
A Combinatorial Data Analysis
Toolbox for MATLAB

The HAM Team

June 2, 2003

Contents

I The Representation of Proximity Matrices by Structures
Dependent on Order (Only) — the Order Structure Toolbox
(OST) 3

1 Anti-Robinson (AR) Matrices for Symmetric Proximity Data 6
1.0.1 Incorporating Transformations . 7
1.0.2 Interpreting the Structure of an AR matrix 8

1.1 Fitting a Given AR Matrix in the L2-Norm 10
1.1.1 Fitting the (In)-equality Constraints Implied by a Given Matrix in the

L2 Norm . 12
1.2 Finding an AR Matrix in the L2-Norm . 13
1.3 Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix in the L2-Norm 17
1.4 The Use of Optimal Transformations and the m-function proxmon.m 19
1.5 Representing SAR Structures (Graphically) 25
1.6 Representation Through Multiple (Strongly) AR Matrices 31

2 Circular-Anti-Robinson (CAR) Matrices for Symmetric Proximity Data 38
2.1 Fitting a Given CAR Matrix in the L2-Norm 40

2.1.1 The Circular Unidimensional Scaling Utilities for Constructing Circu-
lar Anti-Robinson Targets . 41

2.2 Finding a CAR Matrix in the L2-Norm . 44
2.3 Fitting and Finding a Strongly Circular-Anti-Robinson (SCAR) Matrix in the

L2-Norm . 46
2.4 Representing SCAR Structures (Graphically) 49
2.5 Representation Through Multiple (Strongly) CAR Matrices 50

3 Order Structures for Two-Mode (Rectangular) Proximity Data 58

A main program files 61
A.1 arobfit.m . 61
A.2 targfit.m . 63
A.3 order.m . 66
A.4 arobfnd.m . 69
A.5 sarobfit.m . 70

1

A.6 sarobfnd.m . 75
A.7 proxmon.m . 76
A.8 biarobfnd.m . 78
A.9 bisarobfnd.m . 80
A.10 cirarobfit.m . 81
A.11 cirfit.m . 85
A.12 cirfitac.m . 91
A.13 cirarobfnd.m . 95
A.14 cirsarobfit.m . 96
A.15 cirsarobfnd.m . 105
A.16 bicirarobfnd.m . 105
A.17 bicirsarobfnd.m . 107

2

Part I

The Representation of Proximity
Matrices by Structures

Dependent on Order (Only) — the
Order Structure Toolbox (OST)

3

Nonmetric multidimensional scaling (NMDS) as developed by Shepard (1962a,b) and
Kruskal (1964a,b), has become a very familiar method in the psychological research literature
for representing structure that may be inherent among a set of objects. Judging by the
number of published substantive applications, whenever data are given in the form of a
symmetric proximity matrix containing numerical relationship information between distinct
object pairs, NMDS may have now become the default method of analysis. This routine
use of NMDS, however, when faced with elucidating whatever pattern of relationships may
underly a given set of proximities, does have interpretive implications and consequences. For
one, there is an implicit choice made that whatever major generality will be allowed should
reside primarily in the particular proximities being fitted by the explicitly parameterized
(Euclidean) spatial structure. Thus, an optimal (usually monotonic) transformation of the
proximities is sought in conjunction with the construction of a spatial representation. Second,
the parameterized spatial structure implicitly involves fitting the (transformed) proximities
by some function of the differences in object placement along a set of coordinate axes that
may be best suited for representing object variation that could, at least in theory, be allowed
to vary continuously. For instance, in the common Euclidean model we use the square root
of the sum of squared coordinate differences along a set of axes (although the particular axis
system selected is open to some arbitrariness). The tacit implication is that if the structure
underlying the proximities is more classificatory (and discrete) in nature, we may not do
very well in representing it by a spatial model that should do much better in the presence
of more continuous variation (cf. Pruzansky, Tversky, and Carroll, 1982). In fact, in the
limiting case where there exists a partition of the object set in which all proximities for
object pairs within an object class are smaller than for object pairs between classes (and
where proximities are keyed as dissimilarities so that larger values represent more dissimilar
objects), NMDS will typically give a degenerate representation in which all objects within
each class are located at the same spatial location and the optimally transformed proximities
consist of just two values, one for the within-class proximities and one for the between-class
proximities (cf. Shepard, 1974).

The present Toolbox concentrates on an alternative approach to understanding what a
given proximity matrix may be depicting about the objects on which it was constructed, and
one that does not require a prior commitment to the sole use of either some form of dimen-
sional model (as in NMDS), or one that is strictly classificatory (as in the use of a partition
hierarchy and the implicit fitting of an ultrametric that serves as the representational mech-
anism for the hierarchical clustering). The method of analysis is based on approximating a
given proximity matrix additively by a sum of matrices, where each component in the sum
is subject to specific patterning restrictions on its entries. The restrictions imposed on each
component of the decomposition (to be referred to as matrices with anti-Robinson forms)
are very general and encompass interpretations that might be dimensional, or classificatory,
or some combination of both (e.g., through object classes that are themselves placed dimen-
sionally in some space). Thus, as one special case — and particularly when an (optimal)
transformation of the proximities is also permitted (as we will generally allow), proximity
matrices that are well interpretable through NMDS should also be interpretable through an

4

additive decomposition of the (transformed) proximity matrix. Alternatively, when classifi-
catory structures of various kinds might underlie a set of proximities (and the direct use of
NMDS could possibly lead to a degeneracy), additive decompositions may still provide an
analysis strategy for elucidating the structure.

The algorithmic details of fitting to a given proximity matrix a sum of matrices each
having the desired general patterning to its entries (or even more explicitly parameterized
forms that may be of help in providing a detailed interpretation, such as those given by
partition hierarchies or unidimensional scales), are available in a series of papers that have
appeared recently in the literature (i.e., Hubert and Arabie, 1994, 1995; Hubert, Arabie,
and Meulman, 1997, 1998). Thus, in this sequel we can merely refer to these sources for
the actual mechanics of carrying out the various decompositions. More unique aspects that
will be incorporated in this Toolbox and in the documentation to follow are (a) the possible
integration of (optimal) transformations for use with the originally given proximities to be
fit by an additive matrix decomposition, and (b) the fitting of more restrictive parameterized
forms to the various components of a decomposition in attempting to give a detailed sub-
stantive interpretation of what each separate matrix in the decomposition may be depicting.
In this latter instance, one of our concerns might be directed toward the issue of whether a
particular matrix as part of a decomposition is indicating primarily dimensional or classifi-
catory aspects of the original proximities (or possibly and what may be more typical, some
combination of the two). In these latter cases, the m-files discussed as part of the documen-
tation for the LUS (Linear Unidimensional Scaling) and TS (Tree Structure) TOolboxes are
particularly relevant.

5

Chapter 1

Anti-Robinson (AR) Matrices for
Symmetric Proximity Data

Denoting an arbitrary symmetric n × n matrix by A = {aij}, where the main diagonal
entries are considered irrelevant and assumed to be zero (i.e., aii = 0 for 1 ≤ i ≤ n), A is
said to have an anti-Robinson (AR) form if after some reordering of the rows and columns
of A, the entries within each row and column have a distinctive pattern: moving away from
the zero main diagonal entry within any row or any column, the entries never decrease.
Generally, matrices having AR forms can appear both in spatial representations for a set of
proximities as functions of the absolute differences in coordinate values along some axis, or
for classificatory structures that are characterized through an ultrametric.

To illustrate, we first let P = {pij} be a given n × n proximity (dissimilarity) matrix
among the n objects in a set S = {O1, O2, . . . , On} (where pii = 0 for 1 ≤ i ≤ n). Then,
suppose, for example, a two-dimensional Euclidean representation is possible for P and its
entries are very well representable by the distances in this space, so

pij ≈
√

(x1i − x1j)2 + (x2i − x2j)2 ,

where xki and xkj are the coordinates on the kth axis (for k = 1 and 2) for objects Oi

and Oj (and the symbol ≈ is used to indicate approximation). Here, a simple monotonic
transformation (squaring) of the proximities should then be fit well by the sum of two
matrices both having AR forms, i.e.,

{p2
ij} ≈ {(x1i − x1j)

2}+ {(x2i − x2j)
2}.

In a classificatory framework, if {pij} were well representable, say, as a sum of two matri-

ces, A1 = {a(1)
ij } and A2 = {a(2)

ij }, each satisfying the ultrametric inequality, i.e., a
(k)
ij ≤

max{a(k)
ih , a

(k)
hj } for k = 1 and 2, then

{pij} ≈ {a(1)
ij }+ {a(2)

ij },

6

and each of the constituent matrices can be reordered to display an AR form. As can be
seen in the TST (Tree Structure Toolbox), any matrix whose entries satisfy the ultrametric
inequality can be represented by a sequence of partitions that are hierarchically related.

Given some proximity matrix P, the task of approximating it as a sum of matrices each
having an AR form is implemented through an iterative optimization strategy based on a
least-squares loss criterion that is discussed in detail by Hubert and Arabie (1994). Given
the manner in which the optimization process is carried out sequentially, each successive
AR matrix in any decomposition generally accounts for less and less of the patterning of
the original proximity information (and very analogous to what is typically observed in
a principal component decomposition of a covariance matrix). In fact, it has been found
empirically that for the many data sets we have analyzed, only a very small number of
such AR matrices are ever necessary to represent almost all of the patterning in the given
proximities. As a succinct summary that we could give to this empirical experience: no more
than three AR matrices are ever necessary; the data analyst can usually get by with two;
and sometimes one will suffice.

The substantive challenge that remains, once a well-fitting decomposition is found for a
given proximity matrix, is to interpret substantively what each term in the decomposition
might be depicting. The strategy that could be followed would approximate each separate
AR matrix by ones having a more restrictive form, and usually those representing some
type of unidimensional scale (from the LUS Toolbox) or partition hierarchy (from the TS
Toolbox). As part of this interpretive process, an evaluation could be made of the degree
to which classificatory or dimensional interpretations may best represent each AR matrix in
the given decomposition.

1.0.1 Incorporating Transformations

One generalization that we will now allow to what has already been discussed in the literature
for fitting sums of AR matrices to a proximity matrix P, is the possible inclusion of an
(optimal) transformation of the proximities. Thus, instead of just representing P as a sum
of K matrices (and generally, for K very small) that we might denote as A1 + · · · + AK ,
where each Ak, 1 ≤ k ≤ K, has an AR form, an (optimally) transformed matrix P̃ = {p̃ij}
will be fitted by such a sum, say, Ã1 + · · ·+ ÃK , where the entries in P̃ are monotonic with
respect to those in P, i.e., for all Oi, Oj, Ok, Ol ∈ S, pij < pkl ⇒ p̃ij ≤ p̃kl. In the sequel
we will rely on the m-file, proxmon.m, documented in the LUS Toolbox, which constructs
optimal monotonic transformations by the same method of isotonic regression commonly
used in NMDS (i.e., Kruskal’s [1964a,b] primary approach to tied proximities in P that are
allowed to be untied after transformation). Such transformations, for example, form the
default option in the implementation of NMDS in the program KYST-2A (Kruskal, Young,
and Seery, 1977) and in SYSTAT (Wilkinson, 1988).

The process of finding P̃ and Ã1 + · · ·+ ÃK proceeds iteratively, with the original prox-
imity matrix P first fit by A1 + · · ·+AK ; a subsequent optimal (monotonic) transformation
of P (through a least-squares approximation to A1 + · · · + AK) is identified, which is then

7

refitted by the matrix sum. In many cases, this whole process can now be cycled through
iteratively until convergence, i.e., through a sequential fitting and refitting of the optimally
transformed proximities and its representation as a sum of matrices each having an AR form.
In some contexts, however (particularly when fitting a single AR matrix [i.e., when K = 1]),
it is probably best not to proceed to a complete convergence but instead to terminate the
process after only a single optimal monotonic transformation of P is identified and then to
refit by a matrix sum. This usage will be referred to as a single iteration optimal transfor-
mation (SIOT). If carried through to convergence, a perfect representation may be obtained
but only at the expense of losing almost all the patterning contained within the original
proximity matrix. For example, in fitting a single AR matrix, the optimal transformation
identified after convergence might consist of just two values, with one corresponding to the
smallest proximity in the original matrix and all others equal. Although technically permis-
sible since this situation does reflect a perfect AR form, most of the detail present in the
original proximity matrix is also lost. Difficulties with such so-called degeneracies have been
pointed out by Carroll (1992), particularly when faced with fitting classificatory structures
to a given proximity matrix.

1.0.2 Interpreting the Structure of an AR matrix

In representing a proximity matrix P as a sum, A1 + · · ·+AK (or an optimal transformation
P̃ as Ã1 + · · ·+ ÃK), the interpretive task remains to explain substantively what each term
of the decomposition might be depicting. We suggest four possible strategies below, with the
first two attempting to understand the structure of an AR matrix directly and without much
loss of detail; the last two require the imposition of strictly parameterized approximations
in the form of either an ultrametric or a unidimensional scale. In the discussion below,
A = {aij} will be assumed to have an AR form that is displayed by the given row and
column order.

(A) Complete representation and reconstruction through a collection of subsets and as-
sociated subset diameters:

The entries in any AR matrix A can be reconstructed exactly through a collection of M
subsets of the original object set S = {O1, . . . , On}, denoted by S1, . . . , SM , and where M is
determined by the particular pattern of tied entries, if any, in A. These M subsets have the
following characteristics:

(i) each Sm, 1 ≤ m ≤ M , consists of a sequence of (two or more) consecutive integers
so that M ≤ n(n− 1)/2. (This bound holds because the number of different subsets having
consecutive integers for any given fixed ordering is n(n− 1)/2, and will be achieved if all the
entries in the AR matrix A are distinct).

(ii) each Sm, 1 ≤ m ≤ M , has a diameter, denoted by d(Sm), so that for all object
pairs within Sm, the corresponding entries in A are less than or equal to the diameter.
The subsets, S1, . . . , SM , can be assumed ordered as d(S1) ≤ d(S2) ≤ · · · ≤ d(SM), and if
Sm ⊆ Sm′ , d(Sm) ≤ d(Sm′).

8

(iii) each entry in A can be reconstructed from d(S1), . . . , d(SM), i.e., for 1 ≤ i, j ≤ n,

aij = min
1≤m≤M

{d(Sm) | Oi, Oj ∈ Sm},

so the minimum diameter for subsets containing an object pair Oi, Oj ∈ S is equal to
aij. Given A, the collection of subsets S1, . . . , SM and their diameters can be identified by
inspection through the use of an increasing threshold that starts from the smallest entry in
A, and observing which subsets containing contiguous objects emerge from this process. The
substantive interpretation of what A is depicting reduces to explaining why those subsets
with the smallest diameters are so homogenous. For convenience of reference, the subsets
S1, . . . , SM will be referred to as the set of AR reconstructive subsets.

(B) Representation by a strongly anti-Robinson matrix:
If the matrix A has a somewhat more restrictive form than just being AR, and is also

strongly anti-Robinson, a convenient graphical representation can be given to the collection of
AR reconstructive subsets S1, . . . , SM and their diameters, and how they can serve to retrieve
A. Specifically, A is said to be strongly anti-Robinson (SAR) if (considering the above-
diagonal entries of A) whenever two entries in adjacent columns are equal (aij = ai(j+1)),
those in the same two adjacent columns in the previous row are also equal (a(i−1)j = a(i−1)(j+1)

for 1 ≤ i−1 < j ≤ n−1); also, whenever two entries in adjacent rows are equal (aij = a(i+1)j),
those in the same two adjacent rows in the succeeding column are also equal (ai(j+1) =
a(i+1)(j+1) for 2 ≤ i + 1 < j ≤ n− 1).

