for the calculation of any percentile.

Let N = the total population.

Let Pp = the percentile, the value of which is to be calcu-

lated.

Let p = the proportion of cases having values smaller than

Pp. Thus Pp is the 100 p-percentile. For example, if the

1 S-percentile is being considered, p = .15, and P.v, is the

symbol standing for the value of the 15-percentile.

Scores

Classes

9

g

8

f

7

e

6

d

5

c

4

b

3

a
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STATISTICAL METHOD

Determine the class in which the 100 ^-percentile, or the

(pN + 5) measure, lies.

Let fp = the frequency in this class.

Let ip = the interval or range covered by this class.

Let Fp= the sum of the frequencies in all the classes below

this class.

Let Vp = the value of the lower boundary of this class

interval.

Then:

p - 4. ~ ^* . (Value of a percentile — calculate^

r,-v,+ ^ ip from below up) [3]

This is the formula for the calculation of any percentile

proceeding from small values of the variable to large values.

If the calculation is from the other end of the distribution the

formula is:

p _ , _ (1 — p) N — Fv . (Value of a percentile — calcu-

'v fv * lated from above down)... [3 a]

in which,

v'p = the value of the upper boundary of this class interval

F'p= the sum of the frequencies in all the classes above this

class.

To insure accuracy it is well to calculate from below up and also

from above down.

The same procedure as in the case of the calculation of the

median is to be followed in the case of a percentile lying some-

where in a group with zero frequency.

For sake of illustration this formula will be used to calculate

(a) the 50-percentile (the median), (b) the 25-percentile (the

lower quartile), and (c) the 75-percentile (the upper quartile),

for the temperature data,

(a) The Median (Mdn)

N = 62

P = -50

(.50) 62 + 1 = 31 i

The 31$ measure lies in the 810 class.

/«. = 8

i'.» = 1

F.u = 25

r* = 80.5

P.M = 80.5 + ( 5o)6H2- 25 .. = 81.25

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le
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Note that in calculating from the top down F'.so = 29, and

v'm = 81.5.

(b) The lower quartile (L.Q.).

N = 62

P = -25

(.25) 62 + i = 16.

The 16th measure lies in the 80° class.

/.2S = 10

1.25 = I

F» = 15

».» = 79-5

P.. = 79-5 + (-25)f0~15 . = 79-55

Note that in calculating from the other end F'.^ = 37, and

=80.5.

(c) The upper quartile (U.Q.).

N - 62

P = -75 (-75) 62 + i = 47-

The 47th measure lies in 84° class.

/.» = 2

in = I

F.n = 45

v.n = 83.5

.-. p.*=83.5 + (75)6;-45. = 84.25

In calculating from above down F'.7b =15, and v'.K = 84.5.

The difference between the two quartiles is the interquartile

range and of necessity 50 per cent of the cases lie in this range.

In the problem in hand the interquartile range is 4.70 and indi-

cates that one half of the days studied had maximum tempera-

tures within 4.70 of each other.

The consideration of percentiles has been a diversion from

the main purpose of this chapter, the study of averages, oc-

casioned by their intimate connection with one of these aver-

ages, but we will here take up the main problem again in the

study of the mode.
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STATISTICAL METHOD

Section 14. The Mode

The mode is the value in a series at which the greatest

frequency lies, or it is the place of densest frequency. In the

case of Price Indexes, Table XV, this greatest frequency lay

at "no change" in price, which is accordingly the mode.

In the case of College Marks, Chart X, a pronounced mode

at 90 is shown by the raw data. However, such data have

several modes and it is correct to speak of the distribution as

multi-modal. If, from a priori consideration, it is thought

that the minor modes are due to causes either chance or irrele-

vant with reference to the main trend, it is desirable to smooth

them out and determine the one mode. In the case of College

Marks the minor modes at 85, 80, 75, etc., are not due to chance

but to psychological causes lying in the minds of instructors

when called upon to grade individuals upon a finer scale than

parallels their competency to make judgments. These modes

at 85, 80, etc., would not be expected to vanish if the popula-

tion were increased many fold, but the minor modes in the

temperature data, Chart II at 83°, 85°, 75°, etc., are probably

due to chance and would disappear if records for a number

of years were taken, but the mode at 80° would probably

remain, though it might shift slightly one way or the other.

If one is studying temperatures this latter mode only is signifi-

cant. If one is studying the distribution of talent of pupils,

the major mode only of the College Marks distribution is

wanted, while if one is studying the psychology of pedagogues

the minor modes are very significant.

Assuming that the major mode only is sought we will consider

its calculation. It is obvious that if the mode shown by the

raw data is taken it will be very unreliable, for usually a change

of but a measure or two will shift the mode, e.g., a shift of but

a single measure in the temperature data from 80° to 8i°

would make it indeterminate whether the mode was 80° or 8i°

while a shift of two measures from 8o° to 830 would shift the

mode 3°. For this reason the mode is always determined from

smoothed data if the raw data show irregularities in the vicinity

of the mode.

The College Marks data have been smoothed by the moving
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average method. (Sec. 6.) A perusal of Table XVIII shows

that an unquestioned mode is not established by the class

frequencies given by a moving average involving three classes.

In that case modes exist at 86, 89, 91 and 94 — the largest of

these being that at 89. When five class frequencies are aver-

aged, modes appear at 88, 90 and 91 — the largest being at 88,

so that the mode is still undetermined. When fifteen frequen-

cies are averaged a single mode appears at 89, but the fre-

quency of the 89 class is only .13 larger than that of the 90

class, out of a population of 773, so that the reliability of the

determination is obviously not very great.

The distribution of frequencies given by averaging ten classes

does establish the mode at 89.5 (the proof of this is left as an

exercise) and accordingly 89.5 is the correct value to adopt as

the mode.

The moving average method of determining the mode may

be summarized as follows: Calculate smoothed class frequen-

cies in the neighborhood of the mode, by means of a moving

average involving a small number of intervals. Repeat the

process, averaging greater and greater numbers of intervals,

until a major mode with no minor modes in close proximity

appears. The smallest grouping by which this major mode

is obtained, gives the best result.

Another method for determining the mode follows from the

relationship between the mean, median, and mode. . Pearson

has shown (1895) that in the case of his Type III curves the

following relation holds:

Let Mo = mode, Mdn = median, M = mean, and a = the

standard deviation of the distribution {a defined in the next

chapter). Then

Mo = M - M ~cMdn , (The mode)... [4]

in which c is a magnitude differing slightly for different distri-

butions and closely given by the equation

.0846 (M - Mdn)' , ,

Therefore, knowing the mean, median and standard devia-

tion, the mode may be calculated. Pearson's Type III curve

is a skew curve limited at one end and unlimited at the other.
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It is a very flexible curve and excellently represents a large

number of skew distributions. If by inspection, a curve seems

to approach a finite limit at one end, to be unlimited at the

other, and if its kurtosis (see Sections 10 and 36) is not extreme,

no serious error is likely to be introduced by assuming it to be

a Type III curve.

Since the mean and median can be very reliably determined,

the mode derived from them is a very much more stable measure

than that as determined in the last section.

In case the distribution has a pronounced mode near the end

at which it terminates, and a long and very thin tail at the

other end, e.g., of the type of the distribution of incomes, it

is well to use Formula [4 a], but for the great majority of

skew distributions it is quite accurate enough to use c = .33.

The mode is then given by equation:

Mo = M - 3.03 (M - Mdn) (The mode) [4 6].

Applying this method to the College Marks data for which

89.5 has already been found to be the mode, as calculated by

means of a moving average, we have,

M = 86.495 Calculated by formula [1]

Mdn = 87.690 [2].

M — Mdn = 1.195

Mo = 86.495 - 3.03 (- 1.195) = 9012

Of the two values obtained the greater credence should be

given to 90.12. Using, instead of .33, the value of c as given

by the full formula [4 a], leads to 90.13 as the mode; hence it is

evident that the short formula is satisfactory for such a distri-

bution as that of College Marks.

In handling distributions so decidedly skew that the skewness

approaches 1.0, in which case a — 3(M - Mdn), neither of

the two formulas for calculating the mode from the mean

and median can be used.

The three methods given, (a) graphic method of Section 7,

(6) by smoothing the data, and (c) by derivation from the

mean and median, are merely make-shifts if the student is

able to avail himself of the precise determination resulting

from mathematically fitting a curve to the data.
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Section 15. The Harmonic Mean

Dunn's Wholesale Price Index is the cost of a year's supplies

of a certain type. If the mean of the twelve of these indexes

for a given year is calculated, it gives the mean cost of that

year's supplies. But suppose instead of keeping the amount

of goods constant and noting variability in price, the total cost

had been kept constant and the variability in the amount of

goods purchasable had been noted; how would one then pro-

ceed to obtain the mean cost of a given amount of goods?

The following table, adapted from data given in Bradstreet's

Journal, will serve to illustrate the problem:

Ruling Wholesale Prices, November 1

1913 1914 1915 1916 1917 1918

Pounds Sugar

BoughtforSi 23.0 18.5 19.4 13.33 H-9 11-11 (Designated as

X measures)

Let it be desired to determine the mean price of a pound of

sugar for the six years. We will first build up a table giving

the cost per pound at the successive dates, by taking the

reciprocals of the X measures as follows:

Ruling Wholesale Prices, November 1

1913 1914 1915 1916 1917 1918

Cost of Sugar

in Dollars .0435 .0540 .0515 .0750 .0840 .0900 (Designated as

1 .

measures)

The mean of these measures is .06633 which accordingly is

the mean cost of a pound of sugar for the six years. It is to be

noted that if the mean of the X measures is found, 16.266, and

the reciprocal taken, .06148, the same value is not obtained.

The magnitude .06148 is not the mean price per pound — it is

the reciprocal of the arithmetic mean number of pounds bought

for Si, and a difficult measure to interpret, though not meaning-

less. The information of moment is the mean price per pound,

or the reciprocal of this, the number of pounds which could be

bought when paying the mean price per pound. This latter

is the harmonic mean. In the case in hand it is the reciprocal
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of .06633, or IS-o8. Designating the harmonic mean by H.M.

and employing the usual notation it is defined by the equation:

H. M. = -—-— (Harmonic mean)... [5]

N^X

In words: The harmonic mean is equal to the reciprocal of

the mean of the reciprocals of the measures.

In deciding whether to use the arithmetic or the harmonic

mean one should first decide which is properly the magnitude

to remain constant (in the illustration, [a] the amount of sugar

bought, or [b] the amount of money spent). There is seldom

a doubt as to which should be the constant. If the data are

recorded in such a manner that this appropriate item is constant,

then the arithmetic mean is to be used. If the data, as recorded,

make this item the variable, then the harmonic mean should

be employed.

One further illustration may make this clearer. The fol-

lowing scores were made in a three-minute test in addition:

X: Numbers op

Problems

Completed 0123456789 10 ii

/: Numbers of

Pupils Mak-

ing Scores

Designated 001047 10 832 2 0 Total = 37

The question should now be asked, Is the significant measure

(a) the rate at which a pupil works a problem, or (6) the number

of problems that he can work in a given time? The writer

would judge that the rate at which the pupil works, or the

number of minutes required to work one problem, is the more

straightforward, readily comprehended and generally mean-

ingful measure. Accepting this and noting that the data as

recorded make the time element constant and not the number

of problems worked, the harmonic mean is seen to be the proper

mean to use.

If in this problem the arithmetic mean is calculated, there

is a certain significance in it, but the reciprocal of this mean

should not be compared with rate measures in which the number

of problems is constant and the time allowed varies.

For discussion of the properties of an index number based

upon the harmonic mean, see Fisher (1921).
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Section 16. Geometric Mean

If the items in a series are so related (usually a temporal

relationship) that the expression of each one in terms of the

preceding one, i.e., relative to the preceding one, is the informa-

tion required, then the averages thus far treated do not serve

the purpose. These measures are, of course, ratios and the

geometric mean is the significant average.

In Table XII, column two, are given the costs, on January 1

of successive years, of a year's supplies of certain common

products. If the cost for each year is expressed in terms of

the cost the preceding year, we have the following Table:

TABLE XXIV

Dunn's Wholesale Price Index for each Year Expressed as a Relative to the

Preceding Year

1908 1.0561

1909 9882

1910 1.1036

1911 9325

1912 1.0724

1913 9789

1914 1.0306

1915 9971

1916 1.1087

9)9.2681

1.02979

If the mean advance per year is desired and the arithmetical

mean, 1.02979, taken as the measure of it, serious error would

be involved. The ratio of the basal year, 1907, with reference

to itself is of course 1.00o00, so that the mean advance as

given by the arithmetic mean is .02979 and nine times this

gives .2681, a measure for the advance over the entire period

of nine years. That this is an incorrect measure is shown by

the fact that the ratio of the prices in the last year to the

basal year (137.666 + 107.264) is 1.28343, showing that the

actual advance is .28343. The reason for this discrepancy is

that each advance is figured upon the preceding year as a base

and not as a proportion of the price in the basal year. Strictly

speaking 1907 is basal for 1908 only; 1908 being basal for 1909,

etc. Accordingly 1.0561 X $107,264 gives the price for 1908.

The price for 1908 times .9882 gives the price for 1909, or
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.9882 X 1.0561 X $107,264; etc. Finally the products of all

the nine ratios, 1.28343 times $107,264, gives $137,666, the

price for 1916. In place of these nine different ratios whose

product gives the ratio of the last year to the basal year, may

be submitted a single mean ratio which, when multiplied by

itself nine times, gives the same product. This is the geometric

mean and, designating it by G.M. and the ratios for the separate

years by pi, p2, p3, . . . p», it is defined by the equation:

G. M. = -s/pi X pi X p3 X - . . X p" (Geometric mean). .[6]

It may be readily calculated by means of a Log Log slide rule

or by means of logarithms as follows:

log G. M. = 'ogP.+logP'+logP3+ .-- +^P. (Geometric mean) [6 a]

Using a slide rule the G. M. for the preceding data is found to

be 1.0281. Using six place logarithms it is found to be 1.0282.

A check on these values is possible by taking the 9th root of

the ratio of the 1916 price to the 1907 price. By logarithms

this is found to be 1.02811. This figure means that on the

average, wholesale prices increased 2.81 per cent each year,

from 1907 to 1916.

The Index of Means, or of Sums

Another problem arises in connection with indexes which

may be illustrated by the wage data in the last three columns

of Table XII. The essential portions are copied below:

Chicago

Union Wage per Hour

Painters

Linotype

Operators

Carpenters

1907 . .

SO*

70

50 i

50

56.3 i

70

Same data expressed as ratios — 1907 as base

1907

100

140

100

100

100

124334
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Let us suppose that there are the same numbers employed

from each of the unions, and let us designate this number by

N. The question that concerns us is how to determine the

t-. 140+100+124.314

average increase m wages. Does = 1.2144,

3

indicating an increase of 21.44 per cent, give it?

Bearing this in mind let us approach it by another method.

_ . , . . (N 50 + N 50 + N 56.3\

The mean hourly wage in 1907 is ^— ~j —- J =

j . x v . (N 70 + N 50 + N 7o\ „

52.10 cents, and ui 1916 it is ^— jjj—-—— J = 63.33

cents. Dividing 63.33 by 52.10 the ratio of the mean wage in

1916 to that in 1907 is found to be 1.2156, giving an increase of

21.56 per cent. The two values found are not identical and

it can be easily proven that in general they will not be, for,

letting P, L and C equal the initial wages in the three unions

respectively, and p, I, and c the ratios of the final wages to the

initial wages in the three cases; then p P, IL, and c C equal

the final wages respectively; and, — ^~ = the'

. ... , , NpP + NlL + NcC , .

mean initial wage; also, — = the mean final

wage; and the ratio of these two wages is ^—^T—T-j—k— This

is identical with - — - — C only in case P = L = C, which

in general is not the case. The fact that the initial wages

were so nearly equal in the illustration accounts for the small

difference in the two results.

We may therefore conclude that it is inaccurate to take the

mean of ratios as equivalent to the ratio of the means (or sums)

of final and initial scores.

Section 17. Weighting

If the numbers of workers in the three trades had been the

same throughout and if because of considerations other than

population the trades possessed importances W, w, w, then it

would have been proper to multiply the wages by amounts

equal or proportionate to W, w, w. This is "weighting."
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The multiplying of a score by the number of cases having it

has at times been called weighting, but in this text the term

will be used to mean the multiplying of scores by amounts

determined not at all, or not solely, by the population, but

from other evidences of importance. (See Section 91.)

It is generally a difficult problem to determine just what con-

stitutes proper weighting. When one is confronted with the

problem of weighting measures which are to be combined and

feels incompetent to accurately judge of their relative impor-

tances he is inclined to - solve'' the problem by "not weighting at

all." But the failure to assign weights is actually a very definite

weighting — that of calling the units involved in the various

measures of equal importance. This is not the same as saying

that the failure to assign weights results in giving equal impor-

tance to the different items. This latter is not the case if the

dispersions of the scores for the various items differ. This

point, together with others involved in weighting, is treated at

length in connection with partial correlation. It may cer-

tainly be said that, judging by the ordinary run of studies in

economics and psychology, much more error has been com-

mitted by "not weighting at all" than by improper weighting.

PROBLEMS

1. Calculate the mode for the maximum temperature data of Table

VIII. Is the short formula, in which c = .33, appropriate to use in this

case?

2. Calculate the L. Q., Mdn. and U. Q. for the hypothetical distribution

of incomes, comparing with graphic determinations (Problem 5, Chapter

II).

Calculate the mean. Assume that the mean income for the highest

income group is £21,000. Since these data have very irregular class in-

tervals, in calculating the mean, great care must be taken in assigning

£ values to the different classes, no matter where the arbitrary origin is

chosen. For this reason it will be more accurate and almost as short if

the method given by Formula [1] is followed. The student may well

make the calculation both ways to become familiar with the handling of

irregularly grouped data.

Calculate the mode: (a) by finding the point of inflection in a smoothed

ogive curve, (6) by deriving from the values of the mean and median,

using c = .33 and (c) the same, using the full formula for c. In doing this

take a = \ the interquartile range.
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MEASUREMENT OF CENTRAL TENDENCIES 69

3. The following three series are scores of individ tals in three tests.

They may be used as practice series for the calculation of M, Mdn., L. Q.

and of constants treated of in subsequent chapters.

Practice Series

Individuals

Scores of a Class

in Test i

Scores of Same

Class in Test i

Scores of Same

Class in Test 3

Series 1

Series 2

Series 3

A

151

132

148

B

147

132

143

C

145

130

153

D

138

128

148

E

134

121

135

F

124

103

l34

G

120

105

138

H

118

122

138

I

116

99

128

J

114

124

129

K

"3

109

131

L

107

99

136

M

106

103

124

N

105

98

126

0

104

108

133

P

IOI

104

122

Q

100

"5

137

R

99

i1

1

119

S

98

107

121

T

96

92

124

U

89

96

118

V

87

94

126

4. Calculate the 5th, ioth, 15th, etc., percentiles for the scores in hand-

writing upon the Ayres and Thorndike scales, given in Table XXX,

Section 34, and check answers against columns 1 and 2, Table XXXII,

Section 35.

Group the Ayres data in 3's and the Thorndike data in s's, calculate the

same percentiles and check against answers in columns 3 and 4 of Table

XXXII.
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CHAPTER IV

MEASURES OF DISPERSION

Section 18. The Mean Deviation

Distributions having the same average may differ markedly

in the spread of the measures composing them. The following

two series of measures have the same mean, median and mode,

but the scatter of the measures is very different:

7, 7. 7, 8, 8, 8, 8, 8, 9, 9, 9

1. l. 1, I, 3. 8, 13, 15, 15, 15, 15

The range in the first series is three, while in the second it is

fifteen. If deviations from the mean, 8, are calculated, they

run:

— 1, — 1, — 1, o, o, o, o, o, 1, i, 1 Sum = 6

- 7. - 7, - 7. - 7. - 5. o, 5, 7, 7, 7, 7 Sum = 66

The means of these two series of deviations are of course zero if

taken algebraically, but if taken absolutely, i.e., irrespective of

sign, they are .545 and 6.0 respectively. These are the mean

deviations.

The mean deviation may be defined as the sum of the abso-

lute values of the deviations of the separate measures from

the mean, divided by the population.

It can be calculated by the method of moments. Referring

to Table XXII, columns four and five: If the deviations had

been from the mean, 81.548 (in which case they would have

been designated by x instead of by {) instead of from 80, a

mere guess, the products / . x, would have been slightly different

from those recorded in column / . £, and their sum, irrespective

of sign, divided by their number, 62 would have been the

mean deviation. Since, however, the calculation of deviations

from the mean, 81.548, involves fractional or decimal magni-

tudes it is in practice inconvenient to determine the mean

70
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MEASURES OF DISPERSION

7I

deviation in this manner. Deviations from 81.548 run as

given herewith in line (x):

(*): -16.548 -15 548 -14-548...-2.548 -1.548 -.548 .452 1.452...16.452

({): -15 -14 -13 --I o 123 ...18

For purposes of comparison, the corresponding deviations

from the arbitrary origin, 80, are given in line (£). It is seen

that algebraically each £ measure is 1.548 larger than the

corresponding x measure. In absolute value all the £ devia-

tions up to and including those for class 80°, 25 in number,

are 1.548 too small; those in class 8i°, 8 in number, are .452

too large; and those in classes 820 and on, 29 in number, are

1.548 too large. Tabulated, the data show:

25 measures 1.548 too small

29 measures 1.548 too large

Excess of 4 measures 1.548 too large = excess positive moment of

4 X 1.548 = 6.192

Excess of 8 measures .452 too large = excess positive moment of

8 X .452 = 3-6i6

Total excess positive moment = 9.808

The sum of the moments as calculated from 8o° is 89 + 185 =

274, but this is too large by 9.808. Accordingly the sum of

the deviations from the mean is 264.192 which, divided by 62,

gives 4.26, the mean deviation sought.

The calculation, as shown, is cumbersome. A simple

formula for the calculation of the mean deviation from the

first moment about zero as an arbitrary origin is herewith

derived.

Given the series 11, 12, 13, 13, 16. Mean = 13.0. The

deviations of the successive measures from the mean are,

— 2, — 1, o, o, 3 respectively, giving a mean deviation of 1.2.

These deviations are(11-i3), (12-13), (13-13), (13-13). (j^-^).

but since all are to be taken positively they must be written,

(13-11), (13-12), (13-13), (13-13). (16-13). Using the usual

notation we have:

. _ (if - X,) + (M - X,) + (X, - If) + (X, - if) + (X> - M)

A. U. - -

X, + X4 + Xi-X,-X, + M+ M- M- M- M

N
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STATISTICAL METHOD

If F = the number of measures lying below the mean (here 2),

then it is seen that M enters in positively F times and nega-

tively (N-F) times and that the X's which are smaller than the

mean enter in negatively (the sum of these may be represented

p

by 2 X) and that those greater than the mean enter in posi-

1

N

tively (this sum may be represented by 2 X). Accordingly we

F + i

have:

N F

2 X - 2 X + FM - (N - F) M

*A.D. -F-±l -? [7]

Since, however,

N FN F F N ' P

2 X -XX = 2 X + XX-2XX = XX-22X

F + i 1 F+i ill 1

and since,

N

XX = NM

1

the formula becomes

2 F

A. D. = - (FM — XX) (Average deviation from the mean) [7 a]

N 1

This is a very simple formula to use in connection with an

adding machine. If the entries are not arranged according to

magnitude add them on the machine and determine the mean,

at the same time determining the population, N. Then add

all the measures which are smaller than M, thus obtaining

F

S X, at the same time determining the number of such measures,

1

F. Thus two listings on an adding machine will yield the

three important constants N, M and A D.

If the measures are arranged according to magnitude a

single listing will suffice, it only being necessary to take sub-

totals for each of the group frequencies in the neighborhood

of the mean. For example the adding machine listing for the

preceding series would be as shown herewith:

* This formula, with empirical proof, was independently discovered by two of the

writer's students, Miss Elva Wald and Mr. John P. Herring.
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ii

12

2 23 5

13

13

4 49 s

16

5 651

One would guess that the mean lay somewhere between 12

and 14 and would therefore take sub-totals after listing 12

and again after listing the 13's. Having N = 5 and the sum =

65, division gives the mean, 13.0. The listing shows that

there are two measures below the mean and that their sum is

F

23, i.e., F = 2 and XX = 23. Thus immediately

1

A. D. = I (2 X 13 0 - 23) = 1.2

The peculiar expedition of this formula should make it service-

able in large studies where time of computation is an important

factor. It will shortly be shown that the probable error of

the average deviation is but slightly greater than that of the

standard deviation, so that unless the greatest accuracy is

demanded, and unless the standard deviation is needed for

such further purposes as use in correlation formulas, the aver-

age deviation will be found advantageous.

Returning to the Wald-Herring formula [7] it may be noted

that if deviations around some point, P, other than the mean,

be taken, and if F — the number of measures lying below this

point, the formula becomes:

A. D.aroundpt. P = vJ ZX-ZX + (2F-N)P]

N lF + i 1 J

(Average deviation around any point P) [8|

N

If F = — then P is the median and the formula becomes:

2

w

^1 (Average deviation from

[9]

A. D. around Mdn = i [ Z X - I X] ^T^C ^viftion froM

N N+i 1 the median)

Note that if N is odd, j and + 1) are fractional. In this
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STATISTICAL METHOD

case it is necessary to add one half of the median measure in

each summation. For the series 11, 12, 13, 13, 16;

A. D. around Mdn = i [(6.5 + 13 + 16) - (i I + 12 + 6.5)] = 1.20

This is the same as the average deviation from the mean for.

in this particular problem, if measures are taken at their face

value, the median and the mean coincide. Such measures as

usually occur may, with insignificant error, regularly be taken

at their face value in calculating the average deviation from

the median, but they should not be so taken in calculating the

median itself. The method already given in Section 12, based

upon the assumption that the measures spread themselves

evenly over the interval, is to be followed in calculating the

median.

The mean deviation, unless stipulated to the contrary, is

always calculated from the mean. It is at times desirable to

calculate it from the median, in which case it should be defi-

.nitely labeled "mean deviation from the median." A real

reason for calculating it from the median exists in the fact

that when so calculated it is smaller than when calculated

from any other point, as can readily be shown:

Let f = a deviation from the median. Then the

2 I f I

M. dev. from the Mdn = ——

n

Let £ = a deviation from a point P which is A distance

from the median; A < one class interval. Then { = f + A.

M. dev. from P - ^ - 2 | f | + M - (n - F) A

n n

Suppose A is positive, then P lies above the median and F >

S If I

(w - F) so that the above right hand member = ——- + a

n

positive magnitude. If A is negative, P lies below the median

2 I f I

and F < (n — F), so that the right hand member still = — -—- +

ft

a positive magnitude. Therefore, whether point P lies above

or below the median the mean deviation from it is greater than

2 I f I

—the mean deviation from the median. The proving of

n

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



MEASURES OF DISPERSION

75

this same relation when A > one class interval can be readily

accomplished and is left as an exercise. Accordingly the mean

deviation is a minimum when taken from the median.

Section 19. The Quartile Deviation

A measure of dispersion may be obtained by taking the

difference between any two percentiles. One such measure,

the difference between the upper and lower quartiles, or the

interquartile range, has already been mentioned. The most

customary measure, however, is one half this measure, the

semi-interquartile range, which for convenience and brevity

is called the quartile deviation, and is designated by "Q."

Using the usual notation for the upper and lower quartiles,

we have:

Q = u- Q- - L- Q- (Quartile Deviation) [10]

It is to be noted that the quartile deviation is not a deviation

from any of the averages thus far considered. It is simply a

measure indicative of dispersion. If thought of as a deviation

at all it should be as one from a point midway between the

upper and lower quartiles. A rather better way to interpret

it is as one half the interquartile range, a range within which

lie 50 per cent of the measures.

Section 20. The 10-90 Percentile Range

A range somewhat larger than the interquartile range has

advantages over it and the quartile measure derived from it,

as a measure of variability. I have shown (Kelley 1921 new)

that for a normal distribution the interpercentile range having

the minimal error is that between the 6.917 and the 93.083

percentiles. A range but slightly different from this and

having nearly as great reliability is that between the 10th and

90th percentiles. This distance is called D and is given as

the most serviceable measure of dispersion based upon per-

centiles.

D = P.» — P.w (10-90 percentile range) [11]

Its calculation and interpretation are very simple, and as over

72 per cent more cases are required to secure as great reliability
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in the quartile deviation, this measure of dispersion is recom-

mended wherever percentiles are used. Its relationship, in

case of a normal distribution, with other measures of dispersion

is given in Section 31. For proof of the next ten formulas the

reader is referred to the reference cited.

The standard error of D is given by formula [16] which in

turn depends upon formulas [40], [43] and the following:

\p q' . . (The correlation between any two

TpPpP' = \J f m whlCh P<P percentiles Pp and Pp,) [12]

°pP-pp' \(y)' +

Np'q' 2 Npq' (The standard error of an inter-

(y')2 yy' percentile range) [13]

in which p < p' and y is the ordinate of the curve at the per-

centile Pp, and similarly for y' and PP:

Assuming normality, formula [13] becomes

a _ a I pq p'q' _ 2 pq' (Standard error of an interper-

pP~pP' VN \{z)' (z')2 22' centile range in a normal

distribution) [14]

in which z and z' are ordinates as given in Table K-W for

arguments of q and q'. If, further, percentiles equally distant

from the ends of the distribution are calculated, p = 1 — p'

and formula [14] becomes

g a .—_ , (Standard error of a symmetrical

P*~ (•-*) = zV~N interpercentile range in a

normal distribution) [15]

We now obtain for the standard error of the 10-90 interper-

centile range

"d " "Tr, 2.279224 [16]

v N

Entering Table K-W with q = .1 we find that x = 1.281552.

Thus D = 2.563104 a which gives

P. E.D = .599786_* D (Probable error of D). [16 o]

v N

This is a very convenient formula, as, for ordinary purposes, we

may take

„ „ .600 D

d = ^w 116 a]

* On p. 744 of the reference cited (Kelley 1921 new) this value is incorrectly given as

.6001
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Two other constants which are of value in determining the

type of a curve are Sk and Ku defined by the following equa-

tions:

Sk = P.fo — i (P.*, + -P-io) (A measure of skewness

based on percentiles) .[17]

The standard error of Sk is

D (The standard error of the per-

"Sk -59914 ^-jy centile measure of skewness) .. [18]

= Q (A measure of kurtosis based on

D percentiles) [19]

The standard error is

_ .27779 (The standard error cr the per-

Ku \/jV~ centile measure of kurtosis) ... [20]

For a symmetrical distribution Sk = o and for a mesokurtic

distribution Ku = .26315. If a given distribution has a

Ku > .26315 it is platykurtic and if < .26^15 it is leptokurtic.

We thus see that the percentiles of a distribution may be

used to answer some of the important questions of curve type.

If populations are large, so that standard errors are small,

resort to the longer though generally more accurate (not always,

as it is dependent on curve type) methods of Chapter VII

may frequently be avoided.

Section 21. The Standard Deviat1on

The standard deviation is far more universally significant

than are any of the preceding. It is based upon the squares

of the deviations from the mean, instead of upon the first

powers as is the mean deviation. The exceptional advantages

of this measure of dispersion will appear in connection with

subsequent work. The standard deviation is defined as the

square root of the mean of the squares of the deviations and is

regularly designated by "a." Unless otherwise stipulated

deviations are always from the mean. Using the usual nota-

tion:

(The standard deviation

of a distribution). ... [21]

This is a fundamental formula and should be recognized

whether written as

a' = [21 o]
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78 STATISTICAL METHOD

or as,

2*' = n«r' [21 b]

The calculation of the standard deviation for the temperature

data of Table VIII is as follows:

TABLE XXV

Calculation of a

Fre-

quen-

cies

2

3

i

i

3

i

io

8

5

7

2

4

3

i

2

I

I

2

62

Dev.

fROM

Arb.

Orig.

15

l4

io

9

6

5

4

3

2

15

16

18

First

Moments

-15

.M

io

9

12

15

4

3

6

Second

Mo-

ments

-89

8

io

21

8

20

18

7

16

15

16

36

i«5

96

5= I.548 40.710

225

196

100

81

72

75

16

9

12

1

0

8

20

63

32

100

108

49

128

100

225

256

648

Second Moments from Mean

2524

B

i(-15-«)'= i(l5'-2« -15 +«')

i(-I4-«)'= i(i4'-2« -l4]+«')

1 (-I0-«)!=

1 (- 9-«)'=

2(- 6-a)'=

3(~ 5-«)2=

1 (- 4-«)!=

1 (- 3-«)2=

3(~ 2-i)!=

1 (-

10 ( o-«)' ■

8( =

5(2-«)! =

7(3-«)2 •

2(4-«)' =

4(5-«)2 ■

3(6-i)" =

1 ( 7~«)2 ■

2 ( 8-«)' =

1 (io'-2«[-io

I( 92-2i[- 9+i')

2( 6'-2«

3( 52-2«

l( 4'-2«

1 ( 32~2«

3( 2'-2S

I ( l'-2S

+»')

+«•)

+6')

+»')

+6')

l]+«2)

= I0( 0-2 « 0]+«")

= 8 ( I!-2« I +6')

■ S ( 2'-2 « 2 +«2)

■ 7( 32-2«)[3+«2)

■ 2( 4'~2i 4 +«2)

■ 4( 52-2«! 5 +«2)

. 3( 6'-2« 6+«')

■ i( 72~2«[ 7]+«2)

■ 2( 82-2«[ 8 +«2)

I (lO-«)2 = I (lO!-2 h [I0]+«*)

I (I5-«)2

I (i6-«)'

I (l5'-2 « 15 +«2)

I (l6'-2« 16 +«')

2(l8-«)' = 2(l8'-2«[l8]+«')

Z£" -2«Z£ 2«!

<r = V4O.71O — (1.548)" = 6.I9O
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If the arbitrary origin, 80, had been the mean, the standard

deviation would be given by V2524/62, but as the arbitrary

origin is an amount 8, (= 2£/iV = 96/62 = 1.548), below the

mean, each £ deviation is algebraically too large by the amount

5. Accordingly, if, in place of 2£2 we calculate 2({ — 8)2 it

will lead to the appropriate sum from which to calculate a.

Magnitudes (£ — 8)2 are expanded and tabulated in the last

three columns of Table XXV. It is immediately seen from

the table, and is of course also apparent by squaring the bi-

nomial, that 2*2 = 2(£ - 8)2 = 2*2 - 2 2 5£ + 252. Since

5 is a constant and does not vary from class to class 2 2 5£ =

2 52£ and similarly 252 = N82 (here = 62 X 1.5482). The

summation 2£ has already been obtained in summing the first

moments and, from the definition of 8, 2£ = N8. Accordingly

Xx2 = 2S2 - 2 N8' + N82, and

The symbol 5, usually standing for a small magnitude, should

not be so interpreted here, for the formula is rigorously exact

whether the arbitrary origin differs from the mean by a fraction

of a unit or a large number of units.

The square of the standard deviation, <r2, is frequently an

essential constant. It is designated by «2, meaning the second

moment about the mean. Without further explanation the

meanings of the various moments, all taken from the mean,

will be understood from the following equations, in which x,

as usual, stands for a deviation from the mean:

The first moment, = =0 [23]

2 x'

The second" /i2 = i*' = -»r [23 a]

(The standard deviation of a distribution

calculated from an arbitrary origin). .[22]

(Definition of the moments) ]

The third

[23 b]

The fourth

N

[23 c]

etc

If deviations from an origin, P, 8 distance from the mean, 0,
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are calculated, then O - P = 5, and x = £ - 5, and the

following relationships hold:

Ml =

M2

P13

2 (t -

«)

2£

iV

N

2(£-

«)'

2 £'

iV

jV"'

2({-

«)'

If

2(«-

«)4

2f«

N

Z{«

N

2J_'

'/V

+««■¥

-4«

jV

N' N

Me = etc.

If jli, 7i2, etc., stand for the moments around the arbitrary origin

the above equations may be more simply written:

2| _

^ = M1

Ml

- u',

(The moments about the mean

determined from those about

any arbitrary origin)

Mi = Ml

M* = M2 — M"

M3 = Ms — 3 M2M1 + 2 m'i

M4 = M4 — 4 MSM1 + 6 M2M'l — 3 M41J

etc.

The following formulas give the same results and are usually

the more serviceable,

[24]

[24 a]

[24 b]

[24 c]

U24 d)

Ml = 0

Ms = M2 — M2l

Ms = Ms — 3 M2M1 —

M4

(Moments about the mean

determined from the mo-

ments about any arbitrary

origin)

[25]

[25 a]

[25 b]

[25 c]

M4 — 4 M5M1 — 6 /i'm'i — fi

etc.

It is sometimes desirable to determine the moments from

some arbitrary origin knowing them from the mean. Solution

of the preceding formulas gives:

. _ n (n — 1)

M«i + n Mii-i Ml H —, Mx-jMZ1

2!

n (n - 1) (n - 2)

31

M»-3 Ml' +

(Moments about an arbitrary origin deter-

mined from moments about the mean). . . [26]

In case the grouping is not fine a small correction to the p's as

given in formulas [68] is necessary.
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We may now investigate some of the properties of the

standard deviation. Let us compare the magnitudes of two

standard deviations; (a) taken from the mean, 0, and (b)

from a point, P, 8 distance from the mean. O — P = 5,

and x = { — 8. Let <r = the standard deviation from 0 and

s = the standard deviation from P:

'If + 2 N + ~N ' and smce If = 0

j' = a5 + i' [27]

or

4 = Vj' + i' (Standard deviation about an arbitrary origin deter-

mined from the standard deviation about the

mean) [270]

Since 5, whether positive or negative, enters into this expres-

sion as a square, s' > a2; in other words, the standard devia-

tion is a minimum when taken from the mean. This is a very

important property of the mean.

Formula [24] for & gives the standard deviation squared in

terms of the moments about an arbitrary origin. Formula [27]

for j2 gives the standard deviation squared from an arbitrary

origin in terms of the second moment around the mean and

the distance between the mean and arbitrary origin. It should,

however, be noted that neither of these formulas gives the

standard deviation around a second arbitrary origin in terms

of the moments around a first arbitrary origin. This problem

may readily be solved; if P and Q are the second and first

origins and if £ and f are deviations and s and 5 standard

deviations around these origins respectively, we have:

P - Q = A

{ = r - a

. 2 {' Z (f - A)' Zf'-2ASf + NA'

S = ~N " —IV N = S- + A'-2A„,

(Relation between standard deviations

about two arbitrary origins) [28]

Expressed in words: if moments around any two origins are

taken, the second moment around the second origin equals

the second moment around the first origin plus the square of
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STATISTICAL METHOD

the difference between the origins minus twice the product of

the difference (taking the second origin minus the first) and

the first moment around the first origin.

The formula as written is to be used in determining the

second moment around the "second" origin when the moments

around the "first" origin are known.

Section 22. The Standard Error of the Mean

If it is desired to determine the reliability of the mean it is

necessary to have an estimate of how a number of equally

excellent, i.e., similarly derived, means distribute themselves —

that is, a new distribution is to be conceived with the means

themselves as the gross scores. The standard deviation of

these means is indicative of the precision of any one of them.

If this distribution of means has a very small spread, or standard

deviation, then any one of them is a good measure, good in

the sense that it is a close approximation to the mean of all

the means. We thus need am, the standard deviation of the

means. If there are M sets of N measures each, and if the

mean of the MN (where MN equals a very large number)

measures, i.e., the mean of the means, is the true value, or

true origin, then x stands for a deviation of a measure from

this origin and — — — ^ ' ' ' ' xn, the mean of one set of N

measures, is expressed as a deviation from this same origin.

The standard deviation of such means is am, the standard

deviation sought. The standard deviation of the distribu-

tion of measures from the mean of the N measures will not be

identical with the standard deviation of the same measures

from the origin as here denned, but the difference may be ex-

pected to be negligibly small if N is larger than 25, which we

shall assume to be the case in this derivation. We will desig-

nate the standard deviation of the original measures by a.

We have:

.*j1+*j'H XiN+2 X,X- + 2 XiX,-\ 2 X,XN+2 XiXiA \-2 XN- JcN

MNo'u =
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33

However, ^ - 1 — - —^ = a2, and as 2 designates a

summation of M such magnitudes, 2 f jj ) =Ma2.

Also 2 Xi*2 + 2 xix3 + . . . may be rewritten, xix2 + *i*3 + . . -

xixN + xfxi + x2x3 + - - - xiPCN + xiXi + + x&i + ... x&N

+ . . ., which, if Si, S2, . . . stand for summations of N — 1

terms each, is = xiSix + x^S^x + . . . x^S^x. Each of these

S summations is closely equal to zero. [Product theorem,

see Section 23.] Since these summations are at times small

positive and at other times small negative magnitudes and

since xi x? . . . are likewise both positive and negative and are

entirely independent of the S's, it is clear that the whole ex-

pression, (*iSi + x2S2 + . . . xnS\) does not vary from zero

by but a small amount and is negligible in comparison with

the sum of the square terms. The equation may then be

written:

VMo'M = Ma1, or

au = —p; (Standard error of the mean) [29]

Vn

This is a fundamental relation applicable when n > 25 . . .

Expressed in words: The standard deviation of the mean

equals that of the gross scores divided by the square root of

the population.

Any measure whatsoever may be thought of as one of a

distribution, the variability of the distribution being an indi-

cation of the error involved when any single measure of the

distribution, taken at random, is chosen as the value of the

thing measured. Thus when a measure is taken as the best

obtainable value the standard deviation of just such measures

as the one taken is the standard error. Thus the "standard

error" of a measure and the "standard deviation" of such

measures are synonymous expressions. The relation between

the standard error and the probable error as derived in Sec-

tion 28 is

Probable error = .6744898 standard error [Formula 33 of Sec. 27].
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Section 23. The Standard Error of Any Moment

The product theorem used in the preceding derivation may

be stated:

The sum of products of measures which are

independent of each other and whose

means are zero, equals zero. [Product theorem]

This theorem, only roughly proven above, will later, in con-

nection with the subject of correlation, be seen to be a necessary

consequence of independence between measures. By utilizing

it we may determine the standard deviation of any moment,

/i„, in a manner very similar to that in which we have determined

the standard deviation of the first moment, m, the mean.

Consider a population composed of M sets of N measures

each. The n'th moment of the total population is, if 2 indi-

cates a summation of M terms and S a summation of N terms:

Z (Sx")

The deviation from this value of a determination based upon

one set of N measures is:

rsx" z (S*„)-| _ rsx" -i rs (*» -

L~n - '~mwj ~iw~ ""J - L N J

This is a small magnitude. The sum of M such would of course

be zero, but the sum of the squares would not, as there would

then be no negative terms. Accordingly the standard devia-

tion desired is:

S(x» - >ln) = (x\ -/!„)+ . . . (x"N - nn) = 5i + &+■" SN,

let us say. Then MN a2M„ = ^ 2 lS8F in which (S51! = 552

+ 2 5' 5j5,,, where 5' = a summation of —— terms which

2

approaches zero according to the theorem just stated. Ac-

cordingly,

in which 2' indicates a summation of MN terms.
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Replacing the 5's by the equivalent binomials, we have:

MNo'n,, = ^ Z' (*!» — 2 /i„*" + M'n), which, since 2 /i„ 2'*" = 2 MN^n

= i (ilfiVM,» - MNfy)

(Standard error of any moment) [30]

It is thus seen that the standard error of any moment is de-

termined when that moment, the moment twice as large, and

the population are known. It is to be noted that this formula

is entirely general and does not depend upon having a sym-

metrical distribution. It only requires that the populations

dealt with shall not be small.

Applying this formula to the determination of the standard

deviation of the mean, n = 1, and we have:

am = <rjui = ^y**' (Standard error of the mean) [29 a]

This is the general formula. It may be written more simply

for it has already been pointed out that m = o, and /i2 = 0s,

so that the equation becomes:

am = -7=. (Standard error of the mean).. [29]

This, of course, is identical with that previously derived.

We may determine the standard error of the standard

deviation, but shall first need that of the standard deviation

squared, /i2: By formula [30] we have

o-M2 = ^i^l-ZJ"! (Standard error of the second moment).. [31]

It remains to determine what is the square root of a quantity

corresponding to a given deviation in the quantity itself.

Consider the magnitudes m and ((u2 + A) and also V& and

Vm + A or their equals a2 and (<r2 + A) and also a and

(a + — - + - - \ - (This latter after expansion of the

V 2 a 8 a3 /

radical by the binomial theorem.)
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It is seen that corresponding to a small error A in <r2, there is

an error

in <r. However, in all ordinary situations, A2/8 a3 and higher

terms are negligible in comparison with A/2 <r, so that we

have:

Section 24. The Standard Error of a Class Frequency;

The deviation in the value of the median is a function of

the deviation in the frequencies below, or above it. Consider

the accompanying graph to represent the distribution of cer-

tain scores in the case of a very large population. If A fre-

quencies are transferred from below Mdn, the median point,

to above it, the median would be shifted up. The amount of

this shifting may be readily determined.

Let / = the frequency in a small interval of range, i, near the

center of which is the median.

Then the new median has been shifted an amount t(A//)

above the old median, assuming that the frequencies in the

interval t distribute themselves in a rectangular manner. The

fact that this assumption is not the most reasonable which can

ordinarily be made has entirely insignificant influence in case

distributions do not show very exceptional rates of change in

of the Median; and of a Percent1le
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the vicinity of the median and in case populations are not small,

let us say not less than 25.

It is thus seen that corresponding to a change A in the number

of frequencies below the median, there is a definitely established

change in the median. The standard error of the median may

therefore be written,

ffMdn = o\ j [33]

It only remains to calculate the standard deviation of the

A's and substitute in the above expression in place of <rA to

have the standard error of the median.

In drawing a sample of n measures from the total population,

in which the chance of each measure lying below the median

is one half, we will call those which lie below the median

successes and those above failures and we will let F equal the

number of successes. If two scores are drawn (n = 2) then

the chance of both being successes; of the first being a success

and the second a failure; of the first a failure and the second a

success or of both being failures is [(1/2) (1/2)] in each instance.

Each of these is equally likely to occur, so that if a large number,

N, of such samplings of two are made we have the following

distribution of successes, or of frequencies lying below the

median:

Successes Frequencies

0 NiXi = Ni

1 N2 X i X i = N\

2 Ni X i = N 1

That is, one fourth of the samplings will show no measures in

this category (below the median), one half will show one

measure in it, and one fourth will show two measures in it.

If three scores are drawn at a time there is just one permu-

tation yielding three successes, three permutations yielding

two successes and one failure, three yielding one success and

two failures, and one yielding three failures, so that we have

the following distribution:

Successes Frequencies

0 iViXiXj = ^J

1 ^3XiXiXi = iVi

2 iV3XiXiXl = iVi

3 Ni X i X J = Ni
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That is, 1/8 of the samplings will show zero successes, 3/8 one

success, 3/8 two successes, and 1/8 three successes.

If four are drawn (n = 4) the frequencies will run iV(1/i6),

N(4/i6), AT(6/i6), ^(4/16), iV(1/i6), and in general, if n are

drawn at a time the frequencies will be given by the coefficients

of the successive terms of the binomial iV(.5 + .5)". Dropping

N, which is a constant throughout, the general distribution

may then be written:

Successes in

Drawings of ii Frequencies

at a Time

o I (i) n

I n «) »

n (n - 1)

2

(i)«

n (n - 1) (n - 2)

3 1X2X3 (i)n

etc. etc.

Starting with this distribution we could readily determine its

mean and standard deviation, but as it is just a special case

of the more general problem in which the chance of success

for any single drawing is p (p not necessarily ^) this latter

will be attacked.

Let p = the chance of success and q that of failure. Then

P + q - 1 [34]

Following the same argument as for p = q = .5, the distribu-

tion of successes when n at a time are drawn becomes:

Successes in

1I Drawings Frequencies

0 I q"

1 n q"'1 p

2 » (n - I) , ,

2

n (n - 1) (n - 2)

A 1X2X3

etc. etc.

We will now proceed to calculate the standard deviation of

these numbers of successes by calculating the second moment

from the point "zero successes,"and then transferring to the

mean by the aid of formula [22].
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MEASURES OF DISPERSION 89

; in

Drawings of « Frequencies

at a Time

x f fX

0 q„ o

1 npq„-1 npq"-1

4 »(»-!)(«-») ("-3)^ , »P (n - 1) (n - 2) (n - 3) ,4

1X2X3X4 q 1X2X3

etc. etc. etc.

2/=(/, + 2)" = 1 Z/A" = n£ (/,= »/,

Therefore S 1 - — = n£ [35]

/*'

o

np (n - 1) -f- np (n - 1) /•g„-!

(ft I} f — 2)

n? P'V-' + np(» ~ 1)(» - 2) P'gv*

(»- 1)(n-2) („-3) , « (n - 1) (n - 2) (» - 3)

y 1X2X3 1X2 ?s

etc.

Z/A' = + g)n-i + np' (n - 1) (p +3)»-' = np + n'p'-np'^H,

Therefore /u = npq, and a = Vnpq [36]

The third and fourth moments, derived by the same process,

are:

mj = »pq (3 - p) [37]

Ai4 = npq [1 + 3(n - 2) pq] [38]

They are recorded here for future reference, but are not used

in the immediate problem, — the calculation of the standard

error of the median.

The magnitude /i2 is the standard deviation squared of the

sum of the frequencies in a category for which the chance of

each of the separate measures being in the category is p. Thus

if N (instead of n as above) equals the size of the sample drawn,

F the frequency in a certain category, p the likelihood of the

measure lying without it, then

a = VNpq (The standard deviation of the fre-

F quency in a given category). . . [39]

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



90

STATISTICAL METHOD

If the proportion in a category instead of the gross frequency is

considered we have

F i

p = ^ and ap ~ 'Fi so that finally

ap = (The standard deviation of a proportion).. [40]

This is the basic formula underlying the theory of contingency,

i.e., the statistics of categories.

We may use this general result in determining the standard

deviation of the frequencies below the median. In this case

p = q = so that

This is the standard deviation of the A's, required to determine

the standard error of the median. Substituting in [33]

i V~N

"Mdn = 2} stanc'ard error of the median).. . [41]

By parity of reasoning the standard error of any percentile

may be found. Using the same notation as in Section 13, it is

ip^Npq (The standard error of a percentile) [42]

P JP

Formula [42] is ordinarily the one needed, but for certain

problems the existence or assumption of normality permits

the use of the following (Kelley, 1921, new);

_ a \pi (The standard error of a percentile of a

pp z\N normal distribution) [43]

in which a is the standard deviation of the distribution and z

the ordinate corresponding to q as given in Table K-W.

A precaution is necessary in using formulas [41] and [42] in

that, theoretically, / is the frequency in the interval t in the

case of a very large population. A single class frequency for

ordinary finite populations is a quite unstable magnitude, so

that in determining the class frequency for / it is well to smooth

the curve in the neighborhood of the percentile by averaging

the three or five class frequencies nearest to it. The exact

number to be averaged depends upon local periodicity and the
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total population, but as a general rule for populations less than

200 it is advisable to average such a number as extend over

approximately 1/8 of the total range. For larger populations

a smaller number of intervals may be averaged. It is obvious

that the same result is accomplished if the frequencies in a

small number of neighboring intervals are added to give the /,

and the total range covered by these intervals taken as the i,

used in the formulas.

The standard errors of the two most important averages

have been determined. That for the mode, except when cal-

culated by determining the equation of the curve which fits

the data, is known to be very high. No simple formula for

its determination is available.

In order to compare the reliabilities of different averages we

will calculate the standard errors of the mean and of the

median for the temperature data of Table VII.

M = 81.55; Mdn = 81.25; a = 6.19, N = 62

^ = ^=.786.

V62

To compare with this, the standard error of the median will be

calculated, using five different intervals in the neighborhood of

the median.

\/ 52 1

(a) 1 = 1. /of interval, 8o.S°-81.5°, =8. aMdn=-y-Xg =.493

\/62 2

(6) i=2. / of interval, 80.5°-82.5°, = 13. <rMdn = —^- X— = .606

W «'=3- /of interval, 79.5°-82.5°, =23. <rMdn =-514

(d) 1 = 4. / of interval, 7o.5°-83.5°, =30. audn =-S2S

(«) t=5- / of interval, 78.5°-8o.5°, =31. <rMdn =-636

It is well-nigh impossible to say which of these five values is

the most reliable, but since the population is only 62, the last

value, .636, based upon an interval which is 1/7 of the range is

rather to be preferred to any of the others. Accepting it as

the best value it is seen that the median has a smaller standard

error than the mean. This means that, if this sample of 62

is truly representative of the distribution of temperatures, the

median of the distribution can be determined with greater
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accuracy than can the mean, and that accordingly the median

is preferable in this instance to the mean, as a measure of

central tendency. Other considerations may enter in, such

as, for example, the desirability of combining different sets of

data, calculating correlations, etc., in which case the mean

should always be used, as it permits of such statistical treatment

whereas the median does not; but if such considerations are

not present the proper average to use is the one which is the most

reliable. It is thus seen that the all too customary choice of

an average "because of the nature of the distribution" should

give way to a choice based upon rigorous statistical considera-

tions as to reliability. Having decided upon an average the

appropriate measure of dispersion follows as a consequence —

the quartile deviations or preferably D, the 10-90 percentile

range, should be used with the median, and the standard

deviation with the mean. The standard deviation is much

the more reliable of these two measures of dispersion for all

ordinary uni-modal distributions, even though they be very

appreciably skew. Therefore, if, for a certain investigation,

the measure of dispersion is a more important measure than

that of central tendency, no error would ordinarily be made if

the mean and standard deviation are chosen, no matter what

the reliability of the median may be.

The reader will have noted that measures o reliability are

simply measures of dispersion. Any measure not infallibly

determined may be thought of as one of a population of such

measures. It then only remains to calculate a measure of

dispersion for this population to secure an index of the relia-

bility of the measure. The measure of dispersion most uni-

versally available and most reliable is the standard deviation.

The range though frequently available, is very unreliable and

should be used for rough or hasty determinations only. The

relationship of the five measures of dispersion — standard

deviation, mean deviation, 10-90 percentile range, quartile

deviation, and the range, to each other will be considered in

Section 31 and Problem 1, Chapter V, for the normal distri-

bution, which is probably more typical of uni-modal distribu-

tions in general than any other single distribution.
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PROBLEMS

1. Calculate the first and second moments from "zero income" for the

data of Table X and by proper transformation (a) determine /u, the second

moment from the mean, and (6) determine the second moment from the

median by formula [28] and check by formula [27].

2. Calculate the standard errors of the (a) L. Q., (6) Mdn., (c) U. Q.,

(d) M, for the hypothetical distribution of incomes, Table X. Which is

the more accurate average for these data, the mean or the median?

3. Using the grouped data giving changes in wholesale prices, Table XV,

determine which is the more reliable average, the mean or the median.

4. (a) Which is the more reliable average, the mean or the median, in

the case of College Marks, Table XVIII?

(b) In this case what is the proper number of class intervals to com-

bine in determining the standard error of the median? [Answer to (6):

The population, 773, is large and an interval of three units, fg. the range,

would be reasonably satisfactory were it not for the fact that there is a

decided periodicity, which is irrelevant so far as pupils' talents are con-

cerned, so that the proper interval is one of five units.]

5. (a) Determine the standard error of the second moment of the in-

come data, Table X.

(6) Determine the standard error of the standard deviation of the

same data.

6. Derive 113 and in for frequencies given by the terms of the binomial

(P + 3)" m a manner similar to that illustrated for in and hi. Much

scratch paper will be needed.

7. Prove that if c is a constant and x a variable then

aex ™ cax-

8. Devise a formula similar to [7 a] except that the sum of the measures

above the mean instead of the sum of those below is involved.
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CHAPTER V

THE NORMAL PROBABILITY DISTRIBUTION

Section 25. Derivation of Equation of Normal

Distribution

Many frequency distributions are very similar in type.

These distributions are characterized by being symmetrical

with respect to the mean; by having a single mode which is

at the mean: i.e., the slope of the curve at the mean is zero;

by tapering off from the mean and in such a manner that the

slope again approaches zero as the frequencies or ordinates

of the curve approach zero. The symbol y will be used for

the ordinate unless N = 1.o, in which case z is used to conform

with certain tables in this text and with Sheppard's tables.

Following Pearson, we may derive the simplest curve which

has these characteristics. It is necessary to use the calculus

in this derivation, so that one unfamiliar with it may simply

note the conclusions.

The differential equation dy/dx = Cxy is an equation, origin

at the mean, whose slope is zero both when x is zero and when

y is zero. It is the most concise form imposing the required

slope conditions of any which has been noted by the writer or

any which he is able to conceive. Integrating this equation

gives: (All the integration formulas used in this chapter may

be found in Peirce, 1910.)

y = keC*

If k and C are both positive it is found, by plotting or by

more analytical means, that the curve has a minimum instead

of a maximum at * = o; also that y does not approach zero for

any real value of x. It is therefore necessary that C be negative

or setting C = — c the differential equation may be written

dy/dx = - cxy and the integral

-ex'

y = ke *

94
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NORMAL PROBABILITY DISTRIBUTION 95

Let us investigate the moments of this curve. If N is the

total population or total area under the curve

N*, = fydx = * J— = N

—00 \ £

00

=f yxdx = NM = o

— 00

Solving the first and third of these equations for c and k gives

c = l/a' and k = N/a V2t

This gives as the final equation of the curve

y = e (The Normal Probability Curve) [44]

in which y is the frequency or ordinate corresponding to a

deviation x, N is the total frequency, a the standard deviation

of the measures, ir = 3.1416, and e = 2.7183 — the Naperian

base of logarithms. This equation is identical with the fol-

lowing convergent series:

y - Wr* b ~ fc^)'+ n C-v2)4~ h G^)'+ .' 1[45]

Section 26. Certain Properties of the Normal

Distribution

The first derivative of equation [44] is:

-x'

*,~wr.e -^-y-7' M

and, as the mode of derivation necessitated, it has a maximum

at the mean (x = o) and a zero slope at the extremes (y = o).

The second derivative is:

y''(-S+I) [47]

This is zero when x equals plus or minus a, so that the points of

inflection of the normal probability curve are at points one

standard deviation above and below the mean.

-*'

1 -

dx' ~ a,V~3

d'y - N

- e
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The first moment, m, for the entire curve is of necessity zero

as deviations are measured from the mean, but if the first

00

moment from the mean for half the curve, m ], is found it will

give the average or mean deviation.

= ifi* **= 5h = 7979' [48 0l

2

It is thus found that the average or mean deviation is .7979

times the standard deviation.

M. Dev., or Av. Dev. = .7979 a (Relation between average deviation

and standard deviation in case of

a normal distribution) [48]

It is frequently desirable to know how far out, in both

directions, it is necessary to go to secure one half the total

frequency. This distance is called the probable error because

of the fact that if the distribution is one of magnitudes varying

by chance from some one magnitude (the mean) then the

chances are one to one that any single measure will vary from

this magnitude by an amount as great as the probable error.

The area under the curve is given by the integral, J"zdx.

Therefore if the equation

could be solved for x, it would give that distance which if

measured in each direction from the mean would include one

half the total population. The integral desired may be ex-

panded into the following convergent series:

~A(£)'+-]

Setting this equal to .25 AT, the number of cases between the

mean and plus one probable error, and solving for x gives

.6744898 a, the value of the probable error.
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Section 27. Kelley-Wood Table of the Normal

Probability Integral

X

The upper limit, x, of the integral, I = fzdx, when N = 1

o

and <r = 1, has been evaluated for values of the area, I, by

.001's, from .000 to .499 and are tabled in the K-W table,*

given in the last pages of this text. The argument for the

table is either /, the area from the mean on to the stump of

the distribution, q, the area of the smaller portion cut off,

or p, the area of the larger portion. I in this table equals -

of Sheppard's tables, but whereas the tabulated entry in

Sheppard's most extensive table is - and the argument is x, here

the tabulated entry is * and the argument /. In both tables

the ordinate is a tabled entry. The two tables supplement

each other. Sheppard's tables will be found the more con-

venient to use if deviates are known and either areas or ordinates

desired, while the K-W table will prove the more serviceable

if areas are known and deviates or ordinates desired. For

expressing a distribution composed of categories arranged in

a rank order and having varying frequencies, in terms of a

normal distribution, the K-W table is much the more service-

able. Continual reference to Table K-W is made in subsequent

chapters of this text and if the meaning of J, q, p, x and z are

definitely fixed in mind it will greatly assist in the understand-

ing of subsequent derivations and formulas (cf. pages 371-383).

* The table is called the Kelley-Wood, or K-W. table because Dr. Ben D. Wood calcu-

lated by interpolation, using third and fourth order differences, from Sheppard*s tables,

values of the abscissa x corresponding to areas from / .000 to / = .400; because my wife

calculated, by formula I49I, values at decreasing intervals from / = .400 to 7 = .409, and

because I calculated by interpolation certain values of the deviate from / = .400 to / = .400

and also calculated either by interpolation or by the aid of eight place logarithms, values

of the ordinate, z. The laboT has been substantial and I commend to the inquisitive the

calculation of the deviate fo1 / = .400, which Mrs. Kelley determined to be equal to

30,0022850+.

Columns /, x and z constitute the basic table of the probability integral, but the added

columns z/q, zip and pq, also calculated by M1s. Kcllcy. will be found serviceable in many

formulas.

The last figure of the entries in the basic table may be expected occasionally to be in

error by 1. — T. L. K.
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Section 28. Further Properties of the Normal

Distribution

The probable error was found by means of formula [49].

P. E. = .6744898 a (Probable error of any magnitude in terms

of the standard deviation or standard

error of the magnitude) [50]

It is to be noted that the probable error is defined as a certain

fixed fraction of the standard deviation, or standard error.

The relationship that half the population lies between plus

and minus .67449 a, is strictly true only in case of a normal

distribution; however it is the customary measure to use

whenever thinking of chance variations, whether the distribu-

tion under consideration is normal or not. It must be defi-

nitely kept in mind that the P. E. has no status or means of

calculation independent of the standard error; it is simply a

measure of deviation .67449 times as large as the standard

deviation and should not be confused with the quartile devia-

tion which, regardless of the shape of the distribution, is one

half the distance from the lower to the upper quartile. From

the lower quartile to the upper quartile is always a distance of

2 Q and is a range that always contains just one half the

measures, whereas from 1 P. E. below the mean to 1 P. E.

above is a range that contains exactly one half the measures

only in the special case when the distribution is normal. It is

to be expected that distributions of measures which are com-

posite measures based upon a large number of separate scores

'I will in general more closely approximate a normal distribution

■ 1 than do the distributions of separate scores themselves,*

so that the error introduced in thinking of 50 per cent of the

'cases as lying between + 1 P. E. and - 1 P. E. is very small,

if the P. E. under consideration is that of any average, of any

coefficient of correlation, of any measure of dispersion, or in

fact of any measure whatever derived from a large number of

other measures Quite substantial error may, however, be

introduced if the P. E. of the distribution of original measures

is taken as such that 50 per cent of the cases lie between

* I have not proven this analytically but have found it to be true with many distribu-

tions with which I have had to deal. — T. L. K.
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+ 1 P. E. and - 1 P. E. (See problems 2 and 3 at end of

chapter.)

Certain important relations between the moments of the

1 x

normal distribution exist. The third moment, n3 = ^-fyx3dx,

TV »

of course, equals zero as the curve is symmetrical with respect

to its origin, the mean.

For the fourth moment we have:

w = ^ fjx* dx = [51]

These last two relationships are important in that they provide

a means of determining how closely given data fit a normal

distribution. If n3 = o and ni = 3 a* the fit is entirely satis-

factory and the normal curve will better fit the data than any

other uni-modal curve. If these two relationships do not

exactly hold, the significance of the discrepancy can be deter-

mined by the formulas giving probable errors of any moments,

given in the preceding chapter, or more nearly by determining

the values and probable errors of two constants ft and ft.