When A is SAR, the collection of subsets, S1, . . . , SM , and their diameters, and how
these serve to reconstruct A can be modeled graphically as we will see in Section 1.5. The
internal nodes (represented by solid circles) in each of these figures are at a height equal
to the diameter of the respective subset; the consecutive objects forming that subset are
identifiable by downward paths from the internal nodes to the terminal nodes corresponding
to the objects in S = {O1, . . . , On} (represented by labeled open circles). An entry aij in
A can be reconstructed as the minimum node height of a subset for which a path can be
constructed from Oi up to that internal node and then back down to Oj. (To prevent undue
graphical “clutter”, only the most homogenous subsets from S1, . . . , SM having the smallest
diameters should actually be included in the graphical representation of an SAR matrix;
each figure would explicitly show only how the smallest entries in A can be reconstructed,
although each could be easily extended to include all of A. The calibrated vertical axis in
such figures could routinely include the heights at which the additional internal nodes would
have to be placed to effect such a complete reconstruction.)

Given an arbitrary AR matrix A, a least-squares SAR approximating matrix to A can be
found using the heuristic optimization search strategy illustrated in Section 1.3 and developed
in Hubert, Arabie, and Meulman (1998). This latter source also discusses in detail (through
counterexample) why strongly AR conditions need to be imposed to obtain a consistent
graphical representation.

(C) Representation by a unidimensional scale:

9

To obtain greater graphical simplicity for an eventual substantive interpretation than
offered by an SAR matrix, one possibility is to use approximating unidimensional scales.
To be explicit, one very simple form that an AR matrix A may assume is interpretable
by a single dimension and through a unidimensional scale in which the entries have the
parameterized form, A = {aij} = {| xj − xi | + c}, where the coordinates are ordered
as x1 ≤ x2 ≤ · · · ≤ xn and c is an estimated constant. Given any proximity matrix, a
least-squares approximating unidimensional scale can be obtained through the optimization
strategies of the LUS Toolbox, and would be one (dimensional) method that could be followed
in attempting to interpret what a particular AR component of a decomposition might be
revealing.

(D) Representation by an ultrametric:
A second simple form that an AR matrix A could have is strictly classificatory in which

the entries in A satisfy the ultrametric condition: aij ≤ max{aik, ajk} for all Oi, Oj, Ok ∈ S.
As a threshold is increased from the smallest entry in A, a sequence of partitions of S is
identified in which each partition is constructed from the previous one by uniting pairs of
subsets from the latter. A partition identified at a given threshold level has equal values
in A between each given pair of subsets, and all the within subset values are not greater
than the between subset values. The reconstructive subsets S1, . . . , SM that would represent
the AR matrix A are now the new subsets that are formed in the sequence of partitions,
and have the property that if d(Sm) ≤ d(Sm′), then Sm ⊆ Sm′ or Sm ∩ Sm′ = �. Given
any proximity matrix, a least-squares approximating ultrametric can be constructed by the
heuristic optimization routines developed in the TS Toolbox, and would be another (classifi-
catory) strategy for interpreting what a particular AR component of a decomposition might
be depicting. As might be noted, there are generally n− 1 subsets (each of size greater than
one) in the collection of reconstructive subsets for any ultrametric, and thus n − 1 values
need to be estimated in finding the least-squares approximation (which is the same number
needed for a least-squares approximating unidimensional scale, based on obtaining the n− 1
nonnegative separation values between xi and xi+1 for 1 ≤ i ≤ n− 1).

1.1 Fitting a Given AR Matrix in the L2-Norm

The MATLAB function m-file given in Section A.1 of Appendix A, arobfit.m, fits an anti-
Robinson matrix using iterative projection to a symmetric proximity matrix in the L2-norm.
The usage syntax is of the form

[fit,vaf] = arobfit(prox,inperm)

where PROX is the input proximity matrix (n×n with a zero main diagonal and a dissimilarity
interpretation); INPERM is a given permutation of the first n integers; FIT is the least-squares
optimal matrix (with variance-accounted-for of VAF) to PROX having an anti-Robinson form
for the row and column object ordering given by INPERM. A recording of a MATLAB session
using the number.dat data file and object ordering given by the identity permutation follows:

10

load number.dat

inperm = 1:10

inperm =

1 2 3 4 5 6 7 8 9 10

[fit,vaf] = arobfit(number,inperm)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960

0.4210 0 0.2840 0.3460 0.6170 0.6170 0.6940

0.5840 0.2840 0 0.2753 0.2753 0.5460 0.5460

0.6965 0.3460 0.2753 0 0.2753 0.3844 0.3844

0.6965 0.6170 0.2753 0.2753 0 0.3844 0.3844

0.7960 0.6170 0.5460 0.3844 0.3844 0 0.3844

0.7960 0.6940 0.5460 0.3844 0.3844 0.3844 0

0.8600 0.6940 0.5853 0.5853 0.5530 0.4000 0.3857

0.8600 0.7413 0.5853 0.5853 0.5530 0.5530 0.3857

0.8600 0.7413 0.7413 0.5853 0.5853 0.5853 0.3857

Columns 8 through 10

0.8600 0.8600 0.8600

0.6940 0.7413 0.7413

0.5853 0.5853 0.7413

0.5853 0.5853 0.5853

0.5530 0.5530 0.5853

0.4000 0.5530 0.5853

0.3857 0.3857 0.3857

0 0.3857 0.3857

0.3857 0 0.3857

0.3857 0.3857 0

vaf =

0.6979

11

1.1.1 Fitting the (In)-equality Constraints Implied by a Given
Matrix in the L2 Norm

At times it may be useful to fit through iterative projection a given set of equality and
inequality constraints (as represented by the equalities and inequalities present among the
entries in a given target matrix) to a symmetric proximity matrix in the L2-norm. If the
target matrix is AR in form already, the resulting fitted matrix would also AR in form, but
the m-function, targfit.m, could be used more generally with any chosen target matrix
(given in Section A.2). The usage follows the form

[fit,vaf] = targfit(prox,targ)

where, as usual, PROX is the input proximity matrix (with a zero main diagonal and a
dissimilarity interpretation); TARG is a matrix of the same size as PROX; FIT is the least-
squares optimal matrix (with variance-accounted-for of VAF) to PROX satisfying the equality
and inequality constraints implicit among all the entries in TARG. An example follows in
which the given target matrix is a distance matrix (having an AR form) between equally-
spaced object placements along a line; the resulting fitted matrix obviously has an AR form
as well:

load number.dat

[prox10 targlin targcir] = ransymat(10);

targlin

targlin =

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 7 6 5 4 3 2 1 0 1

9 8 7 6 5 4 3 2 1 0

[fit,vaf] = targfit(number,targlin)

fit =

Columns 1 through 7

12

0 0.3714 0.3714 0.5363 0.5363 0.6548 0.6548

0.3714 0 0.3714 0.3714 0.5363 0.5363 0.6548

0.3714 0.3714 0 0.3714 0.3714 0.5363 0.5363

0.5363 0.3714 0.3714 0 0.3714 0.3714 0.5363

0.5363 0.5363 0.3714 0.3714 0 0.3714 0.3714

0.6548 0.5363 0.5363 0.3714 0.3714 0 0.3714

0.6548 0.6548 0.5363 0.5363 0.3714 0.3714 0

0.7908 0.6548 0.6548 0.5363 0.5363 0.3714 0.3714

0.7908 0.7908 0.6548 0.6548 0.5363 0.5363 0.3714

0.8500 0.7908 0.7908 0.6548 0.6548 0.5363 0.5363

Columns 8 through 10

0.7908 0.7908 0.8500

0.6548 0.7908 0.7908

0.6548 0.6548 0.7908

0.5363 0.6548 0.6548

0.5363 0.5363 0.6548

0.3714 0.5363 0.5363

0.3714 0.3714 0.5363

0 0.3714 0.3714

0.3714 0 0.3714

0.3714 0.3714 0

vaf =

0.5105

1.2 Finding an AR Matrix in the L2-Norm

The fitting of a given AR matrix by the m-function of Section 1.1, arobfit.m, requires the
presence of a beginning permutation to direct the optimization process. Thus, the finding of
a best-fitting AR matrix reduces to the identification of an appropriate object permutation
to use in the first place. We suggest the adoption of order.m in Appendix A.3, which carries
out an iterative Quadratic Assignment maximization task using a given square (n × n)
proximity matrix PROX (with a zero main diagonal and a dissimilarity interpretation). Three
separate local operations are used to permute the rows and columns of the proximity matrix
to maximize the cross-product index with respect to a given square target matrix TARG:
pairwise interchanges of objects in the permutation defining the row and column order of
the square proximity matrix; the insertion of from 1 to KBLOCK (which is less than or equal to
n−1) consecutive objects in the permutation defining the row and column order of the data

13

matrix; the rotation of from 2 to KBLOCK (which is less than or equal to n − 1) consecutive
objects in the permutation defining the row and column order of the data matrix. The usage
syntax has the form

[outperm,rawindex,allperms,index] = order(prox,targ,inperm,kblock)

where INPERM is the input beginning permutation (a permutation of the first n integers);
OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX with respect
to TARG. The cell array ALLPERMS contains INDEX entries corresponding to all the permuta-
tions identified in the optimization from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} =
OUTPERM.

A recording of a MATLAB session using order.m is listed below with the beginning
INPERM given as the identity permutation, TARG by an equally-spaced object placement along
a line, and KBLOCK set at 3. Based upon the generated OUTPERM, arobfit.m is then invoked
to fit an AR form having final VAF of .7782.

load number.dat

[prox10,targlin,targcir] = ransymat(10);

[outperm,rawindex,allperms,index] = order(number,targlin,1:10,3)

outperm =

1 2 3 5 4 6 7 9 10 8

rawindex =

206.4920

allperms =

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

index =

4

[fit, vaf] = arobfit(number, outperm)

fit =

14

Columns 1 through 7

0 0.4210 0.5840 0.6840 0.7090 0.7960 0.7960

0.4210 0 0.2840 0.4960 0.4960 0.5880 0.7357

0.5840 0.2840 0 0.0590 0.3835 0.4928 0.4928

0.6840 0.4960 0.0590 0 0.3835 0.3985 0.3985

0.7090 0.4960 0.3835 0.3835 0 0.3750 0.3750

0.7960 0.5880 0.4928 0.3985 0.3750 0 0.3750

0.7960 0.7357 0.4928 0.3985 0.3750 0.3750 0

0.8210 0.7357 0.4928 0.4928 0.4928 0.4928 0.3460

0.8500 0.7357 0.7357 0.6830 0.4928 0.4928 0.3460

0.9090 0.7357 0.7357 0.7357 0.5920 0.4928 0.4253

Columns 8 through 10

0.8210 0.8500 0.9090

0.7357 0.7357 0.7357

0.4928 0.7357 0.7357

0.4928 0.6830 0.7357

0.4928 0.4928 0.5920

0.4928 0.4928 0.4928

0.3460 0.3460 0.4253

0 0.3460 0.4253

0.3460 0 0.4253

0.4253 0.4253 0

vaf =

0.7782

The m-file of Section A.4, arobfnd.m is our preferred method for actually identifying a
single AR form. It incorporates an initial equally-spaced target and uses the iterative QA
routine of order.m to generate better permutations; the obtained AR forms then are used
as new targets against which possibly even better permutations might be identified, until
convergence (i.e., the identified permutations remain the same). The syntax is as follows:

[fit, vaf, outperm] = arobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n×n with a zero main diagonal and a dissimilarity
interpretation); INPERM is a given starting permutation of the first n integers; FIT is the
least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having an anti-
Robinson form for the row and column object ordering given by the ending permutation
OUTPERM; KBLOCK defines the block size in the use the iterative quadratic assignment routine.

15

As seen from the example below, and starting from a random initial permutation, the
same AR form is found as with just one application of order.m reported above.

[fit, vaf, outperm] = arobfnd(number, randperm(10), 1)

fit =

Columns 1 through 7

0 0.4253 0.4253 0.4253 0.4928 0.5920 0.7357

0.4253 0 0.3460 0.3460 0.4928 0.4928 0.6830

0.4253 0.3460 0 0.3460 0.4928 0.4928 0.4928

0.4253 0.3460 0.3460 0 0.3750 0.3750 0.3985

0.4928 0.4928 0.4928 0.3750 0 0.3750 0.3985

0.5920 0.4928 0.4928 0.3750 0.3750 0 0.3835

0.7357 0.6830 0.4928 0.3985 0.3985 0.3835 0

0.7357 0.7357 0.4928 0.4928 0.4928 0.3835 0.0590

0.7357 0.7357 0.7357 0.7357 0.5880 0.4960 0.4960

0.9090 0.8500 0.8210 0.7960 0.7960 0.7090 0.6840

Columns 8 through 10

0.7357 0.7357 0.9090

0.7357 0.7357 0.8500

0.4928 0.7357 0.8210

0.4928 0.7357 0.7960

0.4928 0.5880 0.7960

0.3835 0.4960 0.7090

0.0590 0.4960 0.6840

0 0.2840 0.5840

0.2840 0 0.4210

0.5840 0.4210 0

vaf =

0.7782

outperm =

8 10 9 7 6 4 5 3 2 1

16

1.3 Fitting and Finding a Strongly Anti-Robinson (SAR)

Matrix in the L2-Norm

The two m-functions in Sections A.5 (sarobfit.m) and A.6 (sarobfnd.m) are direct ana-
logues of arobfit.m and arobfnd.m, respectively, but are concerned with fitting and find-
ing strongly anti-Robinson forms. The syntax for sarobfit.m, which fits a strongly anti-
Robinson matrix using iterative projection to a symmetric proximity matrix in the L2-norm,
is

[fit, vaf] = sarobfit(prox, inperm)

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers; FIT is the
least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having a strongly
anti-Robinson form for the row and column object ordering given by INPERM.

An example follows using the same identity permutation as was done in fitting an AR
form with arobfit.m; as might be expected from using the more restrictive strongly anti-
Robinson form, the variance-accounted-for drops to .6128 from .6979.

load number.dat

[fit,vaf] = sarobfit(number,1:10)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960

0.4210 0 0.2840 0.4960 0.4960 0.6730 0.6730

0.5840 0.2840 0 0.2753 0.2753 0.4553 0.4553

0.6965 0.4960 0.2753 0 0.2753 0.4553 0.4553

0.6965 0.4960 0.2753 0.2753 0 0.3977 0.3977

0.7960 0.6730 0.4553 0.4553 0.3977 0 0.3977

0.7960 0.6730 0.4553 0.4553 0.3977 0.3977 0

0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857

0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857

0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857

Columns 8 through 10

0.8600 0.8600 0.8600

0.6820 0.6820 0.6820

0.6050 0.6050 0.6050

17

0.6050 0.6050 0.6050

0.5557 0.5557 0.5557

0.5557 0.5557 0.5557

0.3857 0.3857 0.3857

0 0.3857 0.3857

0.3857 0 0.3857

0.3857 0.3857 0

vaf =

0.6128

The m-function sarobfnd.m, which fits a strongly anti-Robinson matrix using iterative
projection to a symmetric proximity matrix in the L2-norm based on a permutation identified
through the use of iterative quadratic assignment, has the expected syntax

[fit, vaf, outperm] = sarobfnd(prox, inperm, kblock)

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n integers;
FIT is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having
a strongly anti-Robinson form for the row and column object ordering given by the end-
ing permutation OUTPERM. As usual, KBLOCK defines the block size in the use the iterative
quadratic assignment routine.

In the MATLAB recording below, and starting from a random permutation, a strongly
anti-Robinson form is found with a variance-accounted-for of .7210 (and is an expected drop
from the value of .7782 for the anti-Robinson form found using arobfnd.m).

[fit,vaf,outperm] = sarobfnd(number,randperm(10),1)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960

0.4210 0 0.2840 0.4960 0.4960 0.6730 0.6730

0.5840 0.2840 0 0.0590 0.3835 0.4723 0.4723

0.6965 0.4960 0.0590 0 0.3835 0.4723 0.4723

0.6965 0.4960 0.3835 0.3835 0 0.3750 0.3750

0.7960 0.6730 0.4723 0.4723 0.3750 0 0.3750

0.7960 0.6730 0.4723 0.4723 0.3750 0.3750 0

0.8355 0.7080 0.5714 0.5714 0.4275 0.4275 0.2960

18

0.8355 0.7080 0.5714 0.5714 0.5714 0.5714 0.3710

0.9090 0.7227 0.7227 0.7227 0.5714 0.5714 0.4380

Columns 8 through 10

0.8355 0.8355 0.9090

0.7080 0.7080 0.7227

0.5714 0.5714 0.7227

0.5714 0.5714 0.7227

0.4275 0.5714 0.5714

0.4275 0.5714 0.5714

0.2960 0.3710 0.4380

0 0.3710 0.4380

0.3710 0 0.4000

0.4380 0.4000 0

vaf =

0.7210

outperm =

1 2 3 5 4 6 7 10 9 8

1.4 The Use of Optimal Transformations and the m-

function proxmon.m

As previously discussed within the LUS Toolbox, the MATLAB function, proxmon.m, given
again here in Section A.7, provides a monotonically transformed proximity matrix that is
close in a least-squares sense to a given input matrix. The syntax is

[monproxpermut vaf diff] = proxmon(proxpermut,fitted)

where PROXPERMUT is the input proximity matrix (which may have been subjected to an initial
row/column permutation, hence the suffix ‘PERMUT’) and FITTED is a given target matrix;
the output matrix MONPROXPERMUT is closest to FITTED in a least-squares sense and obeys
the order constraints obtained from each pair of entries in (the upper-triangular portion
of) PROXPERMUT (and where the inequality constrained optimization is carried out using the
Dykstra-Kaczmarz iterative projection strategy); VAF denotes ‘variance-accounted-for’ and
indicates how much variance in MONPROXPERMUT can be accounted for by FITTED; finally DIFF

19

is the value of the least-squares loss function and is (one-half) the sum of squared differences
between the entries in MONPROXPERMUT and FITTED.

In the notation of the introduction when fitting a given order, FITTED would correspond
to the AR matrix A = {aij}; the input PROXPERMUT would be {pρ0(i)ρ0(j)}; MONPROXPERMUT
would be {f(pρ0(i)ρ0(j))}, where the function f(·) satisfies the monotonicity constraints, i.e.,
if pρ0(i)ρ0(j) < pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and 1 ≤ i′ < j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤
f(pρ0(i′)ρ0(j′)). The transformed proximity matrix {f(pρ0(i)ρ0(j))} minimizes the least-squares
criterion (DIFF) of ∑

i<j

(f(pρ0(i)ρ0(j))− aij)
2,

over all functions f(·) that satisfy the monotonicity constraints. The VAF is a normalization
of this loss value by the sum of squared deviations of the transformed proximities from their
mean:

VAF = 1−
∑

i<j(f(pρ0(i)ρ0(j))− aij)
2∑

i<j(f(pρ0(i)ρ0(j))− f̄)2
,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.
The script m-file listed below gives an application of proxmon.m along with finding a

best fitting AR form for our number.dat matrix. First, arobfnd.m is invoked to obtain a
best-fitting AR matrix (fit); this is the same as found before based on the outperm of [1
2 3 5 4 6 7 9 10 8] with a vaf of .7782. The m-file, proxmon.m, is then used to generate
the monotonically transformed proximity matrix (monproxpermut) with vaf of .8323. Given
the SIOT (single-iteration-optimal-transformation) discussion of the introduction, it might
now be best to fit once more an AR matrix to this now montonically transformed proximity
matrix, but then stop. Otherwise as seen in the output below, if the strategy is repeated
cyclically (i.e., finding a fitted matrix based on the monotonically transformed proximity
matrix, finding a new monotonically transformed matrix, and so on), a perfect vaf of 1.0
can be achieved at the expense of losing most of the detail in the transformed proximities,
i.e., only five distinct values remain that correspond to the three largest and single smallest
of the original proximities with all the remaining now tied at a value of .5467. (To avoid
another type of degeneracy (where all matrices would converge to zeros), the sum of squares
of the fitted matrix is kept the same as it was initially; convergence is based on observing a
minimal change (less than 1.0e-010) in the vaf.

load number.dat

[fit vaf outperm] = arobfnd(number,randperm(10),2)

[monproxpermut vaf diff] = ...

proxmon(number(outperm,outperm),fit)

sumfitsq = sum(sum(fit.^2));

prevvaf = 2;

while (abs(prevvaf-vaf) >= 1.0e-010)

prevvaf = vaf;

[fit vaf] = arobfit(monproxpermut,1:10);

20

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));

[monproxpermut vaf diff] = proxmon(number(outperm,outperm), fit);

end

outperm

fit

monproxpermut

number(outperm,outperm)

vaf

diff

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6840 0.7090 0.7960 0.7960

0.4210 0 0.2840 0.4960 0.4960 0.5880 0.7357

0.5840 0.2840 0 0.0590 0.3835 0.4928 0.4928

0.6840 0.4960 0.0590 0 0.3835 0.3985 0.3985

0.7090 0.4960 0.3835 0.3835 0 0.3750 0.3750

0.7960 0.5880 0.4928 0.3985 0.3750 0 0.3750

0.7960 0.7357 0.4928 0.3985 0.3750 0.3750 0

0.8210 0.7357 0.4928 0.4928 0.4928 0.4928 0.3460

0.8500 0.7357 0.7357 0.6830 0.4928 0.4928 0.3460

0.9090 0.7357 0.7357 0.7357 0.5920 0.4928 0.4253

Columns 8 through 10

0.8210 0.8500 0.9090

0.7357 0.7357 0.7357

0.4928 0.7357 0.7357

0.4928 0.6830 0.7357

0.4928 0.4928 0.5920

0.4928 0.4928 0.4928

0.3460 0.3460 0.4253

0 0.3460 0.4253

0.3460 0 0.4253

0.4253 0.4253 0

21

vaf =

0.7782

outperm =

1 2 3 5 4 6 7 9 10 8

monproxpermut =

Columns 1 through 7

0 0.4244 0.5549 0.6840 0.7058 0.7659 0.7058

0.4244 0 0.3981 0.5908 0.4054 0.5549 0.7058

0.5549 0.3981 0 0.0590 0.4054 0.5908 0.4310

0.6840 0.5908 0.0590 0 0.4244 0.4244 0.4054

0.7058 0.4054 0.4054 0.4244 0 0.4310 0.3981

0.7659 0.5549 0.5908 0.4244 0.4310 0 0.4054

0.7058 0.7058 0.4310 0.4054 0.3981 0.4054 0

0.8210 0.7058 0.4054 0.3981 0.7058 0.5908 0.4054

0.8500 0.5908 0.7659 0.6830 0.3981 0.5549 0.3981

0.9090 0.5908 0.7058 0.7058 0.5908 0.4244 0.4244

Columns 8 through 10

0.8210 0.8500 0.9090

0.7058 0.5908 0.5908

0.4054 0.7659 0.7058

0.3981 0.6830 0.7058

0.7058 0.3981 0.5908

0.5908 0.5549 0.4244

0.4054 0.3981 0.4244

0 0.4054 0.4244

0.4054 0 0.4310

0.4244 0.4310 0

vaf =

0.8323

22

diff =

0.2075

outperm =

1 2 3 5 4 6 7 9 10 8

fit =

Columns 1 through 7

0 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.5467 0 0.5467 0.5467 0.5467 0.5467 0.5467

0.5467 0.5467 0 0.0609 0.5467 0.5467 0.5467

0.5467 0.5467 0.0609 0 0.5467 0.5467 0.5467

0.5467 0.5467 0.5467 0.5467 0 0.5467 0.5467

0.5467 0.5467 0.5467 0.5467 0.5467 0 0.5467

0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0

0.8474 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.8774 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.9383 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

Columns 8 through 10

0.8474 0.8774 0.9383

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0 0.5467 0.5467

0.5467 0 0.5467

0.5467 0.5467 0

monproxpermut =

23

Columns 1 through 7

0 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.5467 0 0.5467 0.5467 0.5467 0.5467 0.5467

0.5467 0.5467 0 0.0609 0.5467 0.5467 0.5467

0.5467 0.5467 0.0609 0 0.5467 0.5467 0.5467

0.5467 0.5467 0.5467 0.5467 0 0.5467 0.5467

0.5467 0.5467 0.5467 0.5467 0.5467 0 0.5467

0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0

0.8474 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.8774 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

0.9383 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

Columns 8 through 10

0.8474 0.8774 0.9383

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0.5467 0.5467 0.5467

0 0.5467 0.5467

0.5467 0 0.5467

0.5467 0.5467 0

ans =

Columns 1 through 7

0 0.4210 0.5840 0.6840 0.7090 0.8040 0.7880

0.4210 0 0.2840 0.6460 0.3460 0.5880 0.7580

0.5840 0.2840 0 0.0590 0.3540 0.6710 0.4210

0.6840 0.6460 0.0590 0 0.4130 0.4090 0.3880

0.7090 0.3460 0.3540 0.4130 0 0.4290 0.3000

0.8040 0.5880 0.6710 0.4090 0.4290 0 0.3960

0.7880 0.7580 0.4210 0.3880 0.3000 0.3960 0

0.8210 0.7910 0.3670 0.2460 0.8040 0.6710 0.3500

0.8500 0.6250 0.8080 0.6830 0.2630 0.5920 0.2960

0.9090 0.6300 0.7960 0.7420 0.5920 0.4000 0.4170

24

Columns 8 through 10

0.8210 0.8500 0.9090

0.7910 0.6250 0.6300

0.3670 0.8080 0.7960

0.2460 0.6830 0.7420

0.8040 0.2630 0.5920

0.6710 0.5920 0.4000

0.3500 0.2960 0.4170

0 0.3920 0.4000

0.3920 0 0.4590

0.4000 0.4590 0

vaf =

1.0000

diff =

8.3999e-011

1.5 Representing SAR Structures (Graphically)

The use of the very general form of representation offered by an AR matrix without the
imposition of any further restrictions has one annoying interpretive difficulty. Specifically, it
is usually necessary to interpret the fitted structures directly (and enumeratively) through
a set of subsets or clusters that are all defined by objects contiguous in a specific object
ordering; each such subset has an attached diameter that reflects its maximum within-class
fitted value. More pointedly, it is generally not possible to use a more convenient graph-
theoretic structure and the lengths of paths between objects in such a graph to represent
visually a fitted AR matrix; this situation contrasts with opportunities resulting when the
approximation matrix is more restricted and defined, say, by an ultrametric or an additive
tree, or by a (linear or circular) unidimensional scaling (see Hubert, Arabie, & Meulman,
1997).

As noted in the introduction, the imposition of SAR conditions permits a representation
of the fitted values in a (least-squares) SAR approximating matrix as lengths of paths in a
graph, although this graph will not generally have the simplified form of a tree. A discussion
of these latter SAR constriants is not new here, and a number of (theoretical) presentations of
their usefulness exist in the literature (for example, see Critchley and Fichet, 1994; Critchley,

25

TABLE 1

Order-constrained least-squares approximations to the digit proximity data of Shepard et
al. (1975) in (the lower-triangular portion of) Table 1; the upper-triangular portion is anti-
Robinson and the lower-triangular portion is strongly-anti-Robinson.

digit 0 1 2 4 3 5 6 8 9 7
0 x 3.41 4.21 4.70 4.83 5.25 5.25 5.38 5.52 5.81
1 3.41 x 2.73 3.78 3.78 4.23 4.96 4.96 4.96 4.96
2 4.21 2.73 x 1.63 3.22 3.76 3.76 3.76 4.96 4.96
4 4.76 3.78 1.63 x 3.22 3.30 3.30 3.76 4.70 4.96
3 4.76 3.78 3.22 3.22 x 3.18 3.18 3.76 3.76 4.25
5 5.25 4.59 3.53 3.53 3.18 x 3.18 3.76 3.76 3.76
6 5.25 4.59 3.53 3.53 3.18 3.18 x 3.04 3.04 3.43
8 5.57 4.96 4.18 4.18 4.18 4.18 3.04 x 3.04 3.43
9 5.57 4.96 4.18 4.18 4.18 4.18 3.04 3.04 x 3.43
7 5.57 4.96 4.18 4.18 4.18 4.18 3.43 3.43 3.43 x

1994; Durand and Fichet, 1988; Mirkin, 1996, Chapter 7). Here, we give the example
based on the number data from Hubert, Arabie, and Meulman (1998) for interpretative
convenience. The latter data were transformed (in that reference) to a standard deviation
of 1.0 and a mean of 4.0; thus, the numbers within the fitted matrices will differ from the
examples given earlier. Approximating AR and SAR forms for the transformed number
proximity data are given in the upper and lower-triangular portions, respectively, of the
matrix in Table 1. For convenience below, we will denote the upper-trianglar AR matrix by
Aut and the lower-triangular SAR matrix by Alt.

The 10(10− 1)/2 = 45 subsets defined by objects contiguous in the object ordering used
to display the upper-triangular portion of Table 1 are listed in Table 2 according to increasing
diameter values. For purposes of our later discussion, 22 of the subsets are given in italics
to indicate that they are proper subsets of another listed subset having the same diameter.
Substantively, the dominant patterning of the entries in Aut appears to reflect (primarily)
digit magnitude except for the placement of digit 4 next to 2, and digit 7 being located in the
last position. Both these latter deviations from an interpretation strictly according to digit
magnitude show some of the salient structural properties of the digits. For example, the digit
pair (2,4) has the absolute smallest dissimilarity in the data; besides being relatively close
in magnitude, there are the possible (although redundant) similarity bases that 2 + 2 = 4,
2 × 2 = 4, 4 is a power of 2, and both 2 and 4 are even numbers. Similarly, the placement
of the digit 7 in the last position results from the salience of the triple {6, 8, 9}, which is
the third to emerge according to its diameter. In addition to these three digits all being
relatively close in magnitude, 6 and 8 are both even numbers, 6 and 9 are multiples of 3, and
8 is directly adjacent in size to 9. The three original dissimilarities within the set {6, 8, 9}

26

are all smaller than the dissimilarities digit 7 has to any other digit.
Given just the collection of subsets S1, . . . , SM listed in Table 2 and their associated

diameters, it is possible (trivially) to reconstruct the original approximating matrix Aut by
identifying for each object pair the smallest diameter for a subset that contains that pair.
(Explicitly, the smallest diameter for a subset that contains an object pair is equal to the
value in Aut associated with that pair, and the subset itself includes that object pair and all
objects in between in the ordering that is used to display the AR form for Aut.) This type
of reconstruction is generally possible for any matrix that can be row/column reordered to
an AR form through the collection of subsets S1, . . . , SM and their diameters identified by
increasing a threshold variable from the smallest fitted value. In fact, even if all the italicized
subsets were removed (that are proper subsets of another having the same diameter), exactly
the same reconstruction could be carried out because the italicized subsets are redundant
with respect to identifying for each object pair the smallest diameter for a subset that
contains the pair.