These are used in all curve fitting following Pearson's method,

and are defined by the equations:

/i'3 _ m [Formulas 69 and 70

Pl" "~ m'i of Sec. 36]

For a normal distribution ft = o and ft = 3. The probable

errors of ft and ft may be found from Tables 37 and 38 of

Pearson's Tables. If for any distribution the obtained fts

differ from o and 3 respectively by amounts which are small

with reference to their probable errors the data may be con-

sidered normal. The probable errors of these fts will be found

to be large if the populations are small. This is simply indica-

tive of the fact that it is impossible to determine the type of a

distribution from a small population and it is scarcely worth

attempting unless the population is over 100.

Section 29. Properties of Portions of a Normal

Distribution

The method followed in the calculation of the average

deviation is serviceable in determining the mean deviation of

any tail of a normal distribution. Let a "unit normal distribu-
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tion" be one of standard deviation and population each equal

to i, then the mean deviation from the mean, of the tail of a

normal distribution covering the portion from x to oo is given

by the equation:

fyx fa (Mean deviation of

at t"> i on -i * a'yx azx the tail of a normal

M. Dev. of Tail = —= = —~ = ,. J., . . . .

Nx Nx qx distribution) [52]

in which yx is the ordinate per unit base at the point of trunca-

tion; AT* is the number of cases lying beyond this point;

zx is the value of the ordinate of a unit normal curve at the

stump or point of truncation x, and qx is the number of cases

in the unit normal distribution from the point of truncation

x on to 00. In case of a unit normal distribution we have:

, «. c m -i z (Mean deviation of the tail of a unit

M. Dev. of Tail = - . .. ^ . . ,

q normal distribution) [53]

This magnitude, z/q, is given in Table K-W. In case q <.$

use column "z/q" and in case q >.$ use column "z//,".

This relationship between ordinate and mean deviation of

tail is one of the unique and very interesting properties of the

normal distribution. It has many applications, one of which

is considered herewith. In case the tail is one half the curve

we have: .7979 a = —in which yo is the ordinate per unit

base interval at the mean. Solving for a gives, approximately,

_ .4 N (Formula for roughly determining the standard deviation

* yo of a distribution which is approximately normal) [54]

Accordingly, if a rough estimate of the standard deviation of

a distribution will suffice, it may be obtained by dividing .4

of the total population by an estimate of the height of the

ordinate, at the mean, of the normal curve which would best

fit the data.

A simple extension of the method followed in obtaining the

mean deviation of the tail will give the mean deviation from

the mean of any part of the distribution. Consider the standard

deviation and area of the following figure to be 1 and let

it be required to find the mean deviation, from the mean of

the entire distribution, of that part of the distribution between

xi and xi. Let the ordinates at these points be zi and z2. Let
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NORMAL PROBABILITY DISTRIBUTION 101

qi and q2 be the proportions of the population lying above xi

and xi respectively. Let d = the required mean deviation;

di = the mean deviation of the tail from xi on; ck = the mean

deviation of the tail from xi on. Then (qi — q2) is the pro-

portion lying in the interval from x, to x2. The first moment

of the distribution beyond xi is equal to the first moment of

that part between xi and xt plus the first moment of that

part beyond x2, or

= (si — S') & + quii

That is, solving

zi = (?' — qi) d + Zi

^ _ Zi — zi (Mean deviation of a portion of

gi — gi a unit normal distribution).... [55]

The magnitudes qi and q2 are the proportions lying beyond the

upper and lower limits respectively of the class involved, and

zi and z2 are the ordinates for these proportions as given in

Table K-W.

As an illustration the following problem is given. Assuming

a normal distribution, express the following school marks as

deviations from the mean:

Percentage

of Pupils

Receiving

Calculation from

Table K-W

Marks

«l

('

XI — ta

Mark

Indicated

11

Ml

«l - «'

A

11.4

.114

.000

.192900

.OOOOOO

I.692

B

34-7

.461

.114

.397034

.192900

.588

C

32-5

.786

.461

.291399

.397034

- 325

D

10.2

.888

.786

.190478

.291399

- 989

E

9.0

.978

.888

.OS2485

.190478

- 1-533

F

2.2

1.000

.978

.OOOOOO

.052485

- 2.386
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The table informs us that a mark of A is equivalent to a posi-

tion 1.692 standard deviations above the mean of the group,

that a grade of B is .588 standard deviations above the mean,

a grade of C is .325 standard deviations below the mean, etc.

The standard deviation of a portion of a normal distribution

is developed in Section 60 in connection with another problem,

— see formula [188].

Section 30. The Probability of Exceeding a Given

Divergence

The normal curve assists in establishing the degree of con-

fidence which may be placed in statistical findings. The

significance of any measure is to be judged by comparison

with its probable error. If a child makes a score of 80 on a

certain test and if the probable error of the score is 5, we may

estimate the chances of the child's true ability being as much as

100. We assume that the distribution of the child's perform-

ances would follow a normal curve. Note that the assumption

is not that the talents of children in general follow a normal

distribution. This latter might be less reasonable than the

one we are called upon to make. Moreover, so little differ-

ence in probabilities, except for extreme deviates, is ordinarily

consequent to differences in forms of distribution, that the

assumption of normality is little likely to result in serious

error for such problems as the present one. For extreme

deviates it generally does not matter so far as any practical

deductions are concerned whether the chances are 1 in 1000

or ten times as great. Nor for smaller deviates does it make

any particular difference whether the chances are 400 in 1000

or 410 in 1000. Should such differences as mentioned be

significant in any particular problem, no assumption should

be made, but the type of the curve should be experimentally

determined.

For the problem in hand: If the P. E. is 5 the standard error

is ( ' \ = 7.413. The difference between the scores that

we are concerned with is (100-80) = 20, which is
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NORMAL PROBABILITY DISTRIBUTION 103

2.698 standard errors. The K-W Table, or more conveniently

for this problem Sheppard's Tables, may be used to find the

area in the tail below the point which is 2.698 standard devia-

tions below the mean. The tables give .0035. To interpret

this we should postulate the person's true ability as being 100

and his various performances distributing themselves in a

normal distribution, with standard deviation equal to 7.413

around this mean. Then .0035 of the area of the curve will

lie below the point 80. Accordingly if his true ability is 100,

only 35 times in 10000, or 3.5 times in 1000, would a score as

low or lower than 80 be expected. With such figures a person

could accept the proposition that the child's ability was not

as great as 100 with about as much certainty as he can start

across a business street expecting not to be hit by an auto-

mobile. It is, in other words, just such a conclusion as one is

justified in acting upon.

Table K-W is built upon the basis of the standard deviation

as the unit of variability, instead of the probable error. If

probable errors instead of standard errors are known, the

following table may be used for rough work, thus avoiding the

labor of division by .6745:

TABLE XXVI

The Likelihood of a Difference as Great as this Obtained One

If a differ-

ence is x

times its

probable

error

and in the same direction, and in the same or the opposite

is 100 p in 100, or 100 p direction, is 2 X 100 p in 100,

chances of its occurring or 200 p chances of its occur-

to 100 q chances of its not ring to 100 (1-2 p) chances of

occurring its not occurring

.v

loop in 100 loop to ioogl

20opin 100 200pto ioo(i-2p)

2.5

3.0

3-5

4.0

5-0

6.0

7.0

8.0

1.0

.5

37 in 100 37 to 63

25 in 100 25 to 75

16 in 100 16 to 84

9 in 100 9 to 91

5 in 100 5 to 95

2 in 100 2 to 98

I in 100 I to 99

.3 in 100.0

74 in 100 74 to 26

50 in 100 50 to 50

31 in 100 31 to 69

18 in 100 18 to 82

9 in 100 9 to 91

4 in 100 4 to 96

2 in 100 2 to 98

.7 in 100.0

.02 in 100.00

.001 in 100.000

.0001 in 100.0000

.000001 in 100.000000

.04 in 100.00

.003 in 100.000

.0001 in 100.0000

.000003 in 100.000000
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Section 31. Summary of Facts Concerning the Normal

Distribution

A summary of the facts already discovered together with a

few determined later in regard to the normal probability curve

gives the following:

1. It is uni-modal, symmetrical with respect to the mean, and

is completely determined when N, the population, M, the mean,

and a, the standard deviation of the distribution, are known.

2. The mean, median, and mode coincide.

3. Measures of dispersion are related in the following

ways:

Q = P. E. = .84535 A. D. = .67449 a = .26315 D

A. D. = 1.1829 Q = 1.1829 P. E. = .79788 a = .31129 D

a = 1.4826 Q = 1.4826 P. E. = 1.2533 A. D. = .39015 D

D = 3.8001 Q = 3.8001 P. E. = 3.2124 A. D. = 2.5631 a

The range covered by the measures is approximately,

In case the total population is 10, = 4 a

"SO, = S °

200, = o a

ii ii 4i ii ii ti

IOOO, = 7 <T

a = approximately .4 N -4- the height of the smoothed ordi-

nate at the mean, median, or mode.

4. The points of inflection of the curve are at distances 1 a

and — 1 a from the mean.

5. Every odd moment n?„ n&- . - of the curve is equal to o.

The even moments are given by

...[56]

.[57]

Iii - a2

mi = 3 »«,' = 3 "*

M6 = l5 ^'2 = 15 »*

lii = 105 Ai42 = 105 a'

(3, = o, and 0, = 3.

6. The mean deviation of a truncated portion of the curve,

taken from the mean of the entire distribution, is equal to the

square of the standard deviation of the entire distribution into

the height of the curve at the point of truncation, divided by

the number of cases in the tail.
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NORMAL PROBABILITY DISTRIBUTION 105

7. The most reliable constant of the distribution is the

standard deviation. Its probable error =

.6744898 a .477 , , „,

7———. or of its own magnitude 58

V2 N Vn

This follows from formulas [32-a] and [50].

The probable error of the average deviation =

.40660- or .510 qj .tg magnitude [50]

Vn Vn

The probable error of D, the 10-90 percentile range, =

I 5^73 o 600

. — , or :—= of its own magnitude [16 o]

Vn Vn

The probable error of the quartile =

.5306 a Qr 787 Q£ jts Qwn magnitude [6o]

viV VN

This follows from formulas [14] and [50].

It is thus seen that if N measures result in a certain relia-

bility in the standard deviation, it requires to obtain an equal

reliability, 1.14 N measures in the average deviation, 1.58 N

measures in the 10-90 percentile range, and 2.72 N measures

in the quartile deviation.

8. Measures of central tendency are less reliable than

measures of dispersion. Little, if any, significance attaches

to a measure of the unreliability of an average expressed in

terms of itself, and, furthermore, since in the normal distribu-

tion all measures of central tendency coincide, it will suffice for

purposes of comparison to give the probable error of each.

_ _ , .6745<r (Normal or any other distribu-

P. E. of mean = ,— .. . ...

VjV tion) [61]

_ _ , ,. .84535 <r (In case of normal distribution

P. E. of median = , . .

Vn oniy) [62]

P. E. of the mode is unknown unless the mode is determined

from the equation which best fits the data, in which case its

probable error compares favorably with those of the mean

and median.

It is seen that if N measures result in a certain reliability in

the mean, it requires 1.57 AT measures to obtain an equal

reliability in the median.
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STATISTICAL METHOD

g. If a distribution is normal the most reliable measure of

dispersion based upon percentiles is that between the 7th and

93d percentiles. Of almost as great reliability is the 10-90

percentile range.

10. The distributions of frequencies in the point binomial

+ closely approximates a normal distribution if n is

large and neither p nor q very small. For n infinite and

neither p nor q infinitesimal the point binomial distribution

becomes a point normal distribution.

11. The average deviation from the mean of any portion of

a normal distribution may be obtained from the equation:

d

zi — zi

3i - 32

in which the q's are proportions of the population and the z's

are corresponding ordinates as given in Table K-W.

12. The standard deviation from the mean of any portion of

a normal distribution may be obtained from the equation:

1 + - d2 [Section 63, Formula 188]

?i - g2

13. The equation of the normal distribution is

N

- x,

2 r

[44]

or,

a y/2

hr b ~ C^)*+ 5 (^)4_ i +. . ] [45]

PROBLEMS

1. Given a normal distribution with areas and deviations as indicated

in the accompanying figure, then (1 — a)/i is the probability of a measure

Total A1«a -I.0

lying in the shaded portion or, in other words, of a measure deviating

from the mean by a distance greater than x. If the probability of a single
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NORMAL PROBABILITY DISTRIBUTION 107

measure lying beyond x is this small amount 1 — a, then the probability

of a measure, in case of a population of N measures, lying beyond this

point is N (1 — a). If this probability, N (1 — a), equals .5, then the

value * corresponding to the a is such a deviation that the chances that a

measure will lie beyond the point x is just equal to the chance that no

measure will lie beyond it. The distance x is therefore the most probable

maximum deviation which will be found in the case of a population of N.

As a sufficiently close approximation * may be taken as equal to one half

the range. Accordingly using Table K-W the following table is obtained:

N. Such That

Range x i — a N (i — a) = .5

3" 1-5» 1336

4a 2. a .0455 9

5 a 2.5 a .01242 40

6a 3. a .00270 185

7" 3-5a .000465 1075

8a 4. a .0000634

Complete the table, determining values for 3 a and 8 a. [Answer: If the

population is 4 (more exactly 3.75) the range of the measures is (providing

the total distribution from which the sample of 4 is drawn is normal) most

probably equal to 3 a; and if the population is 8660 the range is most

probably equal to 8 a.]

2. In the case of the distribution of incomes given in Table X calculate

the L. Q. and the U. Q. and the points corresponding to — P. E. and

+ P. E. Compare values found. What percentage of the cases lie be-

tween these + and — P. E. points?

3. Do the same for the distribution of Wholesale Price Indexes given

in Table XIV.

4. Estimate the standard deviation of the distribution of temperatures

given in Table VIII and Charts I and II by first estimating the height at

the mean of the normal curve which would seem to fit the data.

5. Do the same for the College Marks data given in Table XVIII.

Compare a found with the correct a.

6. Group the College Marks data in fives, 47-52 constituting one

group, 52-57, the next, etc. Plot and from height of the curve at the

mean, estimate the a. Compare with correct value. What adjustment

in estimating a by this short method is necessary in case the data are

grouped? [Answer: The obtained a is in terms of intervals and must be

multiplied by the number of elementary units in each group to give the a

expressed in elementary units.]

7. Verify the calculation of equivalent scores given in Table XXXV.

8. If the plumage of certain fowl is either blue, splashed, or white,

and if the percentages in these categories are 28, 60, and 12, what numerical

values should be assigned to these colorations should it be desired to treat

them as color deviations in a normal distribution?
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9. Assuming normality of distribution in the temperature data, Table

VIII, and using 81.548 and 6.190, the values of the mean and standard

deviation already found, calculate the ordinate at + 1 P. E., 85.723, and

compare with the actual ordinate. [Answer: Theoretical 3.17, Actual with-

out smoothing 3.00.) Still assuming normality, what is the average devia-

tion from the mean of the truncated portion beyond this point? [Answer:

7.86.] Of the portion below this point? [Answer: —2.62.]

10. Verify all statements in paragraph 7, Section 31.

11. Verify statement in last sentence of paragraph 8, Section 31.

12. (a) Calculate 0i and 0' for the point binomial when p = q = 1/2

and n = 25. [Answer: 0i = o, 0i = 2.92.]

(6) Calculate (3i and 0t for the point binomial when p = .1, q = .9

and n = 25. [Answer: 0i = .2844, 0i = 3.204.]

(c) Calculate 0i and 0' for the point binomial when p and q are both

finite and n = °o. [Answer: 0i = o, /3i = 3.]
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CHAPTER VI

COMPARABLE MEASURES

Section 32. The Conditions Requisite for Comparison

In many studies measures of the same, or nearly the same,

phenomena are obtained and it is desired to compare results.

Gross measures or scores can with validity be compared

directly only in case they are in the same units and have been

obtained under very similar conditions. There are four

methods in common use, the purpose of each of which is to

derive comparable measures from original scores obtained in

such manner as not to be directly comparable. Of these

four the first and the only one which is universally sound is

that based upon the complete equivalence of the scales of

measurement involved; a second is the ratio or index method;

a third may be called the equivalence of standard measures

method; and a fourth may be called the equivalence of suc-

cessive percentiles method.

The first method presupposes that the complete equivalence

between measures is known. If both are rectilinear scales

and two points of the one have been determined to be equivalent

to two points of the other, then for every point of the one an

equivalent point on the other may be immediately located.

As an illustration of this method may be considered the com-

parison of two heights, one expressed in centimeters and the

other in inches. In the case of inches and centimeters the

two points which have been determined as equal are:

o.o centimeter = o.o inch

ioo.o centimeters = 39.37 inches

This type of equating is common both in the physical sciences

and in the social sciences, but it should be noted that it is

entirely sound only in case the two scales measure identically

109
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STATISTICAL METHOD

the same thing in the same linear manner. Any number of

functions may be found which agree at two or more points,

but are not identical, such, for example, as, /' = sin2 x;f" = —;

etc. For each of these the function equals zero when x equals

zero and the function equals i when x equals x/2, but in general

r+r:

The minimum number of conditions which must be met

before two scales can be fully equated are three. The condi-

tions are, (a) one point of the first must be known to be equal

to a point of the second, (b) a second point of the first must

be known to be equal to a second point of the second, and

(c) the law establishing the relationship between successive

points on the first must be known to be the law underlying the

second. This third condition is the hardest to establish and

should be examined the most critically. Even in the physical

sciences it frequently can only be approximately established.

Compare, for example, the relation between temperature,

pressure and volume in the case of two gases. When these

three conditions are met the determining of equivalent scores

is simple and is just such a problem as that of finding equivalent

temperatures in the centigrade scale to those in the Fahrenheit

scale, knowing that o° and i00° centigrade correspond to 32°

and 2120 Fahrenheit respectively and that both scales are

rectilinear.

It frequently happens that only two of the three conditions

mentioned are established, in which case a guess is sometimes

made as to the third and an equating attempted. The excel-

lence of the resulting system of equivalent measures is un-

certain, and all interpretations drawn should be with the reser-

vation that they are subject to the validity of the assumption

involved.

Section 33. The Ratio Method

In case conditions (a) and (6) are met, and condition (a) is

"a score of zero on the one scale is equal to a score of zero on

the other," condition (c) is frequently assumed to be "the same

proportion between the units of the two scales maintains

throughout." With these underlying conditions the ratio
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COMPARABLE MEASURES

i1

1

method is frequently used. Illustrations will show the hazards

involved. Given the following sets of data:

TABLE XXVII

Height in Cm.

Weight in Lbs.

138

172

75

145

(Data for individual A are those given in Whipple for the average 12.0

year old boy.)

TABLE XXVIII

Weight

Elephant A

. 4000 pounds

Butterfly B . . .

2 grams

Average for species

. 3600 pounds

Average for species .

1 gram

TABLE XXIX

United States Bureau of Labor Statistics — Average Aug. 75 Retail Prices

1918

Fresh Eggs

Potatoes

Bread

Tea

53.6^ doz.

3-9i pd.

9-9t pd.

65-8f! pd.

Average 1913-17 .

35-8

2.2

7-3

55-7

If one is attempting to secure a maturity measure based

upon height and another based upon weight one might start

with the following propositions:

(a) o cm. height indicates the same mount of maturity as o

pounds weight, (6) 172 cm. height indicates the same amount

of maturity as 145 pounds weight, (c) the law of development

of height is the same as that for weight. Of these three state-

ments (a) is probable entirely sound, (b) probably tolerably

satisfactory, particularly if dealing with groups and averages,

while (c) is probable quite absurd. Accepting these three

propositions is equivalent to saying that scores Xi and X2 in

the two measures, which satisfy the following equation, in

which Mi and M2 are the means of the two series, are equivalent:

X1 _ X ?.

Mi ~ M,
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The ratio is often used with some other magnitude than the

mean as a base so that a more general statement of the equa-

tion connecting equivalent scores is:

X_i _ X' (Equivalent scores upon the assumption

Bi B3 of equality of ratios) . . [63]

Bi and B2 should be values of the variables which are known

with more than usual certainty to be comparable and reliable.

It is also desirable that they be not small with reference to the

scores involved. Due to the greater reliability of means than

of individual scores the use of the mean as a base has much to

recommend it. Letting <n and a2 stand for the standard

deviations of the Xi and X2 scores, one criterion of the sound-

ness of the assumption of the equality of ratios is:

Bj _ Bi (Criterion to use in judging of the appro-

gi a2 priateness of the ratio method) [64]

The use of this criterion is illustrated in the next section in a

problem in which the bases are the means.

The calculated ratio scores of Individual A are not equal, for

A stands (138/172 = ) .802 on the height maturity scale and

(75/145 = ) .517 on the weight maturity scale. Accepting

proposition (c) one would conclude that individual A is a very

abnormal person, being some 28.5 per cent more developed in

height than in weight. In dealing with mental traits not

amenable to direct observation a conclusion equally as absurd

as that just drawn might pass for years without discovery.

In the case of height and weight the fallacy can be immediately

detected and a method followed which will be more reasonable,

though it is impossible to say that it is entirely sound, as the

proposition (c) is still an assumption.

Height being a one-dimensional magnitude and weight ap-

proximately three-dimensional (a) and (b) stand as before and

the third becomes: (c) The law of development of height is

the same as that for the cube root of weight. The comparisons

then are: Maturity index based upon height = .803. Ma-

turity index based upon weight = ^75/145 = .803. Upon the

basis of these two figures one would conclude that the individual

is equally developed in the two traits. This illustration is

given to show the material differences which result from
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COMPARABLE MEASURES

"3

different assumptions as to the laws connecting successive

scores of two scales and not to suggest that either of the two

methods followed is established as sound. At best, in the

problem in question, propositions (6) and (c) are questionable.

Logically proposition (a) seems sound, but there are many

situations in psychology and economics where a similar state-

ment would be very fallacious.

The hazards of the ratio method are not lessened when

dealing with the same sort of function of different things. For

example, the weight of one child expressed as a proportion of

the average adult weight in comparison with the weight of a

second similarly expressed may be very misleading. The two

children may have very different hereditary endowments, the

one becoming a normal adult of weight 120 pounds and the

other a normal adult of weight 145 pounds. The fallacy in

using indexes in the case just mentioned is the same as that

for Table XXVIII. Elephant A has a weight index of 1.11

and Butterfly B one of 2.00. This constitutes no proof that

as a butterfly B is more exceptional than is A as an elephant.

It might be true that 10 per cent of butterflies exceed 3 grams

in weight and but 5 per cent of elephants exceed 4000 pounds.

The indexes do not tell us, but in such case it would seem

reasonable to call A the more exceptional.

Using the Labor Bureau data of Table XXIX we find that

the 1918 August 15 price of fresh eggs is 150 per cent of the

average August 15 price for the years 1913-17; of potatoes

177 per cent; of bread 136 per cent; and of tea 118 per cent.

These four ratios tell an important story, but at the same time

they may be misleading and for the same reason that the weight

ratios of elephants and butterflies are misleading. The law

covering the fluctuation of potato prices is almost certainly

different from that covering the fluctuation of bread prices

and similarly for any two of the products which may be com-

pared. Conditions (a) and (b) may be fairly sound, but very

questionably so of condition (c):

(a) o jf per dozen eggs indicates the same sort of a price con-

dition as o £ per pound for potatoes.

(6) 35.8 jf per doz. eggs indicates the same sort of a price

condition as 2.2 £ per pound for potatoes.
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STATISTICAL METHOD

(c) The conditions determining the fluctuations in the prices

of eggs are proportional to those determining fluctua-

tions in potato prices.

Because of the peculiar difficulty of establishing condition (c)

the ratio method for economic and psychological problems

may be expected to be an artifact and not an exact quantitative

procedure.

A part of the error involved in combining price ratios of

separate items to obtain a general index may be eliminated by

weighting the separate ratios inversely as the squares of their

variabilities, as proven in Section 91 and illustrated in Sec-

tion 90. This method, however, will not result in as great

accuracy as will one based upon the multiple correlation and

regression of the prices involved. Further considerations are

given in Chapter XIII.

Section 34. The Standard Measure Method

This is an outgrowth of the method used by Francis Galton.

It has certain refinements in the measures involved, but rests

upon practically the same principle. Galton considered two

measures which attempted to measure the same function to

be comparable when each was expressed as a deviation from

the median of the group to which it belonged and when each

such deviation was divided by the quartile deviation of the

group. The three propositions essential to the soundness of

this procedure are:

(a) The median score of the first measure indicates the

same sort of a condition as the median score of the

second measure.

(6) A score of the first measure which deviates one quartile

from the median indicates the same sort of a condition

as a score of the second which deviates in the same

direction one quartile from its median.

(c) In general, deviations of the two measures which are in

the same proportion as the quartile deviations are

indicative of the same sort of a condition.
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COMPARABLE MEASURES

More briefly stated these propositions are.

(a) Median scores are comparable.

(b) Quartile deviations are comparable.

(c) The same proportions as between quartiles holds for all

equivalent deviations from the medians.

Since the mean can generally be more reliably determined

than the median, and the standard deviation than the quartile

deviation, the Galton procedure has been dropped and the

following propositions taken as a basis:

(a) Mean scores are comparable.

(b) Standard deviations are comparable.

(c) The same proportion as between standard deviations

holds for all equivalent deviations from the mean.

Let

2l - — —, and zi ■ — — (Standard measures).. . [65]

Then the measures to be compared are zi and z2. Such measures

as these may be called "standard measures" as they are meas-

ures of deviation expressed in terms of standard deviations.

The last proposition may then be stated:

(c) Equal standard measures are comparable.

It should be noted that there is no implication that a zero

score in the first measure is equal to a zero score in the second

measure. Proposition (c) always needs experimental verifica-

tion, but for the usual distributions found in the social sciences

it seems reasonable to expect that if the means of the distribu-

tions are set equal, and if points one standard deviation away

from the respective means be placed together, a better ap-

proximation to complete equivalence throughout the entire

scales will be obtained than if the means and zero points are

equated and other values taken in proportion. The following

data taken from Pintner (1914) and Kelley (1914 comp.) *

will illustrate the method and they also are such as do not

* A numerical error occurs in this reference, the figures herewith presented being the

correct ones.
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116 STATISTICAL METHOD

reveal without statistical analysis the inaccuracy of the ratio

method:

TABLE XXX

Mean Scores Given to Samples of Handwriting Upon

No. of Sample

Ayres Scale

Thomdikc Scale

12

20.6

5-9

6

24.2

6-5

8

28.4

7-3

21

35-3

8-4

4

36.2

8.0

15

36.3

8-3

I

37-1

8.1

22

40-3

8-9

5

40.3

9.0

17

41.8

8-9

18

48.9

10.1

l4

49.2

10.2

9

52.4

10.7

7

55-7

10.6

24

55-7

10.8

ii

56.0

10.7

IO

56.9

11-3

2

57-7

10.9

•3

58.0

11.2

19

58-9

"5

20

64.2

11.8

23

74.2

13-8

3

80.1

14.2

16

82.1

14.8

Calling the Ayres Xi scores and the Thorndike X2 scores and

calculating the required constants yields:

Mi — 49.60 <ti = 15.93 Mi = 10.08 ffi = 2.229

Xi's and AYs satisfying the following equation are comparable

measures:

Xi — Mi _ Xi — Mi (Equivalent scores upon the assumption

a i a of equality of standard measures). .. [66]

Solving for certain values yields the equivalent scores given in

the first two columns of the following table, XXXI. Treat-

ing the same data by the index method gives the equation:

X, = Xi

49.60 10.08

Scores which are equivalent as derived from this equation are

given in the last two columns of the table.
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TABLE XXXI

Standard Measures Method

Ratio Method

Equivalent Scores

Equivalent Scores

Ayres

Thorndike

Ayres

Thorndike

x,

xi

x,

xi

— 22.4

0.0

0.0

0.0

0.0

31

20.5

6.0

295

6.0

49.6

10.1

49.6

IO.I

70.0

12.9

70.0

14.2

84.8

150

73.8

150

The two methods lead to different results and a very brief

study of the original data shows that the equivalents obtained

by the standard measure method are much the more reasonable.

The fundamental error in this problem of the ratio method is

in the assumption of equality of zero scores. That this is an

error would not be self-evident to the user of the scales, as

samples of handwriting of less merit than 20 on the Ayres

scale or 6.0 on the Thorndike are seldom found, so that what

constitutes a sample of zero merit on either scale is quite

unknown. A similar observation applies to economic situa-

tions, for who has experience with, or knows the meaning of,

o i as the cost of, let us say, a pound of bread?

Reference to the equations giving equivalent scores shows

that knowledge of the means, in case the means are the bases,

is all that is necessary to determine the equation giving equiva-

lent scores in the case of the ratio method; but that an added

item of information, the standard deviations, is required in

the case of the standard measure method. If equivalent

measures really are proportionate as assumed by the index

method, the equating of standard measures results in the same

set of equivalents as given by the ratio method. This special

case exists when

0i

M-

a2'

for then

Xi — Mi Xi — M 2

reduces to ~ = ^?

Mi Mi

a 1 a-i

Accordingly the standard measure method is the more general

and contains the ratio method as one of its special cases.G
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Section 35. The Equivalence of Successive Percentiles

Method

This method involves no assumption that the law covering

the relation between successive scores is of any particular type

other than that involved in the statement "the larger the

score the greater the trait, or characteristic, being measured!"

Otis (1916) and (1918) in dealing with paired measures, has

used a graphic method which gives a line of "rank relation."

His method, equivalent to setting the lowest score in series

one equal to the lowest score in series two, the next lowest in

series one equal to the next lowest in series two, etc., could

be called "the equivalence of successive ranks" method, but

the title here given is used as being the more general. The

method does not depend upon paired measures or upon having

two series of the same population, though if measures are

paired and high correlation exists between them the reliability

of equatings is greatly increased.

. Letting P stand for percentiles in the first series and P' for

those in the second, the method assumes that equivalent

scores are P.n and P'.ou P.m and P'.<&, etc.; and in general

Pp is equivalent to P'p (Comparable percentiles)... .[67]

No single one of these equivalents P.oi = P.su etc., can be

determined with the reliability that appertains to M — M',

or a = a', but, unless it has been experimentally determined

that relationships between the two series are rectilinear, or

curvilinear according to a known law, a more accurate total

set of equivalents may be expected from this method than from

either of the two preceding. Objections to the method are,

first, that no concise algebraic statement of relationship comes

from it and second, that it is responsive to chance oddities in

distributions. This second objection can be largely overcome

by smoothing graphically as does Otis or by a moving average,

as will be illustrated, using the data upon handwriting.

There are but 24 samples of handwriting so that a percentile

below the 4.1667th cannot be calculated except by an arbitrary

assumption as to what constitutes the lower limit of the interval

corresponding to the lowest score. We will therefore begin

with the 5th percentile and, to shorten the work, proceed by

fives to the 95th.
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COMPARABLE MEASURES 119

TABLE XXXII

Equivalent Handwriting Scores

Smoothed Equivalent Scores

Percentiles

Ayres Scale

Thomdike Scale

Ayres

Thomdike

5

2318

6

34

231

6-35

10

28.52

7

20

26.7

7-30

15

34-19

7

89

32-

4

7.90

20

36.15

8

17

34-2

8.20

*5

36.70

8

35

36.0

8.50

30

38.935

8

68

37-8

8.80

35

40145

8

86

39-6

9.10

40

4365

9

31

42.3

9.40

45

48.31

10

03

46.8

9.80

50

50.80

10

40

49-5

10.25

55

54-23

10

66

54-l5

10.45

60

55-31

10

72

55-05

10.65

65

56.21

10

81

55-95

10.85

70

57-13

11

01

56.85

11.05

75

57-85

11

25

57-75

11.25

80

59-07

11

45

59-1

".55

85

64.61

12

11

64-5

12.25

00

73-97

13

52

74-4

13-45

95

80.31

14

40

79-8

14-35

TABLE XXXIII

Differences between Successive Five-Percentiles

Raw Percentiles

Smoothed Percentiles

Ayres

Thomdike

Ayres

Thomdike

5-34

.86

3-6

-95

5-67

.69

5-7

.6

1.96

.28

1.8

.3

-55

.18

1.8

.3

2.235

.33

1.8

-3

1.21

.18

1.8

.3

3505

.45

2.7

.3

4.66

.72

4-5

.4

2.49

.37

2-7

.45

3-43

.26

4-65

.2

1.08

.06

.9

.2

90

.09

.9

.2

.92

.20

.9

.2

-72

.24

-9

.2

1.22

.20

i-35

.3

5-54

.66

5-4

.7

9-36

1.41

9-9

1.2

6-34

.88

5-4

.9
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The smoothed percentile scores have been calculated from

the original series after grouping the Ayres data in 3's (score

21, frequency 1; sc 24, f 1; sc 27, f 1; sc 30, f o; sc 33, f o;

sc 36, f 4, etc.) and the Thorndike scores in 5's (sc 60, f 1;

sc 6.5, f 1, etc.) A moving average would probably lead to

slightly better results, but would be laborious with the uneven

spacing here present in the scores.

We may judge of the excellence of the two sets of equivalent

scores, since the drawing up of a correlation table for the data

of Table XXX shows that the relationship between the two

scales is almost exactly rectilinear, so that differences between

the percentiles upon the one scale should be proportionate to

the differences upon the other scale. Columns 1 and 2 of Table

XXXIII give these differences for the raw data and columns

3 and 4 give the differences determined from the smoothed

data. Rather better results are obtained from the raw data

than from the grouped, as would be expected from data show-

ing the high degree of correlation here present. The small

fluctuations are, in material part, not random, but genuine,

and the grouping process has therefore distorted the facts.

This method of equating scores is thoroughly empirical and

therefore applicable to situations in which the law of relation-

ship between variables is unknown, or at least cannot be stated

in a simple algebraic formula, but in which sufficient reason

exists to warrant the equating.

If several series are to be equated a very serviceable modifi-

cation of the preceding method is to equate each series, not to

any one of them, but to a normal distribution. This can be

done, using formula [55], giving by the aid of Table K-W the

mean deviation of a portion of a normal distribution. An

illustration will make clear the steps involved:

It is frequently desired to compare the performances of pupils

receiving marks in different subjects. If the pupils have no

subjects and no teachers in common, this can only be done by

making some assumption. If there are three teachers, each

with 50 pupils, it is more reasonable to assume that the mean

abilities of the three groups are equal than that similar literal

or percentage grades of the three teachers are equivalent. The

data of Table XXXIV present the problem.
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TABLE XXXIV

Marks Used

Percentage

Marks Used

Percentage

Marks Used

Percentage

by First

Given Mark

by Second

Given Mark

by Third

Given Mark

Teacher

Indicated

Teacher

Indicated

Teacher

Indicated

A

2.0

A +

.7

I

4-3

B

17.I

A

139

2

37-7

C

31-3

A -

4-5

3

50-3

D

40.0

B +

4.6

4

7-7

E

7-7

B

29.4

F

1-9

B -

4-3

4-7

22.7

9.2

6.0

c +

c

D

E

It is obvious that a mark of A given by the first teacher indi-

cates greater merit than a mark of A given by the second teacher.

Equating each mark to a standard-measure score in a normal

distribution gives:

TABLE XXXV

Marks Used

Equivalent

Marks Used

Equivalent

Marks Used

Equivalent

by First

Standard

by Second

Standard

by Third

Standard

Teacher

Measure

Teacher

Measure

Teacher

Measure

A

2.4

A +

2.8

I

2.1

B

1-3

A

i-5

2

.8

C

-4

A -

1.0

3

-.5

D

- .6

B +

.8

4

- 1.9

E

- 1.6

B

.3

F

-2-5

B -

— .1

c +

— .2

c

- .6

D

- 1-3

E

- 2.0

The method requires little time, but were such equatings being

done for a large number of classes a still briefer method could

be followed. Instead of finding the mean standard deviation

score for the upper 2 per cent, we may find the median: 1/2

the percentage of A's = 1.0, therefore from Table K-W 2.3 is

the standard deviation score which is equivalent to the mark of

A given by the first teacher. The percentage of A's plus £ the

percentage of B's = 10.6, therefore 1.2 is the score equivalent

to B. Similarly, .4 is equivalent to C; - .5 to D; - 1.6 to E;

and - 2.4 to F.
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The marks given by the second teacher are typically those

of a careful grader and show more discrimination than do those

of either the first or third teacher, but nevertheless it is more

reasonable to assume a normal distribution of talent than

such a tri-modal distribution as is indicated by the second

teacher's marks. The method may frequently be used for the

single purpose of warping data showing an extreme distribution

into a more reasonable mold.

The observation has been made that in order to be com-

parable the two series should be independent measures of the

same thing. It is shown in Section 56 how certain correlation

functions enable one to estimate whether two series of scores

are measures of the same thing. In general it is not necessary

that a raw correlation between the two series approaching 1.00

be found, but merely that a coefficient of correlation corrected

for attenuation of 1.00 be present.
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CHAPTER VII

THE FITTING OF CURVES TO DISTRIBUTIONS

Section 36. Methods of Fitting Curves to Observations

The properties of the normal distribution as given in Chap-

ter V are such that if data fall approximately into this form their

interpretation and treatment are frequently greatly simplified.

As a practical matter it is often serviceable to treat data as

normal even though slight divergence from normality may be

known to exist. Probably, however, the majority of distribu-

tions cannot by any stretch of interpretation be considered

normal. In such case one may resort to one of two procedures,

(a) either warp data into a normal mold by transformation

devices, or (b) discard the concept of normality altogether and

endeavor to discover an equation which does describe the

data.

The equation of the normal curve is

—x'

y = —-z=e2'

aV2 ir

Not counting N, the population, which does not affect the

type of curve, there is only one degree of freedom in this curve

since a is the only constant which is to be determined from

the data. To permit of greater freedom one could start as

did Edgeworth with an equation of the tvpe

oyV2 k

in which / is some function of x. As }{x) is made more and

more general, greater and greater freedom is given. Other

variations of this approach have been followed by Edgeworth

(1904), Kapteyn (1903), Thiele (1903) and Charlier (1906).

Pearson has criticized this method because the function built
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up is what he terms a "shadow function," something not

corresponding to any physical measurement, not representing

any relationship which is in itself capable of independent

interpretation; and as a procedure which tends to make a

fetish of the normal distribution. However, should this ghost

take on flesh and bone and be found, in certain important cases,

to be a measure of what would seem to be a causal force, the

method would be amply justified. Judgment may well be held

in abeyance pending further experimental treatment. Later

in this chapter the normal distribution will be shown to hold a

unique and peculiarly dominant position among all the Pearson

curves, but this is not an argument for arbitrarily forcing data

into this form. It is rather an argument for the study of the

features of a given distribution which diverges from this form.

The first four sections of this chapter are concerned with the

practical details of curve fitting while the theme of the last two

sections is the bearing of types of distributions upon problems

of stability and trends in evolution.

Section 37. The Principle Underlying Pearson's Method

of Curve Fitting

Pearson imposes certain very broad conditions upon the

differential equation of the curve. These conditions are so

general that many varieties of non-bi-modal distributions are

represented. These include (a) curves with a maximum fre-

quency somewhere between the limits of the range, called

"i-shaped" curves, (6) such as have an anti-mode, or point

of minimum frequency between the limits of the range, called

"u-shaped" curves, and (c) such as have no mode, called

"j-shaped" curves. The present treatment will describe the

calculation of a few of the more important of the fifteen Pearson

types, and will present such criteria as are necessary in determin-

ing the type of curve to which given data belong, so that one

may then go to Pearson's Tables (1914 tables) and other sources,

Elderton (1906), Pearson (1894), (1890 and sup 1901), (1902

sys), (1906 skew), (1915 cert) and (1916 app), and determine the

equation of the curves.

The fundamental proposition in Pearson's method is that in

order to have a good fit the first four moments of the data
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FITTING OF CURVES TO DISTRIBUTIONS 125

should equal the first four moments of the derived equation

and second that formula [81] expresses the general differential

equation covering all uni-modal curves. The moments are

fundamental and may be obtained by aid of the accompanying

formulas.

Let the required moments be m, /i2, y.3, m.

Let the four moments from the mean, but uncorrected for

grouping be vi, v2, v3, vi.

Let the raw moments from the arbitrary origin be vii v2, v*.

Then the following equations lead to the calculation of the n's:

XX - xx' - XX' - XX*

~ W "' = IT' "3 = ~N~'Vl = W

yi = ,'i — vi — o (Moments from the'

V2 = i-2 — j,'i mean, knowing them [24]

vi = i,i — 3 Viii + 2 i'i from an arbitrary [21 ]

»« = v4 — 4 Sji'i + 6 iiv'i — 3 v4i origin) see.

Continuing

in " ?i = o (Sheppard's correc- [68)

1 ,. . [68 a, see

"2 = "!-Ti t,onsapphed also Sec. 47]

M = v3 to moments [68 b]

m — »« — — + -'— from the mean) [68 c]

2 240

Sheppard's corrections are for an error in the moments due to

grouping. They are to be used in case of "high contact";

that is, when the curve approaches asymptotically the base

line, or *-axis, at both extremities. In case high contact at

both extremities is not present, corrections as given by Pair-

man and Pearson (1919) should be used.

It should be noticed that the Vs are here defined as were

the ji's in Section 21, that the v's here are the same as the /i's in

that section, and that the /i's here differ slightly from the v's

(or the n's of Section 21), being corrected for a grouping error.

Certain derived constants, ft, ft and the criterion k2 are also

needed in determining the type to which given data belong.

In earlier work in curve fitting a criterion ki was used and

though it is not as general a criterion as /c2 it has much theoretical

interest.
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ft

(One measure of skewness)... [69]

(One measure of kurtosis). . .[70]

m = 2 0' - 3 0i - 6

(Criterion ki)

[71]

0, (02 + 3)'

(Criterion «i).. .. [72]

K! =

4 (4 0, - 3 00 (2 0i - 3 0, - 6)

The connection between the fts and the type of curve may

be shown by the illustrative curves of Chart XIX and by

the following Chart XVIII which has in addition to the

lines of Diagram XXXV in Pearson's Tables, certain lines and

points for more recently discovered types of curves, as well

as lines giving the finite limits of various moments. The

meaning of the (/i» = 00) lines in Chart XVIII will be clear by

an illustration. It is found by reference to the Chart that

the lines (/i-8 = 00) and (mo = 00) approximately pass through

the point (ft = 1.45, ft = 5.66). The equation of the curve

fitting a distribution yielding these fts has all of its moments

between /i-8 and /i2o finite, and moments outside these limits

are infinite. For the positive moments the mean, a finite

boundary, or any other finite point, may be taken as the origin,

while for the negative moments one of the boundaries of the

distribution is the origin. For a point above Type III no

positive moments are infinite and for a point below Type V

no negative moments (defined further in Section 40) are

infinite. Only certain of the breakdown lines, i.e., lines where

the moment becomes infinite, have been drawn, there being an

infinity of positive moment breakdown lines between (mo = «s)

and Type III and an infinity of negative moment breakdown

lines between (/i-s = 00) and Type V. The discussion of the

significance of these lines will follow shortly.

After determining ft and ft from the data, a corresponding

point on Chart XVIII may be located. Should this be a point

on a line the equation of the distribution will have two degrees

of freedom in addition to that based upon N, the population.

If the (ft, ft) point lies in a space between lines, the equation

of the curve has one more constant in it and one greater degree

of freedom. If the (ft, ft) point falls on certain designated

spots on the lines, especially if it falls where two curves cross,
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Chart XVIII

Diagram of lypes of Frequency Distribution
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the equation of the curve simplifies and has but one constant.

In general the (ftft) point will not lie exactly on a line or on a

unique point in a line, but if near such a place much labor in

fitting a curve may be saved by choosing the simpler equation.

This is frequently permissible, as may be decided from Charts

and Tables given in Pearson's Tables, from which the probable

error of the location of the (ftft) point may be determined.

It is therefore possible to tell how unreasonable it would be

to choose a type represented by the simpler form.

Section 38. Description of Types of Curves

We will first note points upon the lines which give the very

simple one-constant equations. Reference to the drawings of

Chart XIX will show the general form of the curves.

(M) The point of meeting of the line ft = o, along which

all distributions are symmetrical, and the line, ft — ft — 1 = o,

along which all distributions consist of frequencies in two

categories.

Pi = o, 0i = 1.0

At point (M) two equal categories constitute the distribution.

Pearson has not given a name to this point nor assigned a

type number to the line, ft — /Si — 1 = o. Due to the im-

portance of the 1 : 1 ratio from the Mendelian point of view

I have called this point (M). The line might be called the

Mendelian line, but as it includes all two-category distributions

and not simply those having Mendelian significance, I will

call it the Two-Category Type Line.

(R) The point corresponding to a rectangular distribution.

01 = o, /32 = 1.8

This point is the juncture of many lines and may therefore be

considered a special case of any of the types which meet here,

i.e., Types II-u, II-i, I-j, I-i, VIII, IX-i, XII. This point

shares with the exponential the distinction of being the conflux

of the greatest number of types of any point in the diagram,

not excepting the normal point. There is a point, not in the

field corresponding to real distributions (ft = — 4, ft = — 3),

which is still more exceptional as judged by the number of

lines which pass through it.
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Chart XIX

M. Special Case of "lypelu

Zero Base, or Zero

Width Class Interval.

R. Rectangle.

L-_

Ran<£e from -a to +a

N. Normal or Gaussian.

P. Parabolic.

Ran<^e from -a to *a

E. Exponential: TypeX

-ft

Rante- from o to oc

L. Line:Point of Division

Betvveen Type Ki and TX'g

A. Carve drawn is /-^^jr (Jf$J

Corresponding to Point (3,»o, £,-9,and is

SlighHyLess PeaKed Than RjintA Curve

Range from -ee to oc

TypeW. See A.

y-y0lTT^

Ivaries from N to a Curve

More Leprokurhc

than A

Range from -oc to °c

Type TJ-U

ToM

Rano^fi from -a to ♦a

-toti

K2-0.&-0, l.8<C>2 <^.o

r ~o m
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STATISTICAL METHOD

(AO The point corresponding to the normal distribution.

01 = o, 0, = 3.0

This is the conflux of Types I-i, II-i, III-i, IV-i, V, VI and VII.

All of these are i-curves, that is, they are characterized by a

single positive mode and have zero frequencies and a slope of

zero at the upper and lower limits of the distribution. Further

unique characteristics of this point will be pointed out in con-

nection with reliability.

(P) The point corresponding to a parabola.

0, =O,0! = 2*

This is simply a special point in the Type I I-i line.

(A) The point corresponding to the symmetrical Type VII

distribution for which the mean and the median are equally

reliable averages. The point is not here located exactly, but

it is in the neighborhood of

0i = o, 11.o < /3i < 12.0

Below this point the median is more reliable than the mean

and above this point less reliable. It should be noted that the

line

8 0i - 15 /3i - 36 = o

is far above this point. The probable error of the fourth

moment becomes infinity below this line. Accordingly the

equation of a curve, or any other function involving the

fourth moment, loses significance. The mean and the prob-

able error of the mean do not involve a higher moment than

the second, so that they remain significant for distributions

for which it is impossible to fit a curve. In other words, the

fourth moment breaks down as a significant feature of a

distribution long before the second moment or the standard

deviation; and these latter in turn break down before the first

moment, or mean; and for certain distributions (e.g., ft = 0,

ft > 12.0) the mean breaks down not only when the median

does not, but when it is in fact rapidly improving as a measure

of central tendency. Were we to go in the other direction

into the Type II-u region we would find the median breaking

down while the mean remains very reliable. This point is

taken up later.
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Chart XIX — Continued

Two Category Type

M

Type^ZTH

-a- - o -a.

Type IX-1

y-y°[|+£]m '>m>°

Type TX- Z

Type 31

f-o ep,<5pJt-9 p,>4

o &

o a.

Type

M /

-&. c

X,-o

p,<4.0

Type IUj

o A.

TC,=Q, p,< -4.0
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(L) The point corresponding to the line distribution

/Si = -32. 0' = 2-4

This is a point of change of types. On the line to the left of

this point distributions are Type IX-1 and to the right Type

IX-2.

(E) The point corresponding to the exponential distribution

p, = 4.0, 02 = 9.0

This point, which is well off the chart as drawn, is at the inter-

section of Type IX-2 and Type III lines. Type IX-2 curves

become Type X curves at this point and Type XI curves

beyond it. Type III-i curves become Type X curves at this

point and Type III-j beyond it. The exponential is therefore

located at the juncture of Types I-i, I-j, III-i, III-j, VI-i,

VI-j, IX-2, XI.

There are at least five salient one-constant distributions,

three of them, (Af), (R) and (iV), representing symmetrical

distributions and two of them, (L) and (£), constituting

division points on the one line that divides i from j curves.

Excepting the special points noted, points upon any of the

lines in the diagram correspond to two-constant distributions.

Types II-u, II-i, VII. The line

01 = o

represents three types, II-u, II-i, VII, in addition to the

special points (M), (R), (B) and (iV). Following Pearson, this

line would be a boundary of "possible" distributions.

Two-Category Type. Another boundary would be the line

02 - 01 - 1 = o

Looking upon distributions along this line as limiting cases of

Type I-u distributions, it is seen that the equation representing

them involves exponents which are infinite. For this reason

no equation for this type is given.

Types VIII, IX-1, IX-2, XI. The line

0, (8 02 - 9 0, - 12) (/i2 + 3)' = (10 0i - 12 0, - 18)' (4 0i - 3 00

represents Types VIII, IX-i, IX-2, XI in addition to the

special points (/?), (L) and Type X, or (£). This bi-quadratic,

which we will call /, divides, on the one hand, the u-shaped
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Chart XIX — Continued

Kz = l p>5

Type I-u

E)ounda.nes'TwoCa+egory V-z(P Above f»0

Type I-j

C)oundari&3: f-o

K2 (p Inside £=o

Type I- I

15ounola.r'ies: Types IX" I Kt(o IjeW T-o

Type 21-1 oc>Kz>I.OO fcelowf-o

Uourvda.ries :Types IH-t ^ (x-a.)"1'

5Z m, >o mz )o

Type 5ZI-j oc>Xz)l.0o Inside $-o

tteundft-ries: TypesUJ-j (x-a.)m'

TypeEZ l>X,,>0

Doundaries: Types 3Z -V+arT1 -£b

3zn
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STATISTICAL METHOD

curves from the j-shaped, and on the other hand, the j-shaped

from the i-shaped. All j-shaped curves lie within the arms of

this bi-quadratic.

Type XII. The line

5 -6 0i- 9 = 0

represents Type XII curves, which are j-shaped throughout

the entire length of the line. In addition the special point

(R) is on this line.

Types III-i, III-j. The line

2 0! - 3 0i - 6 = o

represents Type III-i between points (N) and (E) and Type

III-j beyond point (is). Containing as it does the two impor-

tant points (N) and (£) and all points on the straight line

connecting them, it is a very important type and, considering

that it has but two parameters in addition to N, the popula-

tion, it fits in a quite remarkable manner a large number of

skew curves. Further characteristics of this type are pointed

out later.

Type V. The line

4 (4 0' - 3 00 (2 02 - 3 0i - 6) = 0i (02 + 3)'

(Identical with ki = o)

represents Type V, composed entirely of i-shaped curves, in

addition to the special point (N).

This completes the points and the lines. Points anywhere

in the regions between lines correspond to three-constant

distributions.

Type I-u. Composed entirely of u-shaped curves varying

all the way from the Two-Category type to Type VIII.

Type I-j. Composed entirely of j-shaped curves. This

region might appropriately be divided into two types, I-j-i

and I-j-2, depending upon which side of the Type XII line the

point is located.

Type I-i. Composed entirely of i-shaped curves varying

from Type IX to Type III. This is the only type area which

is finite, as Type II, Type IX and Type III lines completely

bound this region.
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FITTING OF CURVES TO DISTRIBUTIONS 135

Types VI-i and VI-j. Type VI-i, composed entirely of

i-shaped curves, lies below the Type III line and also below

Type XI line. Type VI-j composed entirely of j-shaped

curves, lies below Type III line and above Type XI line.

Type IV, composed entirely of highly leptokurtic i-shaped

curves. This region lies below type V line. Below the line

is a region in which the probable error of the fourth moment is

infinite, but it is not uncommon to find data which yield a

(ft. ft) point below this line. In such case one of the out-

standing' features of the distribution is this very fact of an

infinite eighth moment in the fitted curve, which is the cause

of the infinite probable error of the fourth moment. Other

significant features of the distribution may be determined

from lower moments than the fourth, which continue to have

finite probable errors for some distance below the critical line

given. Pearson has named the region below this critical line

the heterotypic region. As I understand the heterotypic to

include bi-modal distributions I consider the designation inapt,

as I can discover no evidence suggesting bi-modal tendencies

in Type IV distributions. At present it is a sort of no-man's

land. It is conceivable that there may be lines in it, correspond-

ing to two-constant distributions not involving the fourth

moment, and therefore determinable. There may also be

unique points not involving either the third or the fourth

moment. For one, the point (ft = o, ft = 9) may be con-

sidered such. The equation of this curve is

It is the Type VII curve having the smallest possible integral

exponent, and is completely determined by moments below

the third and fourth. Furthermore, the probable error of the

second moment, or standard deviation squared, is finite

although the point (02 = 9) is exactly twice as far down the

Type VII line as the intercept (ft = 4.5) of Pearson's critical

line with the Type VII line. That this curve is not exceptional

is obvious from the drawing of it given in Chart XIX, A.

8 P' - 15 Pi - 36 = o
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Section 39. The Fitting of the Most Important Types of

Curves

The normal distribution. The equation of this curve from

the mean as origin is

N Z*

'2 T

The constants involved have been defined. The population,

iV, and the standard deviation of the distribution a, are all

that are needed to determine the normal curve which best

represents given data.

Type II. The equation from the mean as origin is

y = y°(i-x£)m [73]

in which

__ 5 0i-9

a = i the range

_ I 2 iliPi

\3 - ft

. . N T (2 m + 2)

yo = ordinate at the mean - , ,„ . :—ttt

The T function may be evaluated without resorting to tables.

First, if x is greater than 1, the following equation holds,

r (x + 1) = x Fx (r function reduction formula) [74]

Second, if x is an integer greater than 1,

r (* + 1) = xl (r function of an integer) [75]

Third (Forsyth, quoted by Pearson 1901 supplement to 1895),

as a close approximation to the value of the function, may be

given,

r/ ■ \ / (^i + x + *A*+i (Forsyth evaluation

l(x + i) v2r\ e J of the r function) . [76]

To quote from the reference cited, "If x be large the error is

less than 1/(240 x3) of the whole." Even for an x = 1.5 the

error is only in the neighborhood of 1 per cent. We may,

however, first use the T reduction formula and then Forsyth's,

for small values of x, resulting in as high a degree of accuracy

as may be desired. For example,

r = £_2j5 = _L3:I_ = r-4.5 = £5j

1.5 1.5X2.5 1.5X2.5X3 5 i-5 X 2.5 X 3-5 X 4-5

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



FITTING OF CURVES TO DISTRIBUTIONS 137

The evaluation of r 5.5 by means of Forsyth's formula is

highly reliable so that r 1.5 is readily obtained.

With the determination of y0 the general solution of the

Type II equation is completed.

Frequently, with immaterial loss in the excellence of fit,

m may be set equal to the integer most nearly equal to

(5 I82 — 9)/(6 — 2 02) and the resulting equation will be much

simpler to plot. The use of an integral value for the exponent

is equally serviceable in other types of curves. Whatever

value of m is used as the exponent, is of course also to be used

in the equation giving yo.

Type VII. The equation from the mean as origin is,

2 ft! 0'

1 = ^

02 - 3

NT m

"V2t r(m-J)Vm-!

Note that /i3 is not involved in the solution of the equations of

Types II and VII. Types III and V do not involve /i4.

Type III. The equation from the mode as origin is,

y = y°e " (i+l) [78]

P = 2jii

a M3

NPP +'   N p

M2l

a eP r(p + 1) JT (p + 1)

e-P pP

Mode = Mean — ~

P

Pearson (quoted in Duff ell 1909) has shown that

log(re|f - .3990899 + \ log P + .080929 sin ^y^? . . .[79]

is a highly accurate equation for values of p > 2. It is ac-

cordingly a simple matter to determine yo by the-Hid of this

equation.
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138 STATISTICAL METHOD

A fitting of the distribution, not involving ft3, may be ac-

complished by utilizing the fact that the difference between

the mean and the mode equals a/p. Determine this distance

by the use of formula [4] or [4-a], thus yielding a/p. The

constants a, p, yQ are then found as above, completing the

solution.

Type V. The equation from the boundary as origin is,

y — yo«- \ x-p [80]

,8, 4^0 1 + 4 Plus sl8n of radical

* ™ 4 0i 0i to be used

y = a (p — 2) Vp — 3 Sign of radical is the

same as that of ji*

= NyP~1

* r(j> -1)

Distance from origin to mean = a Vp — 3

2 y

Mean — Mode = ^ —r

f, (P - 2)

Section 40. The Bearing of Curve Type upon Stability

of Distribut1on

With the visual pictures of these curve types in mind we

may proceed to a discussion of the bearing of type upon

stability of distribution.

Mention has been made of the fact that the point (ft = — 4,

ft = - 3) is a very unique point. The equation of every

significant line in the chart except the line ft = o, passes

through this point. Many interesting relationships are made

very clear by shifting the origin to this point.

The region enclosed within the Type II-VII and the Two-

Category lines correspond to "real" distributions. A real

distribution, as implied by the steps in the Pearson method, is

one having the first four moments finite in addition to a finite

total population. Other features, which one might insist

should be finite, are not infrequently lacking. All of the u-

shaped curves which are asymptotic to their upper or lower

limits have infinite ordinates at these limits, though their

areas are generally finite. One desirous of defining a real

distribution in narrower terms than has Pearson would prob-

ably exclude these.
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FITTING OF CURVES TO DISTRIBUTIONS 139

In speaking of infinite positive moments, ordinates or popu-

lations, the reader will of course understand that no obtained

distribution can possess such a feature. Attempts to fit a

smooth curve to a distribution more frequently than otherwise

result in obtaining an equation with some infinite characteristic.

Accordingly a reference to a distribution with such an infinite

property is to the fitted curve, and though this infinite feature

is not characteristic of the specific data in hand, it may be

entirely descriptive of the total population of which the given

data are a sample. In dealing with data in which certain

reciprocal functions are infinite we will likewise be speaking of

the fitted curves.

Certain of the Pearson types have infinite characteristics,

ordinates, abscissas, and moments. As "real" distributions

these might be looked upon as shortcomings. The point is,

simply, that different limits as to the extent of distributions

will exist dependent upon what is included in the concept

"distribution." If negative frequencies are included, and it

is to be hoped that a satisfactory physical meaning can be

given to them so that they may be included,* then the limits

of distributions greatly exceed the region bounded by the

Type VII and the Two-Category lines. On the other hand,

were one to restrict his concept to curves having finite eighth

moments, the critical line (/is = 00) would be a limit. The

writer would think it logical either to restrict the concept to

such as have all their moments finite, or to throw the field wide

open and include everything which has as much as one de-

terminable feature, such as the population, any one ordinate,

any one moment, any one derivative, etc.

The acceptance of this broader definition of "distribution''

immediately suggests the study of distributions for the purpose

of ascertaining the nature and number of features which are

finite, i.e. determinable. This has been done with reference

to the moments of the various types of curves with results as

shown in Chart XVIII. If a positive moment (fyxndx) is

finite when taken about a certain point, it continues finite

when taken about any other point a finite distance from the

* For a suagestion as to this see Chart XIV and discussion of Sec. 8.
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first. In dealing with negative, or inverse moments

(J"y x~" d*), however, the point of reference determines whether

it be finite or infinite. The only natural point of reference seems

to be a limit of the distribution. It is found, for all the Pearson

curves, that if /i-n = 00, then n-(n+^, where A as well as n

is positive, is of necessity also infinite, so that moments have

been taken around that end of the distribution which shows a

breakdown, or infinite value, in the lower inverse moment

(ji-i is called a lower, or smaller, negative or inverse moment

than n-3, etc.).

The method of determining which are infinite follows from

the fundamental differential equation, which is

dy _ ai + atx (Pearson's differential equation for all

ydx ci + ax + c3x' types of uni-modal distributions). .[81]

If the roots of (d + ax + c3x2 = o) are imaginary the limits

of the curve are ± 00, and if they are real the distribution lies

between the values given by the roots. We may illustrate

the method of determination of the moments by means of a

Type I curve, To determine the infinite negative moment we

will first shift the origin to the left extremity of the distribution.

Let csX ' + cix + ci = ci (* + bi) (* — bi)

c = 61 + bi

ai ~ b ci

Oi — a2&i — a c%

z = x + bi

Then the equation from the new origin is

dy _ a + bz

ydz - -cz + z'1821

and the limits are 3=0, and 2 = c. Multiplying by z" and

clearing give

fayz»dz + J~byz"+i dz = f{- c2»+i + 2»n + z»+2) dy

Integrating,

aMn + bMn+i = [(- cz"+' + z»+3) y] - f- c (n + i) yz„dz

-f(n + 2) yzn+2dz

[a - c (» -r 1)] Mn + (b + n + 2) Mn+i = [(- cz»+i + z»+») y]... .[83]

o

The M's or moments of this equation differ from the usual

moments, n's, only in that they are not divided by N, the
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FITTING OF CURVES TO DISTRIBUTIONS 141

population. The two terms in the left hand member are

functions of the entire distribution, while the right hand

member is a function of the limits only. Whenever the

coefficient (b + n + 2) equals zero, then M„+1 can vary at will

without affecting M„. Therefore that value of n which makes

this coefficient zero locates the moment, M„+i, which becomes

infinite. This is the procedure that could be followed in

finding out where the positive moments break down, but in

dealing with negative moments M„ becomes infinite before

AfB+i, so that [a - c(n + 1)] is then the coefficient that con-

cerns us. It remains to express a and c in terms of ft and ft.

Let - a/c = mi and b = mi + nii, then the integral of the

differential equation [82] is

If the origin is taken at the other boundary the differential

equation is the same as above with mi and m« interchanged.

The constants for any given distribution, nti and m2, are functions

of ft and ft (Pearson 1895) and can be expressed concisely if

the following substitutions are made:

7 = Pi + 4

A - ft + 3

i' = 4 A - 3 7

j = 5 A - 6 y

k = 3 y - 2 A

The two roots of the following equation give the two values of m,

For the determination of the first inverse moment which breaks

down we are concerned with the value found by using the minus

sign of the radical. Values of m along a ray through the

point (ft = - 4, 02 = - 3) may be readily determined. For

example, for Type III line, k = o, and

y = kz»" (c — z)m'

and the differential equation is,

— c + « + I) Mn + (t»i + mi + » + 2) Mn + i

[84]

c

= [(- czn+i +z»+2)y] [83 a]

0

4
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For Type XII line, j = o, and

For the line 117 - 8A = o,

= 40 (2 w - 7)'

Pl 121 (8 - m)(m + 1)

As the M„ inverse moment breaks down when n = - m — 1,

we may write for the Type III line, ft = — 4/n, substitute

— 1, - 2, - 3, etc., values for n and ascertain the ft's or the

points along this line where the successive inverse moments

become infinite. A similar procedure for other rays enables

the plotting of the entire region, as shown in Chart XVIII.

Transferring the origin to the mean, so that positive moments

will not become infinite merely due to the boundary being an

infinite distance from the mean, and finding when the coeffi-

cient of Mn+i equals zero, gives the limiting values for the

positive moments. These are more simple functions of ft

and ft, all being straight lines passing through the point

(ft = — 4, ft = — 3). Going, on the chart, from below up,

these rays become more and more dense until the limiting

Type III ray is reached; just as, going from above down, the

negative moment-breakdown lines become more and more

dense until the limiting Type V line is reached. Special note

needs to be made of the lines for moments jto) /ii. /i2, /i3, and in.

The last three of these moments are incorporated in the very

axes, ft and ft, of the chart. Lines determined from the coeffi-

cient of M„+i , showing where these moments break down,

would show, as might have been anticipated, that the rays

for m, n3 and m lie outside of the region described by Pearson

as that corresponding to real distributions. The line for

(no = 00) when the coefficient of M„ +1 is used lies within the

Pearson possible region, and the line for (m = 00) lies at the

boundary of it. The population, no, is not necessary to the

calculation of ft and ft so that the fact that it lies within this

region is not inconsistent with the definition of the axes.

However, /io and m are smaller moments than those involved

in ft and ft and it may be necessary to determine their points

of breakdown from the coefficient of M„ and not of Mn+i.
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Pending further study of Type I-u distributions I will not

attempt an answer to this question or a description of distribu-

tions having infinite zero and first moments.

If the coefficient of M „+i is examined with reference to the

negative values of n for which it becomes zero, rays above

Type III are located and these become more and more dense

as Type III is approached. These have not been plotted, as

earlier points of breakdown of the negative moments are located

by dealing with the coefficient of M„, but it is worth while

noting that, judging by the coefficient of M„+i, Type III distribu-

tions are the only ones which do not possess certain infinite

positive or negative moments, i.e., certain elements of in-

stability. If these unplotted lines should prove of any signifi-

cance Type III distributions become unique not only because

of possessing finite positive moments, but also because of the

finite nature of whatever the inverse functions are whose

points of breakdown are given by the coefficient of Mn+i-

If, then, finite positive moments are of most importance III

is the most stable of all the types; however, should finite

negative moments be of greater importance than positive,

Type V would be the most stable; and if the possession of

both finite positive and negative moments is material then the

normal distribution is the most stable curve within all the

types.

It has for some time been known (Pearson, 1905), that if,

by means of the first four moments, a curve is fitted to a

distribution having a (ft, ft) point in region VI or IV, certain

of the higher moments of the fitted curve are infinite. Pearson

and Rhind (1909, pp. 130 and 134) have apparently interpreted

this to mean that for such distributions moments higher

than the fourth are needed for an adequate description of the

data. This, however, hardly seems to me the most significant

point of view. We can adequately and completely describe

the sample collected by calculating and recording enough of

the higher moments, but as Pearson has himself pointed out,

this would scarcely yield valuable information as to the popula-

tion of which the data are a sample because the probable

errors of these higher moments become extreme. The really

important conclusion to draw is that data, such that the
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sample drawn gives a (ft, ft) point in the Type VI or IV

regions, are of such a nature as to have indeterminate higher

positive moments. The lines labeled /i6 = oo, pi8 = °o, - . -/i-s

= oo, /i-3 = oo, etc., on Chart XVIII indicate where, judged

by the first four moments, these higher positive and negative

moments become infinite. Suppose that for a given (ft, ft) a

fitted distribution is obtained for which /i2o = °° . Such

analysis as I have been able to make leads me to infer that a

few added moments in the fitting of the curve would not be

expected to materially change this, and that some moment

not far from /i2o will break down in any case.

These phenomena of instability of certain types of distribu-

tions are not mere oddities of the equations representing the

types. Either coefficient of the difference equation connecting

the moments may be written in the form,

<1, (ft, (Si) n +/(£,, fii) = o

in which <f, and / are definite functions of the fts. Accordingly

the breakdown of a moment is a function only of the moments

involved in the fts. In other words, were we to fit a Type I

curve and find that the n-th positive or negative moment

became infinite, we could not improve the situation by fitting

a Type II curve to the same data. The breakdown is not a

function of the particular Pearson type chosen, but of the

data, or of the differential equation back of all the Pearson

types. That it is hardly the latter may be shown.

Had Pearson decided to use the first five moments in fitting

curves it would have involved, in addition to the usual ft

and ft constants, a third which we may call y. A solid having

three axes, ft, ft and y, would represent all the types just as

the plane with axes ft, ft now represents thefn all. The most

serviceable function to constitute the third variable y is not

immediately obvious, but there would be certain advantages

in defining y as the difference between the ft (ft = /i3/io//i42)

given by the data and that derived from moments lower than

the fifth by means of the present differential formula [8i].

When so defined, if y = o a distribution would be represented

by a point on the two-dimensional (ft, ft) chart. It is barely

conceivable that there might be a (ft, ft, 7) line for which all
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the positive and negative moments are finite. If there is such

a line it cuts the (ft, ft) plane in the Normal point and nowhere

else, so that the normal distribution loses none of its peculiar

stability. The existence of such a line seems unlikely in view

of the fact that there is no line (as opposed to point) in the

(ft, ft) plane for which all the moments are finite. Otherwise

expressed, had two moments only been used to derive the

equations of curves, the special points on the chart could have

been found and the normal distribution would have been the

only one having all its moments finite. Had three moments

been used the special lines in the chart could have been found,

but no line would represent distributions having all their

moments finite, the single Normal point again possessing this

characteristic. Again, by the use of four moments, no area, no

line, but merely the one Normal point is found for which all

the positive and negative moments are finite. Accordingly it

seems unlikely that the addition of a fifth moment would result

in any extension of the distributions having all their moments

finite.

The preceding discussion suggests that it would be futile to

add an *3 term in the denominator of the differential equation,

dy - a, + a&

ydx ci + cix + c)X'

The addition of an «' term in the numerator introduces bi-

modality and carries the problem into an entirely different

field, corresponding, in all probability, to the operation of two

opposing trends, instead of a single one such as we are here

considering.

The only conclusion which seems to me to follow from the

situation as described is that the weakness in distributions,

evidenced by the existence of certain infinite moments in the

fitted curves, lies in the data. This far reaching conclusion

is supported by (1) the fact that an extension of the differential

equation to include additional moments will, apparently, some-

times change, but not materially better the situation; and (2)

by the known illustrations of instability which may be drawn

from economic, psychologic and biologic fields.
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Section 41. Illustrations of Unstable Distributions

Two distributions have come to my attention which are

difficult to interpret, except as being unstable Type VI distribu-

tions.

The first is of price ratios, see Chart VIII, each ratio

being the quotient of a price in a certain year divided by the

price of the same commodity the preceding year. The distribu-

tion is very peaked and somewhat skewed and gives a (ft, ft,)

point so far down the chart that the fourth moment has an

infinite probable error when the differential equation method

of determining it is followed. The apparently puzzling ques-

tion is how the curve fitting method can be so far wrong as to

positively describe this distribution as one having an infinite

feature. Recent study of similar price data shows that the

fitted curve was undoubtedly correct and that the data did

actually have such an infinite characteristic. Certain com-

modities for sale in 1917 were not purchasable at any price in

1918 and the series of 1918 ratios covered only such 1917

commodities as could be purchased in 1918. In other words,

such price ratios as were recorded were in truth but a part of

an unstable distribution, and being such they gave evidence

that an occasional infinite price ratio was to be expected.

The second series is such as may be collected by any experi-

menter. A certain student was a subject in a reaction time

experiment. The stimulus consisted of a spoken word and the

reagent was directed to reply with the first word coming to

mind. The series of reaction times revealed a Type VI distri-

bution with a fourth moment having an infinite probable error

when determined from the differential equation. This reagent

was not tested further, but other reagents have been, with the

result that a mental confusion or blocking has been found to

occasionally occur, and to be so pronounced that the reagent

has refused to react at all, i.e., the reaction time for that

particular stimulus has become infinite. I have no doubt that

were it possible, without changing the conditions, to continue

the experiment with the first subject, sooner or. later a similar

blocking would be found, so that here again the probability

is that the infinite higher moment is a true description of the

situation.
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According to Angel 1 (1907), who points out that judgments

of equality between two differing stimuli cease to constitute a

homogeneous series if the stimuli differ by too great an amount,

the same sort of condition holds generally in psychological

threshold experiments. That is to say that reactions from such

widely differing stimuli will yield distributions having unstable

tails, or, what I would take as the statistical equivalent, Type

IV or Type VI distributions. The use of the curve fitting

method to determine the degree and nature of the instability

in threshold experiments is suggested, but it suffices for our

immediate purposes to note that psychologic as well as economic

data occasionally yield distributions actually possessed of un-

stable tail functions, or in other words, infinite positive moments.

These illustrations point the possibility of the existence of a

causal relationship which is determinable from a knowledge

of the positive, and probably also negative, moments which

become infinite. In fact, the order of the breakdown moments

may prove a touchstone to the discovery of causal relation-

ships. The method at present available for locating these

critical moments is that of utilizing the first four positive

moments from the actual data to determine a differential

equation connecting moments. Having this equation the

critical moments may be located immediately.

Slight shifting of the origin entirely changes the situation

with reference to the inverse moments, so that, (a) it is either

impossible to utilize inverse moments, (6) the conditions of

the problem must give the limit with absolute definiteness,

or (c) more definite features, such as the positive moments,

must be used for the indirect determination of the limits and

of the inverse moments around these limits. That method

(c) will result in determinations with relatively small probable

errors in case the lower negative moments are the critical

ones is apparent from the appreciable distances apart of the

/i-„ lines of Chart XVIII.

Though the laws controlling biologic phenomena have proven

less easily and definitely determinable than many of those of

physics, nevertheless the distributions of traits resulting from

biological forces can readily be determined and examined. Is

it not reasonable to think that, whatever else evolution may
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involve it certainly involves a trend toward stability? If it

is a development through laws represented by positive mo-

ments, its limit is a Type III distribution; and if through laws

represented by inverse moments, its limit is a Type V distri-

bution; and if both are involved, the only final limit is the

normal distribution. This approach may be peculiarly valu-

able in studying evolution and it should not be a difficult matter

to test it. Distributions of shell and skeletal structure of past

ages can be made. Should it prove a fact that forms existent

in the past giving distributions different from Types III and

V have disappeared, and that those close to these Types are

still represented by extant life, it would be complete support

of this point.

We may note that the peculiar stability of Type III as

judged by the existence of determinable positive moments is in

harmony with the unique facts of correlation which Pearson

has pointed out as belonging to this type. This is the only

type in which "each contributory cause group is of equal

valency and independent." The writer may have overlooked,

but at least he has not found, in Pearson's contributions a

satisfactory explanation and elaboration of "cause groups."

He, however, interprets them as analogous to separate chromo-

somes, each of which may affect a single character, or to separate

climatic and economic conditions each of which may affect

a given food product, etc. If cause groups are not independent,

so that a measure of a certain magnitude implies other magni-

tudes positively correlated with it, we have a situation which,

from a priori considerations, one would expect to correspond

to a trend, or tendency operating to pull measures in a certain

direction, possibly entirely out of the distribution. It may be

that a sufficient number of counteracting pulls, or vectors,

could exactly balance each other, resulting in a condition

identical with one not involving any pulls whatsoever, so that

it seems equally reasonable to look upon Type III distributions

as those in which there is a perfect balance between positive

and negative correlation tendencies, thus revealing a zero

correlation, or as distributions in which the pulls between

elements are all zero. Whichever view is taken the significant

result remains the same; that distributions which differ from
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Type III thereby give evidence of the existence of uncompen-

sated correlation between cause groups, — and of lack of

stability since certain moments are indeterminate.

The determination of the specific nature of the correlation

between cause groups in Type V distributions is a promising

field of research. This type, holding as it does the same

position with reference to stability of negative moments that

Type III holds with reference to stability of positive moments,

may possess some equally unique and stable characteristic

with reference to negative product-moments as that possessed

by Type III with reference to positive product-moments.

In the light of all the facts presented it would seem that

evolution must be a trend toward the normal distribution.

Also, dependent upon the causal forces operating, it would

seem that subsidiary trends would be toward the three lines

running into the normal point. If the causal forces can be

expressed as positive moments, changes in distributions below

Type III in the direction of Type III would mean ever greater

stability, i.e., evolution. If the causal forces can be expressed

as negative moments, changes in distributions above Type V

in the direction of Type V would mean evolution. Balanced

or symmetrical distributions show a peculiar stability in that

all odd moments are zero. If stability of this type is the goal

of a certain line of evolution, the trend would be toward Type

II or Type VII. Finally, a certain development (biologic,

economic, psychologic, or what not) having reached one of

the three subsidiary goals, Type II or VII, Type III, or Type V,

further advance, to insure stability of a still greater order,

would be along the line toward the normal point.

The possession by an individual of a trait of such magnitude

as to lie outside of the distribution given by the other members

of the species ordinarily carries with it the elimination by

death of the individual,* hence stability in trait is intimately

connected with stability in species.

Only in case a trait is operated upon by such influences as

result in the measures of the trait falling into a normal distribu-

tion can it be said that there is complete stability, or that the

* Cf. the traits possessed by lethal drosophila melanogastcr.
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race or species possessing it gives evidence of a self-contained

permanence.

Clearly if this analysis is correct, the evolution of a bisexua'

type of life would be as follows: (1) two entirely distinct traits

which we may call male and female; (2) an occasional modifi-

cation of the two, each in the direction of the other, giving

a u-shaped distribution; (3) a building up of a common ground

between the extremes, giving a limited range Type II-i distri-

bution; and (4) a further weakening of the extreme character-

istics until they become of infinitesimal importance in com-

parison with the common ground between, resulting in a

normal distribution.

Following the lead of the argument we find the human species

much further developed in certain parts of its makeup than in

others. As illustrations of the four stages note (1) primary

sex characteristics; (2) secondary sex characteristics; (3) mus-

culature; (4) intelligence. In concluding this chapter let me

emphasize the promise that lies in an experimental study of

evolution, utilizing the facts of distribution types.
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CHAPTER VIII

MEASURES OF RELATIONSHIP

Section 42. The Problem of Concomitant Variation in

the Sciences

The determination of the law underlying concomitant varia-

tion is a problem common to all the sciences. The physical

sciences have a great advantage over the social and biological

sciences in that (1) errors of observation and measurement are

usually very small in comparison with the measures involved

and (2) fewer factors are ordinarily present. In measuring

some intellectual capacity of a group of children, it usually

happens that the probable errors of the test scores obtained

are greater than half the standard deviation of the scores of

the group. Obviously any relationship between two capacities,

each measured with no greater reliability than this, will be

clouded bv the errors of measurement. This is serious enough,

but it is not the only difficulty. In measuring the effect of

gravity, physicists can ordinarily assume that ten pounds of

lead and ten pounds of iron will act in a similar manner. But

in measuring intellect, food prices, etc., to say that one reagent,

one commodity, etc., is equivalent to another with respect to

the function being examined, is usually questionable. Ac-

cordingly, where the investigations of physics lead to the estab-

lishment of "laws," those of the social sciences ordinarily lead

to the discovery of "tendencies." Relationships between two

psychological, biological or social factors frequently depend

upon a number of causes, each more or less independent, and

no one of which is so important as to dominate the situation.

Under these conditions, the relationship tends to be rectilinear.

In other cases, where the true relationship is not rectilinear,

large errors of measurement will lessen the strength of the

151
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STATISTICAL METHOD

measurable relationship, thereby making it more difficult to

determine the exact nature of whatever curvilinear relation-

ship may exist. It is also true that relationships which are

intrinsically curvilinear when determined over a range of the

two variables from very low to very high, may show practically

rectilinear relationship throughout a short stretch of the range.

For all the reasons stated, a measure of relationship based upon

the assumption of rectilinearity is of great importance. Even

in the case of known non-rectilinear relationship it is of much

value as a point of departure. The balance of this chapter is

devoted to a discussion of Pearson's product-moment coeffi-

cient of correlation, the "best" measure of mutual implication,

if relationships are rectilinear.

The most fundamental properties of this measure of relation-

ship were discovered and presented graphically by Francis

Galton from 1877 to 1888. Galton's investigations had to do

with the inheritance of traits, and certain of the terms which

he used would hardly have arisen if the development had

involved other data. For example, the symbol "r" was a

measure of the "reversion," such, for example, as offspring

upon mid-parent (a mid-parent measure is the average of the

measures of father and mother). Later, Galton used the

terms "regression" and "co-relation" and called the measure

the "Index of Co-relation." Weldon very properly calls this

measure "Galton's Function" and Edgeworth in 1892 gave it

the name which has survived, "Coefficient of Correlation."

Pearson (1920 notes) has pointed out that the product-

moment function of Bravais bears but a resemblance in form

to the product-moment coefficient of correlation. Whereas

Bravais started with observations which were assumed to be

independent, and in treating them obtained derived measures

whose product-moments did not equal zero, Galton started

with the epoch-making concept that the original measures

were dependent. The Bravais treatment leads nowhere so

far as correlation theory is concerned, because the measures

which are correlated do not constitute original data, nor

functions the correlations between which are of any moment

on their own account. Partial correlation analysis leads to

independent measures, having given related original scores;
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MEASURES OF RELATIONSHIP

i S3

which is exactly the reverse of the Bravais or Gaussian develop-

ments. Galton alone seems deserving of being called the

father of correlation.

Section 43. Findings Resulting from Galton's

Graphic Treatment

Galton s procedure, based upon medians and quartile devia-

tions, has given way to the more accurate one involving the

product-moment formula,

_ 2*y

developed by Pearson.

We cannot do better than to use Galton's data in deriving a

measure of correlation. Galton obtained the heights of parents

and the heights of children, and drew up a "correlation table"

or "scatter diagram" showing the relationship between the

two. All female heights were multiplied by i .08 to make them

comparable with male heights. This procedure is not the

most sound, but in this problem leads to no material error.

Letting Xi , X2 represent male and female heights, ai, a-, their

standard deviations and Mi, M2 their means, it would have

been better to have reduced each female height to a com-

parable male height by the equation

Comparable male height = Mi + (X2 - M2) ai/a2

The discussion which follows will assume that the more reliable

method of transmuting female into male heights was followed

and also that the mean was used throughout. Presumably

Galton used the median, but no fundamental difference in

treatment followed from such use, it simply being a slightly

less reliable procedure. Galton's diagram contained the data

given in the accompanying correlation table or scatter diagram,

Chart XX. Deviations being measured from 68\ inches, which

is a small fraction of an inch away from the true means, are

labeled £ and f instead of x and y, but no account of this slight

difference is taken until the calculation of Section 45. From

just such data as given, in fact it is likely that these identical

data were involved, Galton inferred certain relationships which

we now know hold with every normal correlation surface

[Formula 87].
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STATISTICAL METHOD

(a) A plot of the means of the vertical arrays (columns) as

shown by the X's shows the "reversion" of offspring upon height

of mid-parent. Thus if the mid-parent height is i\ inches

above the mean the average or most probable height of offspring

is i\ inches above the mean.

(b) The line connecting these means may be closely repre-

sented by a straight line through the origin or intersection of

the means of the two distributions. This is the line showing

the regression (or "reversion") of offspring upon mid-parent.

Chart XX

Correlation Between Heights of Hid-parent and Offspring

Heights of Adult Children "Exp1essed as devia-

tions f1om the mean heijjht 68< Inches

Y

nt 3i -a it f j ii H H it If I f£ f£ SK Sfgg

% .*

r

<:

ii

Sf?

8 7 at at no at

\v, s ao mo 60 joo

j si m i7 in

I 76 % 56 56

111

kz -/ it IZ % 76

57

17; J/3 -103 513

ii zi Se v) a si it sh io <?

-? -7 -5 -J -/ / 3 S 7 f

-71 -i*7 -Ho -in ssfio^i lit m no gifsstf-20-Zl

tUl lOTI too 1Z3 55 SI HI 850 ISO Wf jt3?0-Z<?

-17 -31 -1)o -l/l -II r9 10 SC 11 M

US tn too mi ii /V ito t6o 3ol Zo7 j*/S=£S<?

|e* s -ito. 6oo -jz sgo

5m. , ,

lsw=tf js z7*o i6/r

.H =If -IK

(c) There is a reversion or regression of mid-parent upon

offspring. This would be represented by a straight line pass-

ing approximately through the o's. Thus for every correla-

tion table there are two regression lines.

(d) The slopes of these two lines are equal, provided the

standard deviations of the two distributions are equal.
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MEASURES OF RELATIONSHIP 155

(e) If standard deviations are equal, this slope varies between

zero and one (Galton did not suggest the existence of negative

correlations), and may be represented by the symbol "r".

(J) The standard deviations of the measures found in any

one array (row or column) are approximately equal and are

smaller than the standard deviations of the total distribution

so that if a2 equals the standard deviation of the heights of

offspring, and a2.i the standard deviation of offspring correspond-

ing to given heights of mid-parent, then

a'i 1 = ah (I - X)

where X is a positive quantity, also dealing with columns

instead of rows,

o\, = g!, (1 - x)

in which X is the same as before, 0\ the standard deviation of

heights of mid-parents, and 01.2 the standard deviation of

heights of mid-parents corresponding to given heights of

offspring. The symbol a„ will, in subsequent formulas, stand

for the standard deviation of an array around its own mean

and <ti.2 (or <r2.i) the standard deviation of an array around

the regression line, but as we are here dealing with homo-

scedastic rectilinear regression either symbol can be used, as

(g) There is a simple relation between X and r.

It is, X = r2 so that

<r'i.i = a'i (i — r!) (Standard deviation of arrays

and from regression line, see

a'i-2 = a'i (1 - r') also Section 48) [86]

(h) Each array is approximately a normal distribution if

the total distributions are normal.

(t) If contour lines for different frequencies are drawn in

the diagram they constitute a system of similar and similarly

placed ellipses, the conjugate diameters of which are the two

regression lines.

Galton made no claim to mathematical ability but through

sheer insight into the phenomena of mutual implication made

these penetrating observations. He carried his conclusions,

stated in probability terms, as to the nature of the correlation
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STATISTICAL METHOD

surface, to Mr. J. D. Hamilton Dickson (1886), a mathemati-

cian, who readily wrote down the normal correlation equation

involving two variables. In our present notation this is:

Galton's humility, after years of collection of data and subtle

analysis of the same, in the face of the neat but not involved

mathematical derivation, is worthy of note by the social

scientists of this day who scoff at mathematical analysis.

Upon receiving from Dr. Dickson the solution of his problem

he wrote (quoted in Pearson 1920 notes), "I may be permitted

to say that I never felt such a glow of loyalty and respect

towards the sovereignty and magnificent sway of mathematical

analysis as when his answer reached mc, confirming, by purely

mathematical reasoning, my various and laborious statistical

conclusions with far more minuteness than I had dared to hope,

for the original data ran somewhat roughly, and I had to

smooth them with tender caution."

Section 44. Algebraic Statement of Galton's Graphic

Findings and Derivation of Correlation Formulas

Let us consider these discoveries in more detail. Let x,

the first variable, stand for height of mid-parent, y height of

offspring, each expressed as a deviation from its respective

mean. The standard deviations are respectively ai and a-i,

while r is the slope of the regression line in the "reduced"

scatter diagram, — that is, in the correlation table, — in which

the measures entered are x/ai and y/a2 respectively. Galton

reduced by dividing by the quartiles, leading to essentially

the same result as here. The slopes of the regression lines are

equal, and equal to r. We will shortly obtain the numerical

value of r by other than the graphic method of Galton. Finally,

let y stand for an estimated height of offspring, knowing the

height of mid-parent, and x the estimated height of mid-parent

knowing height of offspring. With this notation, discoveries

(a) and (b) together are equivalent to the equation

2 7rffiai V1 — r'

N

*' + y, _2rxv\ (Normal correlation sur-

«' «' „«; face. 2 variables)....

[see 88]

y _ .r (Fundamental form of regression

ff!. ffi equation) [see 91]
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MEASURES OF RELATIONSHIP

Propositions (c) and (d) are equivalent to the addition of the

following equation to the preceding

- = r — [see 91]

ffl <r2

These are the two fundamental regression equations char-

acteristic of every regression table, showing rectilinear regres-

sion.

Proposition (e) is liable to misinterpretation. If r = o, it

implies that there is no relationship, no reversion or regression

of one variable upon the other while an r = 1 means complete

mutual implication of the two variables. More loosely stated,

this latter situation will be described as one of complete mutual

dependence, or simply dependence of the two variables. The

student, however, should not postulate causal dependence.

So far as data are concerned there is no evidence that the

heights of the parents have any moie to do in causing the

heights of the offspring than do the heights of the offspring in

causing the heights of the parents. This is characteristic of

all measures of correlation. A situation exists and a correla-

tion coefficient measures the tendency of the pairs of measures

to be related but gives no evidence whether x is the cause of

y, y the cause of x, or whether the cause is unknown and lies

back of both. We think of parents being causal agents in

determining the heights of offspring, but we do this for reasons

outside of the scatter diagram, namely, the parents have

existed earlier than the offspring in a time series.

Propositions (/) and (g) are of course the result of careful

collection and study of data, but Galton gave a very simple

proof of (g). The variability of the offspring generation is

determined by the variability of the arrays (rows) and the

variability of the means of these arrays. If A equals the

distance of the mean of an array from the mean of the distribu-

tion and, as before, <r2.i equals the standard deviation of the

array, and if n equals the number of measures found in an

array, then (n<r22.i + mA2) equals the contribution of a single

array in the calculation of the standard deviation, of the

distribution, thus:

2 n<rV, + SnA!
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STATISTICAL METHOD

Since 2n<r22.i = AV22.i and since for any array A equals the

estimated y corresponding to the given value of x,

y = r — x

so that 2nA2 = 2ny2 = Nay*, therefore

a'i = a'i i + a'y (Standard deviation of distribution

in terms of standard deviation

By proposition or discovery (/)

and

of arrays and of standard devia-

tion of means of arrays — recti-

linear regression) [87]

jj 2 no'i i = ah i = ai (i — X)

2nA' , a'2Z*2

ah = (I - X) + rVi

Accordingly,

and finally,

x = r2

so that the important proposition (g) is established even before

a formula for the arithmetical calculation of r is at hand.

(h) is an experimental finding which, coupled with (g) and

(a), (6), (c) and (d), immediately gives the equation of the

normal correlation surface. The equation, from the mean,

of the normal distribution is,

- y'

z l—

ai V2 ir

If the distribution of an array is normal, its standard devia-

tion = 0-2V1 — r2, and if its mean is A ( = r 02/a1 x) from the

mean of the total population, then the equation of the normal

distribution representing the array, from the mean of the entire

distribution as origin, is,

«// = I e 2 (I - ri)

a2 Vi - r' VTir

The z" corresponding to an assigned y is the probability of a

measure in this array having the value y. The probability of

a measure being in this particular ^-array is
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MEASURES OF RELATIONSHIP

Therefore, the probability of a measure having the particular

value x and also the particular value y is the product of these

two probabilities, z = z'z",

-x, ~(y' - 2 xy m/n + iW/ri)

g 1 f"*, 2*0-i*)

2 iroiiJi VI — r'

which simplifies to,

I /*' , 3^ 2r*y\

2 = 1 ,,2(1 - r') It', ^

2 woioi Vi — r'

(Normal Correlation surface — 2 variables). . [88]

This is the equation of the normal probability correlation

surface of two variables and of a total population of one. If

the right hand member is multiplied by N, we have the equa-

tion in case the total population is N. The quantity r has to

this point been defined as the slope of the regression line in

case standard measures [see formula 65] are the measures

entered in the correlation table. We will now prove that in

any scatter diagram, the two "best fit" rectilinear regression

lines are

y x , x y

— = r — and — = r — [see 91]

a 2 01 ff i &2

in which the two r's are identical and given by the equation,

r - Xy,= = ^ Xy [see 90]

The term "best fit" is used as in the method of least squares.

A "best fit" determination is one in which the sum of the

squares or the errors of estimate is a minimum, that is, the

standard error of estimate is a minimum. Determinations

can be made resulting in the sum of the deviations; of the

cubes of deviations; of their fourth powers, etc., being a

minimum, but since the days of Gauss, it has been known

that in the case of a normal distribution, none of these deter-

minations will result in as small a median error as one in which

the sum of the squares of the errors of estimate is made a

minimum. The constants of distributions which are widely

divergent from the normal, so determined that the standard

error of estimate is a minimum, are undoubtedly very excellent

determinations, but it is no longer possible to say that con-
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i6o . STATISTICAL METHOD

stants so calculated have smaller median errors than would

others derived upon a different principle. In all of the follow-

ing treatment of simple and multiple correlation, the principle

of least squares is involved and the standard errors are minimal,

and because of this fact the determinations are called "best

1fit" determinations. They are "best" if the principle of least

squares is the proper principle but they may not be so if some

other principle is more sound, though in all cases we certainly

can describe the least square as a highly excellent determination.

Referring to Chart XX, if the slope of the line drawn which

is the regression of "y upon x," or the reversion of y toward x,

is 62i (the numerical value of 62i is equal to tan d,) then having

given a value x, the best estimate of the corresponding y

value is y. y = b^x. In general y will not be identical with

the actual or experimentally obtained value of y, so that

(y — y) indicates an error of estimate. The standard error

of estimate <r2.i is given by the equation,

The regression line which makes this magnitude a minimum is

the regression line sought. Yule (1912) derives it without the

use of calculus, but the calculus derivation is so much more

simple that it is here given. See also in this connection

problem 6 at end of this chapter.

- = 2 (y - ft!i-v)' = 2 y' - 2 &21 2 xy + &'» 2 x'

1 N N

df = - 2 Zxy 2 bn g x" _

dbu N + N ~ ~ 0

. _ 2 xy _ 2 xy (Regression coefficient of variable 2 upon vari-

j1 2 x2 Nor able I, or the regression of the dependent

variable, 2, upon the independent vari-

This is the desired value of the regression coefficient. If

standard measures are used the regression equation,

able 1)

becomes
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MEASURES OF RELATIONSHIP 161

and the coefficient 1,xy/ (Naia2) is the coefficient of correlation,

r, or the measure of mutual implication, for a derivation

similar to the preceding and involving the other regression

line gives

, _ 2 xy _ 2 xy (Regression of variable I

"= 2y!" upon variable 2) [89]

so that

5 = / 2*y \ y

Thus the coefficient of correlation is given by

2 xy _ 2 xy _ ^ (Pearson product moment co-

V2 *2 V2 y' Notfi "' efficient of correlation).... [90]

and the regression equation may be written,

5 y (Fundamental form of regression equation

oi a! between two variables) [91]

The other regression is

y x 11

02 "1

Formula [91] may be written

* — r — y, and y — r — x [910]

< T! <Ti

or as

x - bn y, and y = 621* [91 6]

It is to be especially noted that whereas ra always equals r2i,

the regression coefficient ba equals 62i only in case the two

variables have equal standard deviations.

Section 45. The Detailed Steps in the Calculation of

Correlation and Regression Constants

The steps necessary to the calculation of 2*2, 2j»! and 2xy

are shown below and to the right of the diagram. (Chart XX.)

The origin taken is 68\ inches, but as shown by the sum of the

fy row (— 20) and the sum of the fx column (38) the exact

means are slightly different. We will calculate the correlation

and regression coefficients without correcting for these slight

discrepancies. They are taken into account in the calculation

at the close of this section. To avoid working with fractions,
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STATISTICAL METHOD

deviations from the means have been expressed in terms of

one-half inch intervals. Thus a y-value of — 9 means, 9 one-

half inches below the mean. In terms of these units we have,

2 f2 = 6320

s e = 2740

Zf{ = 1618

This last summation has been calculated in two ways so as to

provide a check upon the arithmetical accuracy of the work.

The first entry in the 2/£ row is — 17. This is the sum of the

products of the frequencies of the £'s for the single array for

which £ = — 9. The notation, S/£, is used to designate a

summation for an array, whereas 2/|, or more simply, 2£, is

the summation for the entire table. Similarly for S/£f and

2£f. We have,

I6I(U = -3888

V6320 V2740

1618

621 = = .5905 (Slope of regression line drawn)

2740

1618

ftn = = .2560 (Slope of other regression line)

= 2.908 (In one-halt inch intervals)

= 1.454 (In inch intervals)

= ^^32^ ~ 4-4l7 ^n one-half inch intervals)

= 2.203 (In inch intervals)

The regression of height of offspring upon mid-parent, in

inch units, and measured from an origin of 68^ inches, is,

—^. = .3888 —

2.208 0 1.454

or,

1 = 5905 {

Having the equation in this fundamental form it is but a step

to express it in terms of gross scores. Letting M' = the

arbitrary origin or approximate mean, we have

F = Y - M'i

i = X - M\
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MEASURES OF RELATIONSHIP 163

Accordingly,

r = &.it

may be written

Y- M',= 62i (X - M\)

or

Y = bi, X + (M'i - bil M\

X = bl2 Y + (M\ - bnM',)

To illustrate the use of this equation let us estimate the

most probable height of male offspring if the mid-parent

height is 64 inches.

Solving, when X = 64, gives, Y — 65.74, as the most probable

height of offspring, or the mean height of many such offspring.

The calculation of the constants involved in the regression

equation as shown assumes that deviations are from the means

of the two distributions. In case origins other than means

are used corrections may be applied to secure the product

moment and standard deviations from the means. The cor-

rections for the standard deviations have already been given,

formula [22].

Let Ai = M\ — Mi, the distance from the arbitrary origin

to the mean of the X's, and let A2 = M\ - M2. Then,

and since 2(£ + Ai) = Zx = o and 2f = - jVA2, therefore,

2 xy = S£f — iV^iAi (Formula for correction of product —

moment due to use of arbitrary

Accordingly r may be calculated from any origins whatever

by the formula

Y = .5905 X + [68.25 - (.5905) (68.25)]

= 5905 X + 27.95

Z xy = S ({ + A,) (f + Ai)

= Z ({ + A,) r + A2Z (£ + A,)

= Z {f + A,Zf + A-,Z ({ + A,)

origins)

[92]

Z {f -

Vz f' - NA^ Vz f' - iVA'2

(Pearson product — moment

coefficient of correlation

calculated from any origin). [93]
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STATISTICAL METHOD

When zero is, for each variable, the arbitrary origin the

above formula is equivalent to

= XXY - (ZX) (2 Y)/N (r calculated from

Vs X2 - (ZXy/N Vs K2 - (2 Yy/N zero as arbitrary

origin) [94]

Another variation is

_ 2 X Y — NM\Mi (r calculated from zero as

~ VjTX' - NM\ V±~lf'^~NMh arbitrary origin) [95]

Similarly,

= 2XY - NMiMi .2 XY - NM,M'

11 2Y' - NMh: 1 2 A"2 -NMh

(Regression coefficients calculated from zero

as arbitrary origin) [96]

Thus, for Galton's data, the correct values for the requisite

constants are

r = 1618 - (38) (- 20V324   3g97

V2740 - (38)7324 V6320 - (- 20)7324

hi = -5923

Mi = 68.25 + 38/324 = 68.37

Mi = 68.25 — 20/324 = 68.19

oi - - 2.906

ffi = 4.416

Thus the corrected regression equation from the actual means

as origins is

y = .5923 x

which differs but slightly from that obtained neglecting Ai and A2,

i = 5905 {

and the corrected regression equation from zero inches as

origins is

V = 5923 X + 27.69

which in turn differs but slightly from that obtained neglecting

Ai and A2.

Section 46. The Error Involved in Certain

Approximations

It is desirable to know how large an error in the means may

safely be neglected. We have, letting s, = (2£2)/./V and s2

= (2fa)/iV,

r = z if ~ ^iA'

N Vsi' - A,2 Vs,2 - Ai'
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MEASURES OF RELATIONSHIP 165

and we wish to ascertain how greatly this differs from the

approximate value,

NsiSi

(Showing error in r from use

of approximate means) [97]

Setting the expressions 1/Vs2 - A2 equal to i/s-^i - and

expanding the radical by the binomial theorem, discarding

powers in A/s greater than the second as being negligible in

comparison with the second powers, gives, after certain simple

reductions,

'-+'&©)"+.KOT-S

= r' + .

in which e is the error introduced in case r' is taken as the

value of r. Note that if r' is positive, less error is introduced

if Ai and A2 have the same sign than if they are of opposite

sign. Let us assume the two magnitudes (A/s) are equal.

Then.

.. ,-„(*)'

In this case t is negative, i.e., if approximate means which are

in error in the same sense are used, the obtained correlation,

r', is larger than the correct value, r. We may solve the pre-

ceding equation for A/s for assigned values of r' and e. The

following tables give certain solutions:

If Errors in Means are Equal

and of the same sign

i

r1

A/j

A = approximately

i

r'

A/J

A = approximately

— .001

.0

.032

1/158 of range

.001

.O

.032

1/158 of range

- .005

.O

.071

1/ 71""

.005

.0

.071

1/ 71""

— .010

.O

.ieo

1/ 50""

.010

.0

.IOO

1/ 50""

— .001

.7

.058

1/ 87""

.001

.7

.024

1/207""

— .005

.7

.129

1/ 42""

-005

-7

-054

1/ 92""

— .010

.7

.183

1/ 27""

.010

-7

.077

1/ 65""

— .001

.9

.100

1/ 50""

.001

9

.023

1/218""

- .005

.9

.224

1/ 22""

.005

.9

.051

1/103""

— .010

-9

.316

1/ 16""

.010

.9

.073

1/ 69""

If Errors in Means are Equai.

and of Opposite Sign

Since for A's of a given size, there is much greater error in the

correlation coefficient if they are of opposite sign than if of
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STATISTICAL METHOD

the same sign, therefore in choosing arbitrary means, it is

frequently desirable to so choose that Ai, A2 have the same

sign. For example: suppose ai = ai = 3, Mi = 12.56 and

Mi = 9.30, then better results will be obtained, if correction for

arbitrary means is not made, by choosing 12.0 and 9.0 (Ai = .56

and A2 = .30) than by choosing 13.0 and 9.0 (Ai = — .44

and A2 = .30). For many investigations, an error of 1 per

cent is not material so that, as a practical procedure subject

to refinement if low correlations are involved or if a 1 per cent

error is serious, it is safe to forego correcting for arbitrary

means if the error in each of the means is less than 1/27 of the

range and if they are of the same sign. This requirement

is more easily met than one imposing the condition that the

standard deviation should not be in error by more than 1 per

cent. As standard deviations are usually features of a distribu-

tion which it is desirable to know, it seems better to forego

correction for an arbitrary mean only in case the error intro-

duced in the standard deviation is less than 1 per cent. We

have

= Vs' — A' = s — i y + higher powers in ^\ .

The error introduced by using s in place of a is

_ A' (Showing error in a from use of approximate

s "~ 2 s mean) [98]

and the proportionate error is

s - a = A'

5 2 s'

If an error of 1 per cent is permissible, we may write

A'

—, = .01

2 s'

A

or A is approximately 1/35 of the range. If there are 18 or

more intervals in the range covered by the measures and if

the arbitrary mean is chosen as the middle of the interval

nearest the correct mean, then the error will be less than \ the

interval or less than 1/36 of the range, so that the error in the

resulting standard deviation will be less than 1 per cent

The correction just considered is on account of displacement
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MEASURES OF RELATIONSHIP 167

of the mean. Sheppard's correction, formula [68 a], is for

grouping. If a equals the correct standard deviation and

S the standard deviation obtained from coarsely grouped data,

Sheppard's correction gives

a2 = S' - 1/12

a = S — 1/24 5 + higher powers in (1/12 5)

^ £ ' = 1/24 s' (Showing error in a due to grouping).. [99]

and if this equals .01, we have

5 = 2.041

If the standard deviation is 2 or a trifle greater, the range is

in the neighborhood of 10 or 12, so that if we have as many

as 12 steps, the error of the standard deviation due to grouping

is less than 1 per cent. The most exacting condition is there-

fore the one preceding this.

Accordingly, if there are 12 or more intervals in the ranges

of both variables, and if the origins are so taken, by resorting

to $ or \ steps if necessary, as not to differ from the correct

means by more than 1/25 of the range if the correlation is

above .70, or 1/50 if near .00; and if the origins taken lie either

both above or below the correct means; the error introduced

in either the standard deviations or the coefficient of correlation

by not correcting for grouping or for approximate means, is

less than 1 per cent. In case intervals are of necessity so

broad that a material error in correlation results, the raw

correlation coefficient requires a correction for broad categories.

Section 47. The Bearing of Broad Categories upon

Correlation

Writing pn for the product moment Xxy/N, as in Section 48,

we have

Tii =

Ordinarily ai and a2 will be taken as the standard deviations

of the class indexes, but more accurate values are obtained by

first applying Sheppard's corrections, formula [68 a]. Thus if

h and k are the group intervals, si and $i the standard devia-

tions before applying Sheppard's corrections, we have,

h' k2

a'i = j'i , and ff!i = j!2 — — [68 o]
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STATISTICAL METHOD

To a first approximation there is no correction for grouping

to be made to the product moment, pa, so that we have

r = Pu   2 xy

(Coefficient 01 correlation after applying

Sheppard's corrections) [100]

If the grouping is very coarse and irregular we may assume

a normal distribution and determine the mean of each class;

calculate the correlation, using these mean class values as our

variates, and correct for grouping. The correction for grouping

is different from Sheppard's because here our correction is on

account of using mean-class-values in place of the continuous

variate, whereas Sheppard's correction is on account of using

mid-class-values in place of the continuous variate. To point

the distinction the following hypothetical problem involving

trade ratings and general intelligence ratings is given.

Ratings of General

Mental Ability

Per

Cent

Pro-

portion

Above

Class

z, — Ordi-

nate at

Upper

Limit

of Class

x. —

Mean

IN

of

Class

Dull

Average

Bright

Each

Class

.00

.OOOOOO

Expert.

i

4

5

10

IO

1-755

Journey-

man .

4

10

16

3o

30

.10

.175498

-703

Appren-

tice .

4

ii

5

20

20

.40

-386342

.000

Novice

ii

25

4

40

40

.60

-386342

- .966

20

50

30

100

1.00

.OOOOOO

z' .000000 .279962 .347693 .000000

y -1.400 -.135 I-I59

<r* = V8O.4O968/IOO = .896714

ay = V82.95276/IO0 = .910784

- = 28.57438

y* 100 X 89671 X .9107K4 ■J4V'

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



MEASURES OF RELATIONSHIP 169

The symbols q, z and x have the meanings of Section 27.

Formula [55] is used in determining x from q and z. Treating

x and y as the values of the deviates from the means, the

correlation coefficient is, by the usual process, found to equal

.34987. This value, however, suffers from a large grouping

error. We cannot apply Sheppard's corrections because we

do not have equal class intervals and because we have not

dealt with class indexes, but class means. Whereas s, the

standard deviation of class indexes, is greater than a, the

standard deviation of the continuous variates; s', the standard

deviation of class means, is less than a. If class intervals are

equal and equal to the unit used, we have,

a' = s' —l— (Sheppard's correction). [68 a]

12

also

„' = s" + —

12

(Pearson's correction to

the standard deviation

of class means) [101]

This second formula, as well as subsequent ones in this section,

was derived by Pearson (1913 meas.). We thus see that an

entirely different correction is needed. This last correction is

not of general utility, as the problems in which we use class

means instead of class indexes are usually such that we do not

know that the class intervals are equal. We may, however,

determine the correction by aid of the correlation between the

variate and the class means of the classes into which the

variates are placed.

Let x be the value of the continuous variate, and x the value

of the means of the classes into which the x measures are placed.

Then the regression of the x's upon the x's is

X = TX* X X

ax

but x is the mean of all the variates in the class of which x is

the class mean, or simply x = *- Substituting in the preceding

equation we have

_ ax (Correlation between a variate and the means

xx ox of the classes in which it is recorded) [102]

The standard deviation of the class means ax is obtained by

calculation, and ax is known if the form of distribution is
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STATISTICAL METHOD

known. For the problem given ax = .896714 and ax = 1.0

since a normal distribution of standard deviation equal to 1.0

was assumed, so that rxx = .8967/1.0 = .8967, and if 7 stands

for the continuous variate in the case of the second variable,

thenr7> = .9108/1.0 = .9108.

Continuing we may find the correlation between two con-

tinuous variates when each is recorded in broad categories.

The following simple derivation depends upon principles of

partial correlation discussed in Chapter XI. The reader should

therefore be familiar with that chapter before attempting to

follow this proof. The symbol rxy.xy stands for the correla-

tion between class means for constant values of the graduated

variates x and 7- Clearly when x and 7 are constant the

corresponding class means x and y do not vary, so that

r*y.xy = o. This partial correlation coefficient, rxy.xy is equal

to a numerator determinant divided by the square root of the

product of two others. The divisor is easily shown to be

intrinsically positive so that the quotient becomes zero with

the dividend. Accordingly we have

T*y rxy ryy

'fx* I

T*y rxy 1

= o

in which rxy is the corrected value sought, and rxy is the value

calculated, using the means of the broad categories. It has

just been shown that ryy is equal to ay/ay, and rxx equal to

axlax- We need to know rxy and rxy. The partial correla-

tion rxy.y is that between the variate x for a given value of

the second variate 7, and the class mean y for a given value of

the second variate 7. The class mean for a given value of the

variate is invariable, so that y for constant 7 is constant and

accordingly rxy.y = o. This partial coefficient can be zero

only when the numerator of the quotient which is equal to it

is zero; that is

or

Similarly

*x» ~ TxyTyy = 0

rxy = rxyryy

Txy = rxyrxx
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MEASURES OF RELATIONSHIP

Substituting in the determinant and solving for rXY gives, if

we let mrxy = rxy

— rxy _ rxyaxay (Giving the correction to r on ac-

m x" ~ rXxTyy oxoy count of use of class means)... [103I

In case a normal distribution of standard deviation 1 is assumed

to fit the distributions of the two variables, and the means of

categories calculated upon this assumption, ax and ay each

equal 1 so that we have

r _ r*y _ S xy (Correction to r on account of use

oxoy Na'ia'i of class means, upon assumption

of a unit normal distribution).. [104]

The correction here derived for broad categories is equally

serviceable when determining correlation ratios or contingency

coefficients as described in Section 68.

Note that there are two corrections; one, Sheppard's, to be

applied on account of broad equal intervals when class indexes

are taken as the variates; and the second, the one here given,

to be applied when the class means of broad equal or unequal

intervals are taken as the variates. No correction is as yet

worked out for application when class indexes are used and

the intervals are broad and unequal, though in such case good

results may be expected by empirically setting h in Sheppard's

formula [68 a] equal to the mean of the several intervals

involved.

We may return to the numerical problem and apply the

correction to obtain the correlation corrected for broad cate-

gories between trade ratings and estimates of intelligence. It

yields

.34987 „

.896714 X .910784 4

In this calculation it has been assumed that x is the same for

the first cell (expert-dull), the second cell (expert-average),

and the third cell (expert-bright), and similarly throughout

the rest of the table. This is only approximately true, and in

case the categories are very broad and the correlation high it

is far from true. The method should not be used with a four-

fold table and it is of doubtful validity for the table given.

It may be applied with good results if no class contains more

than 25 or 30 per cent of the cases and if the correlation is not

greater than .9.
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STATISTICAL METHOD

Section 48. Properties of Correlation Surfaces

With the scatter diagram of Chart XX before us, the mean-

ings of certain terms will be readily grasped. If the standard

deviation of the successive x arrays are equal, the distribution

is homoscedastic in the x variable and if, in addition, the

standard deviations of the y arrays are equal, the correlation

surface is homoscedastic in both senses. If the slope of the

distribution in an array a given distance above the mean of

the array, is equal to the slope the same distance below, and if

this is true of all arrays, the total distribution is called homo-

clitic; thus, a distribution composed of symmetrical arrays is

homoclitic. If means of successive arrays lie in a straight

line, the regression is rectilinear or, by some writers, is termed

linear. In case a regression table is homoscedastic, homoclitic,

and has two rectilinear regression lines, the most probable

value of one variable when estimated from a knowledge of the

other, is that given by the regression equation. The regression

determination in the case of distributions showing moderate

divergence from these three conditions will still be very nearly

the most probable. Scatter diagrams showing extreme di-

vergence should be treated by some other method. Lack of

substantial rectilinearity in regression is the most readily de-

tected feature of a correlation surface which vitiates the use

of the product moment coefficient of correlation. For most

problems, the establishment of rectilinearity is sufficient to

completely justify the use of the Pearson product moment

coefficient of correlation. Note that this is a much easier

requirement to meet than that the correlation surface be

normal, that is, capable of accurate representation by means

of equation [89]. Accurate correlation results may regularly

be expected from distributions showing rectilinear regression

lines, but otherwise widely divergent from the normal cor-

relation surface. Due to the fact that Pearson's early de-

velopment of the product moment coefficient of correlation

was based upon the assumption of a normal correlation sur-

face, it has frequently been assumed that such a surface is

prerequisite to the sound use of the coefficient, but this is not

at all true.
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MEASURES OF RELATIONSHIP 173

Having the means at hand of estimating a second variable,

knowing a first, it is desirable to ascertain the probable error

of such determinations. Obviously if arrays are homoscedastic,

the standard deviation of any array is the standard error of

any single estimate.

ai. 1 = <riVi — r• = ajt (The standard deviation of an array or

the standard error of estimate of a

ai .! = ai Vi — r' = aik second variable, knowing the first) .. [86]

The quantity k of the above equations is denned in the next

paragraph.

With the data of Chart XX in hand, o2.i = 2.2o8\/i - (.3888)'

= 2.034. That is to say, that if the correlation between height

of mid-parent and offspring is .3888 and if the standard devia-

tion of heights of offspring is 2.208 inches, then the standard

error of estimate of a child's height, determined from the

mid-parent height, is 2.034 inches. A guess that the height

of every offspring is 69,\ inches would have a standard error of

2.204 inches so that the increased accuracy of estimate due to

utilizing the correlation of .3888 between mid-parent and

offspring reduces the standard error of estimate to 2.034

inches, or about 8 per cent reduction. It is thus seen that no

very great improvement in estimate results from a correlation

no higher than .3888. The proportionate reduction is given

by the factor v 1 — r!. This factor measures the lack of rela-

tionship between two variables just as r measures presence

of relationship. I have elsewhere (Kelley, 1919) described

certain of its properties and have termed it a coefficient of

alienation. The coefficient of alienation may be interpreted

in a positive sense for if a criterion, ar„, correlates to the extent

r with a given measure, xi, and if there exists some other meas-

ure, xi, independent of xi but which together with it com-

pletely determines xoi then the correlation between xo and .r2

is k. Its immediate determination, having any value of r,

is given by

k = V1 — r2 (Coefficient of alienation).. [86 a]

and the calculation may readily be made by the aid of the small

alignment chart given in the appendix or the large chart which

is a supplement to (Kelley, 1921). To secure an idea of the
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STATISTICAL METHOD

improvement of estimate with increase in correlation, the

following table is given:

Coefficient of

Coefficient of

Coefficient of

Coefficient of

Correlation

Alienation

Correlation

Alienation

r

k

r

k

.00

1.0000

.80

.6000

.10

.9950

.8660

.5000

.30

.9539

.90

.4359

.50

.8660

.95

.3122

.60

.8000

.98

.1990

.70

.7141

.99

.1411

.7071

.7071

1.00

.0000

Notice that a correlation of .866 is necessary before the error

of estimate has been reduced a half, and that even with a

correlation of .99, the error of estimate is still 1/7 as great as a

sheer random guess. It should be obvious from these facts

that if individual estimates are to be made, it is necessary

that very high correlation be present in order to secure even

moderately reliable results.

It is sometimes convenient to work with probable errors

instead of standard deviations, in which case we have

P. E. 1.1 = P. E.i k (Probable error of estimate of the second

variable, knowing the first) [86 b]

The calculation of the formula for the probable error of the

coefficient of correlation is involved and has several times

been given (Sheppard, 1898), (Pearson, 1913, freq.), and is

not repeated here, but the formulas upon which it is based

have general value. Not only the probable error of the coeffi-

cient of correlation, but many other probable errors as well,

depend upon certain higher product moments and upon the

correlation between product moments. The notation and

meaning of product moments may be made clear by certain

illustrations.

and is a second order product moment,

XXY'
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MEASURES OF RELATIONSHIP 175

and is a third order product moment,

Pu = —^

and is a seventh order product moment, etc., and in general,

Pqq W~

gives a product moment of the (q + q') order around some

fixed point. Following Pearson we would use the symbol

pqq to represent the same product moment around the mean

as origin, but as moments around the mean are the only ones

here concerning us, we will drop the superior bar and use pqq

in place of pqq. The meaning of the notation may be il-

lustrated by a few examples involving familiar constants.

2 xy" 2 *

pl" = IT = If = 0

* = -f - o

2 x'y" 2 *'

pui = n'i = ai' (The prime designating the second variable)

2ry

Pu = —pj- — rue in-

sertion 49. Standard Deviations and Correlations of

Various Constants

The standard error of any product moment is given by the

equation (Pearson, 1913, freq.),

N"\.q' = p'^'q' ~ +9' PK P'v-uq' + q'' po' PW-i

+ 2 qq'Pu Pq-i. q' Pq. «-i — 2 9 P« + i. q'Pq-uq'— 2 g'ps, + i pq.q'-i

(Standard error of any product moment from the means). . . [105]

The correlation between any two product moments is given by

N apqj "pUjU- rpq,q-pu,u' " P«+ ».»' + u' - Pq.q' pu.u' + qupKpq-i.q' pu-i.u'

+ q'u'poi pq.tf-i pu. u'-i + qu'pn pq-i.«' pu, u'-i + q'u pu p«, «'-i px-i,u'

— tt p«+ 1. pa-i. u — u' pq, q' + i pu. u'- 1 — q pu + i, u' pq-i, q'

— q'pu, «'+lP«, a'-l

(Correlation between any two product moments taken from the means) .[106]

These two equations provide the basic relationships which

lead to the following special probable errors and correlations.
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As will be noted the formulas greatly simplify if homoscedasti-

city and rectilinearity are assumed, and simplify still further

if normality of correlation surface is assumed.

Standard error of the mean,

"m=VN [29]

Standard error of the standard deviation,

a

0o = ^y^jj (Assuming a mesokurtic distribution).. [32 a]

Standard error of the regression coefficient,

= <r1 N =

"bl' at\ N ff!V N rectilinearity) [107]

Standard error of the correlation coefficient,

g'r*y _ I /pa — p'n pu, — P2K , Po4 — phi , p,i — pm poi

r'xy ~ N\ p'„ + 4p!M + 4p3o2 + 2pwp„

_ psi — pn pa pn

Pii pm

(No assumptions except that [error/N] to second and higher

powers are negligible in comparison with first powers)... .[108]

This complete formula was first given by Sheppard (1898)

gj * (Assuming homoclisy and

11 — pn poi\

pn poi )

V / I r'\!

(Assuming rectilinearity of regression. This assumption

carries with it the necessity of equal kurtosis, if arrays

are homoscedastic) [108 a]

This formula, as well as others in this section, is given by

Pearson (1913, freq.). The constants, 02 and 0'2, are the ft's

for the two distributions.

- *L (From preceding formula, assuming mesokurtosis,

aT in addition) [1086]

This standard error was first derived by Ftfon and Pearson

(1898), upon the assumption of normality, but note that the

formula is in fact more general than this. Also note that if r

is high and the kurtosis small, the formula gives too small a

value; and that if the correlation and kurtosis are high, the

formula gives too large a value.

g _ 1 — p2 / _| lip' \ (Standard error of r to a second

r vjv^i V 4(^ — 1)/ approximation) [108 c]
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MEASURES OF RELATIONSHIP

In the derivation of this formula, squares of the magnitudes

[error/Ar] were kept and normality of correlation surface

assumed. (Soper, 1913.) The magnitude p is the true cor-

relation and for such small populations as this formula is

intended it may lead to substantial error to use r, the obtained

correlation, in its place. This is particularly true if r is very

large. However, the use of r in place of the unknown value,

p, if r < .95 and calculation of the standard error of r by the

above formula in case N < 2$, should give better results than

formulas [108 a] or [108 b]. If formulas [108 a] or [108 b] are

used for these small populations an improved result may be

expected by multiplying the standard error given by them by

[1 + (1+ 5-5 r')/{2 N)] [108 d\

As a practical matter, r determined from samples < 5 may be

considered meaningless and nearly so if determined from

samples < 7.

Standard error of the constant term (Mi — buMi) of the

regression equation. Let c = (Mi - bnMi). Then,

ac = abay^M,' + ff22 (Assuming homoclisy and

rectilinearity) [109]

Standard error of the estimated mean of an array, yx (the

mean y score of the ^-array).

a _ a'& I (Assuming homoclisy and

y* Vn \1 0'1 rectilinearity) [11o]

Note the decrease in the accuracy of the means of the arrays

as we go further and further from the mean of the total distri-

bution. A further important consequence of this equation

is that for certain situations it gives the standard error of the

mean of a total population [see formula m] since the esti-

mated mean of the array for x = o is the mean of the total

^-distribution.

_ a' k (Standard error of a second mean in case a first mean

Mi VjV *s known with zero error, and in case the correla-

tion between the two series of measures is r).... [in]

Certain correlations between the constants of a correlation

surface are at times needed. Let ns = the frequency in row
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i78 STATISTICAL METHOD

s; n,' in column s'; and n„' in the compartment or cell

given by the intersection of the s row and the s' column. Then,

'\s,- vO -¥)t"2'

"V ""If Tnss' V =

nss' nut

N

..[»3]

*" ~ ~N~

ns ns'

.["4]

ttsttis'

.[115]

nss' (Correlation between the mean

..[116]

Jv Xs and the frequency of a cell) [117]

rMi Mi =

r (Correlation between means)...

[118]

Pi2 — pK po2

rin«1i =

V/,„ - p'KVpM - P'n

pii — nm'2

=

v'w — ni2 ^n'* — /iV

(Correlation between standard deviations)

[119]

.^r - I - r' (I8, - 1) - r'(0', - \)

Hill'

(Assumption that both distributions are ho-

moscedastic and regressions rectilinear).. .[120]

Thus,

•Vim = r' (Assumption of rectilinearity, homoscedasticity and

equal kurtosis) [121]

pn = r ai ai' 0'i (Assumption ot rectilinearity) [122]

rAf„, - rM^, - (No assumPti0ns)]l23]

If 0, = o, then rM ai =0 [123 o]

_ r(v^I — r vffij) (Assuming rectilinearity and meso-

rrAf, ~ 2 k' kurtosis) [124]

rfM = o (Assuming rectilinearity mesokurtosis and ho-

moclisy) [124 a]

r„x = (Vff, - 1 - r' Vt3\ - 1)

2 a,VN

(Assuming rectilinearity and homoscedasticity). .[125]

iy„, = -/- (Assuming mesokurtosis in addition to above) ...[1250]
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MEASURES OF RELATIONSHIP

Let c = (Mi - buMi). Then

rcbu = — IfT (Assuming rectilinearity and homoclisy). .[126]

Let 012.3, 0i3.2, etc., be denned as in Section 80. Then,

r»ir» = —7= (rn^u.i + ru^ii.j) (Assumption of normality).... [127]

V2

TruTH — } (031.'034.3 + 0I4.3032-1 4" 0u.40431 + 04130'3. i)

(Assumption of normality) [128]

rnr» (*'u — r'n — r'i3 + 2 rurifn)

2 «-12«213

(Assumption of normality) [129]

The last three equations were first given by Filon and Pearson

(1898). Formulas for a number of the preceding standard

errors and correlations, not involving the assumption of

normality, are given by Isserlis (1916). He also gives reduc-

tion formulas for higher product moments, such for example

as for p*yii.

Section 50. Formulas for the Calculation of the Product-

Moment Coefficient of Correlation

There are a number of useful variations of form in the

product-moment formula. The equivalence of all the follow-

ing statements should be immediately recognized by the

student:

, \ 2 Z1Z2 .... Xl , *2

(a) rti = , in which zi = —, and zi = —

D( ffi o\

(b) r„-S*,*'

(Pearson product-

moment coefficient

of correlation) [90]

(c) ru =

iVffiffi

(d) Xxy = Nrit<Tiai

(e) pn = riKriffi, or rl- i = -^U-

aiffi

if) ru = 612 — = 6i1 .

oi ai

In case a table of squares is employed it is simpler to work

with sums and differences than with products: Let d = the

difference between two deviations, each taken from its mean.

We have

<r'd

■ = + = ,2, + ffi, _ 2 „,„,

N N
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STATISTICAL METHOD

or,

a2i + <T'i — a'd (Difference formula for r, based upon

r 2 aiai deviations from means) [130]

in case x and y are equally variable, so that 01 = a*, we have,

<r'd (Difference formula for r in case of equal vari-

r ~ 1 2 it2 ability, based upon deviations from means). . [131]

Utilizing the usual relationship between a standard deviation

around a mean and that around an arbitrary origin we may

express the last two equations in terms of gross scores. Let

2i = the standard deviation of the gross scores X around the

origin, X = o; 22 that of the Y's, and 2^ that of the quanti-

ties (X - Y), and let Mi and M2 stand for the means, then

the following formulas are easily derived from the preceding

two.

_ S'i + 2'i — 2 Mi Mi - 2'rf (Difference formula for r based

r " 2 VrV— Mh Vx's — M'z upon gross scores) [132]

In case the means, and standard deviations, are equal, — such

a case as would arise if two similar forms of a test are correlated,

the formula becomes

22rf (Difference formula for r based upon

r 2 (22 — Jl/j) gross scores and in case means and

standard deviations are equal) !l33]

The difference formula based upon gross scores may be trans-

formed into one involving summations instead of averages.

Let Si = N22,, 52 = NX\, Sd = NX2d, XX = NMli XY= NMi.

Then, we have,

II (5l + 5i _ Sd) _ (s X) (2 Y) (Difference formula for

r =

2 r based upon sums of

VNS, - (2 X)' VNSi - (2 Y)' gross scores) [134]

Formulas such as [134] involving gross scores only are advanta-

geous in that they lend themselves readily to mechanical and

routine calculation. The numerical figures involved frequently

become large but this is not much of a handicap, if a table

of squares is used, and if an adding machine is available.

Formulas similar to certain of the preceding, based upon

sums instead of differences, are as follows: Let as stand for

the standard deviation of the sums of the deviations from the

mean (x + y), and 2S for the standard deviation from zero
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MEASURES OF RELATIONSHIP 181

of the sums of gross scores (X + Y), and let other symbols be

as above, then

_ a2s — a'i — ct's (Sum formula for r based upon deviations

2 ai<ti from means) [135]

r _ g!5 _ (Sum formula for r based upon deviations from

2 a' means in case of equal variability) [136]

Eliminating <r2 from formulas [131] and [136] gives

_ ~ "~d (Sum and difference formula for r based upon devia-

ah + o'd tions from means in case of equal variability) . [137]

If gross scores are used and if means, and standard deviations,

are equal, formula [137] may be transformed into the following:

_ Z'j — Z'rf — 4 M' (Sum and difference formula for r based

2!j + Z!d — 4 M2 upon gross scores in case means, and

standard deviations, are equal) [138]

A general formula based upon the standard deviations of

sums may be readily derived and is sometimes useful, as is

also one based upon summations of sums.

In general; if, for a given problem, certain relationships are

known to hold ahead of calculation, such, for example, as

equal means, equal standard deviations, proportionate means,

proportionate standard deviations, means or standard devia-

tions having known values, etc., a simpler formula than the

general one may be derived. If inexperienced help is doing

the work, a mechanical routine method not involving such

mental operations as multiplying three times seven, but rather

such operations as copying 197244 and adding on an adding

machine, is serviceable. If multiplication as high as twelve

times twelve, and good judgment in selecting approximate

means can be counted upon, the method used upon Galton's

data is probably the most expeditious.

Section 51. The Interpretation of Regression

Coefficients

The derivation of the correlation coefficient shows it to be

the regression coefficient in the case of standard measures.