Without imposing further restrictions on the approximating matrix other than just being
AR, a more convenient representation using a graph and path lengths in such a graph is
generally not possible. We will select two small (AR) submatrices from the upper-triangular
portion of Table 1 to make this point more convincingly, and in the process indicate by
example how a graph representation is to be constructed and why further restrictions on the
approximating matrix may be necessary to carry out the task.

First, consider the fitted values for the first four placed digits, 0, 1, 2, and 4, for which the
desired type of graphical representation is possible without imposing any further constraints.
This AR submatrix is given in Figure 1.1(a) along with the six corresponding subsets of
contiguous objects and their diameters, and a graphical representation for the structure.
The latter consists of four nodes corresponding to the original four objects that we represent
by open circles (referred to as “terminal” nodes), plus six nodes represented by solid circles
that denote the six subsets in the given listing (referred to as “internal nodes”). Based on this
graph and the internal node heights provided by the calibrated scale on the left, a fitted value
in the submatrix between any two terminal nodes can be obtained as one-half the length of
the minimum path from one of the terminal nodes up to an internal node and back down to
the other terminal node. All horizontal line segments are used here for display convenience
only and are assumed not to contribute to the length of any path. Thus, if we changed
the vertical scaling by a multiplier of 1/2, each of the fitted values in the submatrix would
be exactly the length of the minimum path, between two terminal nodes, that proceeded
upward from one such node to an internal node and then back down to the other. We might
also note that from the topmost internal node, all paths down to the terminal nodes have
exactly the same length; i.e., there is an internal node equidistant from all terminal nodes.

Now, consider the fitted values for the four objects placed respectively at the third
through sixth positions: 2, 4, 3, and 5. This AR submatrix is given in Figure 1.1(b) along
with the corresponding subsets of contiguous objects and their diameters (excluding the re-
dundant subset {4,3} which is a proper subset of {2,4,3} having the same diameter), and the
beginnings of a graphical representation for its structure. There is a difficulty encountered,

27

TABLE 2

The 45 subsets listed according to increasing diameter values that are contiguous in the
object ordering used to display the upper-triangular portion of Table 1. The 22 subsets
given in italics are redundant in the sense that they are proper subsets of another listed
subset with the same diameter.

subset diameter
{2,4} 1.63
{1,2} 2.73
{6,8},{8,9},{6,8,9} 3.04
{3,5},{5,6},{3,5,6} 3.18
{4,3},{2,4,3} 3.22
{4,3,5},{4,3,5,6} 3.30
{0,1} 3.41
{9,7},{8,9,7},{6,8,9,7} 3.43
{5,6,8},{5,6,8,9},{5,6,8,9,7} 3.76
{3,5,6,8},{3,5,6,8,9} 3.76
{4,3,5,6,8},{2,4,3,5},{2,4,3,5,6},{2,4,3,5,6,8} 3.76
{1,2,4},{1,2,4,3} 3.78
{0,1,2} 4.21
{1,2,4,3,5} 4.23
{3,5,6,8,9,7} 4.25
{0,1,2,4},{4,3,5,6,8,9} 4.70
{0,1,2,4,3} 4.83
{1,2,4,3,5,6},{1,2,4,3,5,6,8} 4.96
{1,2,4,3,5,6,8,9},{2,4,3,5,6,8,9} 4.96
{2,4,3,5,6,8,9,7},{4,3,5,6,8,9,7} 4.96
{1,2,4,3,5,6,8,9,7} 4.96
{0,1,2,4,3,5},{0,1,2,4,3,5,6} 5.25
{0,1,2,4,3,5,6,8} 5.38
{0,1,2,4,3,5,6,8,9} 5.52
{0,1,2,4,3,5,6,8,9,7} 5.81

28

TABLE 3

The fourteen (nonredundant) subsets listed according to increasing diameter values are con-
tiguous in the linear object ordering used to display the lower-triangular SAR portion of
Table 1.

For the lower-triangular SAR portion of Table 1:

subset diameter subset diameter
{2,4} 1.63 {2,4,3,5,6} 3.53
{1,2} 2.73 {1,2,4,3} 3.78
{6,8,9} 3.04 {2,4,3,5,6,8,9,7} 4.18
{3,5,6} 3.18 {0,1,2} 4.21
{2,4,3} 3.22 {0,1,2,4,3} 4.76
{0,1} 3.41 {0,1,2,4,3,5,6} 5.25
{6,8,9,7} 3.43 {0,1,2,4,3,5,6,8,9,7} 5.57

however, in defining a graph that would be completely consistent with all the fitted values
in the 4× 4 submatrix; we indicate this anomaly by the dashed vertical and horizontal lines.
If an internal node were to be placed at the level of 3.30 to represent the cluster {4, 3, 5},
by implication the fitted value for the digit pair (2,5) should also be 3.30 (and not its cur-
rent value of 3.76). Because digit 3 was “joined” to both 2 and 4 at the threshold level
3.22, and thus, there are two fitted values tied at 3.22, a consistent graphical representation
would be possible only if the fitted values for the pairs (2,5) and (4,5) were equal. This last
observation, that when some fitted values are tied in an approximating matrix Aut, others
must also be tied to allow for the construction of a consistent graphical representation, is
the motivating basis for considering an additional set of SAR constraints.

When a graphical representation that permits their reconstruction through path lengths is
desired for the collection of fitted values in an approximating matrix A, the small illustration
just provided serves as justification for imposing a stricter collection of constraints on the
approximating matrix than just being row/column reorderable to an AR form. In particular,
the additional restriction will be imposed that the approximating matrix A is row/column
reorderable to one that is SAR, which will eliminate the type of graphical anomaly present
in Figure 1.1(b).

For the SAR approximation given in the lower-triangular portion of Table 1, there are now
only fourteen (nonredundant) subsets identifiable by increasing a threshold variable from the
smallest fitted value; these are listed in Table 3 along with their diameters. The imposition of
the more restrictive SAR constraints allows the graphical representation given in Figure 1.2.
Although we might not change our substantive comments about the approximating matrix
(i.e., mostly digit magnitude with some structural characteristics for the subsets {2, 4} and
{6, 8, 9}), a graphical representation makes these same observations visually clearer.

29

e e e e

u

u u

1.63

3.18
3.22
3.30

-
��*

HHj
subset

{2,4}
{3,5}
{2,4,3}
{4,3,5}
{2,4,3,5}

diameter

1.63

3.18

3.22

3.30

3.76

2 4 3 5

2

4

3

5

x 1.63

x

3.22

3.22

x

3.76

3.30

3.18

x

(b)

e e e e

u
u

u

u
u

u

1.63

2.73

3.41

3.78

4.21

4.70

subset

{2,4}
{1,2}
{0,1}
{1,2,4}
{0,1,2}
{0,1,2,4}

diameter

1.63

2.73

3.41

3.78

4.21

4.70

0 1 2 4

0

1

2

4

x 3.41

x

4.21

2.73

x

4.70

3.78

1.63

x

(a)

0 1 2 4

2 4 3 5

Figure 1.1: Two 4 × 4 submatrices and the object subsets they induce, taken from the
anti-Robinson matrix in the upper-triangular portion of Table 1. For (a), a graphical repre-
sentation of the fitted values is possible; for (b), the anomaly indicated by the dashed lines
prevents a consistent graphical representation from being constructed.

30

e e e e e e e e e e
u

uu u u u
u u u u

u u
u u

0 1 2 4 3 5 6 8 9 7

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

-

-

-

-

-

-

-

-

-

Figure 1.2: A graphical representation for the fitted values given by the strongly-anti-
Robinson matrix in the lower-triangular portion of Table 1.

1.6 Representation Through Multiple (Strongly) AR

Matrices

The representation of a proximity matrix by a single anti-Robinson structure extends easily
to the additive use of multiple matrices. The m-function of Section A.8, biarobfnd.m, fits
the sum of two anti-Robinson matrices using iterative projection to a symmetric proximity
matrix in the L2-norm based on permutations identified through the use of iterative quadratic
assignment. The syntax usage is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

biarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n× n with a zero main diagonal and
a dissimilarity interpretation); INPERM is a given starting permutation of the first n integers;
FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX and is
the sum of the two anti-Robinson matrices TARGONE and TARGTWO based on the two row and
column object orderings given by the ending permutations OUTPERMONE and OUTPERMTWO. As
before, KBLOCK defines the block size in the use the iterative quadratic assignment routine.

In the example below, the two resulting AR forms are very clearly interpretable as number
magnitude and digit structural properties; the variance-accounted-for is, in effect, 100%.

load number.dat

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

biarobfnd(number,1:10,1)

31

find =

Columns 1 through 7

0 0.4209 0.5840 0.7090 0.6840 0.8040 0.7865

0.4209 0 0.2840 0.3460 0.6460 0.5880 0.7568

0.5840 0.2840 0 0.3540 0.0588 0.6702 0.4225

0.7090 0.3460 0.3540 0 0.4130 0.4290 0.3000

0.6840 0.6460 0.0588 0.4130 0 0.4094 0.3880

0.8040 0.5880 0.6702 0.4290 0.4094 0 0.3960

0.7865 0.7568 0.4225 0.3000 0.3880 0.3960 0

0.9107 0.6300 0.7960 0.5920 0.7420 0.4000 0.4169

0.8210 0.7975 0.3672 0.7975 0.2460 0.6714 0.3499

0.8500 0.6250 0.8080 0.2630 0.6829 0.5920 0.2960

Columns 8 through 10

0.9107 0.8210 0.8500

0.6300 0.7975 0.6250

0.7960 0.3672 0.8080

0.5920 0.7975 0.2630

0.7420 0.2460 0.6829

0.4000 0.6714 0.5920

0.4169 0.3499 0.2960

0 0.4000 0.4587

0.4000 0 0.3922

0.4587 0.3922 0

vaf =

0.9999

targone =

Columns 1 through 7

0 0.3406 0.6710 0.6926 0.6956 0.6956 0.8303

0.3406 0 0.2018 0.5421 0.5423 0.5880 0.6764

0.6710 0.2018 0 0.3333 0.3680 0.4662 0.4662

32

0.6926 0.5421 0.3333 0 0.3093 0.3206 0.3779

0.6956 0.5423 0.3680 0.3093 0 0.2055 0.3779

0.6956 0.5880 0.4662 0.3206 0.2055 0 0.2876

0.8303 0.6764 0.4662 0.3779 0.3779 0.2876 0

0.8303 0.6764 0.6764 0.6764 0.6383 0.4675 0.3360

0.8303 0.7511 0.7138 0.6764 0.6383 0.4745 0.3366

0.8611 0.7943 0.7943 0.6764 0.6690 0.4836 0.3849

Columns 8 through 10

0.8303 0.8303 0.8611

0.6764 0.7511 0.7943

0.6764 0.7138 0.7943

0.6764 0.6764 0.6764

0.6383 0.6383 0.6690

0.4675 0.4745 0.4836

0.3360 0.3366 0.3849

0 0.2243 0.3783

0.2243 0 0.3783

0.3783 0.3783 0

targtwo =

Columns 1 through 7

0 -0.3923 -0.3092 -0.0093 0.0139 0.0139 0.1211

-0.3923 0 -0.3092 -0.0116 0.0101 0.0139 0.1037

-0.3092 -0.3092 0 -0.0870 -0.0438 0.0137 0.0207

-0.0093 -0.0116 -0.0870 0 -0.0438 -0.0111 0.0164

0.0139 0.0101 -0.0438 -0.0438 0 -0.0889 -0.0779

0.0139 0.0139 0.0137 -0.0111 -0.0889 0 -0.4134

0.1211 0.1037 0.0207 0.0164 -0.0779 -0.4134 0

0.1211 0.1037 0.0822 0.0804 0.0804 -0.1693 -0.1961

0.1757 0.1037 0.0822 0.0804 0.0804 0.0804 -0.0844

0.2039 0.2039 0.2039 0.1084 0.1084 0.1084 0.1084

Columns 8 through 10

0.1211 0.1757 0.2039

0.1037 0.1037 0.2039

0.0822 0.0822 0.2039

33

0.0804 0.0804 0.1084

0.0804 0.0804 0.1084

-0.1693 0.0804 0.1084

-0.1961 -0.0844 0.1084

0 -0.1211 0

-0.1211 0 -0.0745

0 -0.0745 0

outpermone =

1 2 3 4 5 6 7 9 8 10

outpermtwo =

9 5 3 1 7 10 4 2 8 6

For finding multiple SAR forms, appendix A.9 provides bisarobfnd.m with usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = bisarobfnd(prox,inperm,kblock)

with all the various terms the same as for biarobfnd.m but now for strongly AR (SAR)
structures. The example below finds essentially the same representation as above (involving
digit magnitude and structure) with a slight drop in the variance-accounted-for of 99.06%.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = bisarobfnd(number,randperm(10),1)

find =

Columns 1 through 7

0 0.4210 0.5840 0.7095 0.6838 0.8519 0.7260

0.4210 0 0.2840 0.3460 0.6461 0.5892 0.7565

0.5840 0.2840 0 0.3541 0.0590 0.6090 0.4830

0.7095 0.3460 0.3541 0 0.4131 0.4278 0.3005

0.6838 0.6461 0.0590 0.4131 0 0.4090 0.3882

0.8519 0.5892 0.6090 0.4278 0.4090 0 0.3960

0.7260 0.7565 0.4830 0.3005 0.3882 0.3960 0

0.8998 0.6153 0.8059 0.6067 0.7286 0.4000 0.4168

0.8208 0.8246 0.3670 0.7893 0.2460 0.6711 0.3502

0.8736 0.6250 0.7797 0.2630 0.6965 0.5920 0.2955

34

Columns 8 through 10

0.8998 0.8208 0.8736

0.6153 0.8246 0.6250

0.8059 0.3670 0.7797

0.6067 0.7893 0.2630

0.7286 0.2460 0.6965

0.4000 0.6711 0.5920

0.4168 0.3502 0.2955

0 0.4000 0.4590

0.4000 0 0.3921

0.4590 0.3921 0

vaf =

0.9906

targone =

Columns 1 through 7

0 0.3148 0.6038 0.6296 0.6296 0.7457 0.7457

0.3148 0 0.1778 0.5201 0.5201 0.6626 0.6626

0.6038 0.1778 0 0.2742 0.3230 0.5028 0.5028

0.6296 0.5201 0.2742 0 0.3192 0.5012 0.5012

0.6296 0.5201 0.3230 0.3192 0 0.2831 0.3340

0.7457 0.6626 0.5028 0.5012 0.2831 0 0.3021

0.7457 0.6626 0.5028 0.5012 0.3340 0.3021 0

0.7936 0.7061 0.6997 0.6974 0.6027 0.5526 0.3229

0.7936 0.7061 0.6997 0.6974 0.6027 0.5526 0.3229

0.7936 0.7061 0.6997 0.6974 0.6027 0.5527 0.4963

Columns 8 through 10

0.7936 0.7936 0.7936

0.7061 0.7061 0.7061

0.6997 0.6997 0.6997

0.6974 0.6974 0.6974

0.6027 0.6027 0.6027

0.5526 0.5526 0.5527

35

0.3229 0.3229 0.4963

0 0.2815 0.4197

0.2815 0 0.3001

0.4197 0.3001 0

targtwo =

Columns 1 through 7

0 -0.3567 -0.2640 0.0542 0.0542 0.0938 0.0938

-0.3567 0 -0.3327 0.0272 0.0272 0.0919 0.0919

-0.2640 -0.3327 0 -0.0198 -0.0198 0.0799 0.0799

0.0542 0.0272 -0.0198 0 -0.0198 0.0799 0.0799

0.0542 0.0272 -0.0198 -0.0198 0 -0.2008 -0.2008

0.0938 0.0919 0.0799 0.0799 -0.2008 0 -0.4344

0.0938 0.0919 0.0799 0.0799 -0.2008 -0.4344 0

0.1260 0.1185 0.1062 0.1062 0.0939 -0.0811 -0.1741

0.1260 0.1185 0.1062 0.1062 0.0939 0.0393 -0.0907

0.1260 0.1185 0.1062 0.1062 0.0939 0.0393 -0.0734

Columns 8 through 10

0.1260 0.1260 0.1260

0.1185 0.1185 0.1185

0.1062 0.1062 0.1062

0.1062 0.1062 0.1062

0.0939 0.0939 0.0939

-0.0811 0.0393 0.0393

-0.1741 -0.0907 -0.0734

0 -0.0907 -0.0734

-0.0907 0 -0.1526

-0.0734 -0.1526 0

outpermone =

1 2 3 4 5 6 7 8 9 10

outpermtwo =

36

5 9 3 1 7 10 4 2 8 6

37

Chapter 2

Circular-Anti-Robinson (CAR)
Matrices for Symmetric Proximity
Data

In the approximation of a proximity matrix P by one that is row/column reorderable to an
AR form, the interpretation of the fitted matrix in general had to be carried out by identifying
a set of subsets through an increasing threshold variable; each of the subsets contained objects
that were contiguous with respect to a given linear ordering along a continuum, and had
a diameter defined by the maximum fitted value within the subset. To provide a further
representation depicting the fitted values as lengths of paths in a graph, an approximation
was sought that satisfied the additional constraints of an SAR matrix; still, the subsets
thus identified had to contain objects contiguous with respect to a linear ordering. As
one possible generalization of both the AR and SAR constraints, we can define what will
be called circular anti-Robinson (CAR) and circular strongly-anti-Robinson (CSAR) forms
that allow the subsets identified from increasing a threshold variable to be contiguous with
respect to a circular ordering of the objects around a closed continuum. Approximation
matrices that are row/column reorderable to display an AR or SAR form respectively will
also be (trivially) row/column reorderable to display what is formally characterized below as
a CAR or a CSAR form, but not conversely. (Historically, there is a large literature on the
possibility of circular structures emerging from and being identifiable in a given proximity
matrix, with the CAR concept discussed most extensively under the term “circumplex”. One
of the earliest references is to Guttman [1954], but for a variety of others the reader is referred
to the discussion of metric circular unidimensional scaling in Hubert, Arabie, and Meulman
[1997]. The extension of CAR forms to those that are also CSAR, however, has apparently
not been a topic discussed in the literature before the appearance of Hubert, Arabie, and
Meulman [1998]; this latter source forms the basis for much of the present chapter.)

To be explicit, an arbitrary symmetric matrix Q = {qij}, where qii = 0 for 1 ≤ i, j ≤ n,
is said to be row/column reorderable to a circular anti-Robinson form (or, for short, Q is
a circular anti-Robinson (CAR) matrix) if there exists a permutation, ρ(·), on the first n

38

integers such that the reordered matrix Qρ = {qρ(i)ρ(j)} satisfies the conditions given in (II):

(II): for 1 ≤ i ≤ n− 3, and i + 1 < j ≤ n− 1,

if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1), then
qρ(i+1)ρ(j) ≤ qρ(i)ρ(j) and qρ(i+1)ρ(j) ≤ qρ(i+1)ρ(j+1);

if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1), then
qρ(i)ρ(j) ≥ qρ(i)ρ(j+1) and qρ(i+1)ρ(j+1) ≥ qρ(i)ρ(j+1),

and, for 2 ≤ i ≤ n− 2,

if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then
qρ(i+1)ρ(n) ≤ qρ(i)ρ(n) and qρ(i+1)ρ(n) ≤ qρ(i+1)ρ(1);

if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then
qρ(i)ρ(n) ≥ qρ(i)ρ(1) and qρ(i+1)ρ(1) ≥ qρ(i)ρ(1).

Interpretatively, within each row of Qρ moving to the right from the main diagonal and then
wrapping back around to re-enter the same row from the left, the entries never decrease until
a maximum is reached and then never increase moving away from the maximum until the
main diagonal is again reached. Given the symmetry of P, a similar pattern of entries would
be present within each column as well. As noted above, any AR matrix is CAR but not
conversely.

In analogy to the SAR conditions that permit graphical representation, a symmetric ma-
trix Q is said to be row/column reorderable to a circular strongly-anti-Robinson form (or,
for short, Q is a circular strongly-anti-Robinson (CSAR) matrix) if there exists a permuta-
tion, ρ(·), on the first n integers such that the reordered matrix Qρ = {qρ(i)ρ(j)} satisfies the
conditions given by (II), and

for 1 ≤ i ≤ n− 3, and i + 1 < j ≤ n− 1,

if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1), then qρ(i+1)ρ(j) = qρ(i)ρ(j) implies qρ(i+1)ρ(j+1) = qρ(i)ρ(j+1), and
qρ(i+1)ρ(j) = qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) = qρ(i)ρ(j+1);

if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1), then qρ(i)ρ(j+1) = qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) = qρ(i+1)ρ(j), and
qρ(i)ρ(j) = qρ(i)ρ(j+1) implies qρ(i+1)ρ(j) = qρ(i+1)ρ(j+1),

and for 2 ≤ i ≤ n− 2,

if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then qρ(i+1)ρ(n) = qρ(i)ρ(n) implies qρ(i+1)ρ(1) = qρ(i)ρ(1), and qρ(i+1)ρ(n)

= qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i)ρ(1);

if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then qρ(i)ρ(1) = qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i+1)ρ(n), and qρ(i)ρ(n)

= qρ(i)ρ(1) implies qρ(i+1)ρ(n) = qρ(i+1)ρ(1).

Again, the imposition of the stronger CSAR conditions avoids the type of graphical anomaly
present in Figure 1.1(b) but now in the context of a CAR matrix — when two fitted values
that are adjacent within a row are equal, the fitted values in the same two adjacent columns
must also be equal for a row that is either its immediate predecessor (if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1)),
or successor (if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1)); a similar condition is imposed when two fitted values
that are adjacent within a column are equal. As noted, any SAR matrix is CSAR but not
conversely.

39

The computational strategy we suggest for identifying a best-fitting CAR or CSAR ap-
proximation matrix is based on an initial circular unidimensional scaling obtained through
the optimization strategy developed by Hubert, Arabie, and Meulman (1997). Specifically,
by a combination of combinatorial search for good matrix reorderings, and heuristic itera-
tive projection to locate the points of inflection when minimum distance calculations change
directionality around a closed circular structure, approximation matrices to P are found
through a least-squares loss criterion, and they have the parameterized form

Qρ = {min(| xρ(j) − xρ(i) |, x0− | xρ(j) − xρ(i) |) + c},

where c is an estimated additive constant, xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and the last coor-
dinate, x0, is the circumference of the circular structure. Based on the inequality constraints
implied by such a collection of coordinates, a CAR approximation matrix can be fitted to P
directly; then, beginning with this latter CAR approximation, the identification and imposi-
tion of CSAR constraints proceeds through the heuristic use of iterative projection, directly
analogous to the way SAR constraints in the linear ordering context were identified and
fitted, beginning with a best approximation matrix satisfying just the AR restrictions.

2.1 Fitting a Given CAR Matrix in the L2-Norm

The MATLAB function m-file given in Section A.10 of Appendix A, cirarobfit.m, fits a
circular anti-Robinson (CAR) matrix using iterative projection to a symmetric proximity
matrix in the L2-norm. Usage syntax is

[fit, vaf] = cirarobfit(prox,inperm,targ)

where PROX is the input proximity matrix (n×n with a zero main diagonal and a dissimilarity
interpretation); INPERM is a given permutation of the first n integers (around a circle); TARG
is a given n× n matrix having the circular anti-Robinson form that guides the direction in
which distances are taken around the circle. The matrix FIT is the least-squares optimal
approximation (with variance-accounted-for of VAF) to PROX having an circular anti-Robinson
form for the row and column object ordering given by INPERM.

A recording of a MATLAB session follows that uses the number.dat data file; an equally-
spaced circular anti-Robinson matrix targcir obtained from the utility m-file ransymat.m

first introduced in the LUS Toolbox; and the identity permutation for the objects around
the circular structure. The fitted CAR matrix identified in this way has a vaf of 64.37%.

load number.dat

[prox10 targlin targcir] = ransymat(10);

[fit vaf] = cirarobfit(number,1:10,targcir)

fit =

40

Columns 1 through 7

0 0.4210 0.5840 0.6510 0.6835 0.8040 0.7730

0.4210 0 0.2840 0.3460 0.6170 0.6170 0.7730

0.5840 0.2840 0 0.2753 0.2753 0.5460 0.5460

0.6510 0.3460 0.2753 0 0.2753 0.3844 0.3844

0.6835 0.6170 0.2753 0.2753 0 0.3844 0.3844

0.8040 0.6170 0.5460 0.3844 0.3844 0 0.3844

0.7730 0.7730 0.5460 0.3844 0.3844 0.3844 0

0.7695 0.7695 0.7960 0.5920 0.5530 0.4000 0.3857

0.6597 0.6597 0.6597 0.8040 0.5530 0.5530 0.3857

0.6510 0.6510 0.6510 0.6510 0.6835 0.5920 0.3857

Columns 8 through 10

0.7695 0.6597 0.6510

0.7695 0.6597 0.6510

0.7960 0.6597 0.6510

0.5920 0.8040 0.6510

0.5530 0.5530 0.6835

0.4000 0.5530 0.5920

0.3857 0.3857 0.3857

0 0.3857 0.3857

0.3857 0 0.3857

0.3857 0.3857 0

vaf =

0.6437

2.1.1 The Circular Unidimensional Scaling Utilities for Construct-
ing Circular Anti-Robinson Targets

Sections A.11 and A.12 in the Appendix provide two circular unidimensional scaling utili-
ties, cirfit.m and cirfitac.m, that will prove useful in finding best-fitting CAR or CSAR
approximation matrices by providing the type of anti-Robinson targets needed in the appli-
cation of cirarobfit.m to guide the direction in which distances are to be taken around the
circle. The m-file cirfit.m does a confirmatory fitting of a given order (assumed to reflect
a circular anti-Robinson ordering around a closed unidimensional structure) using Dykstra’s

41

(Kaczmarz’s) iterative projection least-squares method. The usage syntax is

[fit, diff] = cirfit(prox,inperm)

where INPERM is the given order; FIT is an n×n matrix that is fitted to PROX(INPERM,INPERM)
with least-squares value DIFF. The syntax for cirfitac.m is the same except for the inclusion
of an additive constant ADDCON:

[fit,diff,addcon] = cirfitac(prox,inperm)

In brief, then, the type of matrix being fitted to the proximity matrix has the form

Qρ = {min(| xρ(j) − xρ(i) |, x0− | xρ(j) − xρ(i) |) + c},

where c is an estimated additive constant (assumed equal to zero in cirfit.m), xρ(1) ≤
xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and the last coordinate, x0, is the circumference of the circular
structure. We can obtain these latter coordinates from the adjacent spacings in the output
matrix fit.

As an example, we applied cirfit.m to number with an assumed identity input permu-
tation; the spacings around the circular structure between the placements for objects 1 and
2 is .3417; 2 and 3: .1639; 3 and 4: .1216; 4 and 5: .0726; 5 and 6: .1508; 6 and 7: .1146; 7
and 8: .1906; 8 and 9: .0607; 9 and 10: .0852; and back around between 10 and 1: .7830. For
cirfitac.m the additive constant was estimated as -.3129 with a variance-accounted-for of
.5422; here, the spacings around the circular structure between the placements for objects 1
and 2 is .1853; 2 and 3: .1013; 3 and 4: .0590; 4 and 5: .0100; 5 and 6: .0882; 6 and 7: .0520;
7 and 8: .0958; 8 and 9: .0000; 9 and 10: .0217; and back around between 10 and 1: .5327.

[fit,diff] = cirfit(number,1:10)

fit =

Columns 1 through 6

0 0.3417 0.5056 0.6272 0.6998 0.8506

0.3417 0 0.1639 0.2855 0.3581 0.5089

0.5056 0.1639 0 0.1216 0.1942 0.3450

0.6272 0.2855 0.1216 0 0.0726 0.2234

0.6998 0.3581 0.1942 0.0726 0 0.1508

0.8506 0.5089 0.3450 0.2234 0.1508 0

0.9652 0.6235 0.4596 0.3380 0.2654 0.1146

0.9289 0.8141 0.6502 0.5286 0.4560 0.3052

0.8682 0.8748 0.7109 0.5893 0.5167 0.3659

0.7830 0.9600 0.7961 0.6745 0.6019 0.4511

42

Columns 7 through 10

0.9652 0.9289 0.8682 0.7830

0.6235 0.8141 0.8748 0.9600

0.4596 0.6502 0.7109 0.7961

0.3380 0.5286 0.5893 0.6745

0.2654 0.4560 0.5167 0.6019

0.1146 0.3052 0.3659 0.4511

0 0.1906 0.2513 0.3365

0.1906 0 0.0607 0.1459

0.2513 0.0607 0 0.0852

0.3365 0.1459 0.0852 0

diff =

1.8517

[fit,vaf,addcon] = cirfitac(number,1:10)

fit =

Columns 1 through 6

0 0.1853 0.2866 0.3457 0.3557 0.4439

0.1853 0 0.1013 0.1604 0.1704 0.2587

0.2866 0.1013 0 0.0590 0.0691 0.1573

0.3457 0.1604 0.0590 0 0.0100 0.0983

0.3557 0.1704 0.0691 0.0100 0 0.0882

0.4439 0.2587 0.1573 0.0983 0.0882 0

0.4960 0.3107 0.2094 0.1503 0.1403 0.0520

0.5544 0.4065 0.3052 0.2461 0.2361 0.1478

0.5544 0.4065 0.3052 0.2461 0.2361 0.1478

0.5327 0.4282 0.3269 0.2678 0.2578 0.1695

Columns 7 through 10

0.4960 0.5544 0.5544 0.5327

0.3107 0.4065 0.4065 0.4282

0.2094 0.3052 0.3052 0.3269

0.1503 0.2461 0.2461 0.2678

0.1403 0.2361 0.2361 0.2578

0.0520 0.1478 0.1478 0.1695

43

0 0.0958 0.0958 0.1175

0.0958 0 0.0000 0.0217

0.0958 0.0000 0 0.0217

0.1175 0.0217 0.0217 0

vaf =

0.5422

addcon =

-0.3129

2.2 Finding a CAR Matrix in the L2-Norm

The m-file in Section A.13, cirarobfnd.m, is our suggested strategy for identifying a best-
fitting CAR matrix for a symmetric proximity matrix in the L2-norm based on a permutation
that is initially identified through the use of iterative quadratic assignment. Based on an
equally-spaced circular target matrix, order.m is first invoked to obtain a good (circular)
permutation, which is then used to construct a new circular target matrix with cirfit.m.
The final output is generated from cirarobfit.m once it is determined that no better
permutation can be identified using the newer circular target matrix. The usage syntax for
cirarobfnd.m is as follows:

[fit, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n×n with a zero main diagonal and a dissimilarity
interpretation); INPERM is a given starting permutation (assumed to be around the circle) of
the first n integers; FIT is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROX having a circular anti-Robinson form for the row and column object ordering
given by the ending permutation OUTPERM. Again, KBLOCK defines the block size in the use
the iterative quadratic assignment routine.