The regression coefficient is statistically the more fundamental

and in all actual problems involving the estimate of one variable

knowing a second, the regression coefficient and not the cor-

relation coefficient is the essential measure. A wider use of
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regression coefficients in place of correlation coefficients would

lead to a more accurate and detailed understanding of the

situations portrayed. We may illustrate this by the data

of Chart XXI, but will first need to know the standard error

of a difference. This is readily derived. Let d equal the

difference between two measures X and Y, whose means are

Mi and M2 and let x and y be defined by the equations x =

X-Mi,y= Y - M2, then

d - X - Y = (* - y) + (AT, - Mi)

If any constant is added to or subtracted from d, the standard

deviation around the mean is not altered so that

"d = a {d +Mi- Mi)

and since

d+Afi — Mi = x — y

we have

ad " " (* - JO

but a (I - y) is simply <rrf of formula [130]. Solving [130] for

at we have

ai = V a2i + <T'! — 2 ru iria2 (Standard error of the difference be-

tween 2 correlated measures).... [139]

in which <?i is the standard error of the first measure, <r2 of the

second measure, and rn is the correlation between the two

measures. In case the measures are not correlated we have

ad = Va2i + it'2 (Standard error of the difference between two in-

dependent measures) [140]

The constants calculated from this chart, including the cor-

relation ratio 17 and the test for linearity f, described in Section

68, are as given in Table XXXVI, in which variable one is

the percentage of men voting for Thompson, and variable two,

the percentage of women.

TABLE XXXVI

Standard errors of

Mi

= 60.768

Mi =

60.558

Mi, .374 Mi, .44l

ai

= 14707

ai =

17-354

a,, .264 a,, .312

bi,

= 73527

bn =

1 02377

bi,, .0107 6j1, .0149

= .86761

rn, .0063

m'

= .86942

Vil =

.87112

1J12, .0061 tin, .0062

fu

= ij'u - r'u

fu =

i?'2i — r'ji

fu, .0040 fu, .0028

= .00611

=

.00314
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MEASURES OF RELATIONSHIP 183

The method of calculating the standard error of f is given

later, but since its probable error is nearly as large as itself,

rectilinearity is shown to be a sound assumption. Let us,

therefore, consider the other constants and attempt to answer

the following questions:

(1) Is there a sex difference in regard to the mean tendency:

that is, is the difference (Mi — M2) which equals .210, one fifth

of one per cent, a significant difference?

Chart XXI*

CORRELATION BETWEEK 3EX AND VOTING TENDENCIES

8

7

IS

17

22

27

32

37

42

47

32

37

62

67

72

77

82

87

92

97

TO7JM-

2

1

1

7

2

1

3

I2

2

s

1

1

1

I0

I7

3

2\

4

I

I2

n

I

1

l\

7

a\

I

1

1

21

27

1

9

\8

9

4

1

-

35

32

2

a\

IV

.I5

2

3

I

1

I

I

46

37

1

1

1

3

25\

24

9

1

2

1

83

42

I

2

2

8

I4

6

A

2

77

47

I

I2

\32

I3

6

3

2

I01

52

I

1

1

2

23

BV

I9

5

2

4

I

142

57

2

9

tt

37

13

3

1

1

I34

62

1

2

2

I3

33

36

I0

3

2

148

67

4

9

I0

52

42

8

4

2

I93

72

1

1

1

6

20

3l\

25

3

I63

77

3

1

3

30

8

I63

82

2

2

I3

35

\

6

I39

87

3

1

\

36

I

6

II

X

92

4

4\

2

\^

14

97

|

IN

2

3

Z

7

S

6

23

3*

5I

83

I20

ifci

143

195

2?i

214

I75

22

9

1546

N1

* Correlation of percentage of men's votes cast for Thompson (abscissa) and percentage

of women's votes cast for Thompson (ordinate) in 1546 precincts in the Chicago municipal

election of April 6, 1915. Percentages are of votes cast for the two leading candidates only.

Class intervals run from 4.5010 to 9.5000. etc., per cents. The middle of the class inte1vals

are 7.0005, 12.0005, 17.0005, etc. The .0005 has been dropped in the calculations, and the

class symbols are given as 7, 12, 17, etc. The number of votes per precinct did not diffe1

greatly and ran about 400 per precinct, about 35 per cent being votes of women. The data

we1e gathered from official returns by Professo1 J. W. Canning.
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(2) Is there a sex difference in regard to the variability of

mean precinct votes: that is, is a2 — <ji = 2.647 a significant

difference?

(3) Is there a sex difference in regression of mean precinct

votes: that is, is bn — bn = .28850 a significant difference?

We can answer these questions by using formula [139] if we

know (1) the correlation between means, (2) that between

standard deviations, (3) that between regression coefficients.

By formula [118]

by formula [12]

r,,,, = r12' = .7527

We have no formula for the direct calculation of the correlation

between b's, but we do not need one. If the difference bK — bn

is significant, then the quotient, ba/bii, is significantly different

from 1.00, but = <r'i/W Therefore if ba/bn is signifi-

cantly different from 1.00, ai/ff2 is also, but if this is so, then the

difference (eri - <r2) is significant. Accordingly if we prove

that there is a significant difference between the two standard

deviations, we have with the same certainty proven that

there is a significant difference in the two regressions.

Letting ad stand for the difference of the measure under

discussion, we have

Mi — Mi = .210

«d = ^(.374)' -1- (.441)' - 2 ( 8676) (.374) (.441) = .219

0' — "i — 2.647

ad = V(.264)' + (.312)' - 2 (.7527) (.264) (.312) = .207

As the standard error of the difference between the means is

equal to the difference, we cannot conclude that the difference

is significant, but as the standard error of the difference between

the standard deviations is but 1/12 of the difference, the point

is definitely established that there is a sex difference resulting

in difference in the standard deviations and in the regressions.

In other words, on the average, throughout the city, men and

women voted for Thompson to about the same extent, but

judging by the precincts, the women tended to vote in blocks

to a greater extent than men. If the precinct was a "Thomp-

son precinct" the majority given to Thompson by the women

was greater than that given by the men, and if it was an "anti-
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MEASURES OF RELATIONSHIP 185

Thompson precinct," the majority against Thompson given

by the women was greater than that given by the men. One

precinct in particular is a notable exception. This is the one

recorded in row 12 and column 77 of Chart XXI. There

existed in this precinct a very strong anti-Thompson women's

organization, with the result that though 77 per cent of the men

voted for Thompson, only 12 per cent of the women did so.

The two regression lines involved are drawn and the constants

given in detail in order to point the significance of regression

lines. That there is a correlation between the votes of men

and women is of quite secondary interest to the fact that there

is a wide difference in the regressions of the two sexes. The

interpretation of the correlation table given hinges upon the

slopes of regression lines in a much more fundamental sense

than upon the value of the correlation.

Section 52. Product-Moment Correlation of Non-

Rectilinear Data

We will now consider a problem involving the calculation of

a Pearson product-moment coefficient of correlation from non-

rectilinear data. I am indebted to Mr. H. A. Richmond for

the accompanying problem and data. Each entry in Table

XXXVII is for a single state, except the starred entry which

is for the District of Columbia. From considerations alto-

gether outside the data it seems appropriate to consider the

District of Columbia data not to be homogeneous with the

rest, and they are accordingly omitted from calculations.
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186 STATISTICAL METHOD

TABLE XXXVII

Per Cent White

Per Capita Insur-

Per Cent White

Per Capita Insur-

Population

ance in Force

Population

ance in Force

99

341

95

3<H

99

285

95

251

99

270

95

237

99

219

94

140

99

192

93

103

99

190

90

167

99

170

88

142

99 -

224

87

105

98

321

84

254

98

290

83

207

98

272

82

227

98

269

82

IOI

98

253

78

•71

133

98

244

*347

98

241

71 -

96

98

182

68

121

98

171

67

158

97

272

58

133

97

234

57

105

97

204

56

126

97

197

54

147

97

182

44

l32

96

237

43

84

96

202

96

190

96

176

(Calculation given in Section 68)

Let X stand for the per capita insurance in force, and Y for

the per cent population, then calculation gives

ri2 = .6430

in = -7955

Corrected for fineness of grouping error

ijn = .7310

IJ21 = .8OI9

Corrected, I7!1 = 7394

fu = V'n - r',2 = (.7955)' ~ C6430)! = -2193

a{ = .1202 (Calculation by formula [197])

fy

't

so that (from Table K-W), the chances are 34 in 1000 that the

true regression is rectilinear. The small population makes it

impossible to prove the appropriateness of a certain regression

line, rectilinear or otherwise, but with only one chance in 30

of the regression being rectilinear, we will proceed on the
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MEASURES OF RELATIONSHIP 187

assumption that it is definitely non-rectilinear. Since the

populations in the successive arrays are very small, the regres-

sion line following all the chance fluctuations of the means of

the arrays leads to a measure of correlation which is too large

to represent the truth. Accordingly .64 is too small and .80

too large, and the true regression is neither a straight line nor

one following all the means of the arrays. A value in the

neighborhood of .7394 is more trustworthy than either of these.

As an empirical procedure, which will result in a more reason-

able regression line, and a measure of correlation between

.64 and .80, we may use a coarser and coarser grouping of

percentages as the data deviate more and more from the

mode, assign interval values to grouped data, and calculate a

Pearson product-moment coefficient as shown in Chart XXIII.

Percentage scores are transformed into auxiliary scores accord-

ing to the following table:

Per Cent of White

43

54

64

73

81

88

94

Population as

to

to

to

to

to

to

to

97

98

99

Follows

53

63

72

80

87

94

96

Assign Following

Scores . . . .

1

2

3

4

5

6

7

8

9

10

This transformation scheme is empirical but it should be

noted that it has not been so drawn up as to capitalize chance

fluctuations, thus giving a spuriously high measure of cor-

relation. We are not endeavoring to secure a high measure

of correlation such, for example, as the raw correlation ratio,

but rather a reasonable measure; and second, we desire a

procedure which permits estimating one variable, knowing

the second, which the correlation ratio method does not permit.

We may judge of the excellence of our transformation scheme

by the approach of the resulting product-moment coefficient

of correlation to the mean of the values of the two corrected

correlation ratios (.7310 + .7394)72 = .7352. With this auxil-

iary score which bears a 1 to 1 relation with percentage of

white population, the regression is practically rectilinear. The

means of the arrays vary from a position on a straight line

only to a degree which we may reasonably attribute to chance.

Since there is a 1 to 1 relation between the auxiliary variable
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STATISTICAL METHOD

and per cent 01 white population, an estimation of the auxiliary

variable is equivalent to an estimate of the per cent of white

population. The Pearson product-moment coefficient of cor-

relation found between the auxiliary score and insurance in

force is .7146 which, though it is not quite = .7352, the most

reasonable value, is certainly an improvement upon either

the straight correlation coefficient or the raw correlation ratio.

In addition to enabling an estimate of one variable from a

second, and to providing a reasonable measure of correlation,

a reduction of one variable so as to yield a rectilinear regression

with a second makes possible an investigation of multiple

correlation tendencies which otherwise would be very laborious

or altogether impossible.

If we have three variables, Xo, Xi , X2, and desire to know

all the interrelations, we require information as to six regres-

sion lines which we may call ln, ho, lm, ho, I\2, hi- Let us sup-

pose that the correlation table involving variables o and 1,

shows 2 rectilinear regressions, Zo1 and lio, and that the regres-

sion lo2 is curvilinear, and that the nature of the others has not

been determined. Let us suppose that a simple transforma-

tion of Xi scores into auxiliary X2' scores results in a rectilinear

I02 regression line. Then as proven by Isserlis (1914), the

additional regression lines ho, la, and hi are also rectilinear.

The proposition may be stated in the words of Isserlis, who

uses the word "linear" as we have used rectilinear: "We may

conclude then that in general the linearity of any three of the

six regression lines involves that of the remaining three." . . .

(Isserlis' theorem.)

Obviously the principle can be extended to any number of

variables. Let Xo be the dependent variable or the criterion,

and let Xi, Xt, X» . . . Xn be independent variables which

are combined into a single score for the purpose of estimating

the criterion. Then, if each independent variable showing

curvilinear regression with Xo is transformed into auxiliary

scores having rectilinear regression, not only every correlation

with the criterion but every intercorrelation between the inde-

pendent variables as well will be rectilinear. For example,

given the four variables Xo, Xi, X«, X3. Let us suppose that

none of the regressions are rectilinear. In this case the first
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MEASURES OF RELATIONSHIP

investigation to make would be to see if a simple transformation

of Xo may not result in making all the regressions involving

Xo rectilinear. If no such transformation is possible, we may

transform the scores of the independent variables. We have

the curvilinear regression lines hi, ho; h2, ho', lo3, ho', h2, Ui',

In, hi; ^23. 1si- Probably a transformation of some one of the

independent variables can be made so that both regression

lines involving it and the criterion, that is hi, ho, or Z02, ho, or

Io3, ho, become rectilinear. This is probably always possible

in case of single valued functions. Rietz (1919) has shown

the impossibility of accomplishing this in the case of multiple

valued functions. Let us then so transform Xi, X2, and X3

that the following regression lines, I'm, l\o, I'ai and Z'o3 are recti-

linear. Since I'oi, I'm and I'oi are rectilinear, we know, by Isser-

lis' theorem, that Z'2o, Z'12 and hi must also be rectilinear, and

since I'oi, Z'1o and Z'o3 are rectilinear, I'so, l'n and Z'3i are also, and

since Z'o2, Z'2o and Z'o3 are rectilinear, l'i3 and l'n are also, com-

pleting the list. An extension of the method to n variables

shows that for the practical purpose of estimating Xi scores we

may make empirical single valued transformations of the de-

pendent variables, wherever necessary to bring about rectilinear

regression, and then proceed to calculate the multiple regres-

sion equation as described in the next chapter. Thus for

single valued functions a lack of rectilinearity ordinarily con-

stitutes no bar to multiple regression procedure.

We have, to this point, considered the significance of corre-

lation as a measure of mutual implication and as a measure

derived from the regression coefficient. This interpretation

is to be looked upon as basic in correlation treatment. There

are, however, other ways of interpreting it, which may oc-

casionally be of value. Weldon (see Brown 1911) has related

the correlation coefficient to the percentage of elements which

are common to the two series of measures involved. Suppose

standing in trait X depends upon the presence or absence of

A + C independent elemental factors, and that standing in Y

depends upon the presence of B + C independent elemental

factors. The C factors are common to both X and Y. The

A factors influence A' alone and the B factors, Y alone. Further,

suppose each factor is as likely to be present as absent, i.e.,
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STATISTICAL METHOD

p = q = 2. an<i when present, to add one half to the trait

score, and when absent, to subtract one half from it. Then

x = A + C; y = B + C; and in the long run, XA = SB =

2C = o. Let na equal the number of A factors, nb of B and

nc of C factors, then

aa = VnaM = ^»ai-i = i

"b =

*c = i ^

°A + B = l Vna + nc

aB + C = i Vnb + nc

Nraiai = Zxy = 2 {A + C) (B + C) = ZAB +ZAC + XBC + ZC!

= 2 C'= iVa'c

since, by supposition, all the elements are independent, all

summations of products equal zero. Accordingly

nc

r ^/tta + nc Vn6 + tic

If the number of elements determining the score in X equals

the number determining that in Y, na = n» and we have

nc

r = :—

no + nc

or, the correlation coefficient is the proportion of elements

common to the two traits.

Again, suppose trait X is determined by nc elements and that

trait Y is determined by these plus mj additional ones, that is,

Mo = o, then

nc

r Vnc Vnb+nc

and

or, the square of the correlation coefficient is the proportion of

elements determining X which are involved in Y. We of course

do not know that traits or scores are due to summations of

independent elements, so that these results at best have rather

doubtful interpretive value, whereas, the interpretation of cor-

relation in terms of regression never fails. Thomson (1919)

and Brown and Thomson (1921) deal very fully with this

subject.
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MEASURES OF RELATIONSHIP

It has been assumed that the limits of the coefficient of

correlation are — i and 1. This may easily be proven. Let

x y

2i = —, and zi = —

<m ai

then <r,, = 1.00 and ct,, = 1.oo

(Zl - z!)' > o

^2 (zi — Zi)' = 2 ii' + 2 Zi' — 2 2 ZiZi = 1 + 1 — it

but

2 (zi - z,)' > O

therefore

2 (i — r) > o or r < i

Thus the upper limit of r is + i.

2 (zi + z')2 = 2 (i + r) > o or r > —i

Thus the lower limit of r is — 1. Accordingly all values of r lie

between - i and 1.

Section 53. The Rank Method of Calculating

Correlation

The product-moment method of calculating correlation may

be used when differences in merit are expressed in ranks and

not in graded scores. Formula [130] is the most convenient

to use in deriving the expression for the coefficient of correla-

tion when ranks are used.

The standard deviation of the ranks in the one trait equals au

and of course equals the standard deviation in the other trait,

02, as the number of ranks is the same in the two cases. It

should, however, be noted that if scores such as

95 04 90 90 87 85 85 85 81 89 75

are assigned ranks

1 2 3i 3i 5 7 7 7 9 10 11

the standard deviation of these pseudo ranks is not identical

with that of ranks r, 2, 3, 4, 5, 6, 7 8, 9, 10, 11. Only slight

error is introduced in case ranks are but occasionally divided

between two paired measures, but if there are many individuals

all given the same rank decided error is present.
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STATISTICAL METHOD

Since the standard deviations are equal the equation becomes,

using p in place of r as is customary when dealing with ranks:

2d'

"= r = 1 - 5mT'

The Xd2 is to be determined by recording the differences in

ranks of the individuals in the two traits, squaring and sum-

ming. The common standard deviation, a, may be found from

the number of ranks, which is also N, the population. It

is only necessary, therefore, to determine the standard devia-

tion of the series 1, 2, 3, . . JV around its own mean. We

have

1 +2 +3 + .-- N N + 1

« = J, -

1 +4+9 . . . N' 4 iV2 + 6 AT + 2

„, _  _ —

This value for £2 may be obtained by first determining the

second moment, w2, in case the distribution consists of fre-

quencies evenly spread over the class intervals, as indicated

in the accompanying figure, instead of being concentrated at

the class indexes or mid-points as is the case when measures

,1,1,1,1,1,1 - - - . n -   n

of rank position are used. The frequency distribution drawn

is represented by the line y = 1 and extends from x = % up

to x = N + 5. The second moment from o of any one rank,

let us say the k'th, is k', whereas the second moment of the

distribution y = 1 from (k — |) to (fe + 2) is given by the

equation

yx'dx - - =*i+A

fc-J J 3-l*-i

The moment of the frequency y = 1 corresponding to this

k'th rank, i/N of the population, is 1/12 too large, as is of

course the case for every other rank; hence the second moment

of the equation y = 1 from x = \tox = N-\- \ will be larger

than the desired second moment by

N \l2j
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MEASURES OF RELATIONSHIP 193

That is

Therefore

;»2

ni + V*

4jV' + 6AT + 3

12

4iV' + 6iV + 2

",= —12

AT' - I

Mr

Finally

N <N' - 1)

(The second moment of

N ranks) [141]

(Spearman's formula for the

coefficient of correlation

calculated from ranks) ... [142]

This formula should not be confused with Spearman's foot

rule formula for correlation

n j 6EG- (Spearman's foot rule formula for

N2 — 1 correlation based upon the sum

of the gains in rank) [143]

which has a large, though, except in the case of zero corre-

lation, not definitely known probable error; does not vary

between — 1 and + 1; is not at all comparable in meaning

with a product-moment coefficient; and in general has none

of the merits except brevity, of the formula based on the

squares of differences in rank. The coefficient calculated by

formula [142] is usually designated by p, but it should be noted

that it is identical with r if ranks constitute the scores.

Pearson has shown that if scores in the two traits which are

in truth normal in form are assigned ranks and p calculated,

it will differ slightly from the r obtained directly from the

scores. To allow for this discrepancy, p's may be turned into

r's by the formula,

r = 2 sin g P (Pearson's correction to Spearman's p).. [144]

That the correction is of small magnitude is shown by the

accompanying table:

TABLE XXXVIII

p

r

p

r

.00

.OOO

.60

.618

.10

.105

.70

-717

.20

.209

.80

.813

.30

.313

.90

.908

.40

.416

.95

-954

.50

.518

1.00

1.000
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The formula for p is the best of the rank formulas, but in case

scores constitute the basic data there is always some loss in

accuracy from warping the data into ranks. The probable

error of p as determined by Pearson (1907 further) is

P. E.p = .7063 1 (Probable error of p). .[145]

V7V

or approximately 5 per cent greater than the probable error

ofr.

In case one of the variables is given in terms of ranks and

the other in terms of variates, we may assign rank values to

the variates and use formula [142]. If the grouping in the

variate series is coarse, ranks cannot be assigned without

losing much of the refinement of the variate data, and if the

average of a number of ranks is assigned to all the measures in

one class there is a further error if formula [142] is used as

this formula presupposes serial ranks from 1 to N.

To obviate these difficulties it is better to calculate the

product-moment coefficient of correlation between the ranks

on the one hand and the variates on the other. Let us call

this p', and let r be the correlation if the two series could each

be expressed in terms of variates and if they constitute a normal

correlation surface. Then Pearson (1914, ext.) has shown

that,

r _ Ijt , (To deduce r from p', the product-moment

\3' correlation between a variate series and

a rank series) [146]

or

r = 1.0233/

PROBLEMS

1. Plot the correlation table giving the correlation between the Thorn-

dike and Ayres scores in handwriting given in Table XXX, Section 34, and

answer the question, "Is the relationship between the two variables rec-

tilinear?" Ans. It is.

2. Calculate the correlation between series 1 and 2, between series 1

and 3, and also between series 2 and 3 of the paired practice series given in

problem 3, Chapter III.

3. Calculate the standard error of r», the correlation between series 1

and series 2 (a) by formula [108 b], (b) by formula [108 a], (c) by formula

[108 c] and finally, as the most accurate method of all, (d) by formula

[108 a) using in addition [108 d\.
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MEASURES OF RELATIONSHIP i9S

4. Rank the measures in these three series and calculate the correla-

tions pu, pu and pm by formula [142].

5. Determine for the first two of these three series the regression equa-

tion for estimating variable 1 from variable 2 and calculate the standard

errors of the two constants, bu and c, involved.

6. In the derivation of bn it was assumed that the regression line passed

through the means of the two distributions. Derive the same value as

bii without making this assumption.
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CHAPTER IX

FUNCTIONS INVOLVING CORRELATED MEASURES

Section 54. Correlations of Sums or Averages

If the basic means and standard deviations of several series

of measures and the correlations between series are known, the

means, standard deviations and correlation of any weighted

average or sum of these measures with a second weighted sum

may be determined (Spearman, 1913). Given the several

series (a + b) in number, Xi, X2, . . . Xa, Xa+i, Xa+i . . -

Xa+b, with means Mu M2, . . . Ma+b, standard deviations ai,

a2. . . <ro+ft, and intercorrelations r12, rn . . . n (S+0,, ru - . ..

let the standard measures for these variables be, as usual,

X, - Mi X, - Mi t

zi = , z2 = — , etc.

If a of the measures are combined by adding into a single

score, and if the remaining b measures are also combined, the

correlation between the two composites is

z (si + z' + . . za) (»i + zn + --- zb)

r(i+2+...o)(i + n+...6) " -/?->- , _ ~r VvTrr;—z rr,

VZ (zi + zi + . . . zap V2 (zj + zn + . . . zb)'

The product of the two terms in parentheses in the numerator

gives a binomial of ab terms each of which is a sum of the sort

2zizi.but

Z Z1Z1 = Ntii, 2 Z1Z11 = Nr, n, etc.

ab ab

Accordingly the numerator equals NS rpQ. The symbol S

1 1

stands for a double summation, p taking in turn the values in

the series from 1 to a, and Q in turn the values from / to b.

The square of the first [ olynomial in the radical in the de-

196

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CORRELATED MEASURES

197

nominator gives a polynomial of a2 terms, a of them being of

the sort 2z2i and the balance (a2 - a) of the sort 221z2. But

2 z!, = AT, 2 z!2 = N, etc.

2 ZiZ2 = Nru, 2 Z1Z3 = iV>u, etc.

Further

2 ZiZi = 2 Zi-'i

and as both of these occur in the summation, there are but

((h — a)/2 different product sums involved, though each of

these is found twice. Accordingly the magnitude under the

first radical equals

a (o' — a)

NS 1 + NS rpq

a a (a' — a)

in which Si is simply 1 added a times so that Si = a: S rPq

1 11

is a double summation in which p takes all values from 1 to o,

and q all values other than p from 1 to a. Thus again each

r occurs twice, once as rpq and once as rqP. But an r with

repeated subscript, such as rpp, is not found in the summation.

The summation under the second radical is similar in type, so

that

ab

r{i + l+...a) (I + H+...H

/(a' - a) / (6, - b)

a + f TH V b + f TPQ

(Correlation between sums or averages of scores). [147]

The preceding formula may readily be generalized so as to

apply when gross weighted scores are combined. Let wi be

the weight of Xi, w2 of X2, etc. Then we desire the correlation

between {wiX1 + +... waXa) and (wiXi + wnXn +...

wbXb) which may be represented by the symbol

r(SwpXp} [SwpXp)

In calculating the correlation, each variable must be expressed

as a deviation from its own mean. Accordingly (w,Mi +

w-iMi + . . . waMa) must be subtracted from the first summa-

tion variable. This leaves {wixi + 102*2 + . . . waxa). Simi-

larly for the second summation variable. Proceeding as before

we have in place of 2z2i the expression

2 (u»,*,)'

and in place of Xzizi the expression

2 WiXiWiXi
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198 STATISTICAL METHOD

so that finally we obtain

a b

r(SwpXp)(SwPXp)

ab

S wpapwQaQrpQ

/a (a' - a) /b (M - b)

y Sw'pa'P + S *^tVlrMT -Sw'pff'p + S WpapV,QaQrpQ

(Correlation between the sums or averages

of weighted scores) [148]

Note that there is nothing in the derivation to prevent certain

of the weights being negative. If the correlation between two

series is r, this is not changed when all the measures in the first

series are divided by a certain quantity and all those in the

second by another. Thus in the preceding, division of the

first series by a and of the second by b, leading to averages,

will not change the correlation. The formula given is there-

fore equally applicable whether dealing with sums or with

averages.

In case a single score is correlated with the weighted average

of a number of others we have a situation represented by one

of the two sums having but one item in it. Then the summa-

b b'-b

tion S has but a single term and S has no terms. Further,

1 1

wiai cancels from numerator and denominator of the right

hand member. This is the very common situation where one

variable, which we may call the criterion and represent by Xo,

is taken as a standard and all the others are combined so as to

givi a high correlation with this one. Under these conditions

formula [148] becomes:

o (Correlation between a

S™p*prop criterion and the

rn(SwpXp) = /—- a, - a weighted sum or

y Sw'pa'p + S WpOpW aqrqp average of a number

11 'of scores) [149]

Since this formula gives the correlation whatever the aw

products, or the effective weights, may be, one may frequently

by successive trials hit upon a weighting which gives a fairly

satisfactory correlation. If two independent variables are in-

volved and the nominal weight of the first independent variable
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is arbitrarily set equal to 1.0 while that of the second is in-

determinate and called w we have

The multiple correlation rx,pci+wxn and the weight w are

the only unknowns in this equation, so it may be plotted on

two axes, w the abscissa and r the ordinate, throwing into clear

relief the effect of approximate weightings. Thurstone (1919)

has shown the value of this procedure. A plot of the following

data will illustrate the falling off in the multiple correlation

obtained as w varies from — .9310, which is the ratio of the

regression coefficients 6o2-1/6oi.2. Given roi = -4, »"o2 = - .3,

rn = .12, ai = a2 = 1.0

If w =

— 00

— 2.0 -

- 1-5

— 1.0

-.9310

- -9

Thenr»(AT,+„-X,) =

.300

.620

.706

.7826

.7846

.7842

w =

-.8

-.5

.0

1.0

1-333

2.0

00

.776

.682

.400

.056

.000

- 074

-.300

Returning to [149], in case all of the series summated or

averaged have equal standard deviations and are given equal

weight, we have:

101 = Uii = - . . Wa = 10

tr 1 — a 2 — . . . o*i = <T

a a

where rc is the average correlation of the various series with the

criterion xa.

a

Stuy, = aw'o'

1

a5 — a a1 — a

S wpapwqaqrpq " w'a' $ rpq = w'a' (a' "a) ri

where n is the average intercorrelation between the several

original series so that, finally,

a*c
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or,

_ rc (Correlation between a cri-

m(SwpXp) — i _ r terion and the sum or

\— H ri average of a number of

equally weighted scores).. [151]

If the tests are comparable the several correlations with the

criterion differ but little and any one of them may be taken as a

first approximation to rc, and the intercorrelations differ but

little and any one of them is a first approximation to n; also

SwpXp = af as defined in the next section (55), so that we

have

T_c (Correlation between a criterion

U _ Til and the sum or average of a

-y|—-— + rii number of equally weighted

similar test scores) [152]

The effective weight given a test is not wp, the nominal

weight, but wpap, the product of the nominal weight and the

standard deviation of the scores. Accordingly equally weighted

scores are those in which the products of the nominal weights

and the standard deviations are equal; that is, if wiai = wi<n

= wa<js = . . -, etc., the Xl. XIi X3, etc., series or scores are

actually weighted equally. This is the condition that must

hold if the immediately preceding formula is to remain true.

Section 55. The Reliability Coefficient

Let us suppose that the scores combined are those of com-

parable tests of some single function. If the tests are strictly

comparable, then in addition to the means, and standard

deviations being equal t

roi = Tai = . . . = tc

and

Tii — Tii = . - - = T2t = '' 'I'll

the correlation between one form or test and a second similar

form. Let us define a "true score" as the average score on

an infinite number of strictly comparable tests. Then the cor-

relation between the criterion and such a true score, which

can be obtained by letting a of formula [150] become infinite,

may be written as

roi (Correlation between a fallible

r°°° ~ crite"011 and a true score). . .[153]
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CORRELATED MEASURES

in which oo designates the infinite summation. If the relia-

bility coefficient of the criterion Too is known, we have, as the

same sort of formula as [153]

_ ro1 (Correlation between a true

Tl °° Vr^o criterion and a fallible score) [153 a]

The correlation roi is that between a test and a criterion, and

ru is that between two comparable tests and is called a relia-

bility coefficient. That the notation may be entirely clear, the

meanings of several symbols as they will be used are here

listed. raf,Af is the correlation between the sum, or average,

of a measures of a certain sort and A others of the same sort.

Capital A is used in the second subscript instead of small a to

indicate that the second series of tests (the same in number

as in the first series) is different, though similar to the a tests

averaged or summated in the first series. Whenever a is

greater than one, the / is kept in the subscript, but when a

single test is correlated with a single other test, it is dropped,

and the subscript designates the variable. Thus fty,/;/ means

that an average or sum of two forms of the test (or average or

sum of two comparable measures of whatever sort they may

be) are correlated with the average or sum of two other com-

parable forms and rm means that one form of the test 2 is

correlated with a second similar form of the same test. In this

latter case 2 refers to the variable, whereas in the former case

(2 f) the 2 refers to the number of forms averaged or summed.

The symbol rn represents the correlation between retestings

with the same form. If the variable Xi is a test score the only

reason rn does not equal 1.0 is that there is a time interval

between the two answers, which an individual gives to the

same question. Similarly raf, af means the correlation between

average scores upon re-testing with the same a forms.

Certain very specific conditions need to hold before two

tests may be considered comparable, and therefore before a

correlation between two tests can be considered a reasonable

reliability coefficient. In educational and psychological test-

ing the first of two similar tests frequently calls forth a response

which is different from the second. The greater familiarity

with the form of the test or the difference in interest aroused
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STATISTICAL METHOD

may make the second test quite different from the first. This

would be especially true if certain elements in the first were so

similar to elements in the second as to lead to what may be

called a memory transference from the first test to the second.

For example, suppose the following questions occur in the first

and second tests respectively:

"(a) John is taller than James and James is as tall as Joe.

Joe is shorter than Jack. How do John and Jack compare in

height?"

"(6) Bessie is brighter than Bertha, and Bertha is just as

bright as Beula. Beula is not quite as bright as Beatrice.

Which is the brighter, Beatrice or Bessie?"

One would expect memory transference, and a tendency to

solve the second in the same way as the first. We may call

such a situation one in which there is a correlation between

errors, meaning that, whatever elements of uncertainty or

chance operated in the solution of the first question, they

would tend to operate in the same manner in the solution of

the second. This situation would tend to make rn too high

as a true measure of reliability. There are other, and usually

more important, factors which operate in the other direction.

Let us suppose the two following questions occur in two forms

and that they are intended to be comparable: "(a) Who was

the first president of the United States?" and "(b) Who was

the leading batter in the American League in 1920?" Passing

over the possibility of some other question than (a) \n the first

test being comparable to (b) and some other than (b) in the

second test being comparable to (a), let us consider the com-

parability of the two questions given. There is certainly no

memory transference which would help or hinder in answering

(b) after having answered (a), but the ability to answer (a)

probably tests special capacity or knowledge which is quite

different from that demanded for the correct answering of (b).

1 In other words (a) and (b) are not samplings of the same

capacity and two tests made up of questions no more similar

than (a) and (b) can hardly be considered comparable, and as

a consequence they would lead to an ru which would be too

small. This is the situation which is the more likely and the

more serious as ro* in this case becomes too large. The
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errors of interpretation due to a too large estimated correlation

between a test score and a criterion are probably in general

more serious than those due to a too small estimated correlation.

The following rule for the construction of two comparable

tests may be laid down: (1) sufficient fore-exercise should be

provided to establish an attitude or set, thus lessening the

likelihood of the second test being different from the first, due

to a new level of familiarity with the mechanical features, etc.;

(2) the elements of the first test should be as similar in difficulty

and type to those in the second, pair by pair, as possible;

but, (3) should not be so identical in word or form as to com-

monly lead to a memory transfer or correlation between errors.

It is obvious that condition (3) is not met if a test is merely

repeated. Only in case the repetition be at so remote a time

from the first test that no memory of the earlier response could

influence the later would there be no correlation between

errors — in fact even were there no conscious memory of the

earlier situation there might be a subconscious influence result-

ing in correlation between the errors. Accordingly the repeti-

tion of a test to secure a reliability coefficient is to be deprecated.

However, the repetition of a test to secure an upper limit or

maximum value above which the true reliability coefficient

will not lie may be considered to be a sound procedure.

Spearman (1904 and 1907), who introduced the term "relia-

bility coefficient," used it as here to designate ru, the correla-

tion between comparable tests, and Brown (1911) used the

term to mean rn, the correlation between repeated tests. This

is an unfortunate vitiating of the Spearman concept. Particu-

larly in view of the fact that a reliability coefficient in the

Spearman, and not in the Brown, sense, is the one needed in

all the formulas leading to an estimation of true correlation.*

It has been pointed out that the correlation between repeated

tests constitutes an upper limit of the reliability coefficient,

while the correlation between two forms meeting condition (3),

but not fully meeting condition (2), would constitute a lower

limit. Should these two correlations lie close together prob-

* The unfortunate use of rn as a reliability coefficient given in Brown <1911) is co1rected

in the later edition as Brown and Thomson (192 r) define m as here used to be the reliability

coefficient.
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ably an average of them would constitute a close approximation

to the true reliability coefficient. We may expect in most

mental and educational test work that the true reliability

coefficient will be less than the obtained rn, and greater than

the obtained m. The lack of fulfillment of condition (1) for

certain age groups and with certain tests probably at times

leads to too high a reliability coefficient and at other times to

one which is too low.

Section 56. Correction for attenuation

Let us return to formula [147] and write TpQ for the average

of all the Tpq's. Then we have

ab

abffQ-S r^.

Similarly

~\

and

bi -b

(6! - 6) rpQ = S rpQ

This gives

dbf pQ

'(,+.+ ...«a+n +...» - Vs + _ a) ^ V6 + (6, _ b) ?p<}

(Correlation between sums or averages of

equally weighted scores) [154]

If we make both a and b infinite, we obtain an estimate of the

correlation between a true criterion and a true test score, which

Spearman calls the value corrected for the attenuation in the

raw rPQ value due to chance errors. Let us designate the

scores which enter into the criterion as Xi, X3, Xs, etc., and

those entering into the composite test score as X2, X4, Xii etc.

Then from [154] we have

_ rn (Correlation between a true

roo 00 y'rii ^/Tu criterion and true test score,

Spearman's formula for cor-

rection for attenuation). . .[155]

or in the previous notation where ra is the correlation between

two different measures, m the reliability coefficient of the first

measure, and r2n of the second, we have

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CORRELATED MEASURES 205

The observations as to comparable tests apply equally to the

securing of comparable criterion scores. In particular if the

criteria are teachers' judgments there may be high correlation

between errors in judgments if teachers have discussed certain

pupils with each other.

Section 57. Reliability of Averages

Formula [147] for the correlation between sums enables us to

determine the reliability of the sum or average of a number

of similar tests, knowing the reliability of a single test. If

the tests are similar, we may call the successive tests different

forms of the same test. Then the standard deviations are

equal; if a straight average is taken all weights equal one;

a

and further, if the forms in the S average are similar to those

1

b

in the S average, then every rpQ = every rPq = every tpq

1

= m — the correlation between one form and a second similar

one. Let r„/, (,/ be an abridged notation for ra b ; that is,

sxP sxp

for the situation which holds when the scores in both of the

summations are upon similar tests or forms. This is the cor-

relation between the average or sum of o forms and the aver-

age or sum of b others. It is given by

r = aftrii

r°1-b1 Va + (a' -a)rlIVb + (6' - b) r, I

(Correlation between the average score

upon a forms and the average upon

b others) [156]

If a equals b we have:

a r, 1 (The correlation between the average

raf, Af ~ 1 _|_ (a _ 1) Tj J score on a forms of a test and a

other similar forms) [157]

This formula given by Brown (1911) has frequently been

called "Brown's formula." It is, however, but a special

case of Spearman's earlier formula [147]- If but a single

form of a test is available it may be possible to divide it into

two comparable halves; for example, one half composed of the
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odd and the other half composed of the even exercises, and

calculate the reliability coefficient of the half form, n. i. or

?- Ir

more simply, n i and then by formula [157] obtain the relia-

311

bility coefficient of the single test.

2 rl L (Reliability of a test determined

r,j = , 2 from the scores on the two

1 +rJl halves) [158]

2 II

A second use to which formula [157] may be put is in the de-

termination of the number of forms required to secure a desired

or essential reliability coefficient. Solving for a we obtain

ra{, Af 0 — rij) (Number of forms required to se-

° = T1j (l _ W. Af) cure a given reliabilitv raf, Af) . - ti59]

The use of this equation frequently enables one to determine

whether it is worth while to attempt to improve a correlation

with a criterion by increasing the length of the test. If we

have a problem requiring a correlation of not less than .90 with

a certain criterion, and not permitting a test program extending

over more than two hours, and if we find experimentally that

the reliability of a certain 10 minute test is .20 we may deter-

mine whether it is of any use continuing with this test. The

test cannot, except as a matter of chance, correlate with any

criterion to a greater extent than it correlates with a "true"

score of the particular function which it measures. Thus if

the criterion is the true score in formula [153] then ro« becomes

ri» and roi becomes rn, so that we have

rioo = Vr, j (Correlation between one form of a test and a true

score of the function measured by the test) [160]

Thus in our present problem .go = vV„/, Af, or raf.A/= -81.

That is, even if the criterion is no different in its essential

nature from that which is measured by the test, it is still

necessary to have a test with a reliability of .81 in order to

obtain a correlation of .90 with the criterion. Using formula

[159] we have

.81 (1 - .20)

a = .20 (I - .81) = 17
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Thus a test at least seventeen times as long as the one with

reliability .20 is needed. This would require 170 minutes

testing time, which according to conditions laid down is out

of the question, so that there is no use continuing with this

particular test. This very practical answer is obtained with-

out any knowledge of the criterion or of the test correlation

with the criterion.

Formula [152] aids in determining the fitness of a test for a

given purpose. Let us suppose that we have three 10 minute

tests, the first with reliability .80, the second with reliability .40,

and that these two correlate with a criterion to the extent of

.30, and that the third test has a reliability of .20 correlating

with the criterion to the extent of .24. How much will these

correlations be raised by lengthening and thereby making

the tests more reliable? Using formula [152] we obtain the

accompanying table.

TABLE XXXIX

Correlation of Scores of Tests of

Length of Test

Time Re-

Different Lengths with the Criterion

quired in

Minutes

Test X

Test Y

Test Z

(Reliability .8)

[Reliability .2]

[Reliability .2]

i of test . . .

2-5

.24

.18

.13

i of test . . .

5

.27

.24

.17

Single test . . .

10

.30

.30

.24

Sum of 2 tests

20

.32

36

-30

Sum of 3 tests

30

.32

-39

.34

Sum of 5 tests

50

-33

.42

.39

Sum of 10 tests

100

.33

-44

.44

Sum of 20 tests

200

.33

.46

-48

Sum of 00 tests

.34

.47

-52

From this table it is apparent that the relative excellence of a

test in comparison with others is a matter of reliability, cor-

relation with the criterion, and possibility of increasing or

decreasing the length of the test without changing its essential

nature. If the three tests can be lengthened or shortened

without changing their essential nature then 2.5 or 5 minutes

testing with test X would yield a higher correlation with the

criterion than the same amount of time with either test Y or

Z. Thus if the testing time is less than ten minutes test X is
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the most valuable. If the testing time lies between ten min-

utes and 100 minutes test Y is the most valuable, and if the

testing time is over 100 minutes test Z is the most significant.

The principle here involved may frequently be used in making

the original selection of one or more tests and before correla-

tion with a criterion is known. If the testing time is of neces-

sity brief, give prime consideration to reliability of test; and

if the testing time is long, give prime consideration to "validity,"

to use a term recently employed in psychological literature,

i.e., to the accuracy and detail with which the test parallels the

criterion function, and but secondary attention to the reliability

of the test. If the reliability of the criterion is known the

correlations of the tests with a true criterion may be obtained

from the coefficients in Table XXXIX by dividing each by

the square root of the reliability coefficient of the criterion.

The resulting table will show even more strikingly than does

Table XXXIX the relative merits of the three tests.

Section 58. The Probable Error op a Coefficient

Corrected for Attenuation

The student should carefully note that the coefficient of

correlation obtained by the use of the Spearman formula for

correction for attenuation should never be used for the estima-

tion of one actual measure from a second. This "corrected"

coefficient is a promise of the correlation that one might expect

to find between the variables if one had perfectly reliable

measures. To use this corrected coefficient in a regression

equation would lead to a less close fit of the regression line and

to a larger standard error of estimate of the criterion, knowing

the independent variable, than occurs when the "raw" cor-

relation coefficient is used. The corrected coefficient of cor-

relation is mainly of value in theoretical discussions and in

serving this purpose its divergence from 1.00 is usually material.

The derivation of a formula for the standard error of a cor-

rected coefficient is as follows, in which the subscripts have

the meanings stated at the beginning of Section 56.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CORRELATED MEASURES 209

Taking logarithmic differentials, we have

dr oe 00 _ dr 1! drii dru

r 00 00 rii 2 ru 2 rt

Squaring, summing, dividing by N, we have

r'oooo r'u 4r!i, 4 r'M rum Wu 2 rnru

We may obtain r,a,u and rV21 by formula [129], rri>,!4 by

formula [128], and all of the a>'s by formula [108 b]. Doing so,

collecting terms and simplifying yields,

roo 00

i7r™°° Vjv )r'nt4r'llt4r'„ r13 V 2 I + r,J

_*Wj _r« r'u \ r'u (i - rn) (i - ru) M

In the notation of this chapter this is

_ r<x,<x, ( , , I , / I r'i3 . I \

- —7i7 l^oooo +— + ( —: + rn I )

(Standard error of a coefficient of correlation calculated by formula

i55o) [161]

If we let An stand for the first parentheses and Am for the

second we have

a,xa = "VF (r°° °°' + rlt + A11 + A'a)*

The quantities 1/r2 and A are tabled for different values of r,

in Table XL.

When the corrected coefficient of correlation is calculated by

formula [161 c], or by

roooo = ,— .— [161 a]

in which r = (rt2 + ru + rn + rjl)/4, the standard error of

roo 00 is smaller than given by [161]. Before calculating this

standard error let us note that r may be expeditiously obtained

by calculating the correlation between the sum of the two
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tests in the first trait and the sum of the two in the second trait.

We have:

2 (*, + x,) (xi + x4) _ r,i + ri, + r» + r«

"' Vs(*1+*,)'VZ(*, + *,)' 4V(i+r„)/2V(i +r«)/2

r

+ r„)/2 V (i + r*)/2

so that

r = r (i + i) (' + 4) V(i + rn)/2 V(i + r 24)72 [161 ft]

Thus r may be easily obtained from a knowledge of the relia-

bility coefficients and of the correlation between the two sums.

Assuming that the arithmetic average is as reliable as the

geometric average, then rx oo calculated by [161 a] has the

same reliability as roo oo obtained from

_ (rurnr3irM)l (Yule's form of Spearman's formula

°° 00 Vru2 vTm' for correction for attenuation).. [161 c]

The standard error of r oo oo calculated by this formula may be

obtained in a manner very similar to that given in [161]. It is,

however, a lengthy procedure and will not be recorded here.

In brief it involves taking logarithmic differentials, squaring,

summing, dividing by N, substituting values as given by

formulas [108 b], [128] and [129], collecting terms after assuming

that = ru = r& = r34 = r. The answer is

_ T 0o cc /, 1 1 1 I + Tii + r« I 1

To, 0o 7= I 4 r 00 00 + ~i 1 ~i r -j—h

2VJV \ T 0000 r" rau r'i

M

_ A

ri3

(Standard error of a coefficient of correlation cal-

culated by formula 161 a or formula 161 c)... . [161 d\

Magnitudes 1/r2 are given in Table XL. Study of this formula

shows that the error in the corrected coefficient is very fre-

quently not at all large, being in fact much smaller than given

by Spearman (1910). The disagreement in derivation above

[161 d] and that given by Spearman (1910, equation 24, p. 294),

lies in the fact that Spearman, following Filon, to whom part

of the derivation is credited, used formula [128] throughout,

whereas formula [129] should at times have been used. The

realization that this standard error is smaller than previously
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recognized should throw much new light upon the question of

the specific or general nature of intellectual functions.

TABLE XL

r

i/r*

A

r

i/f

A

r

A

.01

10000.

2389-

-36

7.716

- I.52I

.71

1.984

~ 1-329

.02

2500.

574-

.37

7-305

- I-54I

.72

1.929

- I.316

.03

IIII.

243-

.38

6.925

- 1-556

.73

1.877

- 1-304

.04

625.

130.

-39

6-575

- 1.568

.74

1.826

— 1.29I

-05

400.

79-

.40

6.250

- 1.578

.75

1.778

- 1.280

.06

277.78

5184

.41

5-949

- I-584

.76

I-73I

— I.267

.07

204.08

35-8o

.42

5.669

- 1.588

.77

1.687

- 1-255

.08

156.25

2564

-43

5.408

- I-590

.78

1.644

- 1-243

.09

123.46

18.84

-44

5-165

- I.590

.79

1.602

- 1231

.10

100.00

14.10

.45

4-938

- 1.588

.80

1-563

- 1.219

.11

82.645

10.68

.46

4.726

- 1.585

.81

1-524

- 1.208

.13

69.444

8.14

.47

4-527

- I-58I

.82

1.487

— 1.196

-13

59-172

6.23

.48

4-34o

- 1-576

.83

1-452

- 1.184

.14

51.020

4-75

-49

4-165

- 1-570

.84

1.417

- 1173

.15

44.444

3-59

.50

4.000

- 1-563

.85

1384

— 1.161

.16

39.062

2.669

.51

3-845

- 1-555

.86

1-352

- 1.150

.17

34.602

1-93l

-52

3.698

- 1-546

.87

1.321

- 1.138

.18

30.864

1-332

.53

3-56o

- i-537

.88

1.291

— 1.127

.19

27.701

.843

.54

3-429

- 1-527

.89

1.262

— 1.116

.20

25.000

.440

.55

3-306

- I-517

-90

1-235

- 1.105

.21

22.676

.106

-56

3-189

- 1-507

.91

1.208

- 1094

.22

20.661

— .172

.57

3.078

- 1.496

.92

1.181

-1.083

.23

18.904

- -4o5

-58

2-973

- 1-485

.93

1.156

— 1.072

-24

17368

— .601

.59

2.873

- 1-474

.94

1-132

— 1.062

.25

16.000

- .766

.60

2.778

— 1.462

.95

1.108

- 1.051

.26

14793

- -905

.61

2.687

- I-451

.96

1.085

— 1.041

-27

13-717

- 1.023

.62

2.601

- • -439

.97

1.063

- 1030

.28

12.755

— 1.122

.63

2.520

- 1.427

.98

1.041

— 1.020

29

II.891

— 1.207

.64

2.441

- 1-415

.99

1.020

— 1.010

.30

II.Ill

- 1.278

.65

2.367

— 1.402

1.00

1.000

— 1.000

.31

10.406

- 1-338

.66

2.296

- 1.390

-32

9.766

- 1-389

-67

2.228

- 1-378

.33

9-183

- 1-432

.68

2.163

- 1.366

.34

8.651

- 1-467

.69

2.100

- 1-353

.35

8.163

- 1-497

.70

2.041

- i-341

With probable errors available there is no excuse for the

indiscriminate averaging of corrected coefficients having values

above and below 1.00, yielding possibly an average nearly

equal to one. If we have a corrected coefficient equal to .90
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with probable error of .02, and a second equal to 1.10 with a

probable error of .02, wa may conclude that neither coefficient

is a chance variation from 1.00, and further that the funda-

mental hypotheses of similar tests, lack of correlation between

errors, etc., underlying the idea of a reliability coefficient,

must be absent in the case of the data yielding the corrected

coefficient 1.10. A corrected coefficient greater than 1.00 is

just as absurd as a "raw" coefficient greater than 1.00, and if

positively found, as for example, 1.10 ± .02, it demands a

reexamining of hypotheses as truly as would the latter were

it found to be greater than 1.00. Only in case corrected

coefficients differ from 1.00 by such small amounts that the

value 1.00 is well within the likelihood of occurrence, judged

by the probable errors of the corrected coefficients, is it sound

to average several such corrected coefficients to secure a measure

of general tendency?

Section 59. Estimates of True Scores and the Probable

Errors of These Estimates

Formula [153 a] has value for very practical reasons. For

example, suppose we know that the reliability of foremen's

judgments of the expertness of mechanicians is .36, and sup-

pose we have a trade test the score upon which correlates with

the judgments of one foreman to the extent of .48, then, letting

the foreman's judgments equal Xq and the trade test score

equal Xi we have

Tiao 7= ~,—= — -oO

vr« V.36

Thus the correlation between a single test score and an average

of the judgments of an infinite number of foremen would be .8.

If the hiring of a mechanician is not so much for the purpose

of satisfying a particular foreman as it is to secure expert

workmen the correlation .80 is not only the one of theoretical

importance, but is, in fact, the correct one to use in regression

equations estimating expertness from trade test score. We

would have, letting *oo = the foreman's true judgment of

expertness and x.x> the best estimate of it.

- 0^0 (Regression of a true criterion upon a

*" = riao a, *' fallible score) [162]
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The correlation rioo is given above and <roo is immediately

available, for we have, letting s bscripts here indicate scores

on successive comparable trade tests,

<ro = = 5aV + 5 rpqapaq ..[163]

And if the a's are equal and r stands for the average of all the

inter-correlations between the tests this reduces to

<ro = 0Va + (a2 — a)r (Standard deviation of the sums

of a comparable tests) [164]

or, dividing by a and now letting a„ stand for the standard

deviation of the average of a such tests we have,

a - a 11 — r ^ (Standard deviation of the aver-

0 \ a ages of a comparable tests) . .[165]

And finally if o approaches °o

a x — (Standard deviation of the averages of an

infinite number of comparable tests).. [166]

Since <ra< a, the standard deviation of the true ability of a

group is less than the standard deviation of the group upon a

single fallible measurement. Accordingly measures of dis-

persion based upon single tests are too great to represent the

true distribution. Estimates of true dispersion are given by

formula [166]. As is obvious from the derivation, a and r in

the right hand member should be determined from the same

population, or at least from two populations which one would

expect to be equally homogeneous. I have elsewhere (Kelley,

1919 meas.), used formula [166] in the process of obtaining a

measure of true overlapping in ability of two groups.

Returning to formula [162] we obtain

_ riog0 Vr„1 _ ao (Regression of a true

*" ~ Vr^ a, Xl~r™aiXl criterion upon a

fallible score) [162 a]

The reader will of course notice that the right-hand member of

this equation is the same as that of formula [91 a] which gives

the regression of a fallible criterion upon a fallible score. We

thus have,

«oo = 6o1*1 (Regression of a true criterion upon

a fallible score) [162 b]

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



214

STATISTICAL METHOD

and

x„ = 4oi*i (Regression of a fallible criterion upon

a fallible score) [91 ft]

or the estimated true score is the same as the estimated single

score. This is, of course, as it should be, and further it leads

to the interesting fact that the standard errors of estimate in

the two cases are different. We have

ffo. 1 = <ro£oi = a»^fl — r'oi

(Standard error of estimate of a fallible cri-

terion by means of a fallible score) [86]

ffoo-i = 0a,k00 1 = ou^Too \ll = fo vVoo — r!oi

X roo

(Standard error of estimate of a true cri-

terion by means of a fallible score).. [167]

Thus we are able to estimate the true criterion score with

smaller error than the fallible criterion. This is very satis-

fying. It means that in general, trade tests, intelligence tests,

etc., actually accomplish a more accurate classification of those

examined than indicated by the correlation with the criterion,

since the criteria used are regularly fallible. The reliability

coefficient roo is of necessity greater than r\i, but with excellent

tests and poor criteria it may not be very much greater, so that

errors of estimate in placement may be small, and in fact much

smaller than usually conceived. As a practical consequence

it is seen that a systematic error in a criterion is very vicious,

but that the chance error has no consequence whatever except

in the requiring of a larger population in order to establish

results with equal certainty.

Section 60. Accuracy of Placement on Basis of a Single

Score

If in formula [162 a] we make Xoo the average of many

such scores as Xi, we have

*oo = rij *l

or

-^ao m ri1 X1 + (1 — r,j) ilfi (Regression of a true score upon a

fallible score of the same function) [168]

The reason the correlation coefficient has replaced the regres-

sion coefficient of equation [162 b] is because we are here dealing
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with similar scores, implying equal standard deviations, so that

ru = 6n. The accuracy of this estimate of a true score is

given by

ffoo "i = ai v rir —

(Standard error of estimate of a true score by means of

a single score of the same function) [169]

This formula is very valuable as it enables a judgment as to

the accuracy of placement. Let us be given an elementary

school reading test, having a reliability coefficient of .8 and a

standard deviation of 10 on test scores covering the same range

of talent as that from which the reliability coefficient was deter-

mined. If the sixth grade norm, or average score, equals 30,

the seventh grade norm 38, and the eighth grade norm 46,

let us determine the standard error of placement of a pupil

as classified on the basis of the test score. We will first esti-

mate the pupil's true score by formula [168]. The standard

error of the estimated true scores, Xaa, is given by formula

[169].

goo.i = 10 V.80 — .64 = 5.0 —

The standard error of placement of the child is 5 and the prob-

able error of placement 3J, or 42 per cent of the difference

between grade means. The question raised and answered has

not involved a criterion outside of the test itself. With refer-

ence to that capacity which is measured by the test, we can

say that the error of classification is a certain percentage of

the difference between norms; or, if the difference between

grade norms is called a year's growth, a certain percentage.of

a year's growth. Much may thus be determined without a

criterion and this procedure is generally to be preferred to

dependence upon a criterion having a systematic error, such,

for example, as would be the case were a teacher to systemati-

cally judge pulchritude, vivacity, or mere industry, as evidence

of reading ability. In addition to the simplicity of the method

just described it may be recommended from the standpoint of

reliability. The standard deviation of estimated true scores

(estimated by means of the regression equation) is .i, and

the standard deviation of test scores is ai. Accordingly <roo

is a measure of the proportionate reduction of error in the
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placement of an individual having a given test score, over

random placement. Th2 smaller this ratio the greater the

reduction. This quantity has a very small probable error as

will immediately be shown so that the proportionate improve-

ment due to the use of a test can be very accurately determined.

Let <roo.j/ai = i = the measure of improvement due to the

use of the test. Noting that the correlation between r and

H equals i .o we have

«'' = r — ri = r (i — r)

taking logarithmic differentials,

2i di _ dr dr

i' ~ r I — r

Squaring, summing, and dividing by N,

4 g'i _ ffV , a2r 2 a8f

= r' + (i - r)' r (I - r)

. aV (1-2 r)'

"—

= (i + r) i ] i - 2 r |

2 r ViV

(Standard error of the measure of improvement, over

random classification, resulting from the use of a score

of reliability r [ = r,j]) [170]

Note that if m = .5 this standard error becomes zero. In

the derivation of the formula second and higher powers of

errors have as usual been discarded. Their inclusion would

show that the standard error of this ratio is a trifle above

zero when rn = .5. If the error in rn is of the order .02 the

square is .0004, which is the order of the discarded portion,

so that no material error is introduced in the formula by the

omission of second and higher powers of the errors in rn if N

is greater than 25. In fact, for ordinary values of rn we have a

remarkably small <r,. We need not hesitate to place confidence

in an obtained value of i, even though the probable error of

the obtained ru is rather disconcertingly large.
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Section 61. Average Intercorrelation

The correlation m has occurred in several of the preceding

formulas. If but two series of comparable scores are available

this correlation may be calculated in but one way, but if there

are several comparable series or forms of a test, which have

been given, there are many ways of calculating the reliability

coefficient. Having five comparable series of measures xi, fy,

xs, Xi, Xi there are 10 possible pairings of series from which to

calculate a reliability coefficient. This would in itself be a

rather laborious task, but if the standard deviations of the

several series are equal, or approximately so, the average of

these 10 correlations may be calculated in a single operation

since formula [163] may be solved for r, giving

*'a (Average intercorrelation between

_ g2 a series, whose means, and

11 a' — a standard deviations, areequal).[171]

The magnitude a is the number of series combined, so that it

only remains to calculate aa and a. If scores for each indi-

vidual on the a forms are added, a series of N scores is obtained

whose standard deviation is a„. Further the (aN) separate

scores may all be entered into a single distribution and the

standard deviation, a, calculated. Thus whenever the means

and the standard deviations of several series are equal, it is

practically as simple to calculate the average intercorrelation

as to determine a single correlation. It will now be shown that

when ranks instead of scores are involved the calculation of the

intercorrelation is still more simple. We need a2a and a. It

has already been determined in Section 53 that if there are

N ranks, 1, 2, 3, . . . N, their mean equals (N + 1)/2 and

their standard deviation

\n' -1

Accordingly

. N' - 1

a" =

12

Let S equal the sum of the a ranks for a given individual, then

ZS /N+i\

-N"a(—)

and

, 2 s' r (n+ 1)t
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Substituting the obtained values for <r2 and a2a and simplifying

gives

a (4 N + 2) 12 Z S'

r'! 1 (o - 1) (N - i) +o (o - i) iV (iV2 - i/

(Average intercorrelation between a series of iV ranks). . [172]

This formula may be illustrated by a problem drawn from the

writer's material. Six judges, K, T, U, B, L, H, rank ac-

cording to merit 12 answers to a given problem as follows:

Ranks Given by Judges

Answers

K

T

£/

B

L

H

s

S'

A

I

5

7

10

2

5

30

900

B

2-5

6

4

6

3

9

30.5

930.25

C

2-5

3

1

4

1

2

135

182.25

D

4

2

2

11

8

3

30

900

E

5

12

3

1

4

10

35

1.225

P

6

1

8

2

5

1

23

529

G

7

11

10

8

12

4

52

2,704

H

8

9

5

7

6

11

46

2,116

I

9

4

9

12

7

6

47

2,209

J

10

7

11

5

9

8

SO

2,500

K

11

10

12

9

10

12

64

4,096

L

12

8

6

3

11

7

47

2,209

20,500.50

0 = 6, N = 12, 2 52 = 20,500.50

therefore, by formula [172], r,j = .3241

Such a problem as finding the average intercorrelation between

the ranks of English compositions when 50 compositions are

ranked by 100 judges would require the calculation of 4950

correlation coefficients, if no short-cut were available. But

by the method illustrated the work could be done after the

tabulation sheet is available in the time that might be required

for four or five coefficients of correlation.

Suppose for the data just given it is desired to find out who

is the best judge. The data are, of course, too scant to answer

the question but they will illustrate the method. We might

find correlations tks, rrs, rus, etc., and consider that judge the

best who agrees most closely with the composite ranking.

These correlations would enable a ranking of the judges, but

they would be spuriously high because the rank of the judge
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himself is included in the S composite. We therefore desire

either rx(s-K) the correlation of the judge with the composite,

omitting himself, or {tkt+ tku+ - - . tkh)/s the average of all

the correlations of each judge with the others. If judgments

are expressed in the form of rankings, standard deviations are

equal. The formula derived below will apply not only when

ranks are used, but to any case in which standard deviations are

equal. Let a = the .common standard deviation of the rank-

ings. Let ns represent the correlation between the ranking

of one judge and the sum of the rankings of all the judges,

including himself. Let r, (s _ ,, be the correlation between the

ranking of one judge and the sum of all the rankings of the

other judges. Let

_ ru + ru + . . . + r, 0

represent the average correlation between rankings of judge

(1) and the other judges, and let rPq equal the average of all

the intercorrelations between the ranks of the judges. Then

where p takes all values from 1 to a except the value 1.

I a' — a

o'-o,

where p takes all values from 1 to a, and q takes all values

except the value p.

TlS N 00a a Vaa' + (o2 - a) rfqa'

I + (a - 1) flP

Z xi (*i + x, H + xa) a' + (0 - l)rrpff!

lS Va + (a'-a)rpq

Solving for rip we have

[173]

r, 5 Vo + (a2 — o) rpq — 1 (Mean correlation between

rip = a — 1 one series and (<* — r)

others, in case standard

deviations are equal). . .[174]

The requirement that means shall be equal is necessary in case

formula [171] is used for the calculation of rpq. The notation
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ru was used upon the assumption that the several series were

similar, but note that ru of formula [171] and rPq in formula

[174] are identical in derivation. The average intercorrela-

tion rpq is to be calculated once for all by formula [171] or [172]

and ris calculated by the ordinary formulas [90], [93], [94],

[95] or [142] for each successive series.

_ 5*i (*i + *i H xa - xi)

r,(5_,) " Na' vT+lo5"- a) rM - I - 2 (o - 1) 7ip

(a ~ 1)^io

'* <*"l)" V(a - 1) + (a' - a) f* - 2 (a - 1) rx>

(Correlation between one series and the com-

posite of (a — 1) others in case standard devia-

tions are equal) [175]

Formula [175] involves 1iP which is already given by formula

[174]. Substituting we obtain

- (1 - rlS Va + (o' - o) fft, )

1 <5~ , V- 1 + a + (a' - a) ?M + 2 (1 - rlS Va + (a' - a) F„)

(Correlation between one series and a sum or

average of (a — 1) others if standard deviations

are equal) [176]

To illustrate these formulas we may study the rankings of the

six judges K, T, U, B, L, H to answer the question; which

judge agrees most closely with the composite rankings of the

others: We have

ak - ar = *" ~ \

*s~

144 - I

= 3-4521

12

205OO.5

T6(I2 + 1)"l'

12

L 2 J

I XKS - (30 + 76.25 +...)-» [H±i] pfittD]

= 454-00

XxKS

r™ m N^TS - -8006

A similar determination of the other correlations gives the

table

rKS -8006 rBS = .3086

rrs = .6604 = .8006

rUS = -7504 rHS = .6437
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These coefficients establish the order of agreement of each

judge with the others, but they are spuriously high in that 5

includes the record of each judge himself. We will, therefore,

knowing by previous calculating, rPq = .3241, use formula

[176] to calculate rn(s-K) and other similar coefficients. We

obtain

rK(S-K) " -6752 rB(S-m = o592

rT(S-T) = -4777 rHS-L) = -6752

r£/(S-tf) = .6oi9 rms-H) = -4554

These correlations may be taken at their face value. It is

seen that judges K and L agree most highly with the other

judges, while judge B agrees scarcely at all with the average

opinion of the others.

Section 62. The Effect of Different Ranges upon

Correlation of Similar Measures

I have elsewhere pointed out (Kelley, 1921 rel.) that a

coefficient of correlation should be interpreted in the light of

the ranges of the traits measured. This is true of all correla-

tions, but it may be most readily proven when dealing with

reliability coefficients. To quote from the reference cited,

making such slight changes as are necessary to conform to

the present notation:

"The reliability coefficient is, however, not an entirely satis-

factory measure of reliability, for it is affected by the distribu-

tion, in the trait measured, of the particular group studied.

To secure a reliability coefficient of .40 from a group composed

of children in a single grade is probably indicative of greater,

not less, reliability than to secure a reliability coefficient of

.90 from a group composed of children from the second to

twelfth grades. If it is reasonable to assume that in terms of

true ability the spread of talent is four times as great in the

eleven grades as in a single grade, the correlation in the second

case would need to be .914 in order to indicate as close a rela-

tionship as that shown by a reliability coefficient of .40 in the

single grade. The following formula gives the relationship:

Co0 Vr, 1(1— R^i) (Relation between ranges in true

j~ = -/b—. _ n ability and reliability coefficients). [177]
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<Too and 2oo are the standard deviations of the two groups in

terms of true ability, and ra and i?u are the reliability coeffi-

cients of the two groups. Solving this equation for the case

in which 2qq = 4 coo, and m = .40, gives Ra = .914

"If the standard deviations of scores in two groups are known,

it is not necessary to make any assumption; for then the

following formula applies:

a Vi — Ri j (Relation between ranges in obtained

S — y'j _ T~^ scores and reliability coefficients).. [178]

In this formula a and 2 are the standard deviations of the

scores in the two groups and m and Ra the reliability coeffi-

cients respectively. In passing, it may be noted that this

equation is an excellent criterion for determining whether a

test is equally effective in a range 2 as in another range a;

for, if the relationship just given does not hold within the

probable error of the determination, it is evidence that higher

correlation is found in one part of the range than in another."

The proof of the above formulas is simple. Let ai.oo — the

standard deviation of an array of single test scores correspond-

ing to a given true score for the one range of talent and X1.00

the standard deviation for the second range of talent. By

formula [86]

gl oo = oi vi — r!loo

but by formula [160], rhoo = m so that,

fi 00 = a 1 Vi — r,j

Similarly

Z, oo= 2, Vi - Rtl

but if the test is equally as effective in one range as in the

other the standard deviations of the divergences of the single

scores from the true scores are equal, i.e.,

so that

a 1 _ V1 — R (Relation between standard deviations and

2i — Vi — r reliability coefficients obtained from two

different ranges when the measure is

equally reliable throughout the two

ranges) [178

* The validity of this equation is briefly discussed by Holzinger (1921).
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Formula [165] enables us to express the same relationship

dealing with true standard deviations instead of those obtained

from single tests. Substituting for <si and 2i, we have

The fact that correlation changes with range makes comparison

between reliability coefficients difficult. If one worker reports

a test as having a reliability coefficient of .40 and a second

reports a reliability coefficient of .90 for a test purporting to

measure the same function we are not warranted in concluding

without further data that the second test is the more reliable.

For this reason the reporting of standard errors of estimate of

true scores is to be recommended, for these will not change with

the range if the test is equally effective throughout the range.

Knowing the standard errors of estimate we would still be

unable to compare two tests, if there is no equating of the units

of the one test in terms of the units of the other. If the first

worker reports a standard error of estimate for his test of 10

units, and the second a standard error of 2 units, and if some

method of equating the scores (see Chapter VI) enables one

to say that 6 units in the first test are equivalent in range

covered to one unit in the second, then we can definitely say

that the first test is the more reliable, for 10/6 < 2/1. More

extended discussion of this point is given in (Kelley, 1921 rel.).

Section 63. The Effect of Different Ranges upon

In case two different series of measures are correlated it is

usually not known just what is the nature of the curtailment or

extension of the ranges of the two series which has been brought

about by some selective agency. In illustration; individuals

of one race are probably less variable with reference to general

intelligence and also less variable with reference to memory

ability than humanity in general. But how much the decrease

in variability is, or whether it is the same in the two functions

(Relation between true measures of

dispersion and reliability coefficients

obtained in two different ranges,

when the measure is equally reliable

throughout the two ranges) 1

[i/9]

Correlation of Different Measures
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is not known. The correlation between general intelligence

and memory ability determined from a random sampling of

one range would probably be smaller than the same correlation

calculated from humanity in general, but a priori considerations

would give but a poor estimate of how great the difference is.

In such a case and without additional data a correction of the

correlation as found in the one range to enable a comparison

with a similar correlation as found in the second range is

impossible. If, however, the nature of the curtailment is

known and is upon the basis of one trait only we may derive a

formula enabling a comparison of correlation coefficients ob-

tained from different ranges. Note that one trait is arbitrarily

curtailed (or extended) and that the other is affected only in a

consequential manner. Let x be the variable, the distribution

of which is curtailed, and let y be the other variable. In the

non-curtailed, scatter diagram let us suppose the y arrays are

homoscedastic and show rectilinear regression. The dropping

out of certain of these arrays, or of random parts of certain of

them, will not change the slope of the regression line nor the

homoscedasticity of the ^-arrays, but it may be expected to

change both the slope of the other regression line and the

scedasticity of the it-arrays. Thus, designating the constants

of the uncurtailed distribution by capital letters and of the

curtailed by small letters, we have

= 2m and 6'1 = Bii [180] and [181J

but

fi i 7^ Zm in Bii

<rl Zl ffi 7^ 22

and

7^ ^12

By formula [56] we have

ai 1 = 221 = ff2 Vi - r!u = 2j Vi - R'i,

or

ff2£u = 2'Ku (Relation between correlations and y-standard

deviations when *-ranges have been changed). [182]

Note that formula [178] is but a special case of [182] for by

letting the first variable be a true score and the second variable

a score upon a single test of the same function, formula [182]

becomes formula [178]. We may relate the ^--standard devia-
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tions to the ^-standard deviations and obtain a relationship

between the correlation and the standard deviation of the

curtailed distribution. By formulas [87] and [180] we have

Z'i = aV, +2^

also

y = ri,-x

.[183]

.[184]

Squaring, summing and dividing [184] by the population gives,

for the uncurtailed distribution,

Substituting in [183]

2', = aVi + r'„ a\ = a', [(1 - r'„) + r\i (f))'] . . - [185]

Substituting this value of 2^ in formula [182], dividing by <r2

and solving for Ra yields

Ru

.[186]

Vi - r'„ + r'„ (S,/<r,)'

which is the result obtained by Pearson (1903, inf.).

This may be written in the form

gu _ Tit (Relation between correlations de-

Xii2i ki&i tennined from ranges whose

standard deviations in the case of

the curtailed measure are in the

ratio Zi/vi) [187]

The only assumptions underlying this derivation have been

rectilinearity and homoscedasticity in the curtailed trait. The

standard error in R when thus determined is given in formula

[300]. The accompanying table is presented to give a concrete

idea of the differences in correlation that may be expected due

to differences in range:

TABLE XLI

If r - .1

Then R =

r = .2

R -

T - .3

r - .4

R =

r = .6

R =

r - .8

R =

2i

R -

.75

.133

.263

.387

.5"3

.707

.872

.971

-50

.197

.378

.532

.658

.832

-936

.987

.25

-373

.632

-783

.868

-949

.983

-997

.10

.709

.898

.953

.975

.991

.997

.9995
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A situation in which the ratio of the standard deviations may

be determined is when the curtailed distribution is a part of

a normal distribution. We have already noted [181], that

'= —— = f,21 = Oil

It is necessary to remember that the first variable x is the one

upon the basis of which there has been a curtailment of distri-

bution; that is, whatever difference there may be between a2

and S2 is consequential to an imposed difference in ai and 2i.

This equation should be valuable in determining which of

two functions is the more influential in causing selection.

Suppose that for a narrow and a wide range we find bn = ap-

proximately 2?2i, but that 61 2 does not = Bn- This suggests

that trait (1) is the causal trait in bringing about the selection

and trait (2) the consequential trait, or more accurately stated,

that trait (1) is more closely related to whatever is the cause

of the selection than is trait (2). Here again the regression

coefficient is the significant constant for purposes of interpre-

tation.

Brown (Brown, Carl—see Yerkes, 1021, pp. 629-632) has

utilized certain properties of the normal distribution in deter-

mining the ratios of the standard deviations and therefore in

determining the correlations in the two ranges. The Division

of Psychology of the Surgeon General's Office found that many

of its intelligence tests showed evidence of a "jam" at one or

the other extreme; that is, the test was too difficult, resulting

in large numbers of zero scores, or too easy, resulting in large

numbers of perfect scores. Except for the extreme scores

most of the tests gave approximately normal distributions.

Accordingly the extremes of each test distribution were cut off

and the correlation for the resulting scatter diagram calculated.

This is an r from a curtailed distribution. If the ratio ai/2i

can be determined, formula [186] will give the correlation R

that would maintain throughout the entire distribution if the

undistributed extreme scores could be replaced by scores as

discriminative as those in the middle region of the distribution.

We can obtain <ri/2i.

Let us be given a normal distribution of standard deviation

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CORRELATED MEASURES 227

2i and cut off a proportion pi at the lower end and a proportion

<?2 at the upper end, leaving a population of (1 — pi — q2),

which is the same as (qi — q2) in the usual notation as given in

Sections 24 and 27, from which the correlation r is obtained.

No curtailment, except consequential, is made in variable 2.

Let us suppose that the standard deviation of the non-trun-

cated normal distribution 2i is equal to 1.0. Then ai as a

proportion of 2i is the only constant needed in order to use

formula [186]. The standard deviation of that portion of the

distribution, as shown in the accompanying diagram, lying

Pi

Zi

"1 .

between the ordinates xi and xt is required. If the equation

of the total normal distribution is

- x'

2 = 2o e 2

the standard deviation of the truncated portion is given by

integrated by parts and evaluated at the limits gives

*1Z1 — *izi + (gi — g2)

while d, the distance from the mean of the portion to the mean

of the total normal distribution, is given by formula [55] so that

o'i _ Xizi — XiZi — 2i"|' (Standard deviation squared of

2!i ~ gi — 9' Lg1 — g'J a portion of a normal distri-

bution of standard deviation,

Zi, equal to i.o) [188]

Brown has called the right hand member 1 + J and introduced

J into the equation giving r. We will, however, leave formula

[186] as it is and expect ai/Li to be calculated by the present

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

8
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



228

STATISTICAL METHOD

formula [188] in case of truncation at one or both ends of a

normal distribution and the resulting value introduced into

formula [186]. Many very neat illustrations of the aid in

interpretation resulting from the use of this formula are given

in Yerkes (1921). One word of caution is offered. If multiple

correlation coefficients are being calculated it is absolutely

necessary that all the data be consistent. Otherwise such

absurdities as imaginary correlation coefficients may result.

Presumably if there are several variables, and every time a

variable enters a correlation table its distribution is curtailed

in one certain manner, not only would the r's, or the correla-

tion from these truncated distributions be cons'stent with each

other, but also the R's, or the enlarged correlations found by

correcting for limited ranges. I have not proven this state-

ment, but the converse is certainly obvious, that if the cut

occurs in several places in the several scatter diagrams involving

a certain variable there is no statistical imposition making

the r's consistent, so that both the r's and the R's may be

inconsistent. On page 633 of Yerkes (1021) occurs a table

showing that army intelligence test Alphai was cut between

scores one and two in one scatter diagram and not cut at all

in the other correlation tables. There is no evidence that for

these particular data any inconsistency has been introduced

by this procedure, but if the correlation had run high,

.990-999, instead of being less than .98 the lack of a neces-

sary consistency in the original data would be serious.

Section 64. The Effect of Double Selection upon

Correlation of Different Measures

A correction formula is available in case there has been

selection in both variables. For example, consider a correla-

tion between heights of brothers and sisters when brothers

between heights a and b are used and when sisters between

heights c and d, thus dropping out all pairings in which the

brother's height lies outside of ab, irrespective of sister's

height, and also all pairings in which the sister's height lies

outside of cd irrespective of the brother's height. Here there

is selection both in the x trait and in the y trait. Let <ji and at
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be the standard deviations in the unselected distribution and

let the selection in x alone be such as to change <n to si, and

let the selection in y alone be such as to change a2 to s2. Let

2i be the standard deviation of the x's and 22 the standard

deviation of the y's in the doubly selected distribution. To

point the relation between si and 2i we may write

Si = the standard deviation consequent to the direct selec-

tion of the *'s and also due to the indirect effect of

selection of the y's.

Si = the standard deviation consequent to the direct selec-

tion of the *'s.

Thus si is not a standard deviation determined either from the

original or the doubly selected population. It may, however,

be determined by formula [188] or otherwise, if the nature of

the selective agency operating upon the x's is known. The

symbols s2 and 22 have similar meanings when dealing with

the y's. Pearson (1908, inf.), starting with an original, normal

correlation surface has given formulas showing the effect of

double selection upon means, standard deviations, and correla-

tion. Letting <i = Si/<ti, U = s2/a2 and letting small letters

represent constants in the unselected distribution and capital

letters in the selected, his formulas may be expressed:

2i = / ("1, ti, ti, r) Given by Pearson (1908 inf.) [189]

Si = / (ai, ti, d, r) Given by Pearson (1908 inf.) [189 a]

f»i = <1, (ffi, a!, mu m!, ti, ti, r) Given by Pearson (1908 inf.) [189 b]

nti — 4, (ai, a,, m2, mii ti, <i, r) Given by Pearson (1908 inf.) [189 c]

K _r M'

Kii — Mi —.— ==— =

Vi - r\i (1 - t\) Vi - r\i (1 - i2i)

(Relation between r in a normal correlation

surface and R in the surface obtained

from the preceding by double selection). .[190]

Theoretically one could solve equations [189] and [189 a] for

ti and h in terms of ai, a2, 2i, 22 and r; substitute in formula

[190] and thus relate R with r knowing the unselected and

selected standard deviations. However, a solution of the t's

in terms of the other constants runs into a bi-quadratic which

apparently does not simplify so that the symbolic solution

is not here attempted. The numerical solution for a given
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problem is however possible, so that knowing 2i and 1^ the

ratios h and may be determined from equations [189] and

[189 a] or more simply, if the necessary facts as to curtailment

are known, by formula [188], and substituted in formula [190]

to obtain R.

Standard deviations may be either increased or decreased by

selection due to increasing or decreasing certain arrays. Ac-

cordingly there is no necessity that ti or U be less than one, nor

that R be less than r. Whereas both the regression lines in

the correlation surface or scatter diagram giving r are recti-

linear since normality of surface was assumed, in general

neither regression in the scatter diagram giving R will be

rectilinear. As a consequence formula [190] is not symmetrical

with reference to R and r. Selection could conceivably be of

such sort that both the selected and unselected surfaces were

normal, in which case the appropriate formula would of neces-

sity be symmetrical with respect to R and r. The nature of

the selection which would lead to this result is worthy of

investigation.
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CHAPTER X

FURTHER METHODS OF MEASURING RELATIONSHIP

Section 65. The Various Ways of Measuring Relationship

The treatment of the preceding two chapters has shown

something of the extent and detail of analysis of inter-relation-

ship between two quantitative variables which are related in a

rectilinear manner, or at least in such a manner that a simple

transformation will bring about rectilinear regression. If

quantitative data are not of this nature, or if the data are

qualitative, a number of accessory methods of measuring

relationship are available, none of them, however, permitting

the detail of interpretation and flexibility of treatment possible

with rectilinearly related quantitative variables. Three gen-

eral lines have been followed in developing accessory methods

of measuring relationship: (1) leading to measures of relation-

ship which would be identical with the product-moment cor-

relation coefficient, provided data were (a) recorded in a

quantitative instead of in a qualitative form and (6) related in

a rectilinear instead of a curvilinear manner; (2) devising other

measures of relationship; and (3) interpreting relationship in

terms of probability.

The only method of the second and third groups which has,

beyond cavil, demonstrated itself to be generally serviceable is

the "goodness of fit" method developed by Pearson (1900,

crit.). However, before treating of these methods we may

concern ourselves with (1) the measures of relationship which

are equivalent in meaning to the product-moment coefficient

of correlation.

Section 66. The Median Ratio Correlation Coefficient

A method has been proposed by Thorndike (1013), which

has not as yet been studied sufficiently to establish its compara-
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232 STATISTICAL METHOD

bility with the product-moment coefficient for a variety of

types of scatter diagrams. In the usual notation

»r j- r (x/ai y/a,\ .. (Thorndike's median

r<mdn ratio) = Median of ( ~- , JJ1- I ratios . -

\y/oi x/oiJ ratio coefficient of

correlation) [191]

In using this method some convention must be adopted with

reference to x/o, y/o, and 0/0 ratios. In case grouping is

fine, so that there is the possibility of few such ratios, the point

is not important; but if there are large numbers of measures

in the intervals having the means as their class indexes, then

*/0, y/o and 0/0 combinations will make for uncertainty in

results. Calling 1/2 of these equal to 00 and the other half

equal to — 00 will throw the burden of determining r upon the

remaining ratios and, at least in the case of a normal correla-

tion surface, this would not introduce a systematic error. If

the grouping is fine so that the x — o and y = o frequencies

are lacking or negligible in number, and if the correlation

surface is normal, then the median ratio for any array is equal

to the product-moment correlation coefficient, and, of course,

the median of the ratios for the entire table equals the product-

moment coefficient. We thus see that for this important cor-

relation surface, and with fine grouping, Thorndike's median

ratio coefficient has the same value as the product-moment

coefficient. Further investigation of this coefficient is needed

and, pending it, the method should not be used indiscriminately

as a substitute for the product-moment method.

The distribution of ratios is very peculiar and the standard

deviation of such distribution will generally be infinite, so that

it is futile to calculate the standard error of the median ratio

coefficient of correlation. The quartile deviation of these

ratios, however, is not infinite, and we may take as a first

approximation to the probable error,

_ _ . quartile deviation of ratios

P. E. Of rmdn ratio = - 7^

(Approximate quartile error of the median

ratio coefficient of correlation) [192]

Noting that *V<ri. /7<ri

y'/ai x"/ai y' x"

the median of the ["*/*, y/gi~|

Ly/'i' x/aij
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METHODS OF MEASURING RELATIONSHIP 233

ratios will be closely equal to

v^mdn of x/y ratios) (mdn of y/x ratios)

Thus, we will write, as a very much simpler formula to use,

rmdn ratio = v'(mdn of x/y ratios) (mdn of y/x ratios)

(Thorndike's median ratio coefficient of correlation). .[191 a]

There is a certain directness in interpretation which com-

mends this coefficient, but even in the form [191 a] it will hardly

prove more expeditious to use than the regular product-moment

method, while its probable error will, for usual surfaces, always be

larger than the probable error of the product-moment coefficient.

Let us try this method upon the very curvilinear insurance

data of Chart XXVII. We will use £ and f as though they were

x and y, deviations from the actual means, for comparison with

our other calculations in which they were so used. We have

the ratios listed below taking the measures by rows beginning

at the top row. The calculation has been made by a slide rule,

so that one need not expect an exact check upon every figure.

TABLE XLII

/

t

t

/

f

f

£

r

i

I

12.9

.078

j

- 3-0

- -333

I

12.2

.082

I

- 2.7

- -3750

I

14.0

.071

- 2.4

- -417

I

9.8

.102

I

— 2.2

- -458

I

8-3

.120

I

1.6

.616

2

7-5

.•33

I

2-74

.365 +

2

6.8

.147

- 17-3

- .058

I

-8.3

— .120

I

1.6

.628

I

7-1

.140

2.2

.457 -

3

5-o

.200

I

3-7

.271

i

-5-2

- 193

I

11.7

.086

1

4-4

.226

I

30

.330

1

3-9

.258

I

5.10

.196

1

3-4

.290

I

16.2

.062

2

2.8

.355

2

-323

.031

1

.3

3.000

I

2.61

.383

2

- -25

— 4.000

-4.500

2

— .2

-5-5O0

Products

Square

2

— .2

roots

1

- 8.0

- 125

L. Q.-1.215

Mdn 2.675

U.Q. 5-95

- 159

.111

.2645

-193 +

.297

--4395

.545 +

1255

1-573

rmdn ratio = -545 Quartile error of r = r = .122
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This result, r = .55 ± .12, may be compared with the

product-moment correlation, r = .64 ± .06, and the corrected

correlation ratios, 1712 = .73 ± .05 and 1721 = -74 ± 05. Thus

for this particular surface in which the regression lines

do not pass through the intersection of the means, the median

ratio correlation is less than the product-moment correlation.

Thorndike (1913) gives an illustration in which the median

ratio coefficient is 1.00 and the product-moment coefficient less

than 1.00. No general rule for the relation between these

two correlations for non-rectilinear and non-homoclitic surfaces

is offered.

Section 67. Correlation Determined from a Curve op

Correspondence by Rank

This method, which may, more briefly, be described as the

rank relation method, is proposed by Otis (1916). It prob-

ably has no essential advantages for rectilinear data, but offers

promise if regressions are curvilinear. Having a scatter dia-

gram, a line is to be drawn which will equate scores of the two

variables. If regressions are rectilinear this line is given by

the equation x/a\ = y/a2 (see Section 43), but if not rectilinear

some other device must be followed. Otis writes (1916, p.

720): "In order to get a better idea where to draw the curve

of relation an auxiliary plot may be made ... on the assump-

tion that the true correspondence of the scores of the two

tests would be more nearly approximated by that of two scores

having the same rank than by those of the same child." Otis

does this graphically, smoothing slight irregularities. Having

this curve of correspondence by rank we may locate a value

on the *-scale for each value of y (or vice versa) and call the

obtained value y'\ that is, y' is, in terms of the ^-scale, the

equivalent of y. Thus y' measures and x measures have the

same variability and the same mean. Let us designate the

difference (x — y') by the symbol dx and designate (y — x')

by dy. This enables us to use formula [131] in the calculation

of the correlation. Otis notes that adjax is approximately

equal to

mdn of the | dx's I

mdn deviation of | *'s |
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METHODS OF MEASURING RELATIONSHIP 235

so that, in our notation,

_ _ (mdn of I dx's I )' (Otis' deviation formula

2 (mdn dev. of | x's | )' for correlation) [193]

or, if ^-values have been transformed into equivalent ^-scores,

r = 1 (mdn of |d/sl)' . .

2 (mdn dev. of | y's |)' l VM

These two formulas are minor modifications of formula [131],

but Otis' manner of determining the d's is unique. These are

not (X - Y)'s nor even (x - y)'s, but differences when (a)

unequal variability has been allowed for, and (b) when one

variable is transformed into a second by means of a curvilinear

relation line. Thus the so-called r obtained is in reality more

closely related to a correlation ratio t; than to the correlation

coefficient r, but it has an advantage over ij, in that not only

is the strength of the relationship measured, but the nature

of it graphically established. The method suffers with all

graphic methods in not enabling a concise algebraic statement

of the relations which hold. We may expect the values ob-

tained by its use to more nearly approach corrected rj [200 b]

than the product-moment r.

The insurance data of Chart XXVII may be used to illustrate

the method, but to make it a little more algebraic than graphic

we will equate measures by the method of Section 35, that is,

we will call equal percentile values equivalent and will not

resort to smoothing.

TABLE XLIII

»

Per Cent

Insurance

in Force

Rank Equiv-

alent of

Paired

Per Cent

correspon

Measures

OENCE of

White

Population

Rank Equiv-

alent of

Paired In-

surance in

Force

Measure

by Rank

Per Cent

Insurance

in Force

Insu1ance

in Force

Per Cent

White

Population

White

Population

Measure

(a)

White

Population

(*)

W

w

M

(f)

341

99

99

99

341

294

321

99

99

99

285

294

304

99

99

99

270

294

Mean

290

99

99

97

219

294

294

285

99

99

96

192

294

272

99

99

95-5

190

294

272

99

99

90

170

294

270

99

99

97

224

294
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TABLE XLIII — Continued

Per Cent

Insurance

in Force

Rank Equiv-

alent of

Paired

Per Cent

CoRREsPONl

MEASURES

)ENCE Of

White

Population

Rank Equiv-

alent of

Paired In-

surance in

by Rank

Per Cent

Insurance

in Force

Insurance

in Force

Per Cent

White

Population

Force

Measure

White

Population

Measure

(o)

White

Population

(6)

W

«0

W

CO

'26g

98

98

99

321

247

254

98

98

98

290

247

253

98

98

99

272

247

251

98

98

98

269

247

247

244

98

98

98

253

247

241

98

98

98

244

247

237

98

98

98

241

247

237

98

98

95

182

247

I 234

98

98

93

171

247

227

97

97

99

272

216

224

97

97

98

234

216

216 -

219

97

97

97

204

216

207

97

97

96

197

216

204

97

97

95

182

216

202

96

96

98

237

195

195'

197

96

96

96

202

195

192

96

96

95-5

190

195

I 190

95-5-

96

96

94

176

195

190

95

95

99

304

185

185

182

95

95

98

251

185

182

95

95

98

237

185

176

94

94

82

140

176

171

93

93

56

103

171

170

90

90

88

167

170

167

88

88

83

142

167

158

87

87

57-5

105

158

147

84

84

98

142

83

83

97

254

147

207

142

1 ifv ,

r 140

82

82

97

227

140

130

1 133

82

82

54

IOI

133

133

80

78

78

80

133

133

132

71

7i

44

96

132

126

68

68

67

121

126

121

67

67

87

158

121

I05

w k\

'58

58

80

133

105

I05

57-5

57

57

57-5

Io5

105

103

56

56

68

IOI

54

54

84

126

I03

96

44

44

71

147

IOI

84

43

43

43

132

96

84

84
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METHODS OF MEASURING RELATIONSHIP 237

The measures in column (a) are insurance in force scores

arranged according to magnitude, and the measures in column

(6) per cent white population scores arranged according to

magnitude. Column (c) is the same as column (6) and is

obtained from the first column of Table XXXVII. The first

entry, 99, in column (d) is the column (6) equivalent of 341

column (a), which is the measure paired with the first 99 in

Table XXXVII. As a second illustration; the fifth 99, first

column, Table XXXVII, is paired with 192. The value 192,

column (a), is equivalent to 96, column (£,), which is accordingly

the value recorded in column (d) opposite the fifth 99 in column

(c). The mean of column (d) is equal to that of column (c)

and except for the slight grouping error in replacing 96 and

95 by 95.5 and 95.5, the replacing of 82 and 78 by 80 and 80, and

the replacing of 58 and 57 by 57.5 and 57.5 the standard devia-

tions are equal, so that we may use formula [131] in calculating

the correlation. This gives r = .70.

A similar calculation, interchanging the variables, gives

columns (e) and (J) and the final correlation r = .65. Com-

pare this with r = .64, ij1 2 = .73 and 1721 = .74 of Section 52.

These two correlation coefficients, or correlation ratios as they

are more closely related to rj than to r, should be differently

labeled. Otis did not point out the fact that there are two

for each table and that in general they will not be equal. The

method is still in the elementary stage and needs (a) relating

with r and with 17, (6) an algebraic method (such as here used

in equating percentiles, or still better a method resulting in the

equation of the line of rank relation) for determining the curve

of relation by rank, (c) determination of the types of correla-

tion surfaces to which applicable, (d) utilization of coefficient

and relation line obtained to estimate one variable knowing

the second, and (e) determination of the probable errors of

the constants involved. The most interesting feature of the

method is that but a single relation line is used. However,

the physical significance of this line will probably not be found

to be as definite or serviceable as the regression lines of a cor-

relation table.
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Section 68. Correlation Ratio Method

Formula [86] gives the relationship between standard devia-

tions of arrays and total standard deviation, and the coeffi-

cient of correlation in the case of rectilinear regression. Solv-

ing this for r' we have

Formula [87] shows that, a\ - a\.i = a'-, leading to

r = ^

and also

That is, if the regression is rectilinear the correlation coeffi-

cient is the ratio of the standard deviation of the means of

the ^-arrays to the standard deviation of the x's; or it is the

ratio of the standard deviation of the means of the ^-arrays

to the standard deviation of the y's. This form suggests the

use of these ratios when regressions are not rectilinear. The

resulting values are called correlation ratios and are repre-

sented by the symbol rj, eta, and note that there are two for

each scatter diagram.

_ "*y _ I _ a'ax (Correlation ratio of

'", ~ oi ~ \l a'i supony) [194]

_ "yx _ _a'ay (Correlation ratio

,21 = ai ~ \ a'i of y upon x) . . .[194 a]

The correlation ratio is of necessity greater than zero and less

than one. The proof of this is left as an exercise. Further,

aax is the standard deviation of the ^-arrays around their

means, whereas <ri.2 is the standard deviation of the *-arrays

around the best fit straight line. The contribution of each

array to 0i.2 will be greater than the contribution to aax in

case the mean of the array is not exactly upon the regression

line. Therefore aax < ai.<i and as a consequence 17 > |r|, and

if > r'. The difference between -rf and r2 is f and is a measure

of non-rectilinearity of regression. Therefore the test for

linearity is

f = ij' — r' (Test for linearity of regression) [195]
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We need the standard error of this magnitude. Blakeman

(1905) gives it as

2 f^ir ,1, / ,\, , AI (Standard error of the

= VliV I(1 ~ V ) ~ (I ~ T ) test for linearity)..[196]

or approximately,

[197]

if r j and r are not very different.

The calculation of <ny offers no difficulties. The mean for

each array is calculated and the standard deviation of these

found, taking each mean as many times as there are measures

in the array. If the population is small the data should be

grouped so that at least two measures are found in each array.

The scatter diagram on page 241 shows the grouping that

may be employed for the insurance data of Section 52. The

class marks to the nearest $1.00 in the insurance in force data,

and to the nearest 1 per cent in per cent of white population,

are the means, not the mid-points of intervals, of the measures

grouped. The origins are, to the nearest $1.00 and 1 per cent,

the means of the total population. Neglecting the slight error

due to not keeping fractional parts of the $1.00 or parts of

1 per cent gives the table and calculation on page 241.

The coarseness of grouping affects the size of rj. With

grouping so fine that but a single measure is found in any

array, rj would then =1.0 and of course would have no real

significance. In order to obtain a reasonable value for 17

grouping should be sufficiently coarse to result in a fairly

regular, although not necessarily straight regression line.

Pearson (1911 cor) has pointed out that the significance of

rj should be judged not by its difference from zero, but by its

difference from the value that is the most probable in case of

zero correlation between the two variables. Or in other words

he has pointed out that a correction to the raw eta is necessary.

Since the standard deviation of means of arrays are of necessity

positive, this value for finite populations is as a matter of chance

greater than zero, and if the population dealt with is small

and the grouping fine it may be very much greater. The

chances are, not only in the case of the zero relation, but
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whatever the relation, that the obtained rj is larger than it

would be from an infinite population. Let t; be the obtained

correlation ratio fn the most probable ratio from an infinite

population. And let k equal the number of arrays; then,

when the frequencies in the arrays do not differ in a very

extreme manner from each other we have, as given by Pearson,

(« - i)

N_

f (« — 1) (Eta corrected for too

N fine a grouping). . .[198]

Coarse grouping was resorted to in the calculation of 17 just

given for the purpose of eliminating as much as possible of

the error coming from too fine a grouping. But even so the

correction is not negligible, since

(-7955)2 - £

fl'ii = g = .5344, or fin = .7310

'~48

(.8019) -1

flhi = 8-*-, or f,n = -7394

l-48

The correlation ratio does not enable an estimation of one

variable, knowing a second, as does the regression equation.

Its value lies in giving a sort of upper limit to correlation.

The use of some curvilinear regression line or transformation

line, as in the case of the insurance and per cent white popula-

tion data of Section 52, may lead to an actual means of esti-

mating one variable knowing a second. The correlation ratio

is also valuable as used with the data just mentioned in leading

to f, and to the standard error of f, thus determining the likeli-

hood of violation of data by the assumption of a rectilinear or

other definite regression line. The standard error of 17 is usually

taken as

1 — n' (Standard error of the

* ViV correlation ratio).... [199]

but if rj is large, due to too fine a grouping and small population,

the standard error as given by this formula is too small and a

corrective factor is necessary.
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TABLE XLIV

Per Cent White Population

Y

/

t

/(Ft)'

44

56

69

82

91

95

96

97

98

99

341

1

1

142

}y

220.5

321

I

1

122

J7

2

297

l

i

2

98

144-5

Insurance in force

—

274

1

2

2

s

5

75

5

520.2

249

I

1

3

SO

5

192.2

230

197

I

I

J

I

2

6

31

40

6

266.67

—

2

7

— 2

-SO

7

3S7.I4

I7S

I

—

I

2

1

6

-24

-SI

6

433-5

147

I

■

2

4

-52

-4S

4

506.25

129

1

2

,

I

S

-70

-97

-133

5

3S37-8

102

I

I

I

2

5

}^

1504.17

84

I

I

-115

«

IV)

io

c«)

1*)

r-

I0

&

0o

48 _4_8| 7682.93

160.061

"t( - 12.6s IS

*if - 51-2760

I

.O

I

7

<i

I

CO

0

,<tr

10I

ao «

00 I f

- 1 ~

o\

5|<>

r» »*:

Tl

n

1 1

I1

"1

1 1

00

0o

1 I

0o

to

-i

*i

0o

-I

00

,o

0 s

<5

d

4

3 8

S «

ro

O

OC

I -

ri

CI

Ci

-i

^1

The usual calculation gives ai = 64.4611 and a2 = 15-7778.

As calculated in the accompanying table <j~x = 51.2760 and

i 51.2760 , 12.6515

aix= 12.6515, leading to ij1 2 = ^^7 = -795S and ij21= Ig 77?8

= .8019.
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The correction in 17 for too fine a grouping grows smaller as

the number of categories decreases and this is as it should be,

but an improved result is not obtained by a very coarse group-

ing, as then a correction for too coarse a grouping becomes

important. This is based on formula [102] and is the same

sort of a correction as given in formula [103] for a correlation

coefficient, calculated from the means of the classes. Letting

crjxy be the value of 17 corrected for use of class means it may

be readily shown, as has been done by Student (1913), that,

and

Vxy (Correlation ratio corrected

Tyy

<'1lxy ryy *or coarse grouping) [200]

V

cVyx= ~ I2©0 O]

r.

*x

To apply the correction we need to know rxx and ryy. The

correlation between the class means and the deviates is

rx = 0x/ax, and for the second variable ryy = ay/ay. The standard

deviations ax and ay have already been determined in the

calculation of rjxy and rjyx respectively. Were a normal dis-

tribution assumed ax/ax could be determined as in the last

chapter, but, though practically it might lead to good results,

it is theoretically unsound for most distributions from which

ij is calculated. For the ungrouped data here given ax may be

determined from the raw data. Calculation without grouping

from Table XXXVII gives ax = 64.6746 and ay = 15.8646.

Accordingly

64.4611 , , 15.7778

r« = = 99670 Tyr = ^5^6 " "453-

Thus for the corrected correlation ratio we have

Ixy _ -7310 _

^=r7Y-^453 --735o

„ _ ly* _ -7394 _ ...»

The values calculated as ax and ay have not been entirely

freed from a grouping error, particularly a7, since percentages

recorded in the fundamental table are to the nearest 1 per cent

only. To correct further it would be necessary to make some
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METHODS OF MEASURING RELATIONSHIP 243

assumption as to the form of distribution. Plainly the assump-

tion of a normal distribution for the percentages of white

population will not be sound. On the assumption that the

distribution may be represented by a series of trapeziums of

equal base, Student (1013) shows that the corrective factor is

Vi + /«!/(12 a2) in which h is the unit of grouping and a the

standard deviation of x in the case of nyx and 7 in the case of

rjxy. Applying this further correction to ijxy we have

This correction is merely a re-application of the ryy division

and is warranted due to the fact that division by .99453, the

obtained, allowed only for the grouping of several per-

centages and not for the error introduced by entering values

in the original table to the nearest per cent only. For the

data in hand the only correction really worth while was the

first, formula [198], that for too fine grouping. The second,

that for too coarse grouping, will amount to 1 per cent if h = a/2,

or in the case of a normal distribution if there are some 10 or

12 steps, or intervals. This result is obtained by solving the

equation

A correction for grouping by means of Sheppard's formula

[68 a] applied to the standard deviation in the divisor of the

formula giving the raw ij, is appropriate, but no such correction

for the standard deviation in the dividend is to be made for

this is a standard deviation of means, or points, and should

not be corrected by Sheppard's formula which applies to con-

tinuous variates.

As there are so many corrections which apply to rj the fol-

lowing summary is given,

Let o*y = the standard deviation of the means of the x-

arrays.

Let a* = the standard deviation of the *'s.

Then letting rjxy equal the raw correlation ratio of the x's

upon the y's we have

[194]
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Letting si}xy equal the value after applying Sheppard's

correction for grouping of the x's we have, if h equals the

number of units per group,

~y

slxy

12 irjI

Letting k stand for the number of y categories, N the total

number of cases and fS-qxy the preceding value of ij corrected for

too fine grouping of the y's, we have,

ti»' - (« - i)/N

fsV'xy- --,-(,- a)/N «l

Letting ryy equal ay/ay, i.e., the correlation between the

class means of the y's and the y variates back of the grouped

data (note that oy is the standard deviation of the class means,

but that ax above [194 I] is the standard deviation of class

indexes), and letting cfsVxy equal the preceding r) corrected

for too coarse a grouping of the y's we have

cftixy - — boo 6l

In the case of equal intervals in y which are not too large

(say not > , o\ = o'y (1 + m which <sy is as before the

standard deviation of means of y classes and h' the number of

units per group of y's, so that i/ryy then equals

(,+24<y

and we have

cfsVxy = fsVxy (1 + ^1;) [200 'l

In [200 c] we may substitute the standard deviation of class

indexes for ay, the standard deviation of class means, without

appreciable error, but we cannot make this substitution in

the general formula, ryy = ay/ay [102], which is the formula

which must be used in case the grouping of y's is in very broad

and unequal intervals, and especially if the classes are cate-

gories not related in a numerical manner.

These corrections to ijxy are not equally demanded in the

case of any given data. Correction [198] is likely to be the

most necessary. The finer the y grouping, that is, the larger
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METHODS OF MEASURING RELATIONSHIP 245

the number of ^-categories and the smaller the total population

the more important is this correction. Correction [194 b] is

important if the ^-grouping is coarse and correction [200] if the

y-grouping is coarse. All of these observations apply to rj*y and

of course similar statements will hold with reference to rjyx, if

in the statements y and x are interchanged throughout.

The student should note that the value of r; used in the

calculation of f, the test for linearity, and in the calculation

of the standard error of f, is the raw value and not the cor-

rected value. Although the corrected value of 17 should not

be used in these formulas [195], [196], [197] as it was not in-

volved in the derivation of f, nevertheless the formula for

f calculated from raw 17 may be expected to give a value which

is materially too large, and a value for its standard error which

is relatively too small, if grouping is fine and population small.

Accordingly the f test for linearity is too rigorous if grouping

is fine and population small.

Section 69. Method of Parabolic Regression

Many scatter diagrams are characterized by regular curvi-

linear regression lines. If a single positive or negative curva-

ture is present the regression line may sometimes be closely

represented by a parabola, y = a + bx + cx2; and if the re-

gression line shows a single inflection the cubic parabola,

y = a + bx + cx' + dx'

may give a good fit. Pearson (1905) has developed the theory

of parabolic regression and illustrated the procedure with

certain data. It is too involved to give here, but must needs

be resorted to if the specific nature of the curvilinear regres-

sion line and the numerical values of the constants involved

constitute the crux of the problem.

Section 70. Bi-Serial r Method

In case one series consists of variates, or graduated measures,

and the other is dichotomous we may determine the correlation

that maintains if we assume that the trait represented by the

dichotomic distribution is in reality a continuous trait, normal

in distribution, for which we have only categorical information.

Such a situation is well represented by the following, taken
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from the army psychological test data (Yerkes, 1921, p. 748).

We may proceed with the steps involved in obtaining the

numerical value of bi-serial r and consider the general formula

afterward.

TABLE XLV

Score in Army Alpha

Number of Men Who Left School

Intelligence Test

Below the 9th Grade

Above the 8th Grade

205-

212

I

200-204

3

l95-

199

14

100-194

17

185-189

I

49

180-184

2

54

175-

179

8

78

170-174

12

126

165-

I69

18

149

160-164

15

200

■55-

159

20

244

150-154

45

305

145-

149

58

352

140-144

74

338

135-

139

IOI

407

130-134

145

507

125-

129

IOO

528

120-124

216

530

115-

119

317

643

110-114

393

674

105-

109

507

682

100-104

582

691

95-

99

761

712

90-

94

908

725

85-

89

993

769

80-

84

1,181

693

75-

79

I.371

642

70-

74

1,604

648

65-

79

1-709

567

60-

64

1,962

58i

55-

59

2,249

430

50-

54

2,272

346

45-

49

2,429

305

40-

44

2,455

229

35-

39

2,473

200

30-

34

2,490

154

25-

29

2,213

106

20-

24

1.835

60

15-

19

i,5"

42

10-

14

545

13

5-

9

432

5

0-

4

i«3

3

34,280

13,822

13,822

48,102
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METHODS OF MEASURING RELATIONSHIP 247

Mi and M2 are the means of the first and second categories

respectively, and a is the standard deviation of the total

distribution (48,102) of measures. Calculation by methods

already given yield

Afi = 54-987, Mi = 98.758

a = 36.606

and finally

a z

With this concrete calculation in mind we may turn to the

more general statement of the problem. The army Alpha

series is a variate series, and the graduation or non-graduation

from the elementary school a categorical series, not correspond-

ing to a true dichotomy in talent of any sort whatever. Even

in terms of schooling the two classes are not homogeneous

within themselves. In the non-graduation class are indi-

viduals who have been in school variously o, 1, 2, . . . 8 years,

while the completion of the elementary school class comprises

those who have been in school 9, 10, . . . years. Thus the

dichotomy has been arbitrarily imposed upon a continuous

trait. Let X equal the scores in the variate trait and V those

in the dichotomous trait, then r = ba — . The regression line

Y

a

i

1st Category

2nd Category

IK

Jr
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with slope 61 2 passes through the means of the a>arrays, xi, xs,

of the distribution of cases in the two ^-categories. Therefore,

referring to the diagram on page 247,

"y' >i yt + yi a1 / »i

Now (*2 + xi) is simply (M2 - Mi) the difference between the

means of the ^-scores in the two categories, and <n, or simply a,

is the standard deviation of the total distribution of ^-scores.

It therefore only remains to obtain

(yj+~j)

\<ti ai/

Let p be the proportion of cases in the first ^-category and q the

proportion in the second. The distance y is simply the mean

deviate of the tail of a normal distribution and is given by

formula [83]. If 2 is the ordinate, as given in Table K-W,

at the point of truncation of the normal distribution, cutting

off p proportion of cases we have

Afi - Mi

y, z a y' z »u . a

— = - and — = - so that r =

ai p ai q z z

P i

which may be written

_ (Mi — Mi) pq (Bi-serial coefficient of correla-

<Tz tion) [201]

This formula differs somewhat from, and is more simple to

use than Pearson's (1909), but is identical in the principle

underlying its derivation. The coefficient as derived has been

called " bi-serial r," and must be distinguished from "bi-serial 7j,"

described in the next section.

In case the grouping of x's is coarse, Sheppard's correction

should be applied in determining a. In case the population is

small there is a chance correlation greater than or less than

zero dependent upon the point of dichotomy, so that a cor-

rection of the value just given is necessary. Soper (1914

bi-ser) gives the following correction formula in which cr is the

corrected value, r the value given by formula [201], x the
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METHODS OF MEASURING RELATIONSHIP 249

deviate given in Table K-W corresponding to area q, the pro-

portion q being the smaller of the two proportions p and q.

'-'i-+iG+ft-(-S)(l+*)+HI

(Bi-serial r corrected for small population) [202]

Note that for moderate dichotomies and populations greater

than 100 this correction may generally be considered negli-

gible. The square of the standard error of bi-serial r as given

by Soper is

—i|9-B+(-?)(l+*)]*H

(Square of standard error of bi-serial r) [203]

For dichotomies wherein q is not less than .05 a close approxi-

mation to the preceding formula is

ar x z 7 (Standard error of

VN bi-serial r) [204]

Even for extreme dichotomies this last formula which gives a

slightly larger value for a, than formula [203] may well be

preferred, for the assumption of normality of distribution

underlying formula [203] is generally less safe in the case of

extreme than of moderate dichotomies, so that an increase in

the size of the standard error due to the extra hazard of the

assumption of normality is desired and this is given by formula

[204]. Certain of the functions involved in formulas [202]

and [203] have been tabled by Soper in the reference cited.

The evaluation of these formulas is also readily accomplished by

the aid of Table K-W.

Section 71. Bi-serial Eta

The title of the original contribution by Pearson (1910,

new) describes the data to which this method applies: "On

a new method of determining correlation where one variable is

given by alternative and the other by multiple categories."

To quote further from Pearson (1917 bi-ser.): "Let x be the

alternative, y the multiple variate, xy the distance from the

division between the alternative categories of the mean of the

array of x's corresponding to a given value of y, yax its standard

deviation and ny its frequency. Let x, ax and N be the cor-
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STATISTICAL METHOD

responding quantities for the marginal totals." To utilize the

notation of Table K-W, let

* = £, xy = SL, and K' = ±S(nyx'y)

In the notation of Table K-W, xy is the deviate corresponding

to qy, the proportion of cases lying above the point of dichotomy

of the ^-category, and x without subscript is simply the deviate

corresponding to q, the proportion of cases constituting the

smaller of the two ^-categories. The number of cases in a

^-category is ny and S is a summation covering all the cate-

gories in the multiple category variate. Thus

VK' — jc2Tl

V*y = I i + K'\ (Bi"serialeta) [205]

There is no correction to be made to this formula on account

of the at-variate, but correction formula [198 a] should be used

if k, the number of ^-categories, is large and the population, N,

small; and correction [200 b] or [100 c] should be made if the

number of ^-categories is small. If rj is small, so that higher

powers are relatively unimportant with reference to ij and n2,

the standard error of y is given by

_ 1 — y'/pg , 2 px' \$ (The standard error of a bi-serial

""v^ V,22 + (1 + *')2/ ij which is equal to o) [206]

The magnitudes p, q, z, x are constants of the alternative cate-

gory distribution having the usual meanings and are avail-

able from Table K-W when q is known. If 17 is greater than .5

the full formula for its standard error as given and fully de-

scribed by Pearson (1917 bi-ser.), is needed.

We may use data comparing southern and northern negroes

collected by the Division of Psychology of the Surgeon Gen-

eral's Office to illustrate the method. In general the army

Alpha test was given to literate individuals of greater than

feeble-minded intelligence, and army Beta or an individual

test was given to illiterate individuals or to literate persons of

very limited intelligence. Accordingly a division of individuals

upon the basis of whether they were tested by means of army

Alpha alone; or by means of army Alpha and Beta, or army

Beta, or army individual, will constitute a dichotomy closely

related to literacy. Table 4, pages 559-60 of Yerkes (1921),

enables us to determine whether there is a correlation between
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METHODS OF MEASURING RELATIONSHIP 251

negro literacy and domicile as represented by State of the

union. The table together with the supplementary columns

used in the calculation of bi-serial 17 follows:

TABLE XLVI

Negro Draft — Pro-rated by States

Examination Taken

State

Alpha

Only

Alpha-

Beta,

Beta, or

Individual

rty

q =

tta+np

Xy

nyx'y

Alabama . .

271

1,088

1.359

.1994

.8452

970.82

Arizona

3

4

7

.4286

.1789

.22

Arkansas .

192

706

898

2136

.7926

564-l4

California .

31

28

59

-5254

-.0627

.23

Colorado

18

12

30

.6000

-.2533

1.92

Connecticut

17

28

45

.3778

.3107

4-34

Delaware

40

44

84

.4762

.0602

.30

Dist. of Col. .

30

180

210

.1429

1.0669

239.04

Florida . .

499

122

621

.8035 +

-.8560

45503

Georgia . .

416

1,969

2,385

.1744

.9385

2,100.67

Idaho . .

4

8

12

.3333

.43l6

2.24

Illinois .

137

114

251

-5458

-.1156

3-35

Indiana

74

Si

125

.5920

-.2327

6.77

Iowa

23

13

36

.6389

-.3558

4-56

Kansas .

87

30

"7

.7436

-.6557

50.30

Kentucky .

191

341

532

.3652

.3451

63-36

Louisiana ' .

538

1.l47

1,685

.3193

.4705

373-01

Maine .

0

0

0

Maryland .

146

379

525

.2781

.5888

182.01

Massachusetts

54

39

93

.5806

-.2045

3-89

Michigan .

17

25

42

.4048

.2404

2-43

Minnesota .

9

11

20

.4500

. 1257

.32

Mississippi

773

967

1,740

.4443

.1408

34-49

Missouri

196

182

378

.5185 +

-.0476

.86

Montana

2

2

4

.5000

.0000

.00

Nebraska .

13

13

26

.5000

.0000

.00

Nevada

0

3*

3*

New Hampshire

0

1 *

1*

New Jersey

105

72

177

.5932

-.2353

9.80

New Mexico

3

1

4

.7500

-.6745

1.82

New York .

197

107

304

.6480

--3799

43-87

North Carolina

211

1,168

1,379

.1530

1.0237

1.445.14

North Dakota .

2

1

3

.6667

-.4316

.56

Ohio . . .

163

88

251

.6494

-.3826

36-74

Oklahoma .

98

211

309

.3172

.4761

7004

Oregon .

3

3

6

.5000

.0000

.00

Pennsylvania .

183

236

419

.4368

.1586

10-54

Rhode Island .

9

9

18

.5000

.0000

.00

South Carolina

334

1-303

1,637

.2040

.8274

1,120.68

South Dakota .

1

15

16

.0625

1-5382

37.86

Tennessee .

504

433

937

.5379

-0954

8-53

* Omitted in totals.
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STATISTICAL METHOD

TABLE XLVI — Continued

Negro Draft — Pro-rated by States— Continued

Examination Taken

State

Alpha

Only

Alpha-

Beta,

Beta, or

Individual

fly

q- "a

na+np

Xy

ttyX^y

Texas .

Utah . . .

Vermont

Virginia

Washington

West Virginia .

Wisconsin .

Wyoming . .

786

1,048

1.834

.4286

.4545 +

.1789

.1130

58.70

.11

4

O

5

9

0

0

56

1,148

9

1,204

16

168

-0465 +

I.6747

.1560

.2559

.5651

-.4316

3.376.76

.39

11.00

2.24

7

67

2

IOI

.4375

.3988

4

5

2

7

6

-2857

.6667

1.12

6,520

13,468

19,988 =

= iV

11,300.20

= .32620,.

S

C = .45043I

s —

V' =

V -

.360457

.362461

K' ■

*2

= 565349

= .202888

.362461

1 565349

.481199

"17 =

.006184

The bi-serial correlation ratio is less than .50 so that we may

obtain a satisfactory idea of its probable error by using formula

[206]. This gives a standard error of .00618 which is so small

with reference to rj as to establish the fact that there is a moder-

ate correlation of about .48 between literacy of the negro and

domicile. The obtained value should theoretically be corrected

by applying formulas [198 a] and [200 b] or [200 c\. They

are entirely inconsequential in this problem, but will be used

to show the method. The number of categories in the ^-variate

is 45 (number of states yielding frequencies) so that we have,

applying correction [198 a],

2 = (.481199)' - 44/19988

f *y 1 - 43/19988

from which

fxy = -479423

This correction (.4812-.4794 = .0018) is not large, but even

so it is probably somewhat too great as the 45 ^-categories have
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METHODS OF MEASURING RELATIONSHIP 253

such extremely varying frequencies that the hypotheses under-

lying the correction are not closely met. The states constitute

a geographical series and no assumption with reference to

numerical relationship between them seems warranted, nor

any assumption as to total distribution on a one dimensional

scale. However, some correction for coarseness of grouping

is appropriate. We will assume a rectangular distribution of

states of equal populations and will not attempt to justify the

assumption further than to say that the correction that it

leads to is probably conservative, i.e., too small rather than

too large, so that our procedure is an improvement over one

not involving a correction. The standard deviation of a

rectangular distribution of 45 ranks equals

so that since the unit of grouping is the state, correction

[200 c] is as follows: making W = 1.0:

The reader will understand that the number of figures to which

the work has here been carried and the corrections made are

for illustrative purposes only and that to meet practical

demands the raw result, rjxy = .481, would be adequate for

these particular data. We may now turn to a consideration

of the correlation between two series, the measures of each

of which lie in alternative categories.

In case we have a 2 X 2 fold table such, for example, as is

given by indicating the presence or absence of two traits we

may calculate n, the tetrachoric coefficient of correlation.

The assumption underlying the method is that both traits are

really continuous and normal in distribution and that the

dichotomies have forced the data for each trait into two

alternative categories. The procedure was developed by

Pearson (1900 cor.), and tables of "Tetrachoric Functions"

V(»' — O/12 - V2024/12

Section 72. Tetrachoric Correlation
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STATISTICAL METHOD

have been calculated by Everitt (1910 — also given in Pearson's

Tables 1914 t). Pearson started with the 2X2 fold table,

TABLE XLVII

a + c

b + d

a + b

c + d

N

so arranged, as is obviously always possible, that a + b > c + d

and a + c > b + d. We will start with a table of the same

sort dealing with proportions instead of gross numbers. Let

N' 0 = AT 7

a + b

N 1

q =

N'

c + d

N

, P'

d

'X

a + c , b + d

-, q, =

N

N

Then our table becomes

TABLE XLVIII

a

y

P' 9' 10

Let x and z be the usual quantities obtained from Table K-W,

knowing q and let and 2' be the values obtained knowing q'.

Then, letting r be an abridged notation for n; the tetrachoric

coefficient of correlation, or the correlation as found from a

four-fold table assuming a normal correlation surface, is given

by

« - 99'r

+ xx''-. + (*• - I) (*" - I)1 + (*• - sx) (*"- 3 *')

2! 3! 4!

+ (x*-6*' + 3)(*"-6*'' + 3)

5!

+ (*• — 10 *• + 15 x) (*'» — 10 x'' + 15 x') ^

+ (*«- I5x* + 4sx' - 15) (*"- i5^'4 + 45^" -I5)^ + -"

(Equation giving r(, the tetrachoric coefficient of correlation).. [207]

To express the law governing successive coefficients of powers

of r let v„wn/n be the coefficient of r", vn be a function of *, and
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METHODS OF MEASURING RELATIONSHIP 255

wn a function of x'; then vn may be expressed in terms of v's

of a lower order:

Vn = xvn-i — (n — 1) Vn-i and similarly wn = *'wn-i — (n — 1) wn-i

Vo = 1, «i = x and similarly wo = 1, t0i = x' [208]

Thus the equation as written to the r1 term may be continued

to any number of additional terms desired should it not con-

verge rapidly enough to make terms above the r7th negligible.

For small values of r some slight simplification of the work will

result from using Everitt's tables (1910). For values of r

equal to or greater in absolute value than .80, tables (Everitt,

1912 and Lee, 1917) giving the 5 for certain assigned r's and

for various dichotomies are of great assistance, as they enable

a determination of r by interpolation without the extensive

labor involved in formula [207], or in Everitt's form of the

same formula which utilizes his tables. The solution of equa-

tion [207] for r may follow the usual methods employed in the

solution of a parabolic equation of higher degree than the

second, but the method pursued in the following example is

more expeditious for usual values of r. The data are extracted

from the findings of the Division of Psychology of the Surgeon

General's Office (Yerkes 1021, page 507).

TABLE XLIX

Score on Army Intelli-

gence Alpha Test

A or B

Below B

Departments other than

Medical ....

First

Lieutenants

2940

431

3371

Medical Department .

1799

590

2389

4739

1021

5760

Same, expressed as proportions

.5104 = a

.0748 = 0

.3123 = 7

.1025 = 0

.8227 = p' .1773 = g' 1.0000
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Entering Table K-W with q we find

* = .215215

z = .389809

Entering with q' we find

*' = .925705

z' = .259914

Substituting these values in equation [207] we have

~025ioi3o68544o = r + 099613 r' + 022741 r' + 05255 H ~ 03195 ^

+ .0288 r* H

Solving the quadratic given by neglecting the last four terms,

gives r = .2781. It is obvious by inspection of the signs of

the terms neglected that this value is slightly too large. Let

us therefore assume the value .2770, substitute it for r in the

last five terms of the equation and solve for r to the first power

for which we have not substituted. Doing so gives r = .2773998.

The assumed value for r was too small. Let us therefore repeat

the process, assuming r = .2774. This gives r = .2773741.

We thus have the following table:

TABLE L

Assuming for Terms Involving Powers

Other than the First that r -

Leads to r =

.2770

.2774

-2773998

.277374l

Interpolating between these two pairs of values so as to find

that value starting with which leads to itself as result, we

find r = .2773757. Expressed as an equation this value of

r is given by

r — .2770 .2773998 — r

.2774 - .2770 " .2773998 - .2773741-

The work has been carried to seven figures merely to show the

method, not because such refinement in calculation is neces-

sary in order to obtain a three or four figure result.

It will be noted that for this low correlation an excellent ap-

proximation, r = .2781 to the final answer, is obtained by keep-

ing the first and second power terms only. We thus find the
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METHODS OF MEASURING RELATIONSHIP 257

correlation between being a lieutenant in the medical corps,

as opposed to being one in some other corps, and low intelli-

gence test standing to be .2774. We desire to know the prob-

able error of this result. The full formula (Pearson 1900 cor.),

is laborious to use and Pearson (1913 coef.) has given an

equation which constitutes a close approximation to the full

formula. We may give certain preliminary formulas. The first

is Sheppard's:

t = cos (2 t/3) (Tetrachoric correlation in case both

dichotomic lines are the medians). [209]

If the categories (a + 6) and (a + c) correspond to positive

deviations in the traits, then the measures represented by the

a cell are (+ +) measures, those by d (- -), those by b

(+ -), and those by c ( 1-) measures. Furthermore b

must equal c so that 20 = 0 + 7, - the proportion of unlike

sign pairs. We may call this proportion u and write the

preceding formula.

r — cos («.«) [209 a]

This very simple formula will give good results if the dichot-

omies differ slightly from the medians, but it should hardly

be used if both p and p' are greater than .55, or if one is equal

to .5 and the other greater than .6. The standard error of

tetrachoric r when the dichotomies are at the medians is

_ VI—r' /—- (The standard error of tetrachoric r when

* dichotomic lines are at the medians).. .[210]

In case the true correlation is zero then no matter what the

position of the dichotomic lines

_ v'pqp'q' (The standard error of tetrachoric r when the real

'zz' ViV value of r = .00) [211]

Finally when the true value of r is not zero, and when dicho-

tomic lines are not at the medians, we have as a close approxi-

mation

(The general formula for the standard error of tetrachoric r).. [212]
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STATISTICAL METHOD

In tne reference cited are to be found tables of Vp~q/z and of

the radical function of r, which will expedite the calculation

of the standard error. For the probable error of r we have

,'•4^V,-»[.-(^)']iSI

(General formula for the probable error of tetrachoric r).. [213]

The term in braces is tabled herewith.

TABLE LI

Functions Involved in Calculating the Probable Error of Tetrachoric r

r

Function of r

r

Function of r

r

Function of r

.OO

.674

.60

.492

.80

.327

.10

.670

.61

.486

.81

-316

.20

.655

.62

-479

.82

.305

.25

.645

.63

.472

.83

.294

-30

.631

.64

.465

.84

.283

.35

.615

.65

.458

-85

.271

.40

.597

.66

.450

.86

.259

.42

.588

.67

-443

.87

.246

.44

.580

.68

.435

.88

.233

.46

.570

.69

.427

.89

.220

.48

.561

.70

.419

.90

.206

.50

.551

.71

.411

.91

.192

.5l

.545

.72

.402

.92

.177

.52

.540

.73

.393

.93

.161

-S3

.535

.74

.385

.94

.144

.54

.529

.75

.376

.95

.127

-55

-523

.76

.366

.96

.108

.56

.517

.77

.357

.97

.088

.57

.5"

.78

.347

.98

.066

.58

.505

-79

.337

.99

.039

-59

-499

1.00

.OOO

We may use the preceding formula to calculate the probable

error of the correlation between being a first lieutenant in the

medical corps and low Army Alpha standing.

P. E. r = , ^ = .0156.

V5760 X .9397 X .6661 X 1.4656 X .3158

The item .6378 comes from Table LI; 5760 is the population;

and the other items come from z/p and z/q columns of Table

K-W.
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METHODS OF MEASURING RELATIONSHIP 259

Section 73. Correlation in a Four-fold Point

Surface

In case the categories in a 2 X 2 fold table cannot reasonably

be thought of as indicating different quantitative values of the

variate, but of necessity as being indicative of qualitative

differences, we may consider the distribution to be a point

distribution, i.e., that the p frequencies are all concentrated at a

single point and not spread over an interval, and similarly for

q, p' and q'. It will make no difference what the numerical

value of the difference between the two points of the distri-

bution is, or in fact whether the value is, in the mathematical

sense, real or imaginary. So we will call the distance between

the p and q points j, and that between p' and q' points k, and

calculate a regular product-moment coefficient of correlation

using formula [93] and taking moments around the intersection

of the p and p' category point values.

r = »Jk ~ M) »_-«'

^flj' - (flj)' Vg'fc' - (q'k)' Vpq Vp'q'

Algebraic transformation enables the writing of this formula

in the form

_ aS - 0y

V pq p'q'

(Product-moment correlation between two point distributions.

Pearson's rhk; or <f,, Yule's theoretical value of r) [214]

Pearson and Heron have called this coefficient the Boas-

Yulean <p. For a discussion of it see Boas (Science, May 1,

1909, page 824), Yule (1912 meth.), and Pearson and Heron

(1913). This formula may safely be used if the point nature

of the distribution can be established. It would seem to be

the appropriate formula in calculating the correlation between

unit traits; possibly that, for example, between sex and

albinism. The statistical criteria establishing the point nature

of the value of a variate are still to be devised. They would

constitute an important supplement to experimental and bio-

logical work. Pearson has shown (1900, con.) that rhk (in the

notation of this chapter and of Table K-W this is r*x,) is the

correlation between the means, if measured in terms of the

standard deviations of their distributions, of two variates of a
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2X2 fold normal correlation surface and that it is also (1904

theory), <t,, the square root of the mean square contingency

of a 2 X 2 fold table without any assumption of normality.

It is necessary to distinguish between rhk and mai, of Sec-

tion 49. This latter was found to equal [formula 118].

But since

it will be seen that only when division of the means by the

standard deviations has no effect upon the correlation, would

rhk = ri2. This is not the case for continuous variates, so

that <1, or rhk should not be taken as the correlation between

continuous variates even if they are recorded in a two-category

manner. The coefficient <b is a product-moment coefficient as

concerns h and k or discrete variables, but with reference to

continuous variables it belongs to group (2) which we will

now consider.

Section 74. Measures of Correlation not Equivalent to

the Product-Moment Coefficient; Yule's Coeffi-

cients of Assoc1ation and of Colligation

Two coefficients developed by Yule may be considered in

connection with d,- Using the same notation they are

Yule (1912) points out that Q is not changed by multiplying

the frequencies in the various categories. Thus the Q's for

the two following tables, the second of which has been obtained

from the first by multiplying the frequencies in the (a + b)

category by ten and those in the (b + d) category by five, are

identical.