An example of the use of cirarobfnd is given below that seems to lead to a circular
ordering best interpreted according to the structural properties of the digits. This is only
one of several local optima identifiable by repeated use of the routine from other random
starting permutations. In general, the different local optima observed differ in the way the
odd digits, {3, 5, 7, 9}, and the even digits, {2, 4, 6, 8}, are ordered within these sets when
moving clockwise around a circular structure. Explicitly, all local optima had a general
structure of → 0 → 1 → {3, 5, 7, 9} → {2, 4, 6, 8} →, but with some variation in order
within the odd and even digits. For example, the CAR matrix given below uses the odd
digits as → 3 → 5 → 9 → 7 → and the even digits as → 6 → 8 → 4 → 2. →.

44

[fit, vaf, outperm] = cirarobfnd(number, randperm(10), 3)

fit =

Columns 1 through 7

0 0.3460 0.5315 0.5315 0.6069 0.8040 0.4460

0.3460 0 0.4210 0.4340 0.6069 0.7895 0.7895

0.5315 0.4210 0 0.4340 0.6069 0.7895 0.7895

0.5315 0.4340 0.4340 0 0.0590 0.3670 0.4210

0.6069 0.6069 0.6069 0.0590 0 0.2460 0.3880

0.8040 0.7895 0.7895 0.3670 0.2460 0 0.3500

0.4460 0.7895 0.7895 0.4210 0.3880 0.3500 0

0.4460 0.6300 0.9090 0.7697 0.6069 0.3960 0.3907

0.4160 0.6250 0.8500 0.7698 0.6069 0.3960 0.3907

0.4160 0.5880 0.7698 0.7698 0.6069 0.6069 0.4160

Columns 8 through 10

0.4460 0.4160 0.4160

0.6300 0.6250 0.5880

0.9090 0.8500 0.7698

0.7697 0.7698 0.7698

0.6069 0.6069 0.6069

0.3960 0.3960 0.6069

0.3907 0.3907 0.4160

0 0.3907 0.4160

0.3907 0 0.4160

0.4160 0.4160 0

vaf =

0.8128

outperm =

4 2 1 3 5 9 7 8 10 6

45

2.3 Fitting and Finding a Strongly Circular-Anti-Robinson

(SCAR) Matrix in the L2-Norm

The two m-functions in Sections A.14 (cirsarobfit.m) and A.15 (cirsarobfnd.m) are di-
rect analogues of cirarobfit.m and cirarobfnd.m, respectively, but are concerned with
fitting and finding strongly circular-anti-Robinson forms. The syntax for cirsarobfit.m,
which fits a strongly anti-Robinson matrix using iterative projection to a symmetric prox-
imity matrix in the L2-norm, is

[fit, vaf] = cirsarobfit(prox, inperm, targ)

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers; TARG is
a given n × n matrix having the circular anti-Robinson form that guides the direction in
which distances are taken around the circle. FIT is the least-squares optimal matrix (with
variance-accounted-for of VAF) to PROX having a strongly circular-anti-Robinson form for the
row and column object ordering given by INPERM.

An example follows using the same identity permutation as was done in fitting a CAR
form with cirarobfit.m; as might be expected from using the more restrictive SCAR form,
the variance-accounted-for drops to .4501 from .6437.

[fit, vaf] = cirsarobfit(number,1:10,targcir)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6505 0.6505 0.6505 0.6505

0.4210 0 0.2840 0.6505 0.6505 0.6505 0.6505

0.5840 0.2840 0 0.2753 0.2753 0.4306 0.4306

0.6505 0.6505 0.2753 0 0.2753 0.4306 0.4306

0.6505 0.6505 0.2753 0.2753 0 0.4306 0.4306

0.6505 0.6505 0.4306 0.4306 0.4306 0 0.4306

0.6505 0.6505 0.4306 0.4306 0.4306 0.4306 0

0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857

0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857

0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857

Columns 8 through 10

0.6505 0.6505 0.6505

0.6505 0.6505 0.6505

46

0.6505 0.6505 0.6505

0.6505 0.6505 0.6505

0.6505 0.6505 0.6505

0.6505 0.6505 0.6505

0.3857 0.3857 0.3857

0 0.3857 0.3857

0.3857 0 0.3857

0.3857 0.3857 0

vaf =

0.4501

The m-function cirsarobfnd.m, which finds and fits a SCAR matrix using iterative
projection to a symmetric proximity matrix in the L2-norm based on a permutation identified
through the use of iterative quadratic assignment, has the expected syntax

[fit, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n integers;
FIT is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having
a circular strongly anti-Robinson form for the row and column object ordering given by the
ending permutation OUTPERM. As usual, KBLOCK defines the block size in the use the iterative
quadratic assignment routine.

In the MATLAB recording below, and starting from a random permutation, a circular
strongly anti-Robinson form was found with a variance-accounted-for of .7296 (again, this
represents an expected drop from the value of .8119 for the CAR form — this is also listed
below)).

[fit, vaf, outperm] = cirsarobfnd(number,randperm(10), 2)

target =

Columns 1 through 6

0 0.4160 0.4160 0.4160 0.6262 0.6262

0.4160 0 0.3907 0.3907 0.3960 0.6263

0.4160 0.3907 0 0.3907 0.3960 0.6263

0.4160 0.3907 0.3907 0 0.3500 0.3880

0.6262 0.3960 0.3960 0.3500 0 0.2460

0.6262 0.6263 0.6263 0.3880 0.2460 0

47

0.7858 0.7858 0.7858 0.4210 0.3670 0.0590

0.7858 0.7858 0.9090 0.7895 0.7895 0.5810

0.5880 0.6250 0.6300 0.7895 0.7895 0.5810

0.4160 0.4160 0.4460 0.4460 0.8040 0.5810

Columns 7 through 10

0.7858 0.7858 0.5880 0.4160

0.7858 0.7858 0.6250 0.4160

0.7858 0.9090 0.6300 0.4460

0.4210 0.7895 0.7895 0.4460

0.3670 0.7895 0.7895 0.8040

0.0590 0.5810 0.5810 0.5810

0 0.4340 0.4340 0.5315

0.4340 0 0.4210 0.5315

0.4340 0.4210 0 0.3460

0.5315 0.5315 0.3460 0

vaf =

0.8119

outperm =

6 10 8 7 9 5 3 1 2 4

fit =

Columns 1 through 6

0 0.4246 0.4246 0.4246 0.7304 0.7304

0.4246 0 0.3907 0.3907 0.3960 0.7304

0.4246 0.3907 0 0.3907 0.3960 0.7304

0.4246 0.3907 0.3907 0 0.3500 0.3880

0.7304 0.3960 0.3960 0.3500 0 0.2460

0.7304 0.7304 0.7304 0.3880 0.2460 0

0.7304 0.7304 0.7304 0.4210 0.3670 0.0590

0.7304 0.7304 0.7304 0.7304 0.7304 0.5810

0.7304 0.7304 0.7304 0.7304 0.7304 0.5810

48

0.4246 0.4246 0.4246 0.4246 0.7304 0.5810

Columns 7 through 10

0.7304 0.7304 0.7304 0.4246

0.7304 0.7304 0.7304 0.4246

0.7304 0.7304 0.7304 0.4246

0.4210 0.7304 0.7304 0.4246

0.3670 0.7304 0.7304 0.7304

0.0590 0.5810 0.5810 0.5810

0 0.4340 0.4340 0.5315

0.4340 0 0.4210 0.5315

0.4340 0.4210 0 0.3460

0.5315 0.5315 0.3460 0

vaf =

0.7296

outperm =

6 10 8 7 9 5 3 1 2 4

2.4 Representing SCAR Structures (Graphically)

As in the case of an AR or SAR matrix, the interpretation of the structure that may be
represented by a CAR or CSAR matrix could proceed by first identifying those subsets
and their diameters that emerge by increasing a threshold variable from the smallest fitted
value. And in the case of a more restrictive CSAR matrix, this collection of subsets and
their diameters can then be displayed by a graph where minimum length paths reconstruct
the fitted values. To illustrate this graphical possibility on the transformed number.dat

to mean 4.0 and variance 1.0 given in Hubert, Arabie, and Meulman (1978) — and used
earlier to show the graphical representation of an SAR matrix — the fifteen (nonredundant)
subsets identified from the CSAR matrix present in Table 5 are listed in Table 4 according to
increasing diameter. Here, the structural properties of the digits are apparent (e.g., various
subsets of the odd or even digits, or those that are multiples or powers of 2 or of 3), but
some magnitude adjacencies can also be noted (e.g., {6, 7, 8, 9}, or subsets of {0, 1, 2, 3}).
The graph adhering to the CSAR restrictions is given in Figure 2.1 and again minimum path
lengths (that proceed up from a terminal node to an internal node and then back down to
the other terminal node) can be used to reconstruct the fitted values in Q.

49

TABLE 4

The fifteen (nonredundant) subsets listed according to increasing diameter values are con-
tiguous in the circular object ordering used to display the CSAR enties in Table 5.

subset diameter subset diameter
{4,2} 1.63 {6,8,4,2} 3.41
{8,4} 2.55 {0,1} 3.41
{1,3} 3.04 {3,5,9,7,6} 3.43
{6,8} 3.06 {2,0,1} 3.47
{8,4,2} 3.14 {2,0,1,3} 3.95
{6,8,4} 3.25 {4,2,0,1,3} 4.20
{9,7,6} 3.26 {0,1,3,5,9,7,6,8,4,2} 4.93
{9,7,6,8} 3.29

In addition to searching for a best-fitting CSAR matrix directly, we might comment that
the type of indirect approach mentioned in the introduction for the case of SAR approxi-
mations could also be considered, although we will not go into any of the details here. For
example, based on a best-fitting CAR matrix, the additional constraints of a circular uni-
dimensional scale could be identified and then imposed (in fact, this is our starting place
in first obtaining the CAR approximation); or those of an ultrametric (which would lead
to an SAR matrix that is trivially CSAR as well); or possibly, a collection of additive tree
restrictions could be identified. In all cases, CSAR approximations would be automatically
obtained.

2.5 Representation Through Multiple (Strongly) CAR

Matrices

Just as we discussed in Section 1.6 on representing proximity matrices through multiple
(strongly) AR matrices, representations of a proximity matrix by a single (strongly) circular-
anti-Robinson structure extends easily to the additive use of multiple matrices. The m-
function of Section A.16, bicirarobfnd.m, fits the sum of two circular-anti-Robinson ma-
trices using iterative projection to a symmetric proximity matrix in the L2-norm based on
permutations identified through the use of iterative quadratic assignment. The syntax usage
is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bicirarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n × n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of the first n
integers; FIND is the least-squares optimal matrix (with variance-accounted-for of VAF) to

50

TABLE 5

A circular stongly-anti-Robinson order-constrained least-squares approximations to the digit
proximity data of Shepard et al. (1975).

digit 0 1 3 5 9 7 6 8 4 2
0 x 3.41 3.95 4.93 4.93 4.93 4.93 4.93 4.20 3.47
1 3.41 x 3.04 4.93 4.93 4.93 4.93 4.93 4.20 3.47
3 3.95 3.04 x 3.43 3.43 3.43 3.43 4.93 4.20 3.95
5 4.93 4.93 3.43 x 3.43 3.43 3.43 4.93 4.93 4.93
9 4.93 4.93 3.43 3.43 x 3.26 3.26 3.29 4.93 4.93
7 4.93 4.93 3.43 3.43 3.26 x 3.26 3.29 4.93 4.93
6 4.93 4.93 3.43 3.43 3.26 3.26 x 3.06 3.25 3.41
8 4.93 4.93 4.93 4.93 3.29 3.29 3.06 x 2.55 3.14
4 4.20 4.20 4.20 4.93 4.93 4.93 3.25 2.55 x 1.63
2 3.47 3.47 3.95 4.93 4.93 4.93 3.41 3.14 1.63 x

Fig.3

e e e e e e e e e e e

u u u uu u u
u

u u u u
uu

u

3 5 9 7 6 8 4 2 0 1 3..
..........................

...................
.................

.........

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

-

-

-

-

-

-

-

-

Figure 2.1: A graphical representation for the fitted values given by the circular strongly-
anti-Robinson matrix in the lower-triangular portion of Table 5 (VAF = 72.96%). Note that
digit 3 is placed both in the first and the last positions in the ordering of the objects with the
implication that the sequence continues in a circular manner. This circularity is indicated
by the curved dashed line in the figure.

51

PROX and is the sum of the two circular-anti-Robinson matrices TARGONE and TARGTWO based
on the two row and column object orderings given by the ending permutations OUTPERMONE
and OUTPERMTWO. As before, KBLOCK defines the block size in the use of iterative quadratic
assignment routine.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = bicirarobfnd(number,randperm(10),1)

find =

Columns 1 through 7

0 0.3837 0.5644 0.7286 0.6958 0.8352 0.8003

0.3837 0 0.3410 0.3461 0.6645 0.5880 0.7576

0.5644 0.3410 0 0.3342 0.0588 0.6710 0.4211

0.7286 0.3461 0.3342 0 0.4330 0.4257 0.3000

0.6958 0.6645 0.0588 0.4330 0 0.4090 0.3881

0.8352 0.5880 0.6710 0.4257 0.4090 0 0.4257

0.8003 0.7576 0.4211 0.3000 0.3881 0.4257 0

0.9091 0.6489 0.8293 0.5920 0.6900 0.4000 0.4537

0.8003 0.8003 0.3669 0.8040 0.2459 0.6900 0.3501

0.8501 0.6063 0.7434 0.3114 0.6645 0.5175 0.2476

Columns 8 through 10

0.9091 0.8003 0.8501

0.6489 0.8003 0.6063

0.8293 0.3669 0.7434

0.5920 0.8040 0.3114

0.6900 0.2459 0.6645

0.4000 0.6900 0.5175

0.4537 0.3501 0.2476

0 0.4046 0.4537

0.4046 0 0.4046

0.4537 0.4046 0

vaf =

0.9836

targone =

52

Columns 1 through 7

0 0.4520 0.4520 0.4520 0.4520 0.6303 0.6303

0.4520 0 0.4520 0.4520 0.4520 0.6303 0.6303

0.4520 0.4520 0 0.3882 0.3882 0.3882 0.6303

0.4520 0.4520 0.3882 0 0.3882 0.3882 0.6303

0.4520 0.4520 0.3882 0.3882 0 0.3337 0.4143

0.6303 0.6303 0.3882 0.3882 0.3337 0 0.1862

0.6303 0.6303 0.6303 0.6303 0.4143 0.1862 0

0.5314 0.7696 0.7696 0.7696 0.4473 0.3072 0.2560

0.5314 0.7696 0.8337 0.8927 0.7839 0.7839 0.6303

0.3723 0.5224 0.6325 0.6325 0.7839 0.7839 0.6303

Columns 8 through 10

0.5314 0.5314 0.3723

0.7696 0.7696 0.5224

0.7696 0.8337 0.6325

0.7696 0.8927 0.6325

0.4473 0.7839 0.7839

0.3072 0.7839 0.7839

0.2560 0.6303 0.6303

0 0.3673 0.3673

0.3673 0 0.3673

0.3673 0.3673 0

targtwo =

Columns 1 through 7

0 -0.0520 0.0597 0.0656 0.0656 0.0656 -0.0262

-0.0520 0 0.0164 0.0164 0.0164 0.0656 0.0656

0.0597 0.0164 0 0.0164 0.0164 0.0164 0.0164

0.0656 0.0164 0.0164 0 0.0164 0.0164 0.0164

0.0656 0.0164 0.0164 0.0164 0 -0.0262 -0.0262

0.0656 0.0656 0.0164 0.0164 -0.0262 0 -0.1406

-0.0262 0.0656 0.0164 0.0164 -0.0262 -0.1406 0

-0.0262 0.1400 0.1737 0.1972 -0.0262 -0.1406 -0.1520

-0.0986 0.0597 0.0597 0.1972 -0.0262 -0.0262 -0.0262

-0.2213 0.0597 0.0597 0.0656 0.0342 0.0342 -0.0262

53

Columns 8 through 10

-0.0262 -0.0986 -0.2213

0.1400 0.0597 0.0597

0.1737 0.0597 0.0597

0.1972 0.1972 0.0656

-0.0262 -0.0262 0.0342

-0.1406 -0.0262 0.0342

-0.1520 -0.0262 -0.0262

0 -0.1972 -0.1972

-0.1972 0 -0.1972

-0.1972 -0.1972 0

outpermone =

4 6 10 8 7 9 5 3 1 2

outpermtwo =

6 8 9 1 2 10 7 4 3 5

For finding multiple SCAR forms, appendix A.17 provides bicirsarobfnd.m with usage
syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = bicirsarobfnd(prox,inperm,kblock)

with all the various terms the same as for biarobfnd.m but now for strongly CAR (SCAR)
structures. The example below finds essentially the same representation as above (involving
digit magnitude and structure) with a slight drop in the variance-accounted-for of 99.06%.