Q = fa. (Yule's coefficient of association) .[215]

_ Vad — Vbc (Yule's coefficient of colliga-

Vad + Vbc tion) t2l6]

a

50 b

c

d

c

id

Yule claims this as a peculiar advantage of the coefficient, but

for a coefficient to be stable under such violent treatment may
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METHODS OF MEASURING RELATIONSHIP 261

be looked upon as a detriment, as Pearson and Heron (1913)

have shown. The coefficient of colligation has the value that

<b takes when the 4-fold table is "equalized" and when the

classes are given equal or their "natural" percentages to

employ the term used by Yule. Thus given the 4-fold

let us multiply the first row, second row, first column and

second column respectively by the fourth roots of the quanti-

ties

cd ab hd at

ab' cd' ac' bd'

This gives the "equalized" 4-fold

Vad

Vb7

Vbc

Vad

in which plainly p = q = p' = q' = .5. The correlation <f,

may be calculated from this, noting that

Vad „ Vbc

a = 6 =

so that

a-6--Jr,f}-y- N

ad — be Vad — Vbc

V (Vad + VbcV + ^

Thus Yule's coefficient of colligation constitutes a 4, calculated

from the equalized table. Conditions which would warrant

its use as a measure equivalent to a product-moment coefficient

of correlation are seldom present. They are (a) point distribu-

tion in the traits and (b) warrant for equalization of the table.

Warrant for equalizing may occasionally be present; as for

example, if ten men and 100 women are measured and it is

desired to find the correlation when the population of men

and women are equal, but it is difficult to think of a reasonable

problem in which there would be warrant for equalizing in

the case of both traits. If co has peculiar value, not as a

product-moment coefficient, but as some other kind of a cor-
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relation coefficient, its physical meaning is still to be demon-

strated and meanwhile it would seem the part of wisdom to

limit its use to the narrow field in which conditions (a) and (b)

are met. A still narrower range of utility for the association

coefficient Q seems indicated. The great ease with which Q

and to can be calculated, as compared with r( and C, the con-

tingency coefficient, will tempt one to use them for situations

for which they are not applicable. Yule has derived the

standard error of <f, (see Pearson and Heron, 1913). It is

'.-^l-♦'♦(♦^[VMM-Vf]

-•fG+i-OG+MI'

(Standard error of it, from a 4-fold table) [217]

Although co is a special case of <t,, the multiplication of the fre-

quencies to obtain the equalized 4-fold table introduces another

factor so that we cannot in general take au as being equal to a$.

The contingency method developed by Pearson leads to two

constants. One is P, the probability of a situation as extreme,

as that found, arising as a matter of chance if the two variables

are in truth uncorrelated; hence if P is small it argues for a

correlation. The second is C, the coefficient of contingency,

which under certain conditions is equal to the coefficient of

correlation which would be obtained from the same data.

The coefficient of contingency belongs to the first group of

measures of relationship, but as it is derived in connection

with P we will consider it here.

Section 75. Measures of Relationship Interpreted in

Terms of Probab1lity

The product theorem in probabilities is that if p is the

probability of occurrence of a certain event and p' of a second

unrelated event, then pp' is the probability of the joint occur-

rence of the two events. Thus if 30 per cent of a given popula-

tion have blue eyes and if 50 per cent are males and if eye color

and sex are uncorrelated, then the likelihood, in making a

random selection of obtaining a blue-eyed male, is .15 ( = .30

X .50) or, in the long run, 15 per cent of the random selections
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METHODS OF MEASURING RELATIONSHIP 263

will be blue-eyed males. If, then, a large drawing results in a

proportion sufficiently different from .15 to preclude the pos-

sibility of chance, the existence of correlation between eye

color and sex is established. We need to know P, as defined

in the last paragraph of Section 74, and we desire a measure

based upon P which is comparable in its general meaning to a

product-moment coefficient of correlation. Let us be given

the manifold table.

TABLE LII

nib

nic

n,

nib

ntc

n!

n'a

n,b

nic

»3

n4 a

n,b

n4c

n4

n0

nb

nc

N

designated »i

designated ns'

in which n is the number of cases in a category of the first

variable, ns, in a category of the second, and nss, the number

in the cell given by the intersection of the ns and nS' categories.

There are as many ns frequencies as there are categories in the

first variable, as many ns, frequencies as categories in the second

variable and as many nsS' frequencies as the product of the

number of categories in the first variable times the number in

the second. If a chance situation maintains, the proportion

of the whole found in a cell will, by the product theorem, be

given by

"""'""" [218]

N'

N

ns1 nsns'

In general this situation will not maintain, so that the actual

number in a compartment minus the chance or theoretical

number, measures the divergence of the situation from chance.

This magnitude will be designated by dss, and will be called

the cell divergence

dss' — nss' —

«sHs' (Cell divergence from chance

N situation) [219]

The cell divergence is the divergence of a cell frequency from

a chance frequency when it is desired to compare the obtained
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situation with the uncorrelated or chance situation; but if it

is desired to test out some theoretical cell frequencies (mSs').

then the cell divergence becomes the divergence of an actual

cell frequency from the theoretical frequency, or (nss, - tnSS').

Therefore we have for the general case

dss' = tiss' — ntss' (The cell divergence) [220]

The square of the cell divergence divided by the theoretical

frequency (which is usually the chance frequency) will be

called the cell square contingency, while the sum of all such

cell square contingencies has been termed by Pearson (1900,

crit.) the square contingency, and given the symbol x2- Thus

! = 5 = 5 — ?ntt')!\ (The square con-

/ tingency) [221]

Obviously

5 dss' — o.

A measure of total contingency can be built upon the absolute

values of the cell divergencies, | dSS' | (Pearson, 1904), but the

measure of square contingency has superior advantages.

The square contingency cannot be directly interpreted

because two factors are involved in it, the number of cells and

the strength of the contingency. To eliminate the number of

cells from consideration, Pearson has given the two equations

P- VV" e-i*,dx + fie-ix' (x + ^+^L

J*J x '* \i 1-3 1-3-5

+ - . . H — .', r ) if »' be even.. [222]

1-3-5 --.(n'- 3)/

f-e->KI+T + ^ + 2-T-6+--- + 2.4.6.X7n'-3))

if n' be odd [222 o]

in which n' is the number of cells and P the probability that

random sampling would lead to as large or larger divergence

between theory and observation. Elderton (1902 tables, and

also, Pearson's Tables) has tabled P for various numbers of

cells and values of x2- It is thus a simple matter to determine

the probability of a situation as extreme as the one observed

(note that this is not equivalent to saying "the probability of

the observed situation ") arising as a matter of chance. There

is no assumption of normality in the determination of x2. but
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in deriving the equation giving P from x2 it is assumed that

the frequencies in a cell resulting from successive samplings

form a normal system of variates. This is entirely different

from the assumption that the categories are classes in reality

constituting a normal distribution. It is because of avoiding

any such assumption that the contingency method has its

chief value. The assumption that, within a single cell, the

results of successive samplings will constitute a normal distri-

bution of frequencies, may regularly be expected to hold,

provided p, the probability of a measure being in a cell, is not

so small but that (p + q}" can be approximately represented

by a normal distribution. As a practical matter {p N) the

theoretical number of cases in the cell should not be less than

1.00. If the categories are such that the theoretical frequency

in any cell is less than 1.00, two or more categories should be

combined so as to give cells with theoretical frequencies

greater than 1.00. As a very minimum, not to be approached

if avoidable, the smallest theoretical frequencies should not

be less than .7.

Section 76. Equi-probable r

In case p is very small, its meaning is difficult to interpret.

Pearson (1912 novel) has pointed out that the improbability

of the obtained 4-fold arising as a matter of chance is equal to

the improbability of a tetrachoric coefficient of correlation of

a certain magnitude based upon the same number of cases,

and Pearson and Bell have provided tables (see Pearson's

tables) whereby a P calculated from a 4-fold table may be

used to determine an equally improbable tetrachoric coeffi-

cient of correlation. Pearson does not recommend this method

of interpreting P in case of extreme dichotomies, or in any case

as being preferable to tetrachoric r.

Section 77. Mean Square Contingency and Coefficient

of Contingency

We have obtained a measure of probability, P, from the

square contingency x2- We may also interpret the results by

means of a coefficient of contingency. The most valuable

form is that derived by Pearson which he has called d and
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which we will here call C. We will first need the mean square

contingency. Designating it by <£2 we have

= (Mean square contingency) .[223]

The magnitude <1, as thus defined is identical in the case of a

4-fold table with </, of formula [214]. As here defined it is

obtained from a manifold of any number of cells. As has been

pointed out in the case of a 4-fold table, <f, is not a coefficient

of correlation of a graduated or continuous variate, nor is

the function

c   J <1,' = J x' (Coefficient of

'1 + 0' 'N + x' contingency). [224]

but the latter is comparable with it. In fact,(if for each vari-

able the categories are successive values of a graduated variate,

and if the population is large and the number of categories

great so that there is not a grouping error, and if the correla-

tion surface is normal, then C is identical with the product-

moment coefficient of correlation.

As a measure of relationship between continuous variates

there are two corrections which should be applied to C, one due

to number of cells and the other a correction for class index.

(Pearson and Heron 1013, page 217.)

If k = number of rows and X = the number of columns and

if the frequencies in the categories do not differ one from

another in an extreme manner, the corrected mean square

contingency, c4?, is given by

, _ x' — (« — 1) (X — 1) (Value of i1,' corrected

'* N for number of cells). [225]

In case broad categories are used there are wide differences in

the measures within a category and these may be differently

grouped for the successive cells of a single category, so that

there is a correction for class index needed (Pearson 1913,

meas., page 130). This correction does not apply to <1, which

is, in the case of a 4-fold, the correlation between points and

may be thought of as a similar sort of a function in the case

of a manifold of a greater number of cells; but it does apply

to C, the coefficient of contingency, which aims to measure the

relationship between continuous or graduated variates. Thus
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we will consider the uncorrected C as the correlation between

class means and correct by formula [103] where rxx and yy have

the meanings denned by formula [102]. The student must

not confuse % of formulas [192], [103], [226] and [226 a] with

the mean square contingency, x2 of formula [224]. They are

entirely unrelated. Applying the correction, we have

£, _ C (Coefficient of contingency cor-

m rxxryy rected for class means) [226]

We must now obtain values for the correlation between the

variates and the class means, rxx and ryy. The preceding

formula may be written in a form similar to formula [103].

™C = — [2266]

axay

Note that the assumption of normality implies that the cor-

rective factor i/(axay) is as great for the problem in hand as it

would be were the distribution of the two traits normal. In

other words we assume normality only in the problem of

determining the corrective factor and not in the determining

of C. Wide divergencies from normality would probably

amount to very little so far as the corrective factor is con-

cerned, and as it is necessary to make some assumption in

order to determine this factor we can do no better than assume

normality of distribution. Doing this we find ax and ay as was

done in Section 47. Should we not wish to make the assump-

tion of normality we may assume a rectangular distribution

and find the correlation between class means and variates. A

rectangular distribution of n units length has a standard devia-

tion of VkVi2 and the standard deviation of the means of a

rectangular distribution k units in length divided into k equal

intervals is Vk(k — 1)/i2. Thus the corrective factor is

determined from

(Correlation between class means and variates assuming

a rectangular distribution of k equal sub-ranges) [227]

If jc is the number of categories in the first variable and X the

number in the second, the total corrective factor is
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This correction is larger than the one based upon the assump-

tion of normality and probably is in general less sound. The

following table is given to show the magnitude of the corrective

factors upon various assumptions and to provide rxx when

certain assumptions are reasonable without entailing the

detailed calculation.

TABLE LIII

Value of txx, the Correlation between the Class Means and Variates for

Different Groupings

Number oe

Classes

Equal Ranges.

Normal Dis-

tribution

Equal Sub-

Frequencies.

Normal Dis-

tribution

Equal Ranges.

Rectangular

Distribution

Equal Ranges.

Any Dis-

tribution

2

.798

.798

.707

.589

3

.872

.891

.816

.842

4

-923

.928

.866

-915

5

-949

.947

.894

.946

6

.964

.959

.913

.963

8

.979

.972

-935

.979

IO

.986

.979

-949

.987

15

.993

.988

.966

.994

20

.996

.992

.975

.997

The values in the last column have been derived upon the

assumption that a parabola would well represent the frequency

surface of any three neighboring classes. In the calculation

of the first and last columns of this table it has been assumed

that the total range was equal to 5.6 standard deviations which

would approximately be the case in a normal distribution if

the total population is 100 (see prob. i, Chapter V). Pearson

(1913 inf.) gives a table containing in part similar information

upon the assumption that the total range equals 6.0 standard

deviations which is approximately the case if the total popula-

tion is 185. The corrective factors given in the 1st, 2d, and

4th columns are nearly equal to each other if the number of

classes is greater than three, so it makes little difference which

of these three hypotheses is assumed in determining this cor-

rective factor. The assumption of a rectangular distribution

leads to quite different results throughout the entire length

of the table.

We have considered two corrections, one the correction of <p

for number of cells and the second a correction of C for use of

class means instead of variates in the classes. One further
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important item is the probable error of the contingency coeffi-

cient. Much study of this point has been made (Blakeman

and Pearson 1906 and Pearson 1915, prob.) and certain of the

methods obtained are involved. The method here given, de-

rived by Pearson (1915 prob.), is fairly simple, involving the

calculation of but a single additional constant ip3. Let the

cell ^3 function be denned by the equation

Cell function = [229]

and let ^3 be the sum of such functions for the entire table,

divided by the population, thus

., _ _i _y / (rfssQ'X function required in finding the

N \(>njj')2/ probable error of ip and of C).. .[230]

Having <£2 and if/3 we may obtain the standard error of from

the formula

a« = —^= + 1 — (Standard error of <fv) [231]

Further, having C we obtain

(•  _ \ i (Standard error of the 00-

<t>* I efficient of mean square

(1 + i1,')3 / contingency) [232]

We may illustrate the calculation of <t,, C, ac and the corrections

to <f, and C by the following data taken from the army psycho-

logical findings (Yerkes, 1921, page 825).

TABLE LIV

Baker

Band

Musician

Barber

Book-

keeper

Butcher

294.

323-5

- 29 5

2.690

289.

262.9

26.I

2-591

.257

275-

321-8

- 46.8

6.821

- -992

450.

370.

378.9

-8.9

.209

- .005

1678

Tested by-

Army

Alpha

390.9

59-1

8-935

I-351

- -245

85-

55-5

295

15 680

19-

45-1

— 26.1

102.

55-2

46.8

39-678

33640

8.

67.1

74-

288

Tested by

Army

Beta

15-104

- 8.741

- 59-1

52.054

651

8-9

1.217

.167

8-334

- 45-848

379

308

377

458

444

1966

x! = 144.979 N1I,' = — 12.082

i1,' = 07374 = - .006145

c — .2621 ac = 01861

P. E.i: = .0126
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The 5 entries in each cell are, in order, as follows:

nss ' The frequency found in the cell

mss" The theoretical cell frequency

An* The cell divergence

(dss')'

The cell square contingency

WuO.' X ds? The ceU ^ {unction

mss* tnss'

It should be noted that the <£2 used in the calculation of ac is

not the corrected value. We may, however, with insignificant

error consider ac to be either the standard error of the raw or

the corrected coefficient of contingency. The mean square

contingency corrected for too fine grouping, c4?, is, by formula

[225],

_ (« - 1) (x - 1)

«** " * N

4 X 1

■ 07374 ~ 1^66 = 07171

The corrected coefficient of contingency depends upon the

correlation between class means and variates. Let rxz stand

for this correlation in the case of the test series and let ryy be

this correlation for the vocation series. It is very difficult to

make an assumption as to the distribution of the variates

within the vocational categories. However, assuming "equal

ranges any type of frequency" we find from Table LIII that

Tyy = .946, for a five category series. The assumption of a

normal distribution for the other variable is reasonable though

we cannot expect the most reasonable of assumptions to give

a very reliable corrective factor from a two category distribu-

tion. We have

TABLE LV

Number

Per Cent

s

Mean of Class

X

Test by Army Alpha

1678

85-36

.257

.2294

Test by Army Beta

288

14.64

~ I-567

ax = ^536 (.257)' + .1464 (- 1.567)' = .6449 -
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METHODS OF MEASURING RELATIONSHIP 271

and since ax, = 1.00 we have

rxx ~ T^o" 645

Thus finally

Ji + e»! .2587

mC = = 2 =TT * = -424°

r»xryT .6449 X .946

P. E. of mC = approximately .0204 as determined from the

proportion

.2621 _ . 4240

.0126 " P. E. of mC

This completes the solution, and for the problem in hand we

may conclude that there is a small correlation of .424 between

trades considered and literacy and that this is established

with a very satisfactory degree of certainty.

The reader should note that the corrected value of c differs

materially from the raw value.

Section 78. Variate Difference Method

The variate difference method was first used by Miss F. E.

Cave, in 1904, in a study of the correlation of barometric

heights, published in the proceedings of the Royal Society of

London, v. 74, pp. 407. The object of this study was to get

rid of seasonal change by correlating first differences of readings

as obtained at two stations. Later, Hooker (1905, Jour, of

the Roy. Soc., v. 68), Student (1914), Anderson (1914),

Beatrice M. Cave and Pearson (1914) and Ritchie-Scott (1915)

have further developed the theory and illustrated its use,

and Persons (1916), (1917) has noted certain of its shortcomings.

There is still much to be done in establishing its degree of

applicability to short series such as are usually available in

material influenced by spurious time and space factors.

If barometric heights constitute the data and a large number

of measures are available, there is little doubt but that the

method will give the correlation between the readings at two

stations independent of spurious space or time factors; but

if two series of yearly price indexes, extending over n years,
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where n is small, are correlated by the variate difference

method; (a) the probable error of the correlation obtained is

not definitely known, (b) the number of differences which it

is desirable to use is uncertain, and (c) the relation between

the applicability of the method and the size of n is not estab-

lished. Cave and Pearson (1914) consider good results to be

obtained by going to fifth or sixth order differences when

dealing with eleven commercial indexes, each extending over

28 years, but this point is not indubitably established. The

problem shortly to be presented to illustrate the method is

equally extensive in time, but the real relationship between

the variables, independent of time, can hardly be said to be

apparent. The treatment of the following sections will be in

the order, (a) notation, and tests of applicability, [1] by com-

parison of standard deviations of successive difference series

and [2] by the stability of the successively obtained correla-

tions; and (6) illustration by a problem.

(a) Given two series, xi, x2, . . -x„ and yu y2i- . .y„ between

which there is an organic correlation, R, and a spurious cor-

relation due to a time or location factor such that the two

phenomena together result in an apparent, i.e., an obtained

correlation, of r. The problem is to determine R. Student

(1914) has shown that if

Xi - Xi + bti + ct\ + dt3, + etc.]

x, = Xi + b1i + ctii + dt', + etc. L [233]

etc. j

and if

y, - K, + Bh + Ct\ + Dt\ + etc.]

y, = Y, + Bh + Ct-i + Dfi + etc. y [234]

etc.

in which X,, X2, etc., Yi , Y2, etc., are independent of time or

location, then, if the parabolic equations in / terminate with

some power t", the correlation txy is given by the correlation

between A„ and S„, the two series of n-th order differences,

Ai standing for the measures (xi - xi), (xt — x3) ...

(xn-i - x„); A2 for the measures [(xi - x2) - {xi - xs)],

[(x2 - x3) - (x3 - xi)], . . .[(*»_! - *„-i) - (x„-i - xH)]; and

similarly A3 for third order differences; A4 for fourth order
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METHODS OF MEASURING RELATIONSHIP 273

differences; etc.; the S's having comparable meanings in the

case of the ^-series. Cave and Pearson have noted that in

this equation the ratio

"a 2

- 4 -zr-n -- - - I235]

»A_ , . m + \

1m + 1

and that, therefore, starting with a series in which measures

are not independent but influenced by a time factor which

can be expressed, as suggested, by a terminating parabolic

series, taking successive differences and calculating the standard

deviations of the difference series, one should obtain, as soon

as sufficient differences have been taken to eliminate the

spurious time factor, standard deviations bearing the ratio

indicated. This accordingly constitutes a test in a single

series of the number of differences which are required to eli-

minate a time or space factor. Cave and Pearson applied this

test to the eleven series with which they worked, but did not

succeed in establishing the number of differences necessary to

eliminate the time factor. They attribute their failure to the

small period studied. However, 28 years is, as economic

data run, a fairly long period. Some method, —partial cor-

relation, variate difference, or what not, — to eliminate an

annoying time factor, for data covering such or a shorter

period, is greatly needed.

The approach of the ratio of successive standard deviations

of the difference series of the single variable to 4 — 2/(w + 1)

is the first test of the possibility of eliminating a time or space

factor by dealing with differences.

The second test lies in the stability of successive correlations

between differences, of equal order, of the two series. Thus,

if rxy t£ rA,«i rArf,, but, very approximately, r^,t, = r^t,

= r^h, it would be concluded that the time or space factor

had been eliminated by the resort to second differences and that

the correlation then found, was in truth rxy, the desired

correlation between the two traits independent of the spurious

element.

The data in Table LVI, p. 274, kindly supplied by Mr.

Willis H. Rich, have all the characteristics expected in series to

be treated by this method. That the conclusions will be found
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to be somewhat doubtful points the weakness of the method in

its present state of development.

TABLE LVI

Chinook Salmon — Columbia River

Date of Pack

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

I901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

Pack in iooo's

of Cases

265

335

353

344

288

35l

444

370

443

346

286

294

334 (i)

375

469

547

572

511

410

334

300

442

609

365

335

419

508

511

450

445

475

477

Hatchery Out-

put in Millions

of Fry

2.77

1890

4.90

1891

1-33

1892

4.10

1893

.21

1894

.00

1895

3-39

1896

6-59

1897

21.94

1898

12.87

1899

11.00

1900

10.04

1901

24.10

1902

20.44

1903

23-56

1904

9-15

1905

17-13

1906

9.10

1907

16.44

1908

15-43

1909

12.54 , %

1910

13-97 (2)

1911

15-41

1912

26.10

1913

41-58

1914

44-45

1915

53-24

1916

2503

1917

56.80

1918

22.57

1919

25 00 (3)

1920

Fry Liberated

in Spring of

(1) 334is an estimate based upon the total pack for the year.

(2) 13-97 is an estimate based on the total hatchery output.

(3) 25.00 is a sheer estimate.
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METHODS OF MEASURING RELATIONSHIP 275

The problem is to ascertain if there is positive correlation

between the number of fry liberated from the hatcheries and

the run of salmon later, particularly three years later, when the

fry are grown and return to spawn. It is known that the

salmon returns to the same river in which liberated and that

roughly 8 per cent (these 8 per cent are small fish and would

be equivalent to some 5 per cent in weight of pack) return to

spawn one year after liberation, 20 per cent (or 15 per cent of

the pack) return in two years, 50 per cent (or 50 per cent of

the pack) return in three years, 20 per cent (or 25 per cent of

the pack) return in four years, and 2 per cent (or 5 per cent of

the pack) return in five years. Accordingly if there is positive

correlation between number of fry liberated and size of pack

independent of time, it should be greatest when correlating

size of pack with number of fry liberated three years earlier.

The means and squared standard deviations are given in the

first two columns of accompanying Table LVII.

TABLE LVII

Means

Standard Devia-

tions Squared

Ratios

2

Ratios op

Ratios

4 m + 1

* 418.18

Ai — 7.00

7.73I.14

7.505-19

14.552-54

38,704.94

119,100.91

.971

2.000

3.000

.486

.646

.798

.879

.908

.907

A! - 2-35

As 2.35

A4 5-58

At 24.OO

A, 56.18

1-939

2.660

3-333

3-500

3.600

3.667

3-077

3.267

389.056.35

1,294,512.40

3-327

The last column of the table shows the approach of the ratios

of the standard deviations squared to a random situation, i.e.,

a situation from which the time or space factor has been elimi-

nated. There is seen to be some approach to the value

4 - 2/(m + 1), but the approach is not sufficiently close to

say that this test supports the contention that a resort to

fourth, fifth, or sixth differences frees the data of the spurious

factor.

More promising results are obtained from the "hatchery
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output" data. Keeping the data to the nearest .1 and shifting

the decimal point one place to the right it yields

TABLE LVIII

Standard Devia-

tions Squared

Ratios

Ratio of

Ratios

4 m + 1

2

y 15950

«, - 8.22

17,131.96

8,231.07

17,507-46

50,770.33

178,983.22

.480

2.127

2.900

3-525

3-767

3-856

2.000

3.000

.240

.709

.870

I.007

I.046

I.052

ii - II.65

«i 12.52

3-333

3-5O0

3.600

3.667

S, — 22.96

Si 1587

674,21957

2,599,75651

S, -66.64

We may conclude that so far as this test permits us to form a

judgment we will succeed in eliminating the spurious factor by

resorting to fourth or higher differences.

Calculation of the product-moment coefficients of correlation

between similar difference series gives the values recorded in

the following table:

TABLE LIX

r*y = .3802 ± .1275

rA,{, = .0003 ± .1580

rAife = .0145 ± .1826

tajSj = - .0258 ± .2023

TA.4. = - .0247 ± .2196

r&i3, = - .0005 ± .2354

rA»J< = .0525 ± .2503

The probable errors have been calculated by the following

formulas, which are due to Anderson (1914): Let rxr be, as be-

fore, the correlation between the two variables independent of

the time or location factor; let aoo be th? standard error of rxy;

an the standard error of r&t,; an the standard error of r&a,, etc.

Then,

1 — r'XY (Standard errors of variate difference

a<1o = y^V-" correlation coefficients) [236]

1 - r'xv Jx N -a
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The N throughout the formulas is the original population and

not the reduced number of differences. The final correlation,

txy, which maintains after elimination of the spurious factor,

enters into all of these formulas. This correlation is of

course not known, but if successive difference correlations

remain approximately equal one may take this constant

value as the value of rxr and determine approximate prob-

able errors. For the problem in hand we see that the first,

second, third, fourth, fifth and sixth difference correlations are

closely equal to zero. Accordingly, taking zero as the value of

rxr and using formula [236] we obtain the probable errors

listed. Note that the standard error of rxy is given as

(1 - r*jrr)/ViV and not the usual value (1 -r2xy)/VN.

That is to say, rxy, could it be assumed to be a measure of rxv,

has the standard error (1 — r'xY)/'^/N, but as a measure not

distinct from the space or time factor it has the usual standard

error. In our present problem, since rxy/r&,3, does not approxi-

mately = 1.00 we should not assume it to be a measure of r.vv.

The conclusion which this treatment suggests is that there

is no relation between planting of fry and run of salmon three

years later, but this is in no sense established, due to the large

probable errors. It is of course unfortunate that, with the

very type of data for which large populations cannot be secured,

the probabj? errors should be larger than for straight correla-
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tions. This is a weakness of the method in the field for which

it would otherwise be most serviceable.

It would be valuable to compare at length results obtained

by the variate difference method with those from a partial

correlation or partial correlation ratio method. The data in

hand do not warrant too detailed an analysis, but it may be

stated that, assuming either a rectilinear or a single flexion

curvilinear regression line between time and each of the other

two variables, the partial correlation between number of fry

liberated and run three years later is positive and slightly

greater than its probable error. Thus, for these data, the

two methods do not point in the same direction.

Calculating variate difference correlation coefficients between

number of fry liberated and run two, and again four, years

later yield equally inconclusive results with those reported.
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CHAPTER XI

MULTIPLE CORRELATION

Section 79. The Problem

The fundamental problem of multiple correlation is the

estimation, with minimal error, of one variable knowing several

others. Thus if Xo is the dependent variable, or the one to

be estimated, and Xi, X2---, Xn the independent variables,

and if Xo is the value of the dependent variable as estimated

from the known Xi, X2,- - -Xn variables, we may write

Xo = / (Xi, Xi, . . - Xn)

and we will say that that function which makes

2 (AT„ - Xo)' . . . .

—— = a minimum [237]

is the best function. Since (Xo — Xo) is an error of estimate,

this is identical with imposing the condition that the sum of

the squares of the errors of estimate shall be a minimum.

Just as we have found that there are many methods of measur-

ing correlation, so there are many ways of measuring multiple

correlation. The five following are important, but not inclu-

sive of all possible methods.

(a) When f(Xt X2 - . -Xn) is a linear function of the variables

we have the usual multiple correlation problem, and the

method to be used is both the simplest and the most readily

interpreted.

(6) When / is a known, but non-rectilinear function of the

X's, appropriate transformations as suggested in Section 52

will ordinarily enable the treatment of this problem by methods

applicable to (a).

The complete problem of simple or multiple correlation

involves, as has been stated, (1) a measure of the strength of

279
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relationship between a dependent variable and one or more

independent variables, and also (2) an algebraic means of

estimating the dependent variable knowing the independent

variable, or variables. Whereas methods (a) and (6) preceding

give solutions of both (1) and (2), methods (c), (d) and (e) fol-

lowing provide a solution of (1) only.

(c) A multiple and partial correlation ratio method enabling

an estimation of the magnitudes of the multiple and partial

correlations between graduated variables which are not related

to each other by means of rectilinear regression lines. Also, a

(d) Multiple and partial contingency method accomplishing

the same result as multiple and partial correlation ratios, and

particularly applicable to data recorded in a categorical manner.

This method also leads to interpretation in terms of probability.

(e) The variate difference correlation method. This method

is of service when a time or space factor not showing rectilinear

relation with the other two variables involved hides or clouds

the partial relationships between the two variables. This

method has been presented in the preceding section and is very

different from (a), (6) and (d). The treatment of the next

five sections is confined to method (a) and covers the 3 or 4

variable problem in Sections 80, 81, 82, the 4, 5, or 6-variable

problem in Section 83, and the many variable problem in

Section 84.

Section 80. Theoretical Treatment — 3 Variables

A simple three variable problem, so chosen that the interpre-

1 ,-ition is not complicated by unequal variabilities of the three

cries, will show the concrete and tangible significance of the

rtial and multiple correlation coefficients.

We shall use the following notation.

X = a gross score.

x = X - M = a score as a deviation from the mean.

a = ax = ax = the standard deviation of either the x's

or the X's

x X - M

= a standard measure

Na'

= 1.0
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MULTIPLE CORRELATION 281

Symbols with subscript zero as Xo, xo, ao, ~o, designate the

criterion or dependent variable. Symbols with subscript 1

designate the first independent variable, with subscript 2 the

second independent variable. The following symbols with

superior bars Xo, xo, zo, designate gross criterion scores esti-

mated from a knowledge of the independent variables, devia-

tion scores estimated from such a knowledge, and standard

scores estimated from such a knowledge, respectively. The

statistical problem is to determine the two constants 0oi-2

and j3o2.i (the significance of the subscripts is explained later)

in the equation

Zo = 0oi-iZi + 0omzi (Fundamental regression equation connecting

standard measures — 3 variables) [238]

so that the standard error of estimate ko-a is a minimum.

(so — *o) (Error of estimate or residual of

a standard criterion measure) [239]

is the difference between the actual standard criterion score and

the criterion standard score estimated from the independent

variables. It is thus an error of estimate and the standard

error of estimate is

. _ ./s (zo — "2u)' (Standard error of estimate of the

o1 » N standard criterion measures) .. [240]

If zi and zi are worthless in shedding light upon the value of z<,

then 0oi-2 and /?o2.i, the weights appropriate to the z's, will be

zero, and zo will equal zero for every individual. In this case

= <rg = I.O.

This is the maximum value that k can ever take and means

that the error of estimate has not been reduced at all by the

use of zi and 22 over what it would be were sheer random guesses

resorted to. If zo can be perfectly estimated from zi and zi

then every {z0 — zo) equals zero and fc0-i 2 = .00. This is the

minimum value that k can take and corresponds to perfect

estimation, or zero errors of estimate throughout. In the

symbol ko.i.i the subscript before the point designates the

variable estimated and the subscripts after the point designate

the variables from which the estimate has been made. The

problem has been stated to determine the /3's so that k shall be
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a minimum. The constant ko-w is the standard deviation of

the errors of estimate when scores are expressed in terms of

standard measures. Its meaning is thus easily grasped and

obviously very important for the magnitude of the error in-

volved in estimating one variable knowing all the others is the

first item of information needed in interpreting the significance

of the relation between variables. It will later be shown that

feo.12 varies directly as ao-u, the standard error of estimate of

the xo's, or the Xo's, so that establishing the minimal error

condition with reference to the standard measures also estab-

lishes it with reference to the gross scores.

The following derivation of the values of the /S's is brief and

simple, but involves an understanding of calculus. For those

unfamiliar with calculus a numerical illustration showing the

concrete significance of the constants involved is given in the

next section.

It is required to so choose 0oi.2 and fim-i that the standard

error of estimate shall be a minimum; that is,

'2 (zo - io)' = 2 (zo - /Soi.!Zi - /3omZi)i

is to be a minimum. Differentiating first with respect to

/Soi-2, and second with respect to /9w.i, gives the two following

equations

2 2 (zo — 0oi.izi — /So2 iZ2) (— Zi) =o

2 2 (zo — 0oi!Zi — 0omZ2) (- Zi) = O

Dividing by — 2 N, summing the several parts, and remember-

ing that

that

that

and that

we obtain

2z'i

N

2 ZoCj

2_Zo£i

N

2 ZiZi

~AT

2 z'!

N

= roi

= 1.0

= rli

Toi — 0o1-! — TU0O! 1

Tiii — ru0oi 2' 0Oj 1

(Normal equations)... [241]

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



MULTIPLE CORRELATION 283

Solving simultaneously

001-2

0oit =

1 — r'u (Regression coefficients between standard

ro' — roiri! measures — 3 variables) [242]

1 - r!u

This completes the solution of the 3-variable regression equa-

tion involving standard measures. We will make the usual

transformations,

X - M

t =

a

and express the result in terms of gross scores, giving

Xo — Mo

= 0oi-2

0o

which, upon simplification, becomes,

5o = 0oi. ' -° X, + 0,,., -° + (Mo - 0OM - Af, - 0om - J/,). [243]

oi »i \ ai ai /

Defining fcoi-2, and c by the following equations

boi i — 0on — 1 6o21 ~ 0oii — [244]

0i ai

c = Mo — boi 2 A/i — 6o2 iAfi [245]

equation [243] may be written

Xo = boi i Xi + boi 1 -X^ + c (Regression equation involving

gross scores — 3 variables). [246]

Very simple algebraic derivation will show that in the case

of n independent variables we have

Ooi-ii -..a — poi-a-.-ii—

ai

6oi.il- -n = 0oi-u---» — [247]

ai

in which /3oi-23. . -», 0o»i3... », etc., are defined by formula [264 6]

c = Mo — 6o1a . n Mi — 6o2.il - .   nMi — . . .

— bon-ii- - n-, Mn [248]

Xo = 6oMI . - n X1 + 6o211- - n Xi 4" . . .

6on u..- n-i Xn + c [249]

Equation [246] is ordinarily the most convenient form to use.

The constants 6o12, £,<k.i and c have numerical values which do

not change for the entire population, and it only remains to

substitute the gross scores, Xi and X2, to secure an estimate

of the dependent gross score Xo.
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We have determined the value of /Soi.2 in terms of total cor-

relation coefficients roi, rut, and r12, and its use in the regression

equation, but have still to discover the property which has led

to the subscript notation. Let us find the regression of that

part of zo which is independent of z2 upon that part of zi which

is independent of z2. Since the regression equation connecting

zo with zi is

Zo = TotZt

That part of zo which cannot be estimated from a knowledge

of z2, or that part which is independent of zj, is (zo — r^zi).

This magnitude we will designate by zo.i, which may be read

"the residual in zo after estimation of zo by aid of zi" or "that

part of zo which is independent of z2."

co. i = (zo — roizi) (An error of estimate, i.e.,

a residual) [239 o]

Obviously the N residuals, zo.i cannot be estimated at all by

means of z2, since z2 has already been used for all that it avails.

This is merely equivalent to saying that the regression of zo.2

upon z2 is equal to zero. The proof is simple:

. 2 Zo.'Zi

2 zu-iZ2 = Z (zo — To!Z!) zi = 2 zoZ! — ro2 2 z'i = Nroi — Nroi = o

accordingly 6o-2,2 = 0. We may, however, estimate these resid-

uals by means of variable 1 which is a new source of data. Since

zo.2 has zero regression upon S2, it of course has zero regression

upon that part of zi which can be estimated by means of Z2.

To estimate zi from zt we have zi =

so that

, 2 (zo-i) (ruZ!) ru 2 z„.!Zi

- s (ru22)! = 2 (,„„). ~ 0

It is therefore clear that only zi.2(= zi - r^), that part of zi

which is independent of z2, is of service in estimating zo.2, that

part of zo which is independent of z2. The regression of zo.i

upon z1.2 is

2 zo.gM = 2 (:o — roiz!) (z, - r,izi)

2 z!,., 2 (s, - mz')'

_ roi — roiTa — roiTii -\- roiTn

1-2 ru' + ru'

Toi — To2Tii Q

= —: ~,— " Po1.!

I — r-n
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We now see the meaning of the notation /Soi.2. It is the regres-

sion of that part of zo which is independent of % upon that

part of zi which is independent of z2. For this reason 0oi.2 is

called a partial regression coefficient and, to recapitulate, it

has the two following important properties:

(a) It is the regression of that part of zo which is independent

of zi upon that part of zi which is independent of z'.

(6) It is the weight or multiplying factor of zt when zi and z2

are both used to estimate zo.

Of course /9m.1 is the comparable partial regression coefficient

when variables zi and &z are interchanged. We will now illus-

trate this by a numerical example.

Section 81. Three-variable Problem Illustrating

Meanings of Constants

The first three columns of Table LX constitute the se-

ries to be correlated and the subsequent columns are derived

calculations.

TABLE LX

=o

11

n

ro-zi

rim

0O1.'21.'

*• 11

CO

l-75

1.00

.25

.1237

1.6263

-.0638

I.0638

.8667

7596

.9904

1 25

.25

1.00

-4948

.7552

-.2552

-5052

.4116

.3436

.9064

1.00

.00

1.00

.4948

.5052

-.2552

.2552

.2079

.2973

.7027

.75

1.50

.00

.OOOO

.75O0

.OOOO

I.50OO

1.2221

-.4721

1.2221

.25

- -75

2.00

.9896

- -7396

-.5104

- .2396

- 1952

— 5444

-7944

.25

1 25

- -50

-.2474

-497+

.1276

1.1224

.9H5

-.4171

.6671

- -25

-75

-1 -25

.6185

.3685

.3190

.4310

-3512

.0173

- .2673

- -50

—1.00

.00

.OOOO

- .5000

.OOOO

— I.OOOO

- .8148

.3148

- .8148

- -75

.00

— 1.00

-.4948

- -2052

.2552

- -2552

- .2079

-.0473

- -7027

— 1.00

— 1.00

.00

.OOOO

— 1.O000

.OOOO

— I.OOOO

- .8148

-1852

- .8148

-1 25

.00

-1-75

-.8659

- 3841

.4466

— .4466

- -3^39

— .0202

— 1.2298

-150

—2.00

-25

.1237

-1.6237

-.0638

-1.9362

-1-5775

— .0462

-1-4538

£ ZoZ1 1

2zoZi •

7.6250,

5-9375.

rn = .63542

roi = 49479.

Zztfi - - 3.0625, r,i = - .25521

(Soi ' —

0OM ~

1 - r'u

To2 — roirii

= .81476

= .70272

914030,

11.21842

914030

11.21842

1.61504

1 - r'„

Zo = /3oi.iZi + /3o!.iZi = .81476 Zi + .70272 Zi

.81476

0o-11:

.36686
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These series have been so chosen that the means equal zero

and the standard deviations equal one. We are thus dealing

with standard measures, or z's and not with x's or X's.

Straightforward calculation gives

2 ZoZi 7.625 ,

™ - jv,.oxi.o - ~ir - -63542

roi = -49479

ru = - .25521

We can estimate zo by means of 22 by the following equation:

io = roi2i = .49479 22

These estimated values are recorded in the column rw^. The

residuals (zo — rmz2), or parts of zo which are independent of z2,

are recorded in the column zo.2. We can estimate zi by means

of zi by the equation

zi = rliz2 = — .25521 zi

These estimated values are recorded in column razi. The

residuals (zi - razi), or parts of zi independent of r2, are recorded

in the column zi.2. That part of zi which is independent of z2,

namely £i.2, may be used to estimate ro-2. Straightforward

calculation of the regression equation gives

2o= -Y^TT 21 . = 1T2I84I z, != -8l476«...

The constant .81476 (= 0oi.?) is here seen to be a regression

coefficient, being just as real and definite in its meaning as

those found in any other two-variable problem. Finally taking

(zo-2 — 0oi.22i.2) we obtain zo.i2, the final residuals that are left

after having utilized both zi and % to the utmost in estimating

zo. These magnitudes are our final errors of estimate. Cal-

culating their standard deviation in the usual manner we

obtain

lg.u = .36686

The residuals zo.12 could have been obtained more directly

without the calculation of zo-2 and zi.2 by the regression equa-

tion involving the two variables. We have

Zo u = Zo — 0oi-2Zi" ^omZi
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MULTIPLE CORRELATION 287

in which

roi — rMri; BT._fi

Po12 = — -J— .81476

1 — r'12

ro2 roi>.2 _____

Cmi = — ^— = .70272

I — r'u

The more lengthy procedure has been followed for the purpose

of showing the exact significance of the 0 constants and of the

residuals, and not because it is the most practical method for

purposes of estimation. If we add the measures in the two

columns ro2z2 and Pm.&i.i or if we use equation

Zo = /Soi &i + /3oii"!

we obtain the best estimates of zo which it is possible to secure

from zi and z_, assuming a rectilinear relationship. Such esti-

mates are here recorded in column zo. The correlation between

zo and zo is the multiple correlation coefficient and will be

designated by the symbol ro.a- As multiplying every term in

a series by a constant, or adding a constant amount to every

term, does not change the correlation with a second variable,

the correlation between zo and io_is identical with that between

xo and xo or between Xo and Xo. The multiple correlation

coefficient is the maximum correlation obtainable between

dependent variable and a weighted composite of the inde-

pendent variables. We may therefore read ro._ as "the cor-

relation between the variable o and the best weighted linear

combination of variables 1 and 2." Straightforward calcula-

tion of the correlation between columns zo and zo yields ro.1

2

= .93028, but a much shorter method of calculation is available.

We have in a two-variable problem

ai.! = ai V1 — r'

Since zo and zo are simply two variables and since the standard

deviation of zo = 1.0, and the standard deviation of the resid-

uals in zo after estimation by aid of z, and z_ is £o-12 we have

£o.u = 1.0 Vi - rVu

from which _—-_

ro.u = Vi — £'o.12 (Value of the multiple correlation

coefficient — 3 variables) .... [250]

The relation between feo.i2 and ro.12 is the same as that between

&12 and ri2 of Formula [86 a], section 48, hence &o.n is a coeffi-
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STATISTICAL METHOD

cient of alienation in the case of three variables. We now need

a simple procedure for the calculation of feo-w- Since ko.n is

the standard deviation of the residuals we have

t'ni = 2 (zo — 0oi 'Zi 0om£i)'

Squaring, summing, and collecting terms we will find that the

factor (1 — r212) enters into numerator and denominator.

Wherever this factor occurs we will write k2i2. Remembering

that

2 *'0 = 2 zh = 2 zh = N

and that

2 ZoZi = Nroi, 2 zoZi = N roi, 2 ZiZi = N ru

we nave

k'a i2 = I + ff'oi 2 + /3!oi i — 2 /Soi.iToi — 2 /So!-iroi

+ 2 /3oi t/3oi-iru

•= rj- (i — r2oi — r!o2 — r2i* + 2 roiro2ru)

(Coefficient of alienation — 3 variables) .[251]

The general solution of the coefficient of alienation in the

case of n variables is well accomplished by the aid of determi-

nants, and we may here note this form of solution for the case

of three variables. If we write the major determinant

A =

I roi ro2

roi 1 r„

rm ru 1

. [252]

and call the minor obtained by deleting the first row and the

first column Aoo, we have

^"L1 7 I"*'"[253]

Evaluating these determinants we obtain the numerator and

denominator respectively of the fraction giving £2o.i2 so that

we may write

£ _ J~A (Multiple coefficient of alienation as

o12 'Aoo the quotient of determinants) ...[254]

This is here proven for the case of three variables, but we will

later find that the equation holds generally for any number of

variables. If we are concerned only with the value of the

multiple correlation coefficient, and not with the constants of

the regression equation, the simplest way to find it is to first
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MULTIPLE CORRELATION

determine ko.n and then ro.u. If we have the regression coeffi-

cients we may obtain feo.12 and thus ro.i2 from it. We have called

jfeo-1 2 the multiple alienation coefficient. It is the measure of

independence of variable xo from variables xi and x2. We will

define £oi-2 as the partial alienation coefficient. It is the

measure of independence of xo and xi for a constant value of x2.

Thus, by definition, if roi.2 is the partial correlation between

xo and xi for a constant value of z2, we have

£'oi-i + r'oi-2 =1.0 (Relation between partial coefficients

of correlation and of alienation)... [255]

This is the equation for three variables comparable to formula

[86 a], k2a + r2i2 = 1.0, found for two variables. We thus find

that whether k has one primary subscript (a subscript occurring

before the point is termed a primary and one after the point a

secondary subscript), feou, or too primary subscripts, feoi-2 the

type equation, kl + r2 = 1.0, holds. Thus far we have found

the total, multiple, and partial relationships as follows, respec-

tively.

*'oi + r'oi = 1

AV12 + rVn = I

ft'oii + rV! = I

The same relation will be found to hold when n variables are

involved, so that universally, provided the subscripts are the

same,

k' + r' = 1 (General relation between

* and r) [256]

We do not have a k with three primary subscripts, but feoi

and ko-i may be shown to be identical. Dealing with z's we

have found feoi = Vi — r2oi and £o.i = the standard deviation

of the arrays of zo's, i.e.. fco.i = a*, V1 - r2oi = Vi - r2oi,

since, when dealing with z's the standard deviation a, is equal

to 1. Accordingly

ko.i = koi [257]

Equations [251] and [254] have expressed feo.i2 in terms of

the total correlation coefficients. We may also evaluate this

multiple alienation coefficient in terms of other total and partial

coefficients, but will first need to determine a partial coefficient

of correlation. Having shown that 00i.2 is the regression of
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STATISTICAL METHOD

zo.2 upon zi.2 and since by parity p*io.2 is the regression of zi.2

upon so.2, we immediately have, since every condition leading to

=\/bub2l formula [90] is exactly paralleled when dealing

with 2o.2's and 3i.2's,

(Partial coefficient of correlation in terms of partial

regression coefficients — 3 variables) [258]

The partial coefficient roi.2 is identical with rio.2 but custom

places first the numerically smaller of the subscripts before the

point.

I — r'oi — r'oi — r'ii + 2 roiroirn

£'oi ' — 1 — /So1 i/3io j

*!i.*:

,, ,, I —r'oi — r'oi — r'u + 2 roiToiTu

k'o2K o1 ! = rj = *"ni

that is

kou = *o2*oi i (Multiple coefficient of alienation in terms of

or total and partial coefficients of alienation

*<mi = *oi*o'.i —3 variables) [259]

We may now outline the most expeditious manner of calculating

all of the constants ordinarily desired in the solution of a

multiple correlation problem. These constants recorded in the

proper order of calculation are:

the means, M0, Mi, and M2

the standard deviations, ao, ai, and 0$

the total correlations, roi, rm and ru

the squares of the total alienation coefficients fe'oi, fe'o2 and

*•«

the 0 regression coefficients

a I'm — Trnrn roi — Tttir-a r<a — ratfvi

Pol-2 7^ , PlO-2 — Vi . Po2-1 — Tj

K 12 K OS K 12

the square of the partial correlation coefficient

»"Soi-2 = 0oi-2 0lo-2

the square of the partial alienation coefficient

£2oi.2 = 1 - r!oi-2

the square of the multiple alienation coefficient

k2o.12 = &2o2&2o1-2

the multiple alienation coefficient, £o-12

the multiple correlation coefficient, ro.i2 = Vi - *20.i2
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MULTIPLE CORRELATION

the 6 regression coefficients

6oi-2 = fioi-i —, 6o2.I = 002-1 —

the constant c

c = Mo- Mi - 6o2.1 M2

giving the regression equation

Xo = 6oi.2 Xi + 602.1 X2 + c

the standard error of estimate, or the standard deviation

of the .Xo-arrays from the regression line

<rfl-12 = ^o &o-12

Excepting the probable errors of the constants (see formulas

[278], [279] and [280]) the solution is complete.

Section 82. The Use of the Alignment Chart

The calculation of the 0 constants may be easily accomplished

by the aid of an alignment chart. The following directions

apply to the small chart in the appendix and described in

detail and with explanatory problems in (Kelley, 1921, chart),

and also to a large chart devised upon the same principle

(Kelley, 1921, align). Items (t) and (J) and the four-variable

problem illustration should be read after the treatment of

the n variable problem, Section 83, of this text. The accuracy

of the chart in the appendix is very slightly less than that

of a 10-inch slide rule, while the large chart gives results

of the same degree of accuracy as a 20-inch slide rule.

The scales for n3 and r23 are graduated according to the

logarithms of numbers from 10 to ioo, and the product scale

is so graduated as to indicate the products of any two numbers

on scales ru and r23 when connected by a straight line. Ac-

cordingly all products and quotients, including squares and

square roots, may be obtained. In all these operations the

simplest way to keep track of the decimal point is to roughly

carry the operation through in one's head and then place the

point where it belongs. A strip of transparent celluloid with a

straight line scratched upon it, or a silk thread drawn taut,

constitute serviceable straight edges.

Scale i/fe is graduated according to the logarithms of

i/v 1 - r2 and scale 1/fe2 according to the logarithms of

1/1 - r2. Scale 1/Af2 is a continuation of scale 1/fe2. When

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



2g2

STATISTICAL METHOD

values on scale i/K2 are used, place a straight edge through

this value and parallel to the base line [as explained in example

(c)] and locate a point on scale i/k2. Then continue the cal-

culation using the point so located on scale i/k- in lieu of the

point on scale i /K-.

The following magnitudes are needed in multiple correlation

work:

(a) Products, such as ri3r»3

(b) Quotients, such as --

(c) Square roots, such as VPn-Ais

(d) Factors ^= — — ^ which enter into partial

coefficients of correlation

(e) Coefficients of alienation, such as ku (= Vi — r2i3)

(/) Factors ~— ( = - ~'r) which enter into regression

coefficients

(g) Squares of coefficients of alienation, such as kSs

(=i-r'„)

(h) Partial regression coefficients, such as

V = k'„ ) [247]

(i) Partial correlation coefficients, such as

rn-3 ^= ""fc,jfe2" 23 = ^fe-Ai-j = ^12.362i.3)

(j) Partial regression coefficients involving four variables

o /_ — 0l3-4<332-4 _ P*12-3 — (3m.3/842.3^

fe'34 V~" "*°24.3 )

Since £!23.4 = 1 - 023.4032.4, and since the calculation

which leads to 023.4 is changed in but one simple

respect to obtain 032-4 it is convenient to write:

a 012-4 — 013.4032-4 . - n

012.84 : ^—3 - [264 a\

I — P23-4P32-4

(k) Partial regression coefficients involving more than four

variables

4 . . - n ~ 013-4 -.-tI 032-4

I — (823.4 . . . n &32-4 - - .

The same procedure as in (j) is followed, but in this

a Pi2 i . - . n — P13.4 • • ■ n P32-4 . . n r , „ ,i

j3l2.34 - . . n = 1 3 ~" I264 b]

I — P23-4 . . . n P32-4 • ■ . n
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MULTIPLE CORRELATION 293

case the calculation which leads to (323.4. . .n does

not, by one simple change, lead to 0M.4. . . n.

Examples:

(a) .2 X .4 Place a straight edge on 20, scale ri3, and

upon 40, scale r23, and read the product, .08, on the

product scale.

2

(b) — Place a straight edge upon 20, pr:duct scale, and

.4

upon 40, scale r23, and read the quotient, 5.0, on

scale r13.

(c) V.25 Place a straight edge on 25, product scale, and

parallel to the base line of the chart (this can be

done by rotating the straight edge until the readings

on scales n3 and r23 are identical) and read the square

root, .50, on either scale n3 or r23.

(d) / 1 = Find 60 on scale 1 Ik and read the answer,

Vi - .602

1.25, from the same point on scale ri3.

(e) Vi — .602 Place a straight edge through 60, scale

i/k, and 100, product scale, and read the answer,

.80, on scale r23.

(J) —Find 60 on scale 1/fe2 and read the answer,

1 — .00

1.5625, from the same point on scale r23.

(g) 1 — .602 Place a straight edge through 60, scale 1/k',

and 100, product scale, and read the answer, .64,

on scale ri3.

^ 178__^X_.8o the product of .60 and .80 by

(a). On a separate scratch paper subtract this from

.78, obtaining .30. Place a straight edge between

30, scale n3, and 80, scale i/k', and read the answer,

.833, on the product scale.

.78 - .60 X .80 , .78 - .60 X .80 , ...

(t) ,' —7 . Find r-i by (Ji).

vT^ 602 Vi - .802 1 - -802

Find — 60 ^ 80 by {h). Multiply and extract

the square root by (a) and (c), yielding the answer

.625.
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STATISTICAL METHOD

0') Given: 012.4 = .70; (3U.4 = 60; £32.4 = .80; /32S.4 = .5469.

t. -jo .70 - .60 X .80 _,. ,

Required: pa.u = - -—— — Find the numer-

1 - .80 X .5469

ator as in (h) and the denominator in the same

manner. Then divide as in (6). This gives

.2200

—; = .-?QII.

If, as is frequently the case, 0M.4 and 0SJ.4 are nearly

equal, k\3-i is closely given by:

In this case the procedure may be as follows:

-70 - .60 X .80

1 - .80 X .76

Find the numerator, .2200, as before. On scratch

paper determine .78, the arithmetic average of .80

and .76. Place a straight edge between .78, scale

1/k2, and .22. scale rn, and read the answer, .5618,

on the product scale. This answer is in error by

.0006, which is of the same order of magnitude as the

error attendant upon the use of the large chart.

As a sample problem in three variables the following

data are given:

TABLE LXI

Table of Correlations, Means and Standard Deviations

Variables

I 2

3

2

.225

3

.274 .404

Means

68.15 43.60

52.20

it's

10.50 12.24

903

Solving

/Si2 3 = .1366

fi2u = 1236

011 2 = .2200

*21» = .9093

n a = .3o»

oi a = IO.OI

zi = .1366 z2 + .22O0 Zl

Yi = .1172 Xi + .2399 x, + 50.52
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As a sample problem in four variables the following

data are given:

TABLE LXII

Variables

I

2

3

a

.225

3

.274

.4O4

4

.134

.O6O

.231

Means

68.15

43.60

52.20

10.50

12.24

963

Solving

013 M

-

-1398

0'1 M

-

.1270

013 24

=

.1991

014 23

-

.0796

*j.2«

-

-9033

Ti !M

.3109

ai n*

=

9.980

ii = .1398 22 + -1991 zi + 0796 u

~X, = .1199 X, + .2171 X, + .0587 X4 + 48.92

Section 83. The General Treatment of the ji-Variable

Problem

We will now attack the general problem. The reader will

need an elementary knowledge of determinants to follow the

discussion. We are given a criterion variable, Xo, and the

independent variables, Xi, X2,- - ., X„ (the population will be

designated by N, which symbol must not be confused with n,

the number of independent variables). Expressing every

variable in terms of standard measures by the transformations

X - M

it is required to determine the 0 constants in the following

equation in the best fit manner.

io = 0oi a- - - n zi + 0o2 «...»*'+ '"' 4" 0on. n. . . n-i 2» - . - [260]

(zo — 2o) is an error of estimate and will be designed by 2o.a- .. „.
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The 0's are to be so determined that the standard error of these

errors of estimate, ko-a--.n, shall be a minimum.

*Vu.

N

1

£ (zii — $o1 a - . - n Z1 — 0o' is - .. n Zi

0onu... »-l)'

Differentiating with respect to the first 0 and setting the deriva-

tive equal to zero, gives

jVS [zo — 0oi i

1 zi — 0oiu- - -» z' — . - - — u- . M—i z»] (— Zi) = O

Summing, expressing square sums in terms of standard devia-

tions and product sums in terms of correlations, yields,

roi — 0oi n --- n — ^u/3oi 13 -. . h — ". . — Tin0on- ti.. - n— I — 0

Differentiating successively with respect to the other 0's gives

foi — ru0oi a... n — 0o' 11...» — --- — rjn0o».ii. - . n-i — o

etc. to

Ton rm0oi a. - - „ TmPoi u- . . n ~ "' — 0on.ii. . . a—1 = 0

(Normal equations)... [261]

This gives n linear equations from which to determine the same

number of 0 constants. The determinantal solution is readily

written. Let the major determinant be A.

A =

I roi ro'

roi I Ui

rm ru I

Ton Tin Tfn

fo11

ria

Tt*

.[262]

and let AM be the minor obtained by crossing out the p'th

row and <?'th column of the major determinant. The p'th

row is that row having p as one of the subscripts of the r's

throughout and the qth column is that column having q as one

of the subscripts throughout. Then

0of.u. ..()...„

— (— i)f Sop (The regression coefficient as the

AoO

quotient of two determinants). . [263]

The quantity — (- 1)' is merely a sign factor. The column
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crossed out is the o'th for all the 0's so that q = o. To illus-

trate in detail we have

roi

ru

- . Tin

r0a

1

ra

. - rm

rm

1

. . rm

Ton

rin

rm

1

I

ru

r«

. . rm

rn

1

rn

. - rm

rn

1

- . rin

rm

rn

I

ren I ru ri4 . . - rm

roi rii ru ru - - . rm

ra u I ru rm

0oi-13 . n —

Ao2

Aoo

0o3im-. .,

004 123i . . .'

ron fin J^n Nn

Ago

[264]

Am

Am

/Son.!>...» — 1

Aoo

etc. to

- (- l)«AOT

Aoo

Algebraic manipulation (see Kelley, 1921, chart) enables the

expressing of a partial regression coefficient in terms of partial

regression coefficients of one lower order, thus,

Siil ~ 018-4032.4 _ 012 3 — 014 30421

012.J4 =

and in general

01M4-

012-4

I — 0M-30423

1032-«. .

[264 a]

I — 023.4- . . H032.4 .. n

.[264 6]

Note that if the variables are designated by subscripts 1, 2,

3, . . . instead of as here, by o, 1, 2 - . . the sign factor is given
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by — ( — in which q always equals 1. Probably the

simplest way to keep track of the sign is to note that the

denominator determinant is always positive and that the

numerator determinants alternate in sign beginning with plus

for the first 0. Let us define

0rt-n---()...<)...» |

and Y (Conjugate 0's).... [265]

( )...< J

as conjugate regression coefficients. Then

-(-l)P + «Ap,

fo-n-o-o-.- App

and /

Since the major determinant is symmetrical APq = AqP and

the signs of the two are alike; thus the partial correlation

coefficient is given by the square root of the product.

_ — (— i)P + q Apq (Determinantal expression

rPq-i'-..()...()-- -n VApp Va^ for the partial coefficient

of correlation) [266]

The partial correlations that are of most interest and value are

generally those involving the criterion and required in the

calculation of the multiple alienation coefficient.

Ao1 (A partial correlation coefficient

'" ~ V^TVaH of the (n - l)th order) t267]

This may be written (Kelley,.iQ2i, chart) .

roi-2j. . .» - V/3oi.m. . n 0io-23.. .n [267 a]

The order is determined by the number of secondary subscripts,

thus roi.2345 is a partial coefficient of the 4th order, r0i.2 of the

first order and roi of the zero order.

Am, u (Determinantal expression for

o,',4'"n VAoi.oi u a partial correlation coef-

ficient of the n-2 order). .. [268I

The magnitude Aoi, 12 indicates the minor obtained by crossing

out the o and 1 row and the 1 and 2 column. Note that the

sign factor is positive. This is clearly the case, since we are

now really dealing with a major determinant of an order one

lower in which row and column 2 have taken the place of row

and column 1, row and column 3 the place of row and column

2, etc.
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MULTIPLE CORRELATION

Continuing

To) «. -

123

etc. to

Aon..,» - 1, m,.,n roi|

„ VAou...» — 1, on...„ — 1 VAm...ii, m...» 1X1

(Partial coefficient of zero order, or a total correlation coefficient).. [269]

The various minors needed in the solution of this series of

partial coefficients of correlation may be obtained incidentally

in the process of obtaining the first minor if the determinant is

evaluated in a certain manner which, however, may not always

be the most convenient way for other needs. Having the

various partial correlation coefficients we may determine the

partial alienation coefficients by the equation k = v 1 — r'.

These will prove serviceable in obtaining the multiple corre-

lation coefficient, but we shall first need to establish the value

of an alienation coefficient of a certain order in terms of an

order one less. In dealing with zo and zi between which the

correlation is roi we have found, formula [257]

*V, = g'zo (1 - r'n) = 1 (1 - r\{) = *'o1

If we deal with magnitudes zo.2, residuals in zo, after estimation

by z2, and zi.i residuals in zL after estimation by zi between

which the correlation is roi.2 we have, following the identical

reasoning that led to the preceding equation,

4!o u = £!o-2 (1 — r'oi-i) = J!O.i£!o1.! = £'<ttA'oi l

Obviously the principle can be applied to residuals of any

order so that, in general,

.u

-»

1!.. n =

22-

ftV

12.. n =

*v

- n *'o2-u

etc. to

k\

. 12.. -n —

12-

. . n-i

(The n ways of expressing a multiple alienation coefficient of the

«-th order, in terms of multiple alienation coefficients of the

(n-1)th order and of partial alienation coefficients of the (n-1)th

order) [270]

Expressing feVw . . . » as equal to fe!o-34. . . n ^'o2-34. . . n and con-

tinuing the process for every k, until finally k\.n = k2on, we have,

taking the square root,

ko.i2...n — ^o1-23-. .N *oi.t4- . .M *oj.45- . .» X ... X kon

(One of the many ways of expressing a multiple alienation co-

efficient of the n-th order in terms of partial alienation

coefficients of lower order) [271]
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STATISTICAL METHOD

Having the multiple alienation coeTcient we obtain

ro.u-- n = Vi —-*'o.n...» (The multiple correlation coefficient). .[272]

and also

<ro n- - n — aa ko-ii- - n (Standard error of estimate) [273]

This completes the solution, but it is sometimes easier to obtain

ro.i2 ... B by the direct evaluation of the. major determinant A

and the minor Aoo. That we can obtain the multiple correla-

tion coefficient in this manner will now be shown. If zo is the

criterion and zo the estimate of it, the correlation between them

is the multiple correlation coefficient, and, if we let a- repre-

sent the standard deviation of the zo measures, it is given by

The standard deviation of the so measures is the standard

deviation of the points upon the regression line passing as

closely as possible to the so measures. Thus, just" as in the

case of two variables where a2i = ctV2 + a3 a [formula 87] in

which aa is the standard deviation of the means of the arrays,

so here with (n + 1) variables.

ff2o =a2o-12.. -n + <r'—

Dealing with z measures ao = 1 and ao-a . . . » = feo.1 2 . . .», so

that

ff'- =1 — ftVn-.-»

As we have already found that this is equal to r^-a . - -«[formula

272] we have

a— = ron-n (Standard deviation of estimated standard scores

is equal to the multiple correlation coefficient). [274]

since ro-u - - -» is of necessity positive. Total and partial

correlation coefficients may be positive or negative; multiple

correlation coefficients can only be positive. Thus con-

tinuing we have:

= Z° ^o1'a"- nZl @oi'"'-'"Zi "I" .-- "J" 0OH-U.- -n—itn)

— TnPnn. - .» -f- rotfoiu. --„ + "- + rmpm-ii-. -»—1

— [roiAoi — ro!Am + ro3Ao3 — ... (— l)Bro„ Aon] .
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301

Referring to the major determinant, we see that, expanding it

in terms of the elements of the first column, it is given by

A = Aoo — roiAoi + roiAo! h (— 1)" fon Am

thus

r'o»...n = ~ (Aoo — A) - I ——

VA (Determinantal solution of the multi-

or

.... -J~_

A«, pie correlation coefficient) [275]

and further

, _ V^- (Determinantal solution of the multiple

1,u'" 'Aoo alienation coefficient) [276]

As a corollary to the two derivations [formulas 271 and 276]

we have

Vv^ =*oi a - » *o'34--. n X -- X *o» [277]

'£ou

The preferable method for calculating feo.12 - . . » depends upon

the order and whether the partial alienation and correlation

coefficients are needed in the solution of the particular problem.

The theoretical solution of the n-variable problem is now

complete except for the probable errors of the constants in-

volved. The standard errors of certain constants may be

immediately written down by analogy with the usual two

variable situations, simply noting, e.g., that *o.2 replaces xo

and xi.2 replaces xi, etc. Thus we have by parity with formula

[108 b\

_ k'u i (Standard error of a partial coefficient of

-y/jV correlation, 3 variables) [278]

_ *'on (Standard error of a multiple coefficient

Vn of correlation, 3 variables) [279]

By parity with formula [107]

_ go.2 *oi.! _ ffou (Standard error of a 6 regres-

**-' <ri.i ViV ai.! slon coefficient, — 3 varia-

bles) [280]

Plainly we may, in the case of n independent variables, deal

with residuals of higher order just as we have with residuals

of first and zero order and obtain:

_ *'oi n. -^n (Standard error of a partial coefficient

?'«-»..."" VN~ of correlation) [281]
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STATISTICAL METHOD

_ *'o-ia. - -» (Standard error of a multiple coef-

ro.m...„ — ficient of correlation) [282,

(Standard error of a regression co-

*".=-" „VN efficient) [283]

Section 84. The Method of Successive Approximations

With more than five variables either of the preceding methods

is laborious, and to meet this situation I have developed and

herewith present a method of successive approximations to

the values of the regression coefficients and to the multiple

correlation coefficient. I have not as yet developed other than

empirical tests of convergency. The method may be best

presented in connection with a numerical illustration.

If given all the regression coefficients except the first, we

may write

Zo = U>iZi 4" |9oi-u-. nZi + fJ«M2< - . + "" . + /3ob i2- - -n — iZn - - [284]

in which wi is unknown, but all the /3's are known. We may

now determine wi. Designating the right-hand member, i.e.,

the total right-hand composite inclusive of wi zi by c and the

right-hand composite exclusive of wi zi by (c — 1) [to be read,

"the composite exclusive of variable 1"] we have

zo = W1zi + (c — 1) [284 o]

The problem is now a simple three variable problem, the

variables being zo, zi and (c — 1) the correlations between which

we will designate as roi, ro(c-i) and ri(c-i). Two of these cor-

relations have to be determined. Both ro(c-n and ri{c-i) are

correlations between one variable and a weighted sum and are

given by formula [149]. Thus we immediately have the regres-

sion coefficient of zo upon zi:

Wi=r.,-r.<c-,)r,<.-,)

* 1 (c-l)

and the regression coefficient zo upon (c — 1) equals

T«(c— 1) ~ ToiT\ (c—l) [286]

*'1 U-l)

The weight wi as thus determined must be identical with

/3oi.23. . . n and the regression coefficient of (c - 1) as thus

determined must equal 1.0 else a better fit than the regression
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equation fit has been obtained, which we know is impossible.

We therefore see that if we know all of the regression coeffi-

cients except one, we can determine that one without resorting

to the evaluation of two lengthy determinants.

The thought occurred to me that with reasonable weightings,

guesses, or weightings somehow derived from a priori con-

siderations, for a large number of variables no one of which

was of greater importance than all the rest combined, it was to

be expected that the closeness of estimate of the weighted sum

of all the variables but one, which I shall call (c — 1), would

vary less than the weight guessed for the one. Thus if the

guessed weights are wi, w2, wr - -wn, and if c is the weighted

sum (wizi + uhzi + w333 + . - . wnzn), the calculation of the

regression coefficient of zo upon zi, i.e., the calculation of

0oi.(c-i) would result in a closer approach to ^oi-23...»than,

in all likelihood, was wi. We will call this regression coefficient

Wn and take it as a second approximation to /9oi-23 - . . n- A

similar procedure using wi, w3, w*, . . .w„ (not wn, w8, wt, - - -wn)

will result in a second approximation w& to the correct weight

for ?2, etc., for each of the other variables. We then have

weights wn, il,2z, w33 - - - u,n„ and may repeat the process obtain-

ing third approximation values %, w222, W333, - --wnnn and

still other approximations should they be needed. Just as soon

as the repetition of the process results in new weights which

are identical with those used in obtaining them we have the

proof that the regression coefficients have been found, since as

pointed out (following formula 286) this is the unique property

of the regression coefficients. Therefore if repeating the

process a fourth time should give wnn = ifin, W2222 = wza, etc.,

we know that wnn = ftu.2i.. . n, wzm = Pm-u - . - », etc., and

the problem is solved. We will not expect identical agreement,

but such agreement as is needed for practical purposes, say

within .1 per cent, .01 per cent, or whatever other limit is

self-imposed. Presumably the larger the number of variables

the more rapidly convergent are the successive approximations,

but I am not able to supply the theoretical proof that the con-

vergence must take place under all circumstances. A second

check upon the general approximation to regression equation

weightings may be found in the size of the multiple correlation

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



3 04

STATISTICAL METHOD

obtained. For convergence to be present this must increase

for every step.

The following example which has only six variables, and

therefore constitutes a more severe test than would a problem

having a larger number of variables, is given. The variables

are: o, the criterion, being a measure of general scholastic

success of school children in two successive elementary school

grades (population about 300); the remaining variables are

the scores made by the children in the five tests comprising

one of the forms of the National Intelligence tests.

(1) A test in arithmetical reasoning

(2) A test in sentence completion

(3) A test in logical selections of reasons for conduct.

(4) A test in naming synonyms and antonyms.

(5) A test in substituting digits for symbols.

The correlations between scores are

TABLE LXIII

Variables

0

1

2

3

4

1

2

3

4

5

.4017

.6003

Vari-

ables

.2332

.1986

.2379

.6807

.1747

.4520

.2139

.2569

.1064

.2628

.0033

.3553

.2989

The symbol c will stand for the composite score according to

whatever weightings are used upon the five tests; the symbols

(c — 1), (c — 2), etc., stand for the composite scores upon all

five tests, except test one, except test two, etc. The problem

is to make roc a maximum. Treating one of the five variables

as unique and obtaining a composite score on the other four,

gives us a three variable problem, the variables being o, «,

(c — w) in which u stands for the unique variable, being in

turn 1, 2, 3, 4, 5, and the regression equation being

Zo = Pou(c-u) zu + /3o (c-u).u (c — u) [287]

The value of the second regression coefficient will ordinarily

be in the neighborhood of 1.00, but it does not enter into our
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MULTIPLE CORRELATION 305

present treatment. The first regression coefficient is the new

weight wuu, determined for zu and is given by

I'm — To(c-u)Tu (c—u) i„oqi

V)uu - ri I288]

k-u (c-u)

Let s stand for the sum of the products of the correlations of

the independent variables with the criterion into the weights

of the independent variables, i.e.,

s - wiroi + Win + «Voi + Ww + «Vm [289]

Let S stand for twice the sum of all product terms of the sort

wuiVu+uu', i.e., 5 in our present problem is a summation of

2 X 10 terms as follows:

S = 2 (WiUiiri! + viiWu + WiWaTu + tfiWis + WiW3Ta + WiWm

+ »iWu + w3w4ru + w,Wi,r,i + w,wsr4i) [290]

Let 2 Su stand for the sum of those terms in 5 (2 X 4 in number

in our present problem) which involve wu. Thus 5 is equal to

the sum of the Su, or in the present problem,

5 = 5, + 52 + 5, + S, + 56 [290 a]

and finally let Sw2 stand for the sum of the squares of the

weights. That is,

Sw2 = w', + wh + w'i + w'i + wh [291]

We readily obtain by formulas [163] and [149]

ac = ^Sw2 + 5 (Standard deviation of the c composite

score) [292]

_ s (Correlation of criterion with the c composite

oc ac score) [293]

ac-u = VSw2 + S — w'u -2 5, (Standard deviation of the

c-u composite score). . . [294]

_ s — wurm (Correlation of the criterion with the c-u

o(c_") "(c-w composite score) [295]

_ Su (Correlation of the test treated uniquely

u (c-u) wuac-u with the c-u composite score) [296]

It will be noted that if we have a problem involving one

dependent variable and n independent variables that there are

n terms in s, n{n - 1) terms in S, {n - 1) terms in 5». We

now have all the requisite formulas and may proceed with the

calculation. For our first series of weights we will take wi = 2,

wt = 4, w3 = 1, W4 = 5 and u/6 = 2, which are roughly pro-

portional to the total correlation coeffcients of the tests with

the criterion. In the accompanying table p stands for the

variable designated in the stub.
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3o8 STATISTICAL METHOD

Tabulating the results thus far obtained, we have

TABLE LXVI

Variables

Weights

First Guess

Weights

Second

Approximation

Weights

Third

Approximation

I

2

.19

.1940

2

4

.33

.3240

3

i

-03

.0294

4

5

.43

.4358

5

2

.14

-1352

Multiple correla-

tion resulting

-7877

.790O5

The first weights give a multiple correlation of .7877 and lead

to the determination of the second approximation weights.

The second weights give a multiple correlation of .79005 and

lead to the determination of the third approximation weights.

The third weights differ so slightly from the second that for

ordinary purposes one would stop the calculation here, use the

third weights as final and take the multiple correlation as equal

to .7901 since it will be a trifle above .79005. The method

of calculation of the weights here shown involves but a frac-

tion of the time necessary to evaluate the determinants neces-

sary to a solution. This is true for three reasons:

(a) Number of operations is much smaller.

(b) No checking for inaccuracies in any of the calculations,

except that for the last weights derived, need be made, as a

small error leading to a wrong approximate weight will be

corrected in the next step.

(c) Partial regression coefficients 0o».<c-u), except for the

last step where greater accuracy may be desired, may be made

by the aid of the alignment chart.

A further device which is serviceable is to compare roc with

each of the ro<£-u) values in the same calculation. Should

any one of the ro(c-u) correlations be larger than roc it indi-

cates that the weight used for the test in question is worse than

would be a weight of zero. Referring to the first of the cal-

culations above, we find that roc = -7877 and that ro(c-3)

= .7882. This means that the weight which was assumed for

test 3, namely 1.00, is a worse weight than would be the weight

zero. Thus if the problem is such that only positive weights

have been used as the first approximations, any variables
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which should have negative weights will probably be discovered

in the first calculation by the correlation ro<c-», turning out

higher than rc,c-

The solution by determinants of the above problem correct

to seven decimal places has been kindly supplied to me by

Miss Ella Woodyard.

It will be seen that the maximum error in the third approxi-

mation weights is .0019, which is the error for w3. This would

probably be considered a negligible error. Should, however,

greater accuracy be required, a determination of fourth order

approximation weights will give it. Actually such calculation

gives weights, no one of which is in error by more than .0001.

I have also made a fifth calculation resulting in the multiple

correlation ro.12345 = .79009038 which is seen to be in error by

.00000015. Thus for these data there can be no doubt that

rapid convergence actually exists. One desiring to practice

the method is referred to Yerkes (1921), where abundant

multiple correlation equation material already worked out by

the determinantal method is to be found. I have used this

method upon a variety of problems and have always found

convergence. Much time will be saved if the original guess

as to the final weights are excellent, but the method does not

require approximate accuracy in the original weights. To il-

lustrate this, let us work the present problem, starting with

weights o, 1, 2, - 2, - 1, which are about as unreasonable

as it is possible to assume. The calculation gives

wi = .19412341

= .32392693

w3 = .02748474

w, = .43693997

w5 = .13466545

ro iM46 - .79009053

TABLE LXVII

Variables

Weights

First Guess

Weights

Second

Approximation

Weights

Third

Approximation

1 O

2 I

3 2

4 - 2

5 -J_

.7

.3

-4

-S

.188

.332

.031

-437

151

Multiple corre-

lation resulting — .23

.784

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL METHOD

Evidence of convergence is not clearly apparent from these

three series of weights, but it of course is apparent by com-

parison of the third weights with the correct values. The very

poor choice of original weights has increased the number of

calculations necessary to establish convergence, but it has had

no other effect.

A possible difficulty in the calculation of the j3 o«.«—1i, co-

efficients in case one of the approximate weights is zero may be

mentioned. In case wu = o,

Su O r «r 1

ru (.c-H) = . = - [296 a]

Wuac-u. O

To avoid this indeterminate form we may write

ruU-u) = Swprup [297]

ac—H

instead of the preceding, which is generally shorter to use.

As an illustration of this situation it may be noted that wi was

chosen equal to o in Table LXVII. Thus Si = o and ruc-i)

= - by formula [206]. Using formula [297] we have

o

W1 2 + Wu + Wu + Wis .OI02

ri(c-1) = = , = .0037

ac-i 2.7465

This is no longer indeterminate. Except in this calculation

of rU(c-u) no special procedure will be necessary on account of

a zero weight. The introduction of zero weights where reason-

able leads to a simplification of the numerical work. For

the problem in hand, if the first estimated weights had been

2, 4, o, S, 2 instead of 2, 4, 1, 5. 2 it would have simplified the

first calculation and led to rapid convergence. It is well to esti-

mate a zero weight whenever in doubt. The regression weights

as just determined are of course 0 coefficients, wi = 0oi.21 . . . „,

wt = 0o2.i3 . - etc., pertaining to the equation [260]

Making the substitutions of equations [247] and [248] immedi-

ately gives the regression equation involving gross scores

Xq = 6o1 a - - . n Xi + bo2 ii. ..n Xi + - . - + bun - If. . . n-i Xn + c

The regression coefficients and the multiple correlation co-

efficient are given by this successive approximation method.

The partial alienation and correlation coefficients, as well

as the important standard errors, may all be obtained by for-

mulas given earlier in this chapter.
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CHAPTER XII

STATISTICAL TREATMENT OF SUNDRY SPECIAL

PROBLEMS

Section 85. Statistical Constants Determined from

Mutilated Distributions

If a portion only of a distribution is available it is possible

to reconstruct the entire distribution when a reasonable assump-

tion of the form of the entire distribution can be made. The

principle is applicable to any form, but only in case the assumed

form is normal are the constants enabling a ready calculation

available in tables. Let us assume that data for the tail of

a sharply truncated distribution, which is in truth normal,

are available. The "tail" may be greater or less than one-half

of the total or untruncated distribution. The distance from

the stump to the mean of the tail bears a ratio to the standard

deviation of the tail which changes as the point of truncation

changes; conversely, the value of this ratio determines the

proportion of the total distribution which is represented by the

tail. This is the property utilized by Pearson and Lee (1908),

and by Lee (1914), in reconstructing the total distribution from

a sharply truncated portion. Tables facilitating this process

are to be found in the references cited.

There are other properties, such as the ratio between the

median deviation and the mean deviation of the tail measured

from the point of truncation, which can be utilized to the same

purpose, and it is not at all evident that the error of such

determination is greater than that of the Pearson and Lee

determination. The probable errors which establish the relia-

bility of either method are at present unavailable. The ac-

companying Table, LXVIII, gives the ratio of the median

deviation from the stump, to the mean deviation, for successive

percentages of a total normal distribution.
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3i2 STATISTICAL METHOD

TABLE LXVIII

Median

Median

Median

Mean

Mean

Mean

.OI

.7363

34

.8143

67

.8833

2

.7425

35

.8162

68

.8858

3

.7470

36

.8181

69

.8884

4

.7508

37

.8199

7o

.8909

5

.7541

38

.8218

71

.8935

6

.7571

39

.8237

72

.8962

7

.7599

40

.8256

73

.8988

8

- 7625

4i

.8276

74

.9016

9

.7650

42

.8295

75

.9043

10

.7674

43

-8314

76

.9071

11

.7697

44

.8334

77

.9IOO

12

.7719

45

.8353

78

.9129

13

-7741

46

.8373

79

.9159

•4

.7762

47

.8393

80

.9189

l5

.7782

48

.8413

81

.9220

16

.7803

49

.8433

82

.9252

17

.7823

50

.8453

83

.9284

18

.7843

51

-8474

84

.93l7

19

.7862

52

.8495

85

.9350

20

.7881

53

.8516

86

.9384

21

.7901

54

.8537

87

.9420

22

.7920

55

.8558

88

.9456

23

.7938

56

.8580

89

.9492

24

.7957

57

.8601

90

.9530

25

.7976

58

.8623

91

.9569

26

.7995

59

.8646

92

.9610

27

.8013

60

.8668

93

.9651

28

.8032

61

.8691

94

.9694

29

.8050

62

.8714

95

.9738

30

.8069

63

.8737

96

.9785

31

.8087

64

.8761

97

.9833

32

.8106

65

.8785

98

.9884

33

.8125

66

.8809

99

.9939

Entering Table LXVIII with the ratio given by the data

leads to q, the proportion in the tail, and thus to Ar, the popula-

tion of the total untruncated distribution. The further steps

in the solution will be obvious from the problem discussed in

the next paragraph.
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It not unfrequently happens that the total population is

known, so that the items available are (a) q, the proportion in

the tail, (6) the point of truncation, and (c) the distribution

of the tail measures. In this case the fitting of an assumed

normal distribution is very simple. Let m = the mean of

the tail measured from the stump; let D = the distance from

the mean of the total distribution to the stump; let a = the

standard deviation of the total distribution; and let x and z

have the values of Table K-W when entered with the argu-

ment q. We then have, from formula [53]

9

Solving these two equations for a and D completes the problem.

As an illustration of the use of Table LXVIII we may calcu-

late, from the data of Table LXIX, the constants of the total

grade distribution of 15-year olds knowing the grade distri-

bution of the portion found in the elementary school. The

children represented range from 13.5 to 14.5 years of age.

We will assume that the total grade distribution is normal and

that the elementary school portion is a sharply truncated tail,

though in case the compulsory school attendance law applies

only to the elementary school this assumption is undoubtedly

in error, leading to a larger estimate of the number in the

high school than would actually be found there. In the grade

scale used, 3.0 means the beginning of the third grade, 3.25

the middle of the low third, 3.75 the middle of the high third,

etc.

TABLE LXIX

Grade Distribution of 14- Year Olds Obtained from Certain Virginia

Survey Data

Grade 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 Total

Number

op Pupils i 2 4 7 13 11 61 60 82 96 40 34 411

The point of truncation is 9.00. Calculation gives

x = -,otD—Xa

[298]

[299]

Mdn measured from 9.00 - — 1.685

M measured from 9.00 = — 1.835

Mdn
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STATISTICAL METHOD

From Table LXVIII, q = .7975. This proportion is repre-

sented by 411 pupils, so that the number in the untruncated or

total distribution is 515 pupils. The standard deviation of

the total distribution is, by formula [299], equal to 1.521 grades,

and D, the distance from the stump to the mean of the total

distribution, is found by formula [298] to equal 1.266 grades.

Accordingly the constants of the untruncated distribution of

fourteen-year olds are

Mean grade = 7.734

Standard deviation = 1.521 grades

Population = 515 pupils

Section 86. Correlation Determined from Mutilated

Distributions

The ability to determine the constants of a total distribution

from a known fraction of it may be turned to practical account

in decreasing the size of populations necessary for an assigned

accuracy. The procedure may be illustrated by a problem,

the data for which have been kindly supplied by Miss Mar-

garet V. Cobb.

TABLE LXX

Numbers of Pupils Obtaining Designated Scores upon a Symbol-Digit

Substitution Test

Ti;ct C/~rtDtrc

School Grades

i l£aT lib

4-25

4-75

8.2s

8.75

105

4

6

100

4

5

95

I

1

3

90

I

7

3

85

5

I

80

I

3

75

3

I

2

70

1

1

65

I

60

3

I

55

4

3

1

50

3

2

45

4

2

40

3

1

35

2

30

2

25

1

1

20

1

28

14

25

21 N = 88
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The problem which we will set is, in outline, to (a) calculate r

from this mutilated table, (b) determine R, the correlation to

be expected in a range of two grades, let us say the fifth and

sixth, (c) determine the probable error of R as thus found,

(d) determine the probable error of an R of the same size (desig-

nated R') if found from a population of the same size in grades

5 and 6, and (e) by comparing the reliability of R and R'

endeavor to ascertain whether an artificial selection of original

data will decrease the populations necessary to secure a desired

reliability.

Letting school grade be the first variable, and test score the

second, we find rn = .827.

If we can determine 21/Vi, where 2i is the standard deviation

of the 5 and 6 grade distribution, and ai that of the 4 and 8

grade distribution, we may use formula [86] to obtain R.

Assuming that there are the same number, /, of pupils in each

grade we have the two following distributions:

from which the ratio 21/01 = .27735. Having this ratio and

ri2 we find by formula [186] that R = .378. Thus the correla-

tion in a two grade range is rather low.

By formula [108 b], a> = .^i-j/VN, but this is too small a

value, as the distributions with which we are working are far

from mesokurtic. Estimating the /32's for the school grade and

the test score distributions to be 1.06 and 1.94 respectively

gives by formula [108 a], a, = .$i$VN, which is the prefer-

able value in the case of this platykurtic correlation surface.

If the assumption of form of grade distribution can be made

with great certainty, so that we may consider no error to enter

into the ratio 2i/<n we may obtain the standard error of R

knowing that r. Starting with formula [187] and taking loga-

rithmic differentials we have,

4 and 8 grade (Grades 4.25 4.75 8.25 8.75

distribution (Frequencies f f f f

5 and 6 grade I Grades 5.25 5.75 6.25 6.75

distribution /Frequencies f f f f

giving <T'i = 4.0625 grades

giving 22i = .3125 grades

dk = d Vi - r' =

dr

r

dk

k

k = dR

: R

- rdr

, and dK =

dK

K

- RdR

K
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STATISTICAL METHOD

Substituting these values for dk and dK, squaring, summing,

dividing by the population, and extracting the square root,

gives

rk' RK'

or

RK' (Standard error of the correlation coeffi-

"R rk' cient inferred from a coefficient obtained

in a different range) [300]

Using this formula we find for the data in hand,

aR = I.2387 ar = .638/ VN (o)

Had the correlation been directly determined from the 5 and

6 grade distribution, its value would presumably be about the

same Ri = .378, but its standard error would have been

different. Estimating the 02's to be 2.1 and 3.0, instead of

1.06 and 1.94, as above, the standard error by formula [108 a] is

'R. = .873/V1V (b)

Choosing such an N for formula (b) as to result in the same

standard error as given by formula (a) shows that 1.87 N are

needed in the narrow 5 and 6 grade calculation to obtain an

equally reliable result to that deduced for these grades by the

4 and 8 grade calculation based on N.

One cannot generalize and say that, given equal populations,

more reliable results are always obtained from the wider range

determination, but this is true if correlations are low, in the

narrow range and not very high in the wide range — say

under .40 in the former and not over .70 in the latter. If

entire freedom in choosing the range of talent to be examined

is present, excellent results may be expected if a fairly meso-

kurtic distribution, yielding a correlation between .60 and .70,

can be selected, and then estimating the correlation for greater

and lesser ranges by formula [186].

Section 87. The Probable Error of Percentage Measures

of Overlapping

The probable error of the proportion in one distribution

which exceeds or falls short of a certain percentile in a second

distribution is a function of both distributions. Let the con-

stants of the first distribution (to the right in the accompany-
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ing figure) be designated by lower case letters and those of the

second distribution by capitals. Let p = the proportion of

the first distribution falling short of the percentile X, of the

X

second distribution. A change in p may be produced either

by a change in X, or by a change in the proportion in the first

distribution below an assigned point.

Let 8 = a small change in the proportion p due to fluctua-

tion in the second distribution.

Let d = a small change in the proportion p due to fluctua-

tion in the first distribution.

Let A = a small change in the proportion p due to fluctua-

tions in both distributions.

Then A = 5 + d, and <ta, identical with ap, is the standard

error desired.

2A2 = 25' + 2d' + 2 25d

Since 5 and d are functions of two independent distributions

they are uncorrected and 2&f = o, so that

°'p " *'3 + °'d [301]

ad is the standard deviation of the proportion of measures in

the first distribution below the point X and by formula [40]

ad = V pq/n.

If the ordinate of the first distribution per unit base at the

point X is / and if the distribution is assumed sufficiently flat at

this point that a small change to the right in X would pass over

approximately the same number of cases as an equal change

to the left, then a small change D in X causes a change of fD

in the number of cases, np, of the first distribution lying below

the point X. Dealing with proportions, p is affected to the

extent JD/n. In consequence,

"3 = afD

n
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STATISTICAL METHOD

In this equation / and n are constants, for we are considering

fluctuation due to variability in the second distribution, so that

ff, = - aD (See problem 7, Chapter 4)

ad is simply the standard error of a percentile. We have by

formula [42]; letting P = the proportion of the second distri-

bution determining the point X; Q = 1 — P; ip = the num-

ber of units in the class interval in which X lies; fp the fre-

quency of this class; and N the population of the second

distribution;

i'p NPQ

Making the proper substitutions in [301] results in

(Square of the standard error of the proportion of a dis-

tribution falling short of or exceeding an assigned

percentile of a serond distribution) [302]

Note that in this formula the constants in ( ) refer to the first

distribution and those in the [ ] to the second distribution.

If the proportion exceeding the median of the second distri-

bution is being determined, P = Q = and if, further, the

second distribution is normal, fp/ip = .3989W/2, in which 2

is the standard deviation of the second distribution, so that

,.,-1.57080*

(Square of the standard error of the proportion of a dis-

tribution falling short of or exceeding the median

of a second and normal distribution) [303]

Tn case both distributions are normal and have the same

populations and standard deviations, Table LXXI when multi-

plied by 1/ViV gives the standard errors, in the second column,

and the probable errors, in the third column, for different values

of p.

In illustration of the use of Table LXXI the following prob-

lem is given: In a certain fifth grade only 40 per cent of the

pupils exceed in a reading test 50 per cent of the fourth grade.

We will assume the same number of pupils, 36, in each grade.

What are the chances that the true test ability of the fifth

grade is above that of the fourth grade? Referring to Table

LXXI we find that the standard error of the proportion, .40, is
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(.689/V36 = ) .115. Thus the difference between the ob-

tained proportion and the proportion in case of equally able

classes, namely .10 is (.10/.115 = ) .87 standard errors. Enter-

ing Table K-W with x = .87 we obtain q = .19, or, in other

words, the chances are 19 in 100 that the fifth grade ability is

in truth as great as that of the fourth grade.

TABLE LXXI

v /V X the Standard Er-

rors op the Propor-

tions of One Distribu-

tion Below, or Above,

the Median of a Second

Proportion lying Below

or Above Median of

Second Distribution

v^V X the P. E.'s

.001

032

.022

.OI

.105

.071

.02

.153

.103

.05

.252

.170

.IO

.372

.251

. 15

.462

.311

.20

.532

.359

.25

.588

-396

.30

.622

426

-35

.666

.449

.40

.689

.465

.45

-703

.474

.50

.707

.477

If, for this same problem, fourth and fifth grade means are

calculated and the probable error of the difference between

means found by formula [140] we will finally obtain the result

that there are 14.4 chances in 100 that the fifth grade ability

is in truth as great as that of the fourth grade. Thus slightly

more definite results may be obtained by finding the differences

between means instead of the percentage of overlapping.

Formula [166] of Section 59 provides the correction for the

error in a measure of overlapping due not as here to size of

population but to inaccuracy in the instrument of measurement.

Section 88. A Criterion for the Addition or Elimination

of Elements Having Fixt Weightings

In many trade, education, and intelligence tests, and in

combining stock quotations to determine general trends, it is

frequently required, because of the necessity for maintaining

simplicity of procedure, to include an item in a composite at a

given weight, or to reject it in toto, i.e., no adjusting of the
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STATISTICAL METHOD

weight to the importance of the item is possible. A criterion

for the inclusion or rejection of an item is needed for the handling

of this problem.

To make the problem specific let us suppose that a questions,

each scored right or wrong, are being evaluated with reference

to their excellence as a ten-year-old general intelligence test

battery (such, for example, are the Binet type of questions).

The correlations of each of the a questions with an independent

general intelligence measure and the intercorrelations between

the questions constitute the requisite basic data. Having

these and using the weights that are imposed, calculate corre-

lations exactly as in the row labeled "ro(c-u)" in Table LXIV.

The highest of these correlations locates the question which

contributes least. This question may be discarded and the

process repeated with the (a — 1) remaining questions, etc.,

until the number desired for the final battery are left. At each

step in this process a comparison of the ro(c-u) correlation

with the roc correlation shows how much loss, if any, in multiple

correlation results from discarding the question, thus making

available all the information pertinent to the problem.

All correlations should be Ly the usual product-moment

method, even though but two degrees of merit are possible.

For the intercorrelations formula [214] may be used.

Section 89. Trade Test Calibration

A procedure of evaluation, or, "calibration," of trade test

questions, based upon the slope of an ogive curve, has been

practiced by the Army Trade Test staff. As an illustration

let us suppose questions A, B, C, and D have been correctly

answered by varying proportions of unskilled and skilled arti-

sans as shown in the following Table:

TABLE LXXII

Percentages A nswering Correctly

Novices

Apprentices

Journeymen

Experts

Question A .

10

14

18

24

Question B .

2

2

51

60

Question C .

20

62

70

75

Question D .

2

I

14

54
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I have elsewhere (Kelley, 1916, simp.), pointed out, in the

case of an ogive curve in which the abscissa is a scale of diffi-

culty, and the ordinate per cent correct responses, that un-

correlated questions of the difficulty corresponding to the point

of steepest slope result in more accurate determinations of

ability than a similar number of questions of a different diffi-

culty. The principle is clearly general, and can be used to

scale a question given subjects of known differences in ability

just as, in reverse, it can be used to determine proficiency

when given scaled questions. Thus, if ogive curves, the abscissa

being Novice-apprentice-journey-expert and the ordinate per

cent correct responses, be plotted for each question, the steep-

est part of the curve will lie between the two groups most

decisively differentiated from each other by the question.

Inspection shows that question A is not satisfactory either

as an apprentice, journeyman, or expert question; that ques-

tion B is an excellent journeyman question; C an excellent

apprentice question; and D a good expert question. So far

as determining the trade group with reference to which a

single question will be of most value the method is excellent

but it falls short, as will every method not involving intercor-

relations, of what is to be desired in a method used to select

a battery of questions. A combination of this procedure with

that of the previous section should give good results.

Section 90. The Determination of the Cross-over Value

of a Chromosome Section *

j.n the following treatment certain terms will be used with

meanings which may be made clear by an example: If a fly

showing two mutant characters, black and vestigial, is crossed

to a fly showing neither of these characters, then in the back

cross progeny the characters will reappear in the original

combinations, namely black vestigial or not-black not-vestigial,

in the majority of cases, but small classes of progeny will occur

that are recombinations of the original characters, namely,

they are black not-vestigial, or not-black vestigial flies.

* I am indebted to Dr. Calvin B. Bridges for the biological statement of this problem.
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To explain the occurrence of these recombinations it is

assumed that crossing-over occurs in the section of the chromo-

some between the loci at which the genes for these characters

are situated. The gene responsible for the development of

the character black is situated in a rod-like body called a

chromosome at a definite point which is the black locus. Like-

wise the gene for vestigial is situated in that same chromosome,

the "second" at a locus some distance to the right of that of

black. The second chromosome is represented twice in every

cell — by the chromosome from the mother carrying the genes

for black and vestigial, and by the chromosome from the

father carrying in these loci the gene for not-black and the

gene for not-vestigial. In the production of eggs these two

chromosomes, A and A', come to lie side by side and homolo-

gous sections are interchanged by crossing-over. Both chro-

mosomes break in two at a corresponding point and the left

part of A joins to the right part of A' and vice-versa. The

cross-over occurs at random along the chromosome. When-

ever one occurs between the loci of black and vestigial, a

black not-vestigial and a not-black vestigial chromosome are

produced and these give rise to the character recombinations.

However, two occurrences of crossing-over may take place

coincidentally between these loci and not be detected as a

recombination of the characters. Again, if three cross-overs

take place between these loci only simple recombination is

observed. Accordingly, unless the section is so short as to

preclude double crossing-over, the number of recombinations

is always less than the number of cross-overs.

The first problem of the student of this subject is to determine

the number of cross-overs from the number of recombinations.

This problem offers certain difficulties, but for our present

problem we will assume it solved by an equation of the type

100 n = ioo (R + 2 d) (The cross-over value of a

chromosome section). .. [304]

in which R is the proportion of recombinations observed to

take place, d the proportion of double (plus occasional triple),

cross-overs, expected from previous determinations in this

general chromosome region, when the proportion of recombina-
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SUNDRY SPECIAL PROBLEMS

tions is R, and 100 n is the cross-over value of the section

studied as given by the experiment.

The second problem is the determination of the reliability of

the cross-over value determination. This offers genuine

statistical difficulties due to the variability in the ratio d/R

for different lengths of chromosome and for different general

regions in the chromosome. I offer the following as an empiri-

cal formula, which I believe will not be far from the mark, at

least as long as uncertainty as to the ratio d/R persists:

N in each case being the total number of flies in the experiment.

Having, either by means of formula [305] or otherwise, an

estimate of the standard error of a single cross-over value

determination, we come to the third problem, which is:

The utilization of several direct and indirect independent

determinations of the length of the same chromosome section

to arrive at the most probable value.

Let 100 M12 = an experimentally determined cross-over value

between loci 1 and 2, and let 100 an = its standard error:

and similarly for m's and a's with other subscripts.

If a number of loci in order are Xi, X2, X3, Xi and if different

experiments have been conducted so that there are separate

determinations of (a) «u, (b) nn, and (c) M23, the problem then

is to use these three determinations to arrive at the most

reliable value for the distance between Xi and X3. We will

call this most reliable value nn. We have two determinations

of the same distance, namely, nu and («i2 + m3). The stand-

ard error of nu is au, and since W12 and n23 are independent

determinations they are uncorrelated and the standard error

of (K12 + M23) is V<r2i2 + <r2;3- To average these two distances

so as to secure a distance with the minimal standard error we

IOO a„ = IOO (aR + 2 ad)

(Empirical formula for the standard error of the cross-over value). [305]

in which aR is defined by the equation

and at by the equation
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must weight each inversely as the square of its standard error

as proven in the next section, formula [307]. Accordingly,

"'ii <t'1' + ff!!3

Should there be a third independent means of determination,

e.g., were independent values of tin and k34 available, the pro-

cedure would be similar, giving

»ii , in + tin , «u —Jti4 (The best value for a dis-

_ g'ii ff2n + g'a g'n + j'm tance scaled in three

"1 I I independent ways: (o)

ff'u o'u + o'u o'u + o'u in toto, (6) in parts,

(c) in parts) [306]

Any further number of independent determinations may be

utilized in the same manner. It may happen that the number

of possible means of determination is so great as to make the

labor of utilizing all of them excessive, in which case certain

clearly defined loci preferably between 30 and 40 units apart

may be carefully determined using all the data and other

points located with reference to them using data between two

loci already scaled.

Section 91. The Best Weighted Average of Independent

Variables

To complete the proof of the preceding section it remains

to establish the theorem that the best weighted average of n

independent measures of the same magnitude is that obtained

by weighting each inversely as the square of its standard error.

We will first prove it for two variables, ai and a2, having

standard errors ai and <sl It is required to so distribute the

total weight of 1.00 between ai and 02 that the standard error,

<r-, of the weighted average, a, shall be a minimum. Let

the weights be wi and u'2. We have

Wl + V>i = 1

u= tfiOi + (i — u,i)"!

<r!- = W'! a", + (t — a22 + 2 Wt (l — w) ai ai ru

in which n2 is equal to zero as ai and a2 are by hypothesis

independent measures, so that

a2- = w2, a2i + a22 — 2 Wi a-z + Ui'i it'i
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Differentiating with respect to wi, setting the derivative equal

to zero, and solving for wi and wi results in

1

?J = ill

ah

1 1 1

- _ oh "!

i i (Best weighted average of two

ah ah independent measures).... [307]

If a third variable which is independent of the first two is

included it cannot change the best relative weightings of the

lirst two, therefore

1

H! = ^ (o)

Wi i- v

ah

must still hold, and by parity

i_

^=^i (b)

W, I

ah

I

— = (c)

t»i _I

Further, the sum of the weights must equal 1, that is,

iv, + wi + wz = 1 (d)

By inspection it is seen that the weights in the following equa-

tion meet these four conditions:

— _ a\ J g'i"' g'38' (Best weighted average

I 1 1 , 1 of three independent

a!i ff'a ah measures) [308]

Having four conditions to meet and but three weights this

solution is unique. It is obvious from the steps involved that

the proof may be extended to cover any number of variables,

so that in general

- _ a\ ah ah_ o'„ (Best average of n

J I 1 1 independent vari-

ah ah oh" ah ables) [309]
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STATISTICAL METHOD

Section 92. Psychophysical Methods

The excellent treatment of the statistical processes involved

in the handling of the various psychophysical methods given in

Brown and Thomson (1921) makes an exhaustive treatment

here unnecessary; however, the very important process of

fitting smooth curves to data collected by the "constant

method," or the "method of right and wrong cases," is treated

of in connection with Fechner's fundamental table of the

normal probability integral. Table K-W is so much more

serviceable in this connection, both because of the type of

entry which it contains and because of the greater accuracy

which it permits, that the process is herewith described in full.

When successive stimuli, Si, s2, s3, . . -sm, are each compared

a number of times, Ni, N2, N3, . - -Nm, with a constant stimulus,

k, and the subject is required to act in each case by calling the

stimulus greater than or less than the constant stimulus, there

results a progression of proportions, pi, p2, p3,---pm, giving

the proportion of times that each stimulus is considered greater

than the standard of comparison, k. If the smallest of the

variable stimuli is much smaller than k and the largest is much

larger, the proportions will run from .00 to 1.00 and if plotted

will give an ogive curve. If the smallest and largest stimuli

are not sufficiently different from K to lead to proportions of

.00 and 1.00 at the extremes, some reasonable assumption as

to the distribution of these tail measures must be made. From

the general nature of the ogive curves found in psychological

data obtained as described, it has been surmised that the

integral of a normal curve may ordinarily be taken as well

representing the distribution of proportions in the tails as well

as in the more central portion of the curve.

The problem is, therefore, to fit a curve of the type

s—'s

*-hf-lyds

to the observed data. The magnitude s is that stimulus at

which p equals It is not an observed value of s, but is to be

determined from all the data; s is any one of the variable

stimuli; a is the standard deviation, in terms of the units of s,
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SUNDRY SPECIAL PROBLEMS 327

of the normal distribution of which p is the integral. Accord-

ingly (s — s)/a is a deviation from the mean expressed in terms

of the standard deviation, that is, it is comparable to x of

Table K-W, and ya/N is comparable to z of that table. Assume

that the ogive curve is the integral of the normal distribution

Each proportion, pi, p2, p3, . . . pm, is a fraction of the area under

this curve and for each such proportion there is a value Xi, x2,

x3, - - -xm, which may be obtained from Table K-W.

Even if the values of s and a have been determined in the

best possible manner there will still be discrepancies between xy

and (s1 - s)/a; xi and (s2 — J)/a; etc. due to the best fit ogive

not being a perfect fit. The problem may now be restated in

more specific terms. It is required to determine s and a

(in the parlance of psychology, s is the threshold and a is the

dispersion of the measures giving the threshold), so that the

sum of the squares of the deviations, [x -(s - s)/a], shall be

a minimum.

In the early statement of the problem by Fechner and

Muller it was argued that the sum of the squares of the devia-

tions of the obtained p's from calculated p's should be made a

minimum, but as Urban (1909), (1912) and Thomson (1919

dir.), have shown this is plainly in error and the deviations in

the x's, as indicated above, are the proper ones to treat by the

method of least squares.

For each proportion p there is an x which differs from

(s — 7)/a by a certain amount, and the standard error of this

difference is identical with the standard error of the x, for s has

no error in it, being a given stimulus. If, therefore, the stand-

ard errors of xi, x2, x3,- - -xm are obtained, we know exactly

what weights to give to the m derivations in arriving at the

best values of s and a, for by the theorem of the preceding

section, independent measures of unequal reliability should be

weighted inversely as the squares of their standard errors.

The deviation x is simply a percentile value, and the standard

error of a percentile [43] has been shown to be equal to
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328 STATISTICAL METHOD

Accordingly the m residuals, [Xi — (si - s)/a], [xi - (s2 - s)/a],

- . . must be weighted

o-piqi' a'piqi'

respectively. Since a2 is a constant for the entire procedure,

it may be dropped without affecting the relative weightings.

iVi, N2, . . - depend upon the particular experiment. The

remainder is z2/pq and is the product of the entries in the

z/p and z/q columns of Table K-W. Except for the factors

N and a2 these weights are simply the squares of the reciprocals

of the standard errors of successive percentiles of a normal

distribution. The proportional magnitudes, 2 trz2/4 pq are

the weights of Urban's Table. The factor 2 71-/4 was chosen

by Urban merely in order to make the maximum weight 1.

We may consider two cases in applying these weightings:

First: When neither <r nor s is known. In this case the sum

of the squares of the residuals

U-'-i + i). U-'-s+ -..(xm+

\ a of \ a 0/ \ a a/

is to be made a minimum, after each has been given its ap-

propriate weight, jt'i, W2, . . 'wm, as defined by equations [310].

2!i z22 ,, 22m (Constant method

Wi = N, , If 2 = N, - ,- - - Wm = Nm . , . . . .

piq, piqi pmqm weights) [31OJ

The magnitudes '2/pq are readily obtained, being the product of

z/p and z/q of Table K-W. The magnitudes N are the

numbers of cases in the successive experiments. By the usual

method of least squares, the required values of i/a and s/a are

given by the solution of the two following simultaneous equa-

tions, in which 2 indicates a summation of m terms:

2wr 2« + -2» = o ; [3"]

"" (Normal equations for threshold

! - and dispersion calculations)

2 wxs 2: ws' + - 2 ws = 0 [3l2]

a a

Second: When the chief concern is with the determination

of precision of judgment and s is known without experimental

determination. Such situations may arise in the derivation

of educational and psychological scales, such as drawing or

composition scales where j is taken as equal to K. In this
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case equation [311] only is necessary, as s = K, a known

quantity. Solving [311] for a we have

X ws — K X w (Calculation of dispersion when

2 tea the threshold is known).... [311 o]

The following problem illustrates the steps involved in the

method. The data are drawn from the educational field to

show the value of psychophysical methods in a much wider

field than that to which they are usually limited.

A judge is called upon to rank an English composition as

better or worse than 40 standard compositions which are

graded on a certain scale of merit. Ten of these forty have

merit 38, eight have merit 50, six have merit 60, and 16 have

merit 68. The rankings given by the judge and the calculation

of the threshold and the dispersion are as follows:

TABLE LXXIII

Merit of

Composi-

tions

Used as

Number

of Times

Sample Is

Ranked

Better

Propor-

tion of

"Better"

Judg-

ments.

Standard

No.

THAN THE

p of

Table

K-W

*

i.e.

w

Pq

U'*

WIS

v/s*

1

Standard

Used

38

50

60

68

10

7

4

.70

.50

.50

.875

-.524401

.OOOOOO

.O0OO00

1-150349

5-757

5-093

3.820

6.199

-3.019

218.8

-114.7

8313

12733

13752

28664

8

6

16

.000

254-7

229.2

.0

3

2

.000

7.13I

.0

421-5

484.9

20.869

4.112

2«tt

1124.2

370.2

63462

Sws'

Zwxs

Thus the normal equations are:

4.112 — -1124.2 + -20.869 = o

a a

370.2 - - 63462. + - 1124.2 = O .

a a

Their solution gives

* — l9-55 and * = 50.02

We thus conclude that the integral of a normal distribution

having a mean of 50.02 and a standard deviation of 19.55 is

the best fit determination. If the purpose of the investigation

has been to determine the merit of the sample, we conclude
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that 50.02 is the best estimate of its true merit. The error of

this value is unknown, but if the standards of comparison have

been such that proportions, p, not greatly different from .5

have resulted, the standard error is probably in the neighbor-

hood of 1.5<r/VziV. If all the proportions are very large or

very small, the error will be much larger than this. If it is

known ahead of this calculation that the sample has a certain

merit, let us say 45, then the calculation shows that the syste-

matic error of the judge is 5.02 and that his chance error is

represented by a distribution with standard deviation 19.55.

Note that systematic error is synonymous with threshold, and

standard error of judgment with the psychophysical measure

of dispersion.
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CHAPTER XIII

INDEX NUMBERS

Section 93. The Bearing of Purpose and Material upon

Form of Index

The discussion in this chapter will be with reference to

price ratios and averages of such ratios, as they are found to

vary from time to time. The treatment does not, however,

necessitate that price and time be the two variables. In

dealing with size of certain organisms in a liquid media, length

and temperature might be the two variates. Illustrations from

other fields will be equally obvious.

In planning the construction of an index number in the field

of economics three questions are important: (a) What is the

purpose to be served by the proposed index? (b) What price

and quantity data can be selected or collected to best serve

this purpose? and, (c) What form of index is the best in the

light of (a) and (b)?

(a) Though the chief treatment of this chapter is with (c)

it should be borne in mind that differences in (a) and (b) can

conceivably completely change the form of index which is most

suitable. In particular a problem requiring an index, the mean-

ing of which can be accurately grasped by a lay audience,

cannot involve geometric and harmonic means; an index

which, for the use that is to be made of it, must be reversible

no matter what year is made the base, cannot be built upon

quotations of commodities differing from year to year; an

index which is required to serve the double purpose of being

equally serviceable whether price relatives or quantity rela-

tives are sought, cannot be asymmetrical with respect to prices

and quantities; an index which is designed to picture an

aggregate condition in an industry, country, or other unit,

33i
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cannot be based upon partial data unless it incorporates pro-

vision for estimation of omitted material; etc., etc.

Fisher (1921) has especially stressed the value of an aggre-

gate index which is both a price and a trade index, permitting

interpretation as to quantities involved as well as prices paid.

He implies that an "unbiased" index meeting these conditions,

of which there is more than one, is the index par excellence,

answering all the essential problems. As to whether this is

so is a question of economics and only secondarily of mathe-

matics. For this reason the present treatment stresses this

feature less than does Fisher. This does not imply a disagree-

ment with Fisher but rather an indisposition to attempt to

answer a problem which is in the main economic.

The number and nature of the commodities entering into an

index depends upon the degree of accuracy required and the

particular purpose to be served. They are consequent to the

form of index used only because certain indexes require both

price and quantity data while others are less exacting. Having

determined the form of index, and knowing the purpose, and

ruling out of consideration the index which is a complete survey

of a field the question in choosing commodities is, what are the

principles which should control in drawing a sampling? The

fundamental principles of multiple correlation apply — high

correlation with the purpose to be served and low intercorrela-

tion. If a coal price index is being constructed from a small

number drawn from a much larger number of quotations, the

quotations should be chosen so that (a) each is as little cor-

related as possible with the other quotations included in the

index, and (6) each is as highly correlated as possible with the

other quotations in the field not included in the index. It is

to be expected that commercial tendencies will conspire to

prevent any quotation from markedly possessing both char-

acteristics, in which case a balance must be struck between

them: (6) is the more important if the number of quotations

in the index is small, say not over six, but (a) is by far the

more important if the number of quotations is large. In fact,

quotations that are excellent for incorporation in an index

number based upon a small number of items may be expected

to be relatively inferior for incorporation in an index based
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upon a large number of items. This brief observation as to

the significance of correlation between commodity prices is,

in the main, an addendum to, not in opposition to, the points

involved in Mitchell's (1915) very thorough exposition of

the question of what commodities should be included.

The preceding paragraphs merely touch upon the various

phases of the problem of purpose and selection of material.

No one source covers this adequately, but the reader will find

a fairly complete treatment of all phases of the problem in

the following selected list of references: Edgeworth (1896)

and (1887, 88, 89, 90), Fisher (1913) and (1921), Knibbs

(1912), Mitchell (1915), Pearson (1910, const.) and (1911, ops.),

Walsh (1901) and (1921).

The succeeding treatment of topic (c) is taken with some

modification and abridgment from Kelley (1921, cert.).

Section 94. The Meaning of a Price Ratio and of a Price

Index

The price of a commodity in some one year, pli (the super-

script designates the commodity, while the subscript desig-

nates the year), divided by the price of the same commodity

in a second year, p\ is p\/p\, and is called a price ratio. A

composite of several such ratios purporting to portray a general

relationship between prices in the two years is a price index,

P1/P2. The fundamental concept in this is the ratio or geo-

metric concept. Indices can be built upon many bases, but

irrespective of the method of construction, the usual inter-

pretation will involve this geometric concept. The lay reader

will think that Pi is a certain proportion of P2, and P2 is the

inverse proportion of Pi. An index which is not reversible

does not parallel the thought processes inherent in the concept

"price ratio," and this more elementary concept, where reversi-

bility is the rule, is the one by means of which "price index"

is interpreted. Even writers who are quite aware that the

index they are using is not reversible, use price ratios and price

indices in such a way that it is obvious they expect the same

sort of concept to be called up in the reader's mind; for example,

"p\/p\ = 122, but Pi/P2 = 120 so that, etc."

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

2
 2

1
:5

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/u
c1

.$
b
8

6
7

2
8

P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



334

STATISTICAL METHOD

In so far as the concept Pi/P2 is commonly of a different

nature from p\/ph, it lies in the fact that Pi and P2 are averages,

and p\ and p\ are single measures. Accordingly, to parallel

customary thinking, Pi/Pi should mean a reversible propor-

tion between averages. What an "average" is may not be so

definitely established in the minds of scientific people generally

as is the idea "ratio," but probably the most common concept

is that of arithmetic average or mean. We therefore have

the somewhat anomolous situation of Pi/Pi calling up the

arithmetic concept when dealing with the two separate elements

involved in it, but the geometric concept when dealing with

the thing entire. Since this mixture of concepts seems likely

to persist, the writer proposes as an important test of the

excellence of an index number the closeness with which the

operations involved in it parallel general thinking tendencies:

First and most important, reversibility of ratio, and second,

arithmetic averages involved in the parts.

Section 95. The Probable Errors of Various Indexes

That a price index has a probable error is a fact not always

recognized and not entirely obvious, for it may easily happen

that the price ratios are entirely reliable. It may be possible

to say that the price of cotton at a certain time was p\ and at

a second time p'2. If the price quotations are accurate, then

the price ratio p\/ph is a true measure. The average of

several such gives Pi/P2, which is invariable. Therefore,

Pi/P2 has zero probable error as far as being the average of

these particular things, but the very combining of them in-

volves the assumption that the index has significance beyond

the particular data from which it is calculated. The only

exception would be when Pi and P2 are determined from all

the possible data. As an example, let p\ be the price of coal

at a certain mine at the first date, p\ the price at a second mine,

. . . , p"i the price at the last mine, and similarly for the £2's.

Then, since all the sources are involved, Pi/P2 is the index of

coal prices and has no probable error, except such as might be

due to faulty quotations and calculations and could therefore,

by proper care, be made negligible.
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This is not the typical situation. Ordinarily but a few

quotations are worked up into an index and the result taken

as representative of an industry or a field. We therefore have

quotations which are samplings of the prices in the industry,

and the statistical methods for determining the reliability of

samplings apply. The formulas for probable errors given

in succeeding sections are based upon certain assumptions,

including that of random sampling, but if 25 or more per cent

of the possible quotations are utilized, material error in the

formulas is introduced, the true probable errors being less

than those given by the formulas. It is to be understood that

by probable error in an index number is meant that which

arises from incompleteness of data. In the following determi-

nations of probable errors of index numbers as given by various

formulas, the attempt is to see how closely one can approxi-

mate, by a sample, the number which would be obtained were

all the possible data utilized in determining the same sort of

index. The probable error indicates how closely the results

from the sample may be expected to tally with the results from

the whole. Should there be a constant tendency in the form

of index used, systematically leading to too high or too low a

value, we have a systematic error, which is entirely distinct

and which is not measured by the size of the probable error.*

The reason why a few quotations can yield an index which is

a close approximation to a general tendency is that there is a

high correlation between the quotations included and those

not included in the index but pertinent to the function being

measured. If there are two hundred coal mines and quota-

tions from a half dozen are taken, an index in close agreement

with the true index based upon the two hundred may be ex-

pected, because of the high correlation between quotations at

different mines. To say that there is a high correlation is

not equivalent to saying that the prices at the different mines

tend to approach the same level, but that they tend to main-

* In the tests of indices suggested in Section 97 there will be found none to the effect that

an index should have no bias. The 1eason for this is that reversibility of ratio, o1 change

of base, which is included as one of the tests, is not possible with a I 'biased" index. Fisher

(1921) shows that an index may possess a bias due to form and a second bias due to base

value weighting, and that these may exactly neutralize each other. Such a situation would,

statistically, be the same as one not involving bias.
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tain a uniform difference. Mine A, near tidewater, may sell

at a certain price, p\ much higher than that, p2, at mine B,

remote from a center of consumption, without indicating an

economically abnormal condition in the coal trade. If pl, p',

and other similar measures are averaged, the probable error

of this average is not given by the usual formula

P. E.mean = -6745

due to the heterogeneity of, and to the correlation between,

the p's. As an illustration, more extreme than mine quota-

tions on coal, let us average the following prices:

Bacon per pound $ .70

Bread per pound .10

Potatoes per bushel 1.20

Apples per box 10.00

Average S3.00

Standard deviation . . . . 4.06

P. E. (by above formula) ... 1.37

Now, presumably, the probable error of no single one of these

quotations is as great as $1.37, and the average of them all

will probably fluctuate but little. There probably is positive

correlation between these food prices, a rise in one generally

going with a rise in each of the others. These conditions are

not those under which the probable error of an average is given

by the usual formula. For statistical purposes there is much

to be gained by having homogeneous uncorrelated material.

We can secure measures which are nearly, if not entirely,

homogeneous and uncorrelated by dealing with price ratios

instead of prices.*

* In one sense, both prices and price ratios arc very highly correlated, but these corre-

lations have quite different statistical consequences. As the price of coal at mine A ap-

proaches pli, due to correlation the price at mine B approaches what may be a very differ-

ent value, ph; but as the ratio, ph/ph, from the quotations of mine A approaches, as time

changes, the value p, due to correlation, the ratio of the quotations from mine B may be

expected to tend toward the same value p. (The rigorous proof of this statement would be

necessary before the present treatment and statement of probable errors can be considered

final. Whatever erro1 is involved is of a conservative nature, as it almost certainly would

tend to make the obtained probable errors too large.) Although correlation between prices

tends to throw ratios together, it tends to keep prices apart. If, therefore, we deal with

ratios, the effect of correlation has al1eady operated upon the measures used, making the

distribution of ratios more homogeneous, and as a consequence making the mean more

reliable. In other words, the standa1d deviation of the ratios of prices at date I to those at

date 2, an, is reduced from what it would be were there no correlation between prices, so

that by this very reduction, the probable erro1 formula when applied to ratios takes account

of the correlation between prices at two different dates. For a rigorous approach to the

question of probable error of a ratio see Pearson (1910 const, and 1011 ops.).
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Accordingly, if the price index showing prices in year i

relative to year 2, called is given by the equation

P It)

in = W = v2* (Index formula 1M313]

fi J\ pi

and if the standard deviation of the price ratios is an, the

probable error of in is given by

p g . _ an . (Probable error of

u 745 index formula 1) . [314]

Let us consider another kind of index,

P X i)

iii = -5- = . (Index formula 2).. [315]

r' 2 pi

The complete probable error formula for this kind of index

involves the correlation between the p's. (See Pearson, 1910,

ops.) The index

in = -i- 2 (P)tv. (Index formula 3).[316]

2,1V \pi/

will be more reliable than formula 1 if the weights, w, used are

exactly or approximately proportionate to the values of the

commodities involved. In general, the greater the price ratio

the less the consumption and vice versa, so that the distribution

of the weighted price ratios will have a smaller variability than

the distribution of price ratios alone. If w = p^, the value

of the transactions in year 2, the formula becomes

in = lor^1- (Index formula 4) [317]

2 piqi

Formula 4 is but a type of formula 3. It is undoubtedly more

reliable than either 1 or 2, but there are too many variables

involved for the writer to attempt a calculation of its probable

error based upon the data for two dates only. If, however,

the commodities are divided into random halves and indexes

determined from each half, the correlation between these sub-

indexes may be calculated, and from it the probable error of

the total index may be obtained, as follows:

Let there be n commodities, equally excellent as representa-
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tive of the whole field, which are built up into the index ». In

order to determine the probable error of i we may first build

up two indexes, A and B, each based upon a random half of

the commodities. Calculation of A and B for a number of

dates will give two series, the correlation between which may

be found. In doing this it is desirable that the time interval

between successive indexes be sufficient to insure the relative

independence of the commodity quotations involved. Just

as the average of the prices of bread on January i of a certain

year and on December 30 of the same year will in general give

a truer average yearly price than the average of the prices on

June 30 and July 1, because in the former case the two quota-

tions are nearly independent while in the latter one has prac-

tically but a single quotation, so sub-indexes calculated at

too short intervals of time scarcely constitute new data, but

rather repetitions of old data. Were the correlation between

successive quotations known, practical limits could be set

giving periods shorter than which it would not be worth while

to calculate sub-indexes. Having a, the standard deviation

of these sub-indexes, and having r, the correlation of the sub-

indexes, we may determine the standard error of the average

of the two sub-indexes, i.e., of the total index, i. As given by

Kelley (1921, cert.), it is

Note that r and a must be obtained from the same series of

sub-indexes.

The practical advantages of reporting two sub-indexes as

well as the total index may well be as great as has been found

to be the case in reporting two comparable measures in the

fields of psychology and education. The probable error of

any index may be determined if comparable sub-indexes are

calculated and if the series of indexes covers a sufficient length

of time to yield a reliable measure of correlation between

sub-indexes. Probably 16 pairs of quarterly sub-indexes would

suffice. Since a means of determining the standard error of

any index is available, we may say that a second important

1 — r (Standard error of an index in terms of the

2 standard deviation and correlation of

sub-indexes) 1

[318]
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measure of the excellence of an index number is the size of its

probable error*

Space will not permit a discussion of the probable errors of

all the proposed types of indexes, but to point out the necessity

of such discussions the writer has made an estimate, after more

or less complete mathematical analysis of the relative size of the

probable errors of the index numbers given in Table LXXIV,

Section 97.

The one that seems the most reliable of all, and that also

most completely meets other conditions except that of parallel-

ing general thinking tendencies, is the weighted geometric

mean index, in which the weights are roughly proportional to

the reliabilities of the price ratios. This requirement as to

weights is practically no limitation at all, as it is regularly

approximated to by customary weighting devices. Practi-

cally without exception the observations of Mitchell (1915)

as to what items to include in an index and what weights to

give, are statistically equivalent to weighting price ratios

according to reliability.

Section 96. The Accuracy and Flexibility of the

Weighted Geometric Mean Index

The weights of the commodities involved in an index may

be changed with much greater facility in the case of some

indexes than of others. As soon as a commodity becomes

archaic the proper thing to do is to withdraw it, and with-

drawals and entrances are readily accomplished with the

geometric index. The weighted geometric mean index for-

mula is

'-^WW^WP„- ^dex ferula 5)...^,

* I judge from the limited abstract of his study that Fisher (1021) has calculated a large

number of different indices from the same material and found that certain formulas give

highly comparable results. The uniformity of indices involving the same data is not the

problem of reliability here attacked. We are concerned with the problem of sampling.

As to whether Professor Fisher has also compared an index determined from a part of his

data with the same index as obtained from a larger part I cannot dete1mine from the ab-

stract, but if so it constitutes an experimental approach to the problem in hand. One

would expect that the differences which Professor Fisher would find between an index

based upon, let us say, 1 of his data and one based upon the remaining 1 would be somewhat

larger than implied by the formula here given, as the index based upon the I would be a

fallible standard. A study of the uniformity of indices based upon the same data throws

light upon the existence and the nature of systematic tendencies, or biases, but none what*

ever upon the error of sampling.
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For convenience, and without any loss of generality, Xw may

be made to equal 1. Thus, letting <oi = wi/Xw, <o2 = wt/Xw,

etc., and letting pi = p\/p\, P2 = f^i/ph, etc.,

i = p «, pi", - - - pn"n. (Index formula 5a).. [319 a]

Note that with this formula the index is reversible and that

there is complete freedom in changing the base. Assuming as

before that there is no correlation between ratios, the probable

error is given by

P. E, = .67454- V^'f-'+^-'+---^

2, VI' p-| p'i p'n

(Probable error of the weighted geometric mean index).. [320]

in which the p's are successive price ratios and the a's their

standard deviations. As an approximation, the a's may be

considered to be equal to each other and to equal the standard

deviation of the distribution of price ratios. In order that this

probable error remain small, it is necessary that no one of the

ratios wi/pi, wt/p-i, etc., be exceptionally large.

Pi P\

Letting q*i equal the quantity of the commodity consumed, or

in trade, it would be expected that q\p*i would fluctuate much

less than p\, and whereas there might be danger of p\ becom-

ing extremely small or large there is not equal likelihood of

gilpii doing so. Accordingly, if wi is approximately =q\p\,

then wi/pi = q\p\, a magnitude which is not likely to be

extremely large. However, should a commodity change greatly

in its relative importance, the weighting of it may easily be

changed as follows:

Let it be desired to change the weight of the price ratio pi

from wi to Wi, which we will say is a smaller weight. We need

not impose the condition that pi = i. For pi > i we will

search the list of price ratios for (a) a ratio > * which is under-

weighted, or (b) a ratio < i which is overweighted. Suppose

P2 is such a ratio. Ordinarily there are a number of price

ratios = 1.0, or i, or some other value which is the modal

value. These may be combined and represented by ps, where

p is this modal value and 5 the sum of the weights of all the
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ratios having this value p. Letting P stand for the product

of all the terms other than pi, P2, and the p terms, we have

. 2w,

* — VpW| p"!i pJ P

and it is desired to change this to

The first index will equal the second in case

(1) +w, + s = Wl + Wi + S [321]

and also

(2) pwh p^i p1 = pWii pwh ps [322]

or, taking logarithms,

wi log pi + w2 log p2 + s log p = Wi log pi + W' log p2 + 5 log p .[323]

is the new weight that has been assigned (this may be

zero) so that everything involved is known except W2 and 5,

and the solution of the two equations simultaneously will yield

these. Ordinarily S will differ but slightly from s, and W2

will differ from w2 in the direction in which it is desirable it

should differ. Thus, as a practical matter, the weight of any

price ratio, whether equal to i or not, may be changed without

affecting the index.

No other index, as far as the writer can determine, offers

the extreme flexibility in changing weights, dropping or adding

new items, here found to exist for the geometric mean index.

Since this is so, the weights can be made such that extreme

ratios are given small weights or eliminated. As a conse-

quence, the probable error of such a weighted geometric mean

index may be expected to be smaller than that of any other

index mentioned. The excellence of this index seems to the

writer so great as to warrant its use, even though it involves

a change in the established habits of interpretation of the

usual reader.

Section 97. Criteria for Judging of the Excellence of

Indexes

Two criteria, the paralleling of habitual modes of thinking

and reliability, have been proposed in judging the excellence

of an index measure. Fisher (1913) has used eight other

tests, three of them being tests only of "trade" indexes. It
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would seem that these latter would be of particular impor-

tance only in case an index ceases to be a sampling and be-

comes an expression of the sum total of transactions involved.

Table LXXIV, in part taken from Fisher (1913), gives "scores"

of the most important index measures upon several tests or

criteria of excellence.