>> [find,vaf,targone,targtwo,outpermone,outpermtwo] = bicirsarobfnd(number,randperm(10),1)

find =

Columns 1 through 7

0 0.4210 0.4841 0.6812 0.6812 0.8082 0.8082

0.4210 0 0.3839 0.3459 0.5831 0.7100 0.6466

0.4841 0.3839 0 0.3540 0.0589 0.6330 0.4211

0.6812 0.3459 0.3540 0 0.5061 0.3740 0.3000

0.6812 0.5831 0.0589 0.5061 0 0.4090 0.3879

54

0.8082 0.7100 0.6330 0.3740 0.4090 0 0.4510

0.8082 0.6466 0.4211 0.3000 0.3879 0.4510 0

0.9090 0.8082 0.8082 0.5492 0.7179 0.4589 0.4445

0.8082 0.7797 0.3672 0.7797 0.2460 0.6710 0.3502

0.8082 0.6250 0.7080 0.3876 0.7100 0.4510 0.2829

Columns 8 through 10

0.9090 0.8082 0.8082

0.8082 0.7797 0.6250

0.8082 0.3672 0.7080

0.5492 0.7797 0.3876

0.7179 0.2460 0.7100

0.4589 0.6710 0.4510

0.4445 0.3502 0.2829

0 0.3652 0.4445

0.3652 0 0.4271

0.4445 0.4271 0

vaf =

0.9145

targone =

Columns 1 through 7

0 0.1456 0.5927 0.5927 0.5927 0.7197 0.7197

0.1456 0 0.3956 0.3956 0.5927 0.7197 0.7197

0.5927 0.3956 0 0.3325 0.5927 0.7197 0.7197

0.5927 0.3956 0.3325 0 0.4190 0.7197 0.7197

0.5927 0.5927 0.5927 0.4190 0 0.4607 0.4607

0.7197 0.7197 0.7197 0.7197 0.4607 0 0.4607

0.7197 0.7197 0.7197 0.7197 0.4607 0.4607 0

0.7197 0.7197 0.7197 0.7197 0.4607 0.4607 0.3560

0.3976 0.4328 0.7197 0.7197 0.4607 0.4607 0.3560

0.2947 0.3072 0.7197 0.7197 0.7197 0.7197 0.3670

Columns 8 through 10

55

0.7197 0.3976 0.2947

0.7197 0.4328 0.3072

0.7197 0.7197 0.7197

0.7197 0.7197 0.7197

0.4607 0.4607 0.7197

0.4607 0.4607 0.7197

0.3560 0.3560 0.3670

0 0.3560 0.3670

0.3560 0 0.2902

0.3670 0.2902 0

targtwo =

Columns 1 through 7

0 -0.0731 -0.0731 -0.0117 -0.0097 -0.0097 0.0600

-0.0731 0 -0.1607 -0.0117 -0.0097 -0.0097 0.0600

-0.0731 -0.1607 0 -0.2387 -0.0867 -0.0867 0.0600

-0.0117 -0.0117 -0.2387 0 -0.0867 -0.0867 0.0600

-0.0097 -0.0097 -0.0867 -0.0867 0 -0.3107 -0.0487

-0.0097 -0.0097 -0.0867 -0.0867 -0.3107 0 -0.0487

0.0600 0.0600 0.0600 0.0600 -0.0487 -0.0487 0

0.0885 0.0885 0.0885 0.0885 -0.0018 -0.0018 -0.0018

0.0885 0.0885 0.0885 0.0885 0.0885 0.0885 0.0885

-0.0947 -0.0731 -0.0731 -0.0117 -0.0097 -0.0097 0.0600

Columns 8 through 10

0.0885 0.0885 -0.0947

0.0885 0.0885 -0.0731

0.0885 0.0885 -0.0731

0.0885 0.0885 -0.0117

-0.0018 0.0885 -0.0097

-0.0018 0.0885 -0.0097

-0.0018 0.0885 0.0600

0 0.1893 0.0885

0.1893 0 0.0885

0.0885 0.0885 0

outpermone =

56

5 3 1 2 4 6 10 8 7 9

outpermtwo =

10 7 4 3 5 6 9 8 1 2

57

Chapter 3

Order Structures for Two-Mode
(Rectangular) Proximity Data

58

References

Carroll, J. D. (1992) Metric, nonmetric, and quasi-nonmetric analysis of psychological data.
Division 5 Presidential Address, American Psychological Association, Washington, DC, Au-
gust, 1992 (published in Score, Newsletter of Division 5, October, 1992, pp. 4–5).

Critchley, F. (1994). On exchangeability-based equivalence relations induced by strongly
Robinson and, in particular, by quadripolar Robinson dissimilarity matrices. In B. van
Cutsem (Ed.), Classification and dissimilarity analysis, Lecture Notes in Statistics (pp. 173–
199). New York: Springer-Verlag.

Critchley, F., & Fichet, B. (1994). The partial order by inclusion of the principal classes
of dissimilarity on a finite set, and some of their basic properties. In B. van Cutsem (Ed.),
Classification and dissimilarity analysis, Lecture Notes in Statistics (pp. 5–65). New York:
Springer-Verlag.

Durand, C., & Fichet, B. (1988). One-to-one correspondences in pyramidal representa-
tions: A unified approach. In H. H. Bock (Ed.), Classification and related methods of data
analysis (pp. 85–90). Amsterdam: North-Holland.

Guttman, L. (1954). A new approach to factor analysis: The radex. In P. F. Lazarsfeld
(Ed.), Mathematical thinking in the social sciences (pp. 258–348). Glencoe, IL: The Free
Press.

Hubert, L. J., & Arabie, P. (1994). The analysis of proximity matrices through sums
of matrices having (anti-)Robinson forms. British Journal of Mathematical and Statistical
Psychology, 47, 1–40.

Hubert, L. J., & Arabie, P. (1995). Iterative projection strategies for the least-squares
fitting of tree structures to proximity data. British Journal of Mathematical and Statistical
Psychology, 48, 281–317.

Hubert, L. J., Arabie, P., & Meulman, J. (1997). Linear and circular unidimensional
scaling for symmetric proximity matrices. British Journal of Mathematical and Statistical
Psychology, 50, 253–284.

Hubert, L. J., Arabie, P., & Meulman, J. (1998) Graph-theoretic representations for prox-
imity matrices through strongly-anti-Robinson or circular strongly-anti-Robinson matrices.
Psychometrika, 53, xxx–xxx.

Kruskal, J. B. (1964a) Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29, 1–27.

Kruskal, J. B. (1964b) Nonmetric multidimensional scaling: A numerical method. Psy-
chometrika, 29, 115–129.

Kruskal, J. B., Young, F. W., & Seery, J. B. (1977) How to Use KYST2, a Very Flexible
Program to Do Multidimensional Scaling and Unfolding. AT&T Bell Laboratories, Murray
Hill, NJ.

Pruzansky, S., Tversky, A., & Carroll, J. D. (1982) Spatial versus tree representations of
proximity data. Psychometrika, 47, 3–24.

Shepard, R. N. (1962a) Analysis of proximities: Multidimensional scaling with an un-
known distance function I. Psychometrika, 27, 125–140.

59

Shepard, R. N. (1962b) Analysis of proximities: Multidimensional scaling with an un-
known distance function II. Psychometrika, 27, 219–246.

Shepard, R. N. (1974) Representation of structure in similarity data: Problems and
prospects. Psychometrika, 39, 373–421.

Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal representa-
tion of numbers. Cognitive Psychology, 7, 82–138.

Wilkinson, L. (1988) SYSTAT: The System for Statistics. SYSTAT, Inc, Evanston, IL.
Mirkin, B. (1996). Mathematical classification and clustering. Dordrecht: Kluwer.

60

Appendix A

main program files

A.1 arobfit.m

function [fit,vaf] = arobfit(prox,inperm)

% AROBFIT fits an anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having an anti-Robinson form for the row and column
% object ordering given by INPERM.

n = size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone,jtwo+1);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+2);

if(fit(jone,jtwo) <= fit(jone,jtwo+1))

work(indexll+1) = 0.0;

61

work(indexll+2) = 0.0;

elseif(fit(jone,jtwo) > fit(jone,jtwo+1))

ave= (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);

fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jone,jtwo+1));

indexll = indexll + 2;
end

end

for jone = 3:n
for jtwo = 1:(jone-2);

p1 = fit(jtwo,jone);
p2 = fit(jtwo+1,jone);

fit(jtwo,jone) = fit(jtwo,jone) - work(indexll+1);
fit(jtwo+1,jone) = fit(jtwo+1,jone) - work(indexll+2);

if(fit(jtwo+1,jone) <= fit(jtwo,jone))

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

elseif(fit(jtwo+1,jone) > fit(jtwo,jone))

ave = (fit(jtwo,jone) + fit(jtwo+1,jone))/2.0;
work(indexll+1) = ave - fit(jtwo,jone);
work(indexll+2) = ave - fit(jtwo+1,jone);

fit(jtwo,jone) = ave;
fit(jtwo+1,jone) = ave;

end

cr = cr + abs(p1-fit(jtwo,jone)) + ...
abs(p2-fit(jtwo+1,jone));

indexll = indexll + 2;
end

62

end
end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - fit).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

vaf = 1 - (diff/denom);

A.2 targfit.m

function [fit, vaf] = targfit(prox,targ)

% TARGFIT fits through iterative projection a given set of equality and
% inequality constraints (as represented by the equalities and
% inequalities present among the entries in a target matrix
% TARG) to a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is a matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX satisfying the equality and
% inequality constraints implicit in TARG.

n = size(prox,1);
work = zeros(n*(n-1)*n*(n-1),1);
fit = prox;
cr = 1.0;

63

while (cr >= 1.0e-008)
cr = 0.0;
indexll = 0;

for jone = 1:(n-1)
for jtwo = (jone+1):n

for jthree = jone:(n-1)
for jfour = jtwo:n

if((jone ~= jthree) | (jtwo ~= jfour))

p1 = fit(jone,jtwo);
p2 = fit(jthree,jfour);
fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jthree,jfour) = fit(jthree,jfour) - work(indexll+2);

if(abs(targ(jone,jtwo) - targ(jthree,jfour)) <= ...
1.0e-006)

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);
fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

indexll = indexll + 2;

elseif((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) < ...
targ(jthree,jfour)))

if(fit(jone,jtwo) < fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;

indexll = indexll + 2;

elseif(fit(jone,jtwo) >= fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);

fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

indexll = indexll + 2;

end

64

elseif((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) > ...
targ(jthree,jfour)))

if(fit(jone,jtwo) > fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;

indexll = indexll + 2;

elseif(fit(jone,jtwo) <= fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);
fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

indexll = indexll + 2;

end
end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jthree,jfour));

end

end
end

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

65

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((prox - fit).^2));

denom = sum(sum((prox - proxave).^2));

vaf = 1 - (diff/denom);

A.3 order.m

function [outperm,rawindex,allperms,index] = order(prox,targ,inperm,kblock)

% ORDER carries out an iterative Quadratic Assignment maximization task using
% a given square ($n x n$) proximity matrix PROX (with a zero main diagonal and
% a dissimilarity interpretation).
% Three separate local operations are used to permute

% the rows and columns of the proximity matrix to maximize the cross-product
% index with respect to a given square target matrix TARG:
% pairwise interchanges of objects in the permutation defining the row and column
% order of the square proximity matrix; the insertion of from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data matrix; the
% rotation of from 2 to KBLOCK (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data matrix.
% INPERM is the input beginning permutation (a permuation of the first n integers).
% OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

n = size(prox,1);
outperm = inperm;
index = 1;
allperms{index} = inperm;
begindex = sum(sum(prox(inperm,inperm).*targ));

for iterate = 1:2

nchange = 1;

66

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outperm;

intrperm(k) = outperm(j);
intrperm(j) = outperm(k);

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

end

rawindex = begindex;
nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outperm;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outperm(insertpt+jone);

67

jone = jone + 1;
end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outperm(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index +1;
allperms{index} = intrperm;

end

end
end

end
end

rawindex = begindex;
nchange = 1;

while (nchange == 1)

nchange=0;

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outperm;

68

for j = 1:k
intrperm(nlimlow+j-1) = outperm(nlimlow+k-j);

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

end

rawindex = begindex;
nchange = 1;

end

A.4 arobfnd.m

function [fit, vaf, outperm] = arobfnd(prox, inperm, kblock)

% AROBFND fits an anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a permutation
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having an anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative quadratic assignment
% routine.

n = size(prox,1);
[proxrandom,targlin,targcir] = ransymat(n);

[outperm,rawindex,allperms,index] = order(prox,targlin,inperm,kblock);

[fit,vaf] = arobfit(prox,outperm);

nprevperm = 1;

69

while (nprevperm == 1)

nprevperm = 0;
prevperm = outperm;
inperm = outperm;

[outperm,rawindex,allperms,index] = order(prox,fit,inperm,kblock);
[fit,vaf] = arobfit(prox,outperm);

if (any(prevperm - outperm) == 1)
nprevperm = 1;

end
end

A.5 sarobfit.m

function [fit, vaf] = sarobfit(prox, inperm)

% SAROBFIT fits a strongly anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having a strongly anti-Robinson form for the row and column
% object ordering given by INPERM.

n = size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone,jtwo+1);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+2);

if(fit(jone,jtwo) <= fit(jone,jtwo+1))