Test 1: Reliability. In giving scores upon this point the

writer has freely used his judgment in the case of indexes for

which no simple probable error formula is available. More

or less complete statistical analysis has preceded this scoring,

but it is in no sense to be considered final. An "s~i" after a

score means that no simpler way for calculating the probable

error than by means of the correlation between comparable

sub-indexes seems to be available. As the writer judges this

test to be the most important of all, the scoring is 3, 2, 1, and o,

instead of 2, i, and o — the larger the score, the higher the

rating.

Test 2: Parallels habitual modes of thinking. Score 2, i, o.

The following tests are from Fisher.

Test 3: Proportionality. "A price index should agree with

the price ratios if these all agree with each other." Stated

algebraically:

Given rr = = etc. = i. Required that Cr = i [324]

Score of 2 if true for any two years. Score of 1 if true only

when year 2 is the base year.

Test 4: Entry and withdrawal. A price index should per-

mit the entry and withdrawal of price ratios without changing

the value of the index. Fisher uses a less general test: "A

price index should be unaffected by the withdrawal or entry

of a price ratio agreeing with the index." The scoring here

follows Fisher, except for formula 5, which Fisher does not

include in his list of 44, and for formulas 14 and 15 which are

here scored higher than by Fisher.* Score 3, 2, 1, o.

* Fisher scores both of these formulas zero on the basis of entrance and withdrawal of

items. However, as shown by Kelley (192 I cert.) a new commodity, whose price ratio

agrees with the index, may be introduced into index formula 15, without changing its value

provided quantities are in the ratio,

qh ab(di — c)

«'i cd(a — bi)
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Test 5: Change of base. "The ratios between price indexes

should be unaffected by reversing or shifting the base." Alge-

braically stated:

Give score of 2 if true for any two years, score of 1 if only

true when the base year and one other is involved, i.e., if only

such equations as = in, ^ = in, etc., hold.

Ill *42

Test 6: Change of unit of measurement. "The ratios

between various price indexes should be unaffected by chang-

ing any unit of measurement." Score of 2 or o.

Fisher has a "Determinateness" test which he describes in

the words, "A price index should not be rendered zero, infinity,

or indeterminate by an individual price becoming zero." This

is but one phase of reliability and is therefore included in

Test 1 above.

In the formulas listed the q's stand for quantities of com-

modities consumed or in trade and are weights of the p's.

When weights not exactly equal to the q's are involved, the

symbol w is used. It is of course assumed that care would

be exercised in selecting these weights, po and qo instead of pi

and q2 are used in those formulas in which the treatment of

the data for the base year is unique. Test 5 is not completely

met by any such formulas.

Also, if quantities are in the ratio

a commodity whose price ratio is equal to the index may be introduced into index formula 14,

in which

6 - 2£ui

c = 2f igi

d = 2mi

(Index fonnula IS)

without changing its value.
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TABLE

Scores of Index Numbers upon

(i)

Type IA

(2)

TypeIA

-iz£l

2 — »

pi,

Tests

N pn

Carli

Zw

Evelyn

Economist

Sauerbec.

Young

Falkncr

Dun

Soether

I

Reliability,—Smallness of P. E

. 5s-i

I.

1.5 s-i

i.

2

Parallels habitual mode of thinking .

3

4

2.

2.

2.

2.

5

6

Change of unit of measurement ....

.O

2.

.0

2.

7-5

8-5

TABLE

Scores of Index Numbers upon

(8)

Type IV

TypeV

do)

Type IV

,. * ?o + gi

S" 2

(II)

Type IV

2 pi Vgofl,

(12)

Type IV

Also

Type IA

Tests

2 #i

2 plID

2 Po ^gofli

2 piqt

2 p«qo

2 Pi

Bradstreet

Lowe

Scrope

Scrope

Sidgwick

Sauerbeck

Edgewortn

Marshall

and

Walsh

Giflen

I

1.5 s-i

2.5 s-i

2.5 s-i

2.5 s-i

2. s-i

2

2.

2.

i-5

i-5

I.

3

2.

2.

i.

1.

2.

4

2.

2.

i.

1.

2.

5

2.

2.

i.

1.

.0

6

.0

2.—

2.

2.

2.

Totals . .

9-5

12-5 -

9.0

9.0

9.0

Type IA: Arithmetic average of ratios Type IH: Harmonic average of ratios

Type II: Median of ratios Type III: Geometric average

Formulas 7 and 9, which are given the highest scores, involve

weights, w, instead of quantities, q. There is great flexibility

in each of these so that if a weight is adopted, let us say in the

first instance upon the basis of quantities (if using formula 9)

or values (if using formula 7) in trade, which tends to become
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LXXIV

Basis of Six Tests of Excellence

(3)

Type IA

(4)

Type II

Median

Value of

(s)

Type II

(6)

Type III

(7)

Type III

Also

Type V

Also

Type V

Po

P2l

typ'iPh.. -

Weighted

geom.

mean

Tests

2 PlQl

Weighted

median

f'p'in',...

Palgrave

Edgeworth

Jevons

Westergaard

I. s-i

2.

3-

I.

3-

I

i.

I.

i.

-5

.5

2

i.

2.

2.

2.

2.

3

i.

I. —

I. —

2.

3-

4

.0

I. —

I.—

2.

2.

5

2.

2.

2.

2.

2.

6

6.o

9.0-

10.0 —

9-5

12-5

Totals

LXXIV—Continued

Basis of Six Tests of Excellence

(13)

Type IV

(14)

Type VI

(IS)

Type VI

(16)

Type V

Z figi

(17)

Type V

Z pin

2 /»«•

Also

Type IH

2 pili

2 Pmi

Arith.

average

2 gl

Tests

Geom.

average

of (ii) and

(13)

z pm

yVn'i. - .

of (12)

2 «i

Scrope

Sidgwick

Sauerbeck

Giffen

and (13)

Sidgwick

Drobisch

Drodisch

Rawson-

Rawson

Nicholson

Walsh

2. s-i

2.5 s-i

2.5 s-i

2. s-i

2. s-i

I

.5

.5

1-5

-5

-5

2

i.

i.

i.

.o

.o

3

i.

I.

i.

.o

.0

4

.0

.0

i.

2.

2.

5

2.

2.

2.

.0

2.

6

6-5

7.0

9.0

2-5

4-5

Totals

Type IV: Quotient of aggregates

Type V: Quotients of functions of data of single years

Type VI: Composites of preceding types

unreasonable, it can be changed without affecting the index

between the year when the change is made and the preceding

year. If years from early to late are designated by i, 2, 3, 4

and if a formula-7 index number is started at the end of the

first year, using weights proportionate to the values of the
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commodities in trade, and continues until the beginning of

year 4 before a change in weights is desirable, a change can at

that time be made which will preserve the index t34 and its

reciprocal The new weighting would probably give an

t'42 and an in, were they to be calculated, which would be slightly

different from those given by the equations:

U2 = —and «4i = —

iB til

which would exactly hold had no change in weights been made.

This difference will usually be small, but if an index is demanded

permitting changes in weightings and at the same time enabling

the use, with exactness, of any year as base, it may be made by

the expenditure of a little more labor.

Section 98. The Use of Any Year as Base

Formula 12 (or 13) in which there are no parameters, or

flexible weightings, will serve as a foundation:

J12

2^292

Let Mi = the mean of the pi's

mi = the mean of the 91's

Si = the standard deviation of the pi's

Si = the standard deviation of the q>i's

rn = the correlation between the pi's (represented by

the first subscript) and the 91's (represented by

the second subscript).

Symbols with other subscripts have comparable meanings,

e.g., r2« = the correlation between the p2's and the g4's. Then,

2 p,qi = N (M,mi + rnS1 si) 1 ,

\ (326]

2 pig, = N (Af2m2 + r2iS, s') J

Consequently, the numerator and the denominator for the

index between any two years may be built up if the means,

standard deviations, and correlations are known. The data

required may be calculated each year, as the data for the
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INDEX NUMBERS 347

year become available, and tabulated in such a table as the

following:

Data for Determining Index with Any Desired Year as Rase

r^: p for Year Indicated in Stub and 9 for Number

of Years Indicated Earlier (—) or Later (+)

Years

Mp

Mq

5

s

-32

-16

-8

-4.

—2

— I

0

+2

+4

+8

+16

+32

1919

1918

1917

1916

1915

1914

1913

1912

1911

9

8

7

6

S

4

3

2

I

+

*

+

*

+

+ X*

+ x*

•

X

X

>

:

If it is desired to make 1917 the base and to express the

prices in 1919 and 1911 relative to it, then Xpgq7 is determined

from the magnitudes recorded in the compartments in which

there is "+"; Xpiq7 from the compartments in which there is

"X"; and "Zp-.q-i from the compartments in which there is "*."

The table as drawn up does not provide space for all the

possible correlation coefficients. With such care as could be

taken in choosing the units of quantity, the correlation coeffi-

cients could be made to vary from year to year in a very regular

manner, thus enabling interpolation with high accuracy. There

is complete freedom in changing the weights of commodities,

but it should be noted that a commodity "dropped" continues

as one of zero price and zero quantity — in other words, the TV

has not been decreased by "dropping" the commodity. To

change the weight of a commodity price from w to w' demands

a warrant. Let us say that such warrant is found in the ratio

of the quantities consumed. No less warrant is necessary

when w' is zero. An article once included in the index should

come out only in case it becomes practically obsolescent. No

distortion of any index would result in this case. We may of

course take out a commodity under other conditions without

affecting some one particular index.
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APPENDIX A

LIST OF IMPORTANT SYMBOLS

When dealing with a single variable:

1. N designates the total population.

2. n is used as an exponent or subscript, or as the population

of a sub-sampling.

3. X designates a gross score, i.e., a score as a deviation from

zero in the quantity scale being considered.

4. x designates a score as a deviation from the mean.

5. £ designates a score as a deviation from an arbitrary origin.

6. M designates the arithmetic mean.

7. Mdn designates the median (= P.5o).

8. Mo designates the mode.

9. p designates the proportion of cases lying below the 100 p

percentile, — to the left of a dichotomic point in a

frequency polygon.

10. Pp designates the value of the 100 p percentile.

11. q is defined by p + q = 1.

12. U.Q. designates the upper quartile (= P.75).

13. L.Q. designates the lower quartile (= P.25).

14. Q designates the quartile deviation, or semi-interquartile

range ( = [U.Q. - L.QJ/2).

15. D designates the 10-90 percentile range (= P.M - P. 1o).

16. A.D. designates the average deviation, i.e., the mean

deviation from the mean.

17. a designates the standard deviation from the mean of

scores in a distribution.

18. P.E. designates the probable error (= .6744898<r)

19. j designates the standard deviation from some point other

than the mean.

349
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350

STATISTICAL METHOD

20. 2 designates a summation of scores of the sort indicated.

21. 5 designates a summation of summations, or of elements

other than individual scores.

22. a with a subscript designates the standard error of the

constant represented by the subscript.

23. P.E. with a subscript designates the probable error of the

constant represented by the subscript.

24. i designates the class interval, or width of base of a given

class in a frequency polygon.

25. v designates the value of the lower boundary of a class

interval.

26. v' designates the value of the upper boundary of a class

interval.

27. / designates the frequency in a class interval.

28. F designates the sum of the frequencies below a given

class interval.

29. F' designates the sum of the frequencies above a given

class interval.

30. A or 5 designates the difference between the mean and

arbitrary origin (= M-Arb. orig. = /ii).

31. m, ni,---Hn designate the moments from the mean (a)

without application of Sheppard's corrections if they are

inconsequential for the problem in hand, or (6) after

application of Sheppard's corrections if they are used.

32. vi, V2, - . -vn designate the moments from the mean before

application of Sheppard's corrections in problems in

which Sheppard's corrections are used.

33. /iil /i2.---A'» or h, v2,---vn designate moments from an

arbitrary origin.

When dealing with the normal distribution:

A normal distribution in which N = 1 and a = 1 will be

referred to as a "unit normal distribution."

In the general normal distribution, x as denned in 4,

a as defined in 17:

34. y designates the ordinate per unit interval (= 7.N/a [as

defined in 36 and 17]).

In the "unit normal distribution":
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APPENDIX A

35i

35. x designates a deviation from the mean

/— x [as denned in 4] \

\ a [as denned in 17]/

36. z designates the ordinate

(_ y a- [as denned in 13 and 17]

~N —

p and q as defined in 9 and 11 (p = I zdx = i [1 — a]

of Sheppard).

37. Corresponding to a deviation xi we have pi, qi, zi' , or

corresponding to a proportion pli we have qli zu and xi.

When dealing with unimodal distributions:

39. yo designates the ordinate at the origin (generally at the

mean, the mode or a boundary).

40. m is an exponent. If two exponents are needed, Wi and

m2 are used.

41. a in general designates the distance between the origin

and a finite boundary. If two boundaries are finite.

ai and 02 are used.

When dealing with price indexes:

42. p*s designates the price of commodity t at date s.

43. <jf's designates the amount consumed, or in trade, of com-

modity / at date s.

If few commodities are involved, subscripts are arabic

numbers, and superscripts are primes.

44. ps designates the price of an unspecified commodity at

date s.

45. qs designates the quantity consumed, or in trade, of an

unspecified commodity at date s.

46. psu designates a price ratio or the ratio of the price at

date s to the price at date m ( = —J -

47. Ps is a composite, weighted or otherwise, of the prices

of several commodities at date s.
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STATISTICAL METHOD

48. isu designates a price index or the ratio of a composite

49. w designates the weight given to a price, p, when this

weight differs from q.

When dealing with correlated series:

50. Symbols as given in 3, 4, 5. Corresponding symbols for

the second series are Y, y, f.

51. A second notation utilizes symbols i, 3, 4, 5, 6, 7, 8,

11, 15, 16, 17, 18 and 19, with subscript 1 added to

represent the first variable, and a subscript 2 added to

represent a second variable.

52. ffx = ai, and <Ty = 02.

53. A has the meaning as in 28, with reference to the first

variable, and 8 this meaning with reference to the

second variable.

54. zi designates the first variable expressed as a standard

measure - (= *i/<n). zi designates the second vari-

able expressed as a standard measure—( = xi/ai).

See also 36.

55. r designates the product moment correlation coefficient

between two series.

56. r is also used where specially noted, to designate bi-serial

r, Sheppard's cos 2 7r0 correlation, and occasionally

other specially designated correlation coefficients.

57. p designates the correlation coefficient, based upon the

squares of differences in rank.

58. R designates Spearman's foot-rule correlation coefficient.

See also 86.

59. ri designates the tetrachoric correlation coefficient.

60. <ri.2 designates the mean standard deviation of the a>

arrays from the regression line, i.e., it is the standard

error of estimate of variable 1, knowing variable 2.

61. <r2.i designates the standard error of estimate of 2, knowing

variable 1.

62. aa designates the mean standard deviation of the ^-arrays

from the means of the arrays.

of prices at date s to prices at date u
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63. x designates the value of x as estimated from a knowledge

of y by means of the regression equation.

64. X designates the value of X as estimated from a knowledge

of Y by means of the regression equation.

65. y and Y have comparable meanings to 63 and 64 inter-

changing the variables.

66. In general, a symbol with a superior bar stands for an

estimated value of a variable, or for an average, but

note 33, 81 and 82.

67. ba designates the regression of the x's upon the y's, or

the slope of the regression line used in estimating x's,

knowing y's.

68. 621 designates the regression of the y's upon the x's.

69. h designates the grouping interval for the first variable

(= i, in 24), and k, the grouping interval for the second

variable.

70. x is the first variate when no grouping is resorted to. It

is not related to x2. of 99.

71. 7 is the second variate when grouping is not resorted to.

It is not related to 7 as found in the equations of certain

curves.

72. r, tj, and C with a subscript preceding, such as subscript

mr,frj, etc., designate a coefficient, after some correction

has been made.

73. r with 00 as one of the subscripts designates a correlation

with a true score, i.e., a correlation corrected for attenu-

ation.

74- roooo designates the correlation between two true scores,

i.e., the correlation corrected for the attenuation in

case of both variables.

75. k designates the coefficient of alienation or the propor-

tionate improvement in estimate, due to the existence

of correlation (= V1 — r-). See also 85.

76. p with two subscripts designates a product moment.

Distinguish between this and 9, 89 and 117.

77. d designates a difference between two scores. These

scores may be rank positions.
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STATISTICAL METHOD

78. rjn is the correlation ratio of x upon y, and ij2i that of y

upon x.

79. f is the test for linearity ( = ij2 - r2). Distinguish

between this and 50.

80. w represents an arbitrary weight. See also 91.

81. r, designates the average inter-correlation between a

number of independent variables.

82. rc designates the average correlation between a criterion

and a number of variables.

83. o used as a subscript designates the criterion.

84. 2 designates the standard deviation of scores in a second

range when the standard deviation in the first range is

a. Distinguish between this and 20.

85. K designates the alienation coefficient in a second range,

when the alienation coeffcient in the first range is k.

Distinguish between 85, 87 and 88.

86. R designates the correlation coeffcient in a second range,

when the correlation coefficient in the first range is r.

Note also 58.

87. K' designates the mean of a summation. See formula [205].

88. k designates the number of categories in a quantitative

or qualitative distribution. X designates the number

of categories in a second quantitative or qualitative

distribution.

89. p is the greater of two proportions which total 1.0, in a

correlation table. See also 9.

90. a, /3, 7, 5 are the proportions in the four cells of a four-

fold correlation table.

91. v and w with subscripts designate certain tetrachoric

correlation functions. Distinguish between 25, 26, 80

and 91.

92. <t, designates product-moment correlation between two

two-point distributions. This is Pearson's r«*, and

also Yule's theoretical value of r.

93. 4,2 designates the mean square contingency. In the case

of a four-fold only, it equals <1, of 92 squared.
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94. Q designates Yule's coefficient of association. Distin-

guish between 14 and 94.

95. <o designates Yule's coefficient of colligation.

96. mSS' designates the theoretical cell frequency.

97. n„' designates the observed cell frequency.

98. dsS' designates the cell divergence (= nss, - mSS') -

99. x' designates the square contingency. See also 70.

100. P designates the probability of a divergence as great or

greater than that obtained, arising as a matter of

chance.

101. ak designates the standard error of the fc'th difference

correlation coefficient.

When dealing with three or more correlated variables:

102. *o.i2...n designates the residual in the criterion, or error

of estimate of the criterion, after regression equation

estimation of it by means of the other variables

(= xa - xq).

103. xo designates the value of the criterion as estimated from

the other variables.

104. zo = Xo/<ro', 2o = xo/ao', zo.u...» = xo.i2...n/ao', etc.

105. ro.i2...„ designates the multiple correlation coefficient

between the criterion and the regression equation com-

bination of the independent variables.

106. ko-n—n designates the multiple alienation coefficient be-

tween the criterion and the regression equation com-

bination of the independent variables.

107. ao.12...» designates the standard error of estimate of the

criterion, when estimated by means of the regression

equation.

108. roi.23...» designates the partial correlation coefficient be-

tween the criterion and variable 1, the other variables

being constant.

109. &oi.23...» designates the partial alienation coefficient be-

tween the criterion and variable 1, the other variables

being constant.
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STATISTICAL METHOD

11o. j8oi-23...b designates the partial regression of the criterion

upon variable i, the other variables being constant,

not allowing for unequal standard deviations of the

variables.

i11. 6oi.23...» designates the partial regression of the criterion

upon variable i, the other variables being constant,

taking into account the standard deviations of the

variables (= /Solm—u <ro/<ri).

112. A designates the major determinant.

113. AM designates the determinant obtained by taking out

the p'th row and the q'th column from the major de-

terminant.

114. c designates the weighted composite of scores, generally

slightly different from the regression equation com-

posite.

115. u designates the one variable in the c composite which is

treated in a unique manner.

116. c — u designates the c composite, after deduction of the

variable treated uniquely.

117. p designates any one of the variables, other than w, in

the c composite.

118. D designates the distance from the stump to the mean of

a complete normal distribution, in case of truncation

(= xa). See also 15.

119. a- designates the standard deviation of a weighted

average.

THE GREEK ALPHABET

A a Alpha

B 0 Beta

r 7 Gamma

A 5 Delta

E « Epsilon

Z f Zeta

H V Eta

9 0 Theta

I 1 Iota

K k Kappa

A X Lamba

M / i Mu

N v Nu

S { Xi

0 o Omicron

n x H

P p Rho

S a Sigma

T t Tau

T v Upsilon

* <1, Phi

X x Chi

^ if> Psi

Q to Omega
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APPENDIX C

KELLEY-WOOD TABLE

OF THE NORMAL PROBABILITY INTEGRAL
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APPENDIX C 373

.000 .500 .500

I

X

Z

2

zlq

zip

pq

P

.001

.000000

.398942

.500

.79788

.79788

.250000

.50 j

.001

.002

-003

.002507

.005013

.007520

.398941

-398937

.398931

-499

.498

.497

.79948

.80108

.80268

.79629

.79470

.79310

.249999

.249996

.249991

.501

.502

.503

.004

.005

.006

.010027

.012533

.015040

.398922

.398911

.398897

.496

.80428

.80588

.80748

.79151

.78992

.78833

.249984

.504

.505

.506

.495

.494

.249975

.249964

.007

.017547

.020054

.022562

..598881

.398862

.398841

.493

.492

.491

.80909

.81070

.81230

-78675

.78516

-78358

.249951

-249936

.249919

-507

.508

.509

.008

.009

.010

.025069

.398816

.400

.81391

.78199

.249900

.510

.011

-027576

.030084

.032592

.398791

.398762

.489

.488

.487

.81552

.81714

.81875

.78041

.77883

.77725

.249879

.249856

.249831

.5»

.512

.513

.012

.013

.398730

.014

.015

035100

.037608

.040117

.398697

.398660

.398621

.486

.485

.484

.82036

.82198

.82360

.77567

.77410

.77252

.249804

.249775

.249744

.5H

-515

.516

.016

.017

.018

.042626

.398580

.398536

.398490

-483

.482

.481

.82522

.82684

.82846

.77095

.76938

.76780

.249711

.249676

.249639

.517
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.020
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.398441

.480

.83008

.76623

.249600

.520

.021
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.052664

.398389

.398336

-398279

.479

-478
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.83171
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.83497
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.76309
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.249559
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.249471
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.534
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.397317
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.39713I

.397034

.463

.462

.461

-85794

.85959

.86125

.73971

.73816

.73661

.248631

-248556

.248479

.537

-538

.539

-039

-095395

.097914

.040

.100434

-396935

.460

.86290

.73506

.248400
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STATISTICAL METHOD

.040 .460 .540

X

z

2

z/q

z/p

pq

P

.040

.100434

.396935

.463

.86290

.735o6

.248400

.340

.041

-102953

.396834

.459

.86456

.73352

.248319

-541

.042

•05474

-396729

.458

.86622

.73197

.248236

.542

.043

.107995

-396623

.457

.86788

.73043

.248151

.543

.044

.110516

.396513

.456

.86955

.72888

.248064

.544

.045

.H3039

.396401

.455

.87121

.72734

.247975

-545

.046

-115562

.396287

.454

.87288

.72580

.247884

-546

.047

.118085

.396170

.453

.87455

.72426

.247791

.547

.048

.120610

.396051

.452

.87622

.72272

.247696

.548

.049

-I23I35

-395929

.451

.87789

.72118

.247599

-549

.050

.125661

-395805

.453

.87957

.71964

.247500

.55 >

.051

.128188

.395678

-449

.88124

.71811

.247399

.551

.052

.130716

.395549

.448

.88292

.71657

.247296

-552

-053

.133245

.395417

.447

.88460

.71504

.247191

.553

-054

-135774

.395282

.446

.88628

-71350

.247084

-554

.055

.138304

-395145

.445

.88797

.71197

.246975

.555

.056

.140835

-395005

.444

.88965

.71044

.246864

.556

.057

. I43367

.394863

.443

.89134

.70891

.246751

.557

.058

.145900

-394719

.442

.89303

.70738

.246636

.558

.059

.148434

.394572

.44l

.89472

.70585

.246519

.559

.060

.150969

.394422

.440

.89641

.70432

.246400

.560

.061

.153505

.394270

.439

.89811

.70280

.246279

.561

.062

.156042

.394115

.438

.89981

.70127

.246156

.562

063

.158580

.393957

.437

90150

.69975

.246031

.563

.064

.161119

-393798

.436

.90321

.69822

-245904

564

.065

.163658

-393635

.435

.90491

.69670

.245775

.565

.066

.166199

-393470

.434

.90661

-69518

.245644

566

.067

.168741

-393303

-433

.90832

69366

.24551 •

-567

.068

.171285

.393133

.432

.91003

.69214

-245376

.568

.069

.173829

.392960

.431

.91174

.69062

.245239

.569

.070

.176374

.392785

-430

.91345

.68910

.245100

.570

.071

.178921

.392608

.429

.915l7

.68758

.244959

.571

.072

.181468

-392427

.428

.91689

.68606

.244816

.572

-O73

.184017

.392245

.427

.91861

.68455

.244671

.573

-074

.186567

-392059

.426

-92033

-68303

-244524

.574

-075

.189118

.391870

.425

.92205

.68151

-244375

.575

.076

.191671

.39.1681

.424

.92378

.68000

.244224

.576

.077

.194225

.391488

.423

-92550

.67849

.244071

.577

.078

.196780

-39I293

.422

.92723

.67698

.243916

.578

.079

.•99336

.391095

.421

.92897

-67547

-243759

.579

.080

.201893

.390894

.420

-93070

.67396

.243600

.580

.080 .420 .580
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APPENDIX C

.080 .420 .580

/

X

z

a

z/q

z/p

pq

P

.080

.201893

.390894

.420

.93070

.67396

.243600

.58^

.081

.204452

.390691

.419

.93244

-67245

.243439

.581

.082

.207013

.390485

.418

.93417

.67094

-243276

.582

.083

.209574

.390277

.417

.93592

.66943

.243m

.583

.084

.212137

.390066

.416

.93766

.66792

.242944

.584

.085

.214702

.389852

.415

.93940

.66641

.242775

.585

.086

.217267

.389636

.414

.94115

.66491

.242604

.586

.087

.219835

.389418

.413

.94290

.66340

.242431

.587

.088

.222403

.389197

.412

.94465

.66190

.242256

.588

.089

.224973

.388973

.411

.94641

66040

.242079

.589

.090

.227545

-388747

.410

.94816

.65889

.241900

.590

.091

.230118

.388518

.409

-94992

.65739

.241719

-591

.092

.232693

.388287

.408

.95168

.65589

.241536

.592

.093

.235269

.388053

.407

.95345

.65439

.241351

.593

.094

.237847

.387816

.406

.95521

.65289

.241164

.594

.095

.240426

.387577

.405

.95698

.65139

-240975

.595

.096

.243007

.387335

-404

.95875

.64989

.240784

.596

.097

.245590

.387091

.403

96052

.64839

.240591

.597

.098

.248174

.386844

.402

96230

.64690

.240396

-598

.099

.250760

.386595

.401

.96408

.64540

.240199

.599

.100

253347

.386342

.400

.96586

.64390

.240000

.600

.101

.255936

.386088

.399

.96764

.64241

.239799

.601

.102

.258527

-385831

.398

.96942

.64091

.239596

.602

.103

.261120

.385571

.397

.97121

.63942

.239391

.603

.104

-263714

.385308

.396

.97300

.63793

.239184
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.105

.266311

.385043

.395

.97479

.63749

.238975

.605

.106

.268909

.384776

.394

.97659
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.238764
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.274110

.384233
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.98019
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.276714
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.391
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.238119
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.279319
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.III

.281926

.383399
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.62749

-237679
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.383115

.388

.98741
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.237456

.612
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.287147

.382830
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.237231
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.289760

.382541
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.99104
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.237004

.614

."5
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.382250
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-236775

.615

.116

.294992

.381956

.384
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.62006

.236544

.616

.117

.297611

.381660

.383

.99650

.61857

-236311

.617
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.300232

.381361
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.99833

.61709

.236076

.618
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-302855

.381060

.381

1.00016

.61561
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.120
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1.00199
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.235600
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.120 .380 .620
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374 STATISTICAL METHOD

.040 .460 .540

I

X

3

2

z/q

z/p

pq

P

.040

.100434

-396935

.460

.86290

.73506

.248400

.340

.041

- 102953

-396834

.459

.86456

.73352

.248319

.541

.042

.105474

.396729

.458

.86622

.73197

.248236

-542

.043

.107995

-396623

.457

.86788

.73043

.248151

.543

.044

.110516

-396513

.456

.86955

.72888

.248064

-544

.045

.113039

.396401

.455

.87121

.72734

.247975

-545

.046

.115562

.396287

.454

.87288

.72580

.247884

.546

.047

.118085

.396170

-453

.87455

.72426

.247791

.547

.048

.120610

.396051

.452

.87622

.72272

.247696

-548

.049

-123135

-395929

.451

.87789

.72118

.247599

.549

-050

.125661

-395805

.453

.87957

.71964

.247500

.55'

.051

.128188

.395678

.449

.88124

.71811

.247399

.551

.052

.130716

.395549

.448

.88292

.71657

.247296

.552

.053

.133245

.395417

.447

.88460

.71504

.247191

.553

-054

.135774

.395282

.446

.88628

.71350

.247084

.554

-055

.138304

-395145

-445

.88797

.71197

.246975

.555

.056

-140835

-395005

.444

.88965

.71044

.246864

-556

-057

.143367

.394863

.443

.89134

.70891

.246751

.557

.058

.145900

.394719

-442

.89303

-70738

.246636

-558

.059

.148434

.394572

.44i

.89472

-70585

.246519

.559

.060

.150969

.394422

.440

.89641

.70432

.246400

.560

.061

.153505

.394270

.439

.89811

.70280

.246279

.561

.062

.156042

-394115

-438

.89981

.70127

-246156

.562

.063

.158580

-393957

.437

.90150

.69975

.246031

.563

.064

.161119

.393798

-436

.90321

.69822

.245904

-564

.065

.163658

.393635

-435

.90491

.69670

.245775

.565

.066

.166199

-393470

.434

.90661

.69518

.245644

566

.067

.168741

.393303

.433

90832

.69366

-245511

567

.068

.171285

.393133

.432

.91003

.69214

.245376

.568

.069

.173829

.392960

.43i

.91174

.69062

.245239

.569

.070

.176374

.392785

.430

.91345

.68910

.245100

.570

.071

.178921

.392608

.429

.91517

.68758

.244959

.571

.072

.181468

.392427

.428

.91689

.68606

.244816

.572

-073

.184017

.392245

.427

.91861

.68455

.244671

.573

.074

.186567

.392059

.426

-92033

.68303

.244524
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.391681
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.196780

-391293
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-199336
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APPENDIX C

.080 .420 .580

/

X

3

2

z/q

z/p

pq

P

.080

.201893

.390894

.420

-93070

.67396

.243600

.583

.081

.204452

.390691

.419

.93244

.67245

.243439

.581

.082

.207013

.390485

.418

.93417

.67094

.243276

.582

.083

.209574

.390277

.417

.93592

.66943

.243m

.583

.084

.212137

.390066

.416

.93766

.66792

.242944

.584

.085

.214702

.389852

.415

.93940

.66641

.242775

.585

.086

.217267

.389636

.414

.94115

.66491

.242604

.586

.087

-219835

.389418

.413

.94290

.66340

.242431

.587

.088

.222403

.389197

.412

.94465

.66190

.242256

.588

.089

.224973

.388973

.411

.94641

66040

.242079

.589

.090

.227545

.388747

.410

.94816

.65889

.241900

.590

.091

.230118

.388518

.409

.94992

.65739

.241719

-591

.092

.232693

.388287

.408

.95168

-65589

-241536

.592

.093

.235269

.388053

-407

.95345

.65439

.241351

-593

.094

.237847

.387816

.406

-95521

.65289

.241164

.594

.095

.240426

.387577

-405

.95698

.65139

.240975

.595

.096

.243007

.387335

.404

.95875

.64989

.240784

.596

.097

.245590

.387091

-403

96052

.64839

.240591

.597

.098

.248174

.386844

.402

.96230

.64690

.240396

.598

.099

.250760

.386595

.401

.96408

.64540

.240199

.599

.100

253347

.386342

.400

.06586

.64390

.240000

.600

.101

.255936

.386088

-399

.96764

.64241

.239799

.601

.102

.258527

.385831

-398

.96942

.64091

.239596

.602

.103

.261120

.385571

.397

.97121

.63942

.239391

603

.104

.263714

.385308

.396

.97300

.63793

.239184

.604

.105

.2663II

.385043

.395

.97479

.63749

.238975

.605

.106

.268909

.384776

.394

.97659

.63494

.238764

.606

.107

.271508

.384506

.393

.97839

-63345

-238551

.607

.108

.274110

-384233

.392

.98019

63196

.238336

.608

.109

.276714

-383957

.391

.98199

-63047

.238119

.609

.110

.279319

.383679

.390

.98379

.62898

.237900

.610

.III

.281926

.383399

.389

.98560

.62749

.237679

.611

.112

.284536

-383115

.388

.98741

.62600

.237456
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.113

.287147

.382830
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.98922

.62452

.237231

.613

.114

.289760

.382541
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.237004
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.384

.99468
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.302855

.381060

.381

1.00016
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.305481

.380755
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.61412
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.620
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376 STATISTICAL METHOD

.120 .380 .620

/

X

2

2

z/q

z/p

pq

P

.120

.305481

.380755

.380

1.00199

.61412

.235600

.620

.121

.308108

.310738

.313369

.380449

.380139

.379827

.379

-378

.377

1.00382

1.00566

1.00750

.61264

.61116

.60967

.235359

.235116

.234871

.621

.622

.623

.122

.123

.124

.316003

.318639

.321278

.379513

.379195

-378875

.376

.375

-374

1.00934

1.01119

1.01303.

.60819

.60671

.60523

.234624

.624

.625

.626

-125

.126

-234375

.234124

.127

.128

.129

.323918

.326561

-378553

.378227

.377900

.373

.372

.371

1.01489

1.01674

1.01860

-60375

.60227

.60079

.233871

.233616

.233359

.627

.628

.629

.329206

.130

.331853

.377569

.370

1.02046

.59932

.233100

.630

.131

.132

.133

-334503

.337155

.339809

.377236

.376900

.376562

.369

.368

-367

1.02232

.59784

-59636

.59488

.232839

.232576

.232311

.631

.632

1.02418

1.02605

.633

.134

.135

.136

.342466

.345125

.347787

.376220

.375877

-375530

.366

-365

.364

1.02792

1.02980

1.03168

.59341

.59193

.59046

.232044

.231775

-231504

634

.635

.636

.137

.138

.139

.350451

.353118

-355787

-375i8i

.363

.362

.361

I.03356

1.03544

1 03733

.58898

.231231

.230956

.230679

.637

.638

-374829

.374475

.58751

.58603

.639

.140

-358459

.374118

360

1.03922

.58456

.230400

.640

.141

.142

.143

.361133

.363810

.366489

.373758

.373395

-373030

-359

-358

-357

1.04111

1.04300

1.04490

.58309

.58161

.58014

.230119

.229836

-229551

.641

.642

643

.144

.369171

.371856

.372662

-372292

.3719I9

-356

.355

-354

1.04680

1.04871

1.05062

.57867

.57720

.57573

.229264

.228975

.228684

.644

.645

.646

-145

.146

.374544

.147

.I48

.149

.377234

.379927

.382622

.371543

.371164

-353

-352

.351

1.05253

1.05444

1.05636

.57426

.57278

-5713I

.228391

.228096

.227799

.647

.648

.649

-370783

.150

.385320

.370399

.350

1.05828

.56984

.227500

.650

.151

-152

.153

.388022

.390726

.393433

.370012

.369623

.369231

.349

.348

1.06021

1.06214

1.06407

.56837

.56691

.227199

.226896

.226591

.651

.652

.653

-347

.56544

.154

.155

.156

.396142

.398855

.401571

.368836

.368439

.368038

.346

.345

-344

I.06600

1.06794

I.06988

-56397

.56250

.56103

.226284

.225975

.225664

.654

.655

.656

-157

.158
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.404289

.407011

.409735

.367635

.367230

.366821

.343

.342

.341

1.07182

I-07377

1.07572

.55957

.558io

.55663

.225351

.225036

-224719
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.340
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APPENDIX C

.160 .340 .660

X

Z

<7

z/p

pq

P

.160

.412463

.366410

.340

1.07768

.55517

1 .224400

.660

.161

.415I94

.365996

-339

1.07963

.55370

.224079

.661

.162

.417928

-365580

.338

1.08160

.55224

.223756

.662

.163

.420665

.365160

.337

1.08356

.55077

.223431

.663

164

.423405

.364738

.336

1 08553

.54930

.223104

.664

.165

.426148

.364314

-335

1.08750

.54784

.222775

.665

.166

.428895

.363886

-334

1.08948

.54638

.222444

.666

.167

.431644

.363456

.333

1.09146

.54491

.222111

.667

.168

.434397

.363023

.332

1 09344

.54345

.221776

.668

.169

.437154

-362587

.331

1 09543

.54198

.221439

.669

.170

.439913

.362149

.330

1.09742

.54052

.221100

.670

.171

.442676

.361707

.329

1.09941

.53906

.220759

.671

.172

.445443

.361263

.328

1.10141

-53759

.220416

.672

.173

.448212

.360817

.327

1 10342

-53613

.220071

.673

.174

.450986

.360367

.326

1 10542

.53467

.219724

.674

. 175

-453762

.359915

.325

1 10743

.53321

.219375

.675

.176

.456542

.359459

-324

1.10944

.53174

.219024

.676

- 177

.459326

-3590OI

.323

1.11146

.53028

.218671

.677

.178

.462113

.358541

.322

I.1I348

.52882

.218316

.678

179

.464904

.358077

-321

111550

.52736

.217959

.679

.180

.467699

.357611

320

III753

.52590

.217600

.680

.181

.470497

.357142

.319

I-11957

-52444

.217239

.681

.182

.473299

.356670

.318

1.12160

. 52298

.216876

.682

.183

.476104

.356195

.317

1.12364

.52152

.216511

.683

.184

.478914

-355718

.316

1.12569

.52006

.216144

.684

.185

.481727

.355237

.315

1.12774

.51859

-215775

.685

.186

.484544

.354754

.314

1.12979

-51713

.215404

.686

.187

.487365

.354268

.313

1-13185

-51567

.215031

.687

.188

.490189

.353780

312

I.1339I

-51422

.214656

.688

.189

.493018

.353288

.3ii

1 13597

-51275

.214279

.689

.190

.495850

.352793

310

1.13804

.51129

.213900

.690

.191

.498687

.352296

.309

1.14012

.50984

.213519

.691

.192

-5Oi527

.351796

.308

1.14219

.50838

.213136

.692

.193

.504372

.351293

- 307

1.14428

.50692

.212751

.693

.194

507221

.350787

.306

1.14636

.50546

.212364

-694

-195

-510073

-350279

-305

1.14S46

.50400

.211975

-695

.196

.512930

.349767

-304

I.15055

.50254

.211584

.696

.197

.515792

-349253

-303

1.15265

.50108

.211191

.697

.198

.518657

-348736

.302

I15475

.49962

.210796

.698

.199

-521527

.348216

301

1.15686

.49816

.210399

.699

.200

.5244m

.347693
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1.15898

.49670

.210000

.700
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378 STATISTICAL METHOD

.200 .300 .700

/

X

0

g

z/q

z/p

to

P

.200

.524401

.347693

.300

1-15898

.49670

.210000

.700

.2OI

.527279

.347167

.299

1.16109

.49525

.209599

.701

.202

.530161

.346638

.298

1.16321

.49379

.209196

.702

.203

.533048

.346107

.297

1 16534

.49233

.208791

.703

.204

.535940

.345572

.296

1.16747

.49087

.208384

.704

.205

.538836

.345035

.295

1.16961

.48941

.207975

.705

.206

-541737

.344494

.294

1-17175

.48795

.207564

.706

.207

.544642

.343951

-293

1-17389

.48649

.207151

-707

.208

.547551

-343405

.292

1.17604

.48504

.206736

.708

.209

.550466

-342856

.291

1.17820

-48358

.206319

.709

.210

.553385

.342304

.290

1.18036

.48212

.205900

.710

.211

.556308

-341749

.289

1.18252

.48066

.205479

.711

.212

.559237

.34II9I

.288

1.18469

.47920

.205056

.712

.213

.562170

.340631

.287

1.18687

.47774

.204631

.713

.214

.565108

.340067

.286

1.18904

.47628

.204204

.714

.215

.568051

-339500

.285

1.19123

.4748.3

.203775

.715

.216

.570999

-338931

.284

1 19342

.47337

.203344

.716

.217

.573952

-338358

.28}

1-19561

.47191

.202911

.717

.218

.576910

.337783

.282

1.19781

.47045

.202476

.718

.219

-579873

-337205

.281

1.20002

.46899

.202039

.719

.220

.582841

.336623

.280

1.20223

.46753

.201600

.720

.221

.585815

-336039

.279

1.20444

.46607

.201159

.721

.222

.588793

-335452

.278

1.20666

.46461

.200716

.722

.223

.591777

.334861

.277

1.20888

.46315

.200271

.723

.224

.594766

.334268

.276

1.21112

.46170

.199824

.724

.225

.597760

.333672

-275

I-21335

.46024

.199375

.725

.226

.600760

-333073

.274

I-21559

.45878

.198924

.726

.227

.603765

.332470

.273

1.21784

.45732

.198471

.727

.228

.606775

-331865

.272

1.22009

.45586

.198016

.728

.229

.609791

.331257

.271

1.22235

.45440

197559

.729

.230

.612813

.330646

.270

1.22461

-45294

.197100

.730

.231

.615840

.330031

.269

1.22688

.45148

.196639

.731

.232

.618873

-329414

.268

1.22916

.45002

.196176

-732

.233

.621912

.328793

.267

I-23H3

.44856

-1957"

.733

.234

.624956

.328170

.266

1-23372

.44710

.195244

.734

.235

.628006

.327544

.265

1.23601

.44564

.194775

-735

.236

.631062

.326914

.264

1-23831

.44418

.194304

.736

-237

.634124

.326281

.263

1.24061

.44272

.193831

.737

.238

.637192

.325646

.262

1.24292

.44125

193356

.738

-239

.640265

.325007

.261

1.24524

-43979

.192879

.739

.240

-643345

.3243(,5

.260

1 24756

-43833

.192400

.740

.240 .260 .74°
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APPENDIX C 379

.240 .260 .740

/

X

z

2

z/q

z/p

pq

P

.240

.643345

.324365

.260

1.24756

.43833

.192400

.740

.241

.646431

.323720

.323072

.322421

.259

.258

1.24988

1.25222

1.25456

.43687

.43541

.43394

.191919

.191436

190951

.74i

.742

.743

.242

.649524

.652622

.243

.257

.244

.24s

.655727

.658838

.661955

.321767

.256

.255

.254

1.25690

.43248

.43102

.42956

.190464

-744

.745

.746

.246

.321110

.320449

125925

1.26161

189975

.189484

.247

.248

.249

.665079

.668209

.671346

.319786

.253

.252

1.26398

1.26635

1.26872

.42809

-42663

.42517

.188991

.188496

- 187999

.747

.748

.749

-319119

.318449

.251

.250

.674490

-317777

.250

1.27m

-42370

.187500

.75°

.251

.252

.677640

.680797

.683961

.317101

.316421

.315739

.249

.248

.247

1 27350

1-27589

1.27830

.42224

.42077

.41931

.186999

. 186496

.185991

.751

.752

.753

.253

.254

.255

.256

.687131

.690309

.693493

-315053

-314365

.313673

.246

-245

.244

1.28070

1.28312

1-28554

.41784

-41638

-41491

.185484

. 184975

.184464

.754

.755

.756

.257

.258

.259

.696685

.699884

.703090

.312978

.312279

-311578

.243

.242

.241

1.28798

1.29041

1.29285

-41345

.41198

183951

.183436

.182919

.757

.758

.759

.41051

.260

.706303

.310873

.240

1.29531

.40904

.182400

.760

.261

.262

.263

.709523

.712751

.715986

.310165

.239

.238

.237

1.29776

1.30023

1.30270

.40758

.40611

.40464

.181879

.181356

.180831

.761

.762

.763

.309454

.308740

.264

-265

.266

.719229

.722479

-725737

.308022

.236

.235

.234

1.30518

1.30767

1.31016

.40317

.40170

.40023

.180304

.764

.765

.766

.307301

-306577

.179775

.179244

.267

.268

.269

.729003

.732276

.735558

-305850

.305119

.304385

.233

.232

1.31266

1-31517

1.31768

.39876

.39729

.39582

.178711

.178176

.177639

.767

.768

.769

.231

.270

.738847

.303648

.230

1.32021

.39435

.177100

.770

.271

.272

-273

.742144

-745450

.748763

.302908

.302164

-301417

.229

.228

.227

1.32274

1.32528

1 32783

.39288

.39I40

.38993

-176559

.176016

.771

.772

.773

-175471

-274

-275

.276

-752085

.755415

.758754

.300666

.226

.225

.224

1 33038

1-33294

.38846

.38698

-38551

.174924

.174375

.173824

.774

. 775

.776

.299913

.299155

1-33551

.277

.278

.762101

-298395

.297631

223

.222

.221

1 33809

1.34068

1-34328

.38403

.38256

.38108

-173271

.172716

.777

-7/8

.779

-279

.765456

.768820

.296864

. 172159

.280

.772ii>3

.206094

.220

1-3-1588

.38069

.171600

.780

.280 .220 .780
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38o STATISTICAL METHOD

.280 .220 .780

X

z

9

z/q

z/p

pq

P

.280

.772193

.296094

.220

1.34588

.38069

.171600

.780

.281

.282

.775575

.295320

-294542

.293762

.219

.218

.217

1.34849

1 35"i

-37813

-37665

.171039

.170476

.169911

.781

.782

.783

.778966

.283

.782365

1-35374

-37517

.284

.785774

.789192

.792619

.292978

.292:90

.216

1.35638

1-35902

1.36168

-37370

.37222

.169344

.784

.285

.286

.291399

.215

.214

-37074

.168775

.168204

.785

.786

.287

.796055

.799501

.802956

.290605

.289807

.289006

.213

1 36434

1.36701

1.36970

.36926

.167631

.167056

.166479

.787

.788

.288

.289

.212

.211

-36778

.36629

.789

.290

.806421

.288201

.210

I.37239

.36481

.165900

.791

.291

.292

.809896

.813380

.816875

-287393

.286582

.285766

.209

.208

.207

1 37509

1.37780

1.38051

.36333

-36185

-36036

.165319

.164736

.164151

.791

-792

.793

-293

.294

.295

.820379

.284948

.284126

.283300

.206

.205

.204

1 38324

1.38598

1-38873

-35888

.35739

.35590

.163564

-162975

.162384

-794

.795

.796

.296

.823894

.827418

.297

.298

.830953

.834499

.838055

.282471

.281638

.280802

. 203

.202

.2OI

I.39I48

1 39425

1.39702

.35442

.35293

.35H4

.161791

.161196

.160599

.797

.798

.299

.799

.300

.841621

.279962

.200

I-3998I

-34995

.160000

.800

.301

.302

.845199

.848787

.852386

.279118

.278272

.199

.198

.197

1.40260

1.40541

1.40823

.34846

-34697

-34548

-159399

.158796

.158191

.801

.802

.803

.303

.277421

.304

.305

.306

.855996

.859617

.863250

.276567

.275709

.274847

.196

1.41106

-34399

.34250

.34100

.157584

.156975

.156364

.804

.805

.806

.195

.194

I-4I389

I.41674

.307

.308

.309

.866894

.870550

-874217

.273982

.273114

.193

.192

.191

1.41960

1.42247

I-42535

.33951

.33801

.33652

.i5575i

-155136

.154519

.807

.808

.809

.272241

.310

.877896

-271365

.190

1.42824

.33502

. 153900

.810

.311

.312

.881587

.270486

.269602

.189

.188

.I87

1.43114

I-43405

1.43698

.33352

-33202

.33052

-153279

.152656

.152031

.811

.812

.813

.313

.885291

.889006

.268715

.314

.315

.316

.892733

.896473

.267824

.266929

.266031

.186

1-43991

1.44286

1.44582

-32902

.151404

-150775

.150144

.814

.815

.816

.900226

. 185

.184

-32752

.32602

-317

.318

.319

.903991

.907770

.911561

-265129

.264223

.263313

.183

.182

.181

1.44879

1-45l77

1-45477

.32452

.32301

.32151

.149511

.148876

.148239

.817

.818

.819

.320

-915365

.262400

.180

1-45778

.32000

.147600

.823

.320 .180 .820
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APPENDIX C 381

.320 .180 .820

I

X

Z

9

z/q

z/p

pq

P

.320

-915365

.262400

.180

I-45778

.32000

.147600

.82 5

.321

.919183

.261483

.179

1.46080

.31849

.146959

.821

.322

.923014

.260562

.178

1-46383

.31699

.146316

.822

-323

.926859

.259637

.177

1.46688

-31548

.145671

.823

.324

.930717

.258708

.176

1.46993

-31397

.145024

.824

-325

-934589

.257775

- 175

1.47300

.31245

.144375

.825

.326

.938476

.256839

.174

1.47609

.31094

.143724

.826

.327

.942376

-255898

- 173

1-47918

.30943

.143071

.827

.328

.946291

.254954

.172

1.48229

-30792

.142416

.828

-329

.950221

.254006

.171

1.48541

.30640

- 141759

.829

.330

.954165

.253054

.170

1-48855

.30488

.141100

.830

.331

.958125

.252097

.169

1.49170

-30337

.140439

.831

-332

.962099

.25"37

.168

1.49486

.30185

-139776

.832

.333

.966088

.250173

.167

1.49804

.30033

.139111

.833

.334

.970093

.249205

.166

1.50123

.29881

.138444

.834

.335

.974114

.248233

.165

1.50444

.29728

.137775

.835

.336

.978150

.247257

.164

1.50766

.29576

.137104

.836

-337

.982203

.246277

.163

1.51090

-29424

.136431

.837

.338

.986271

.245292

.162

I.51415

.29271

.135756

.838

.339

.990356

-244304

.161

I.51742

.29118

-135079

.839

.340

.994458

.2433l2

.160

1.52070

.28966

.134400

.84 J

.341

.998576

.242315

- 159

1-52399

.28813

.133719

.84I

.342

1.002712

.24I315

.158

I-5273I

.28660

.133036

.842

-343

1.006864

.24O3IO

- 157

1 53064

.28507

.132351

.843

-344

1.011034

.2393OI

.156

1-53398

.28353

.131664

.844

.345

1.015222

.238288

.155

1-53734

.28200

.130975

.845

.346

1.019428

.237270

.154

I-54071

.28046

.130284

.846

.347

1.023651

.236249

.153

1-544"

.27892

.129591

.847

.348

1.027893

235223

. 152

1-54752

.27739

.128896

.848

.349

1.032154

-234193

.151

1-55095

.27585

.128199

.849

.350

1-036433

.233159

.150

1-55439

-27430

.127500

.850

.351

1.040732

.232120

.149

1-55785

-27276

-126799

.851

-352

1.045050

.231077

.148

I-56I33

.27122

.126096

.852

-353

1.049387

.23OO3O

. 147

1-56483

.26967

. 125391

-853

-354

1.053744

.228979

.146

1.56835

.26813

.124684

.854

.355

1.058122

.227923

. 145

I.57I88

.26658

.123975

.855

.356

1.062519

.226862

.144

1-57543

.26503

.123264

.856

.357

1.066938

.225798

.143

1-57901

.26347

.122551

.857

.358

I-071377

.224728

.142

158259

.26192

.121836

.858

.359

1.075837

.223655

.141

1.58621

.26037

.121119

.859

.36°

1.080319

.222577

.140

1.58983

.25881

.120400

.860

.360 .140 .860
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382 STATISTICAL METHOD

.360 .140 .860

I

X

2

2

z/q

z/p

pq

P

.360

1.080319

.222577

.140

1-58983

.25881

.120400

.860

.361

1.084823

.221494

.139

1 59348

.25725

.119679

.861

.362

1.089349

.220407

.138

1-59715

.25569

.118956

.862

.363

1.093897

-2I9315

.137

1.60084

.25413

.118231

.863

.364

1.098468

.218219

.136

1-60455

.25257

.117504

.864

.365

1.103063

.217119

. 135

1.60829

.25100

. 116775

.865

.j66

1.107680

.216013

.134

1.61204

.24944

.116044

.866

.367

1.112321

.214903

.133

1.61581

.24787

- 115311

.867

.368

1.116987

.213789

- 132

1.61961

-24630

.114576

.868

.369

1.121676

.212669

. 131

1 62343

.24473

. "3839

.869

-370

1.126391

.211545

.130

1.62727

.24316

.113100

.870

-371

ii3il3i

.210416

.129

1.63113

.24158

.112359

.871

.372

1.135896

.209283

.128

1.63502

.24000

.111616

.872

.373

1.140688

.208145

.127

1.63894

.23842

.110871

.873

.374

I.145505

.207001

.126

1.64286

.23684

.110124

.874

.375

1 150349

.205853

.125

1.64683

.23526

- 109375

.875

.376

1.155221

.204701

.124

1.65081

.23368

.108624

.876

.377

1.160120

-203543

.123

1.65482

.23209

.107871

.877

-378

1.165047

.202380

.122

1.65885

.23050
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.400 .100 .900

X

Z
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.440

.060

940

/

X
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pq

P

.440
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INDEX

Boldface is used for references to definitions.

Alienation, coefficient of, 173

see also Correlation

Alignment chart of correlation functions,

291-295, inside back end paper

American Society of Mechanical Engi-

neers, 42

Anderson, von, O., 271, 276

Angell, Frank, 147

Approximations, errors in, 164-167

Array, 154, 155

Attenuation, 204-205

Average, moving, 28

Averages, 44-69

Bar diagram, 38

Bell, Julia, 265

Best fit, 150

Blakeman, John, 230, 269

Block diagram, 40

Boas, Franz, 259

Bowley, A. L., 55

Bravais, A., 152

Bridges, Calvin B., 321

Broad categories, effect of, 167-171

Brown, Carl, 226, 227

Brown, William, 37, 47, 190, 203, 20s, 326

Canning, J. VV., 183

Caption, 6

Categorical measu1es, graphic representa-

tion of, 37-43

Cave, Beatrice M., 271, 272, 273

Cave, F. E., 271

Central tendencies, 44-69

Charlier, C. V. L., 123

Chart of ratios, 22, 23-27

Chart, relative time, 16-20, 18

Chart, time, 16, 17

Charts, summary of rules for construction

of, 42-43

Class index, 11-13, 168-169

Class interval, n, 13

Class limits, 11, 12

Class mean, 168-169

Cobb, Margaret V., 314

Comparable measures, 100-122, 153

percentile method, 118-122

ratio method, 110-114

standard measure method, 114-117

Contingency

see Correlation

Correlated measures, functions of, 196-230

Correlation, average inter-, 217-221

Correlation between

a mean and a cell frequency, 178

a mean and coefficient of correlation, 178

a mean and standard deviation, 178

any two product movements, 175

coefficients of correlation, 179

means, 178

standard deviations, 178

standard deviation and coefficient of

correlation, 178

sums or averages, 196-200

Correlation coefficient, product-moment,

i6l—164

calculation of, 179-181

corrections to, 171

Cor1elation, corrected for attenuation,

204-205

error in, 208-212

Cor1elation, effect of range upon, 221-230

Correlation, interpretation of, 189-190

graphic, 153-156

Correlation, partial and multiple, 279-310

multiple alienation coefficient, 288,

299-300

multiple correlation coefficient, 287

multiple, three variables only, 280-295

multiple, » variables, 283, 292, 294,

295-310

partial alienation coefficient, 289

partial correlation coefficient, 289, 290,

298

by successive approximations, 302-310
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INDEX

Correlation surface, norma., 156, 157-159

Correlation surfaces, 172

Correlation table, 154

Correlation, various measures of, 231-278

bi-serial eta, 240-253

bi-serial r, 245-249

contingency, 262-265

contingency, coefficient of, 265-271

contingency, corrections to coefficient

of, 267-271

contingency, partial. 280

contingency, multiple, 280

equi-probable r, 265

four-fold point surface, 259-260

mean square contingency, 265-271

non-rectilinear reg1ession, 185-189

Otis' rank relation, 234-237

parabolic regression, 245

see Correlation, four-fold point sur-

face

rank method, 191-194

ratio, correlation, 238-245

ratio, correlation, corrected, 241, 242,

244

ratio, correlation, multiple, 280

ratio, correlation, partial, 280

Thorndike's median ratio coefficient,

231-234

tetrachoric, 253-258

variate difference, 271-278, 280

Yule's coefficient of association, 260-

262

Yule's coefficient of colligation, 260-262

Correlation with true measures, 200-201,

-°4

Cross-over value of a chromosome section,

321-324

Curve fitting, 123-150

normal curve, 136

type II, 136-137

type III, 137-138

type V, 138

type VII, 137

Curves, types of, 128-135

Day, Edmund E., 2

Deviation, mean, 70-75, 96

Deviation, quartile, 34, 75

Deviation, 10-00 pe1centile range, 34, 75-

77

Deviation, standard, 77-82

Deviation, standard, of constants of

single series

of a class frequency, 86-92

of any moment, 84-86

of index numbers, 334-339, 340

of an interpercentile range, 76

of the mean, 82-83, 177

of the median, 90

of measure of Kurtosis, 77

of measure of Skewness, 77

of a percentile, 86-92

of 10-90 percentile range, 76

of the standard deviation, 176

Deviation, standard, of measures of cor-

relation

of bi-serial eta, 250

of bi-serial r, 249

of coefficient of contingency, 269

of correlation ratio, 241

of multiple coefficient of correlation,

301-302

of partial coefficient of correlation,

301

of product-moment coefficient of cor-

relation, 176

of r corrected for attenuation, 200-210

of r inferred from an r obtained in a

different range, 316

of rank coefficient of correlation, 194

of regression coefficient, 176, 301, 302

of tetrachoric coefficient of correlation,

257-258

of 262, 269

of variate difference correlation co-

efficient, 276-277

Deviation, standard, of a difference, 182

Deviation, standa1d, of an array, 155, 173

of an array mean, 177

Deviation, standard, of an estimated

measure, 300

Deviation, standard, of any product

moment, 175

Dickson, J. D. Hamilton, 156

Dispersion, 44, 70-93

Duffcll, J. H., 137

Edgeworth, F. Y., 123, 152, 333

Elderton, W. Palin, 47, 124, 264

Error, probable, 98
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INDEX

389

Error, probable

see Deviation, standard

Error, standard

see Deviation, standard

Everitt, P. F., 254, 255

Fechner, G. T., 326, 327

FUon, L. N. G., 176, 179

Fisher, Irving, 332, 333. 335. 339. 34'.

342

Forsyth evaluation of the Gamma func-

tion, 136

Frequency polygon, 9, 10, 11-15

Galton, Francis, 114, 152, 153, 155

Gauss, C. F., 153

Graphic methods, 9-43

Greek alphabet, 356

Grouping, 50, 167

Grouping, effect upon correlation, 167-171

Grouping, rule for, 53

Grove, C. C, Preface, p. vi

Growth curve, 34

Growth increments, 35"37

Haskell, Allen, C., 42

Heron, David, 259, 261, 262, 266

Herring, John P., 72

Histogram, 9, 10, 11-12

Holzinger, Karl J., 222

Homoclisy, 172

Homoscedasticity, 17a

Hooker, R. H., 271

Indexes, 66-67

Index numbers, 331-347

change of base of, 346-347

flexibility of geometric, 339-341

meaning of, 333~ii*

tests of, 341-346

Isserlis, L., 179, 188

Kapteyn, J. C., 123

Kelley, Lura, 97

Kelley, Truman L., 7s, 90. 97, "5. '73.

213, 221, 223, 291, 297, 298, 321, 333,

338, 34*

Kelley-Wood table, 97, 370-385

Knibbs, G. H., 333

Kurtosis, 45, 77

Labelling classes, S3

Lee, Alice, 255, 311

Lengthening tests, effect of, 205-208

Map diagram, 30-41

Mean

arithmetic, 44, 45-S3

geometric, 65-66

guessed, 48

harmonic, 63-64

Median, 34, 54_57

Mitchell, Wesley C., 333. 339

Mode, 34, 60-62

Moments, 48, 79

Muller, G. E„ 327

Mutilated distributions, constants of,

311-314

Mutilated distributions, correlation in,

314-316

Normal curve, fitting a, 136

Normal distribution, 94-108, 129-130,

145. 149

Normal distribution, unit, oo-ioo, 350

Ogive, 31-34

Origin, arbitrary, 48

Otis, Arthur S., 118, 234, 237

Overlapping, error in measures of, 213,

316-319

Pearson, Karl, Preface, pp. v and vi, 94,

09, 123, 124, 125, 135, 137, 138, 140,

141, 143. 152, 153. i69, 172, 174. 175.

176, 179, 193. 194. 225. 229, 231, 239,

241; 248, 249, 250, 253, 254, 257, 259,

261, 262, 264, 265, 266, 268, 269, 271,

272, 273, 311, 333, 336

Percentiles, 34, 57-S9

Perry, C. A., 39

Persons, Warren M., 271

Pintner, Rudolph, 115

Population, 44

Probability of exceeding a given diverg-

ence, 102-103

Probable error, 98

Probable error

see Deviation, standard

Probable error of estimate

see Deviation, standard, of an array

Product theorem in correlation, 84
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39°

INDEX

Product theorem in probabilities, 262

Psychophysical methods, 316-33°

Ratios, 66-67, 110-114

Regression, 152, '54

see also Correlation

Regression coefficients, 160 161, 181-185

conjugate, 208

3 variables, 283, 285-294

n variables, 283, 292, 294, 29s, 296-302

Regression equation, 161

3-variables, 281, 283

a-variables, 283, 295-310

Relationship, measures of, 151-1.^

see Correlation

Reliability coefficient, 200-203

Residual, definition of, 281, 284

Reversion, 152, 154

Rhind, A., 143

Rich, Willis H., 273

Richmond, H. A., 185

Rietz, H. L., Preface, p. vi, 189

Ritchie-Scott, A., 271

Rugg, Harold O., 39

Scatter diagram

see Correlation table

Series, statistical, 2-5

complex, 39-4t

qualitative, 2, 5

quantitative, 2, s

spacial and geographical, 2, 4

temporal, 2-3

Sheppard, W. F., 94, 125, 168, 169, 174,

176, 257

Similar forms, 201-203

Skewness, 44, 77

Smoothing data, 27-31

Soper, H. E., 177, 248, 249

Spearman, Charles, 193, 196, 203-204,

205, 210

Stability of distributions, 138-150

Standard error, 83

Standard error of estimate

see Deviation, standard, of an array

Standard measures, 115, 280

Stub, 6

Student, 243, 271, 272

Symbols, list of important, 340-356

Tables, statistical, 5-8

derived, 7

general purpose, 7

primary, 7

special purpose, 7

Thiele, T. N., 123

Thomson, Godfrey H., 37, 47, 190, 103,

326, 327

Thorndike, E. L., Preface, p. vi, 231, 234

Thurstone, L. L., 199

Trade test evaluation, 320-321

True scores, 200

estimates of, 212-216

error in estimates of, 212-216

Unit normal distribution, 90-100

Unstable distributions, 146-150

Urban, F. M., 3*7. 3>8

Variability

see Dispersion

Wald, Elva, 72

Walsh, C. M., 333

Weighted average, best, 324-325

Weighting, 67-68

Weighting, effect of, 109-200

Weightings, merit of fact, 319-3«>

Wcldon, W. F. R., 189

Whipple, G. M., in

Wood, Ben D., 97

Woodyard, Ella, 309

Yerkes, Robert M., 226, 228, 246, 250,

255, 269, 309

Yule, G. U., 160, 210, 259, 260, 261, 262
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