70

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

elseif(fit(jone,jtwo) > fit(jone,jtwo+1))

ave= (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);

fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jone,jtwo+1));

indexll = indexll + 2;
end

end

for jone = 3:n
for jtwo = 1:(jone-2);

p1 = fit(jtwo,jone);
p2 = fit(jtwo+1,jone);

fit(jtwo,jone) = fit(jtwo,jone) - work(indexll+1);
fit(jtwo+1,jone) = fit(jtwo+1,jone) - work(indexll+2);

if(fit(jtwo+1,jone) <= fit(jtwo,jone))

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

elseif(fit(jtwo+1,jone) > fit(jtwo,jone))

ave = (fit(jtwo,jone) + fit(jtwo+1,jone))/2.0;
work(indexll+1) = ave - fit(jtwo,jone);
work(indexll+2) = ave - fit(jtwo+1,jone);

fit(jtwo,jone) = ave;
fit(jtwo+1,jone) = ave;

end

cr = cr + abs(p1-fit(jtwo,jone)) + ...
abs(p2-fit(jtwo+1,jone));

indexll = indexll + 2;

71

end
end

end

cr = 1.0;

while (cr >= 1.0e-008)

cr = 0.0;

for i = 1:(n-3)
for j = (i+3):n

p1 = fit(i,j);
p2 = fit(i+1,j);

if(abs(fit(i,j-1) - fit(i+1,j-1)) <= 1.0e-003)

ave = (fit(i,j) + fit(i+1,j))/2.0;
fit(i,j) = ave;
fit(i+1,j) = ave;

end

cr = cr + abs(p1-fit(i,j)) + abs(p2-fit(i+1,j));

end
end

for i = 1:(n-3)
for j = 1:i

p1 = fit(i+1-j,i+2);
p2 = fit(i+1-j,i+3);

if(abs(fit(i+2-j,i+2) - fit(i+2-j,i+3)) <= 1.0e-003)

ave = (fit(i+1-j,i+2) + fit(i+1-j,i+3))/2.0;
fit(i+1-j,i+2) = ave;
fit(i+1-j,i+3) = ave;

end

cr = cr + abs(p1-fit(i+1-j,i+2)) + abs(p2-fit(i+1-j,i+3));

end
end

end

72

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

fittarg = fit;
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone,jtwo+1);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+2);

if((abs(fittarg(jone,jtwo) - fittarg(jone,jtwo+1)) > 1.0e-006) & ...
(fit(jone,jtwo) <= fit(jone,jtwo+1)))

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

else

ave= (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);

fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jone,jtwo+1));

indexll = indexll + 2;
end

end

73

for jone = 3:n
for jtwo = 1:(jone-2);

p1 = fit(jtwo,jone);
p2 = fit(jtwo+1,jone);

fit(jtwo,jone) = fit(jtwo,jone) - work(indexll+1);
fit(jtwo+1,jone) = fit(jtwo+1,jone) - work(indexll+2);

if((abs(fittarg(jtwo+1,jone) - fittarg(jtwo,jone)) > 1.0e-006) & ...
(fit(jtwo+1,jone) <= fit(jtwo,jone)))

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

else

ave = (fit(jtwo,jone) + fit(jtwo+1,jone))/2.0;
work(indexll+1) = ave - fit(jtwo,jone);
work(indexll+2) = ave - fit(jtwo+1,jone);

fit(jtwo,jone) = ave;
fit(jtwo+1,jone) = ave;

end

cr = cr + abs(p1-fit(jtwo,jone)) + ...
abs(p2-fit(jtwo+1,jone));

indexll = indexll + 2;
end

end
end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n

74

for j = 1:n
if(i ~= j)

proxave(i,j) = aveprox;
else

proxave(i,j) = 0;
end

end
end

diff = sum(sum((prox(inperm,inperm) - fit).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

vaf = 1 - (diff/denom);

A.6 sarobfnd.m

function [fit, vaf, outperm] = sarobfnd(prox, inperm, kblock)

% SAROBFND fits a strongly anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a permutation
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having a strongly anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative quadratic assignment
% routine.

n = size(prox,1);
[proxrandom,targlin,targcir] = ransymat(n);

[outperm,rawindex,allperms,index] = order(prox,targlin,inperm,kblock);

[fit,vaf] = sarobfit(prox,outperm);

nprevperm = 1;

while (nprevperm == 1)

nprevperm = 0;
prevperm = outperm;
inperm = outperm;

[outperm,rawindex,allperms,index] = order(prox,fit,inperm,kblock);
[fit,vaf] = sarobfit(prox,outperm);

if (any(prevperm - outperm) == 1)

75

nprevperm = 1;
end

end

A.7 proxmon.m

function [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

%PROXMON produces a monotonically transformed proximity matrix (MONPROXPERMUT)
% from the order constraints obtained from each pair of entries in the input
% proximity matrix PROXPERMUT (symmetric with a zero main diagonal and a dissimilarity
% interpretation).
% MONPROXPERMUT is close to the $n \times n$ matrix FITTED in the least-squares sense;
% The variance accounted for (VAF) is how much variance in MONPROXPERMUT can be accounted for by
% FITTED; DIFF is the value of the least-squares criterion.

n = size(proxpermut,1);
work = zeros(n*(n-1)*n*(n-1),1);
targ = proxpermut;
fit = fitted;
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-1)
for jtwo = (jone+1):n

for jthree = 1:(n-1)
for jfour = (jthree+1):n

if((jone ~= jthree) | (jtwo ~= jfour))

p1 = fit(jone,jtwo);
p2 = fit(jthree,jfour);
fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jthree,jfour) = fit(jthree,jfour) - work(indexll+2);

if((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) < ...
targ(jthree,jfour)))

if(fit(jone,jtwo) <= fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;

76

elseif(fit(jone,jtwo) > fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);

fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

end

elseif((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) > ...
targ(jthree,jfour)))

if(fit(jone,jtwo) >= fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;

elseif(fit(jone,jtwo) < fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);
fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

end
end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jthree,jfour));

end

indexll = indexll + 2;

end
end

end
end

end

77

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

avefit = sum(sum(fit))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = avefit;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((fit - fitted).^2));

denom = sum(sum((fit - proxave).^2));

vaf = 1 - (diff/denom);

monproxpermut = fit;

diff = (.5)*diff;

A.8 biarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = biarobfnd(prox,inperm,kblock)

% BIAROBFND fits the sum of two anti-Robinson matrices using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX and is the sum of the two anti-Robinson matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the

78

% iterative quadratic assignment routine.

n = size(prox,1);

[targ1,vaftarg1,outperm1] = arobfnd(prox,inperm,kblock);

resprox1(outperm1,outperm1) = prox(outperm1,outperm1) - targ1;

[targ2,vaftarg2,outperm2] = arobfnd(resprox1,inperm,kblock);

resprox2(outperm2,outperm2) = resprox1(outperm2,outperm2) - targ2;

find = prox - resprox2;

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0.0;

end
end

end

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

targone = targ1;
targtwo = targ2;
outpermone = outperm1;
outpermtwo = outperm2;

vafdiff = 1.0;

while (vafdiff >= 1.0e-006)

vafprev = vaf;

resprox(outpermtwo,outpermtwo) = prox(outpermtwo,outpermtwo) - targtwo;
[targone,vafone,outpermone] = arobfnd(resprox,outpermone,kblock);

resprox(outpermone,outpermone) = prox(outpermone,outpermone) - targone;
[targtwo,vaftwo,outpermtwo] = arobfnd(resprox,outpermtwo,kblock);

find(outpermone,outpermone) = targone;
find(outpermtwo,outpermtwo) = find(outpermtwo,outpermtwo) + targtwo;

79

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf - vafprev);
end

A.9 bisarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = bisarobfnd(prox,inperm,kblock)

% BISAROBFND fits the sum of two stongly anti-Robinson matrices using iterative
% projection to a symmetric proximity matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX and is the sum of the two strongly anti-Robinson matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

n = size(prox,1);

[targ1,vaftarg1,outperm1] = sarobfnd(prox,inperm,kblock);

resprox1(outperm1,outperm1) = prox(outperm1,outperm1) - targ1;

[targ2,vaftarg2,outperm2] = sarobfnd(resprox1,inperm,kblock);

resprox2(outperm2,outperm2) = resprox1(outperm2,outperm2) - targ2;

find = prox - resprox2;

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0.0;

end
end

end

diff = sum(sum((prox - find).^2));

80

denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

targone = targ1;
targtwo = targ2;
outpermone = outperm1;
outpermtwo = outperm2;

vafdiff = 1.0;
iteration = 0;

while ((vafdiff >= 1.0e-006) & (iteration <= 100))

vafprev = vaf;
iteration = iteration + 1;

resprox(outpermtwo,outpermtwo) = prox(outpermtwo,outpermtwo) - targtwo;
[targone,vafone,outpermone] = sarobfnd(resprox,outpermone,kblock);

resprox(outpermone,outpermone) = prox(outpermone,outpermone) - targone;
[targtwo,vaftwo,outpermtwo] = sarobfnd(resprox,outpermtwo,kblock);

find(outpermone,outpermone) = targone;
find(outpermtwo,outpermtwo) = find(outpermtwo,outpermtwo) + targtwo;

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf - vafprev);
end

A.10 cirarobfit.m

function [fit, vaf] = cirarobfit(prox,inperm,targ)

% CIRAROBFIT fits a circular anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers (around a circle);
% TARG is a given $n \times n$ matrix having the circular anti-Robinson
% form that guides the direction in which distances are taken around the circle.
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having an circular anti-Robinson form for the row and column
% object ordering given by INPERM.

n = size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);

81

cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone,jtwo+1);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+2);

if(((abs(targ(jone,jtwo) - targ(jone,jtwo+1)) < 1.0e-006) ...
| ((targ(jone,jtwo) < targ(jone,jtwo+1)) & ...

(fit(jone,jtwo) > fit(jone,jtwo+1)))) | ...
((targ(jone,jtwo) > targ(jone,jtwo+1)) & ...
(fit(jone,jtwo) < fit(jone,jtwo+1))))

ave = (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);
fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

cr = cr + abs(fit(jone,jtwo) - p1) + ...
abs(fit(jone,jtwo+1) - p2);

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end
end

for jone = 3:n
for jtwo = 1:(jone-2)

p1 = fit(jtwo,jone);
p2 = fit(jtwo+1,jone);

82

fit(jtwo,jone) = fit(jtwo,jone) - work(indexll+1);
fit(jtwo+1,jone) = fit(jtwo+1,jone) - work(indexll+2);

if(((abs(targ(jtwo+1,jone) - targ(jtwo,jone)) < 1.0e-006) ...
| ((targ(jtwo+1,jone) < targ(jtwo,jone)) & ...
(fit(jtwo+1,jone) > fit(jtwo,jone)))) | ...
((targ(jtwo+1,jone) > targ(jtwo,jone)) & ...
(fit(jtwo+1,jone) < fit(jtwo,jone))))

ave = (fit(jtwo+1,jone) + fit(jtwo,jone))/2.0;
work(indexll+1) = ave - fit(jtwo,jone);
work(indexll+2) = ave - fit(jtwo+1,jone);
fit(jtwo+1,jone) = ave;
fit(jtwo,jone) = ave;

cr = cr + abs(fit(jtwo,jone) - p1) + ...
abs(fit(jtwo+1,jone) - p2);

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end
end

for jone = 2:(n-1)

p1 = fit(jone,n);
p2 = fit(1,jone);

fit(jone,n) = fit(jone,n) - work(indexll+1);
fit(1,jone) = fit(1,jone) - work(indexll+2);

if(((abs(targ(jone,n) - targ(1,jone)) < 1.0e-006) ...
| ((targ(jone,n) < targ(1,jone)) & ...
(fit(jone,n) > fit(1,jone)))) | ...
((targ(jone,n) > targ(1,jone)) & ...
(fit(jone,n) < fit(1,jone))))

ave = (fit(jone,n) + fit(1,jone))/2.0;
work(indexll+1) = ave - fit(jone,n);

83

work(indexll+2) = ave - fit(1,jone);
fit(jone,n) = ave;
fit(1,jone) = ave;

cr = cr + abs(fit(jone,n) - p1) + ...
abs(fit(1,jone) - p2);

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll +2;

end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - fit).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

vaf = 1 - (diff/denom);

84

A.11 cirfit.m

function [fit, diff] = cirfit(prox,inperm)

%CIRFIT does a confirmatory fitting of a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with least-squares value DIFF.

n = size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
cr = 1.0;
iterate = 0;
coor = zeros(n,1);

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;
iterate = iterate +1;

for jone = 1:(n-1)
for jtwo = (jone+1):n

p1 = fit(jone,jtwo);

if(iterate <= 10)

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);

end

if(fit(jone,jtwo) < 0.0)

work(indexll+1) = -fit(jone,jtwo);
fit(jone,jtwo) = 0.0;

elseif(fit(jone,jtwo) >= 0.0)

work(indexll+1) = 0;

end

indexll = indexll + 1;

85

cr = cr + abs(p1-fit(jone,jtwo));

end
end

for jone = 1:(n-2)
for jtwo = (jone+2):n

if((jone ~= 1) | (jtwo ~= n))

nhto = jtwo - jone;
nhaf = n - nhto;

for i = 1:(n-1)

coor(i) = fit(i,i+1);

end

p1 = fit(jone,jtwo);
coor(n) = fit(1,n);

if(iterate <= 10)

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+3);

for i = 1:(n-1)
if(i < jone)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
elseif((i >= jone) & (i < jtwo))

fit(i,i+1) = fit(i,i+1) - work(indexll+1);
elseif(i >= jtwo)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
end

end

fit(1,n) = fit(1,n) - work(indexll+2);
end

aa = 0.0;
bb = 0.0;
aac = 0.0;
bbc = 0.0;

for i = 1:(n-1)
if(i < jone)

bb = bb + fit(i,i+1);
elseif((i >= jone) & (i < jtwo))

aa = aa + fit(i,i+1);

86

elseif(i >= jtwo)
bb = bb + fit(i,i+1);

end
end
bb = bb + fit(1,n);

if(aa <= bb)
del = (aa - fit(jone,jtwo))/(nhto+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
for i = 1:nhto

fit(jone+i-1,jone+i) = ...
fit(jone+i-1,jone+i) - del;

end

work(indexll+1) = -del;
work(indexll+2) = 0.0;
work(indexll+3) = del;

cr = cr + abs(p1-fit(jone,jtwo));
indexll = indexll + 3;

elseif(aa > bb)

del = (bb - fit(jone,jtwo))/(nhaf+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
if(jone ~= 1)

for i = 1:(jone-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end
if(jtwo ~= n)

for i = jtwo:(n-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end

fit(1,n) = fit(1,n) - del;

work(indexll+1) = 0.0;
work(indexll+2) = -del;
work(indexll+3) = del;

cr = cr + abs(p1 - fit(jone,jtwo));
indexll = indexll +3;

end
end

end
end

end

87

targ = fit;

work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
cr = 1.0;
coor = zeros(n,1);

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-1)
for jtwo = (jone+1):n

p1 = fit(jone,jtwo);
fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);

if(fit(jone,jtwo) < 0.0)

work(indexll+1) = -fit(jone,jtwo);
fit(jone,jtwo) = 0.0;

elseif(fit(jone,jtwo) >= 0.0)

work(indexll+1) = 0.0;

end

indexll = indexll + 1;
cr = cr + abs(p1-fit(jone,jtwo));

end
end

for jone = 1:(n-2)
for jtwo = (jone+2):n

if((jone ~= 1) | (jtwo ~= n))

nhto = jtwo - jone;
nhaf = n - nhto;

for i = 1:(n-1)

coor(i) = fit(i,i+1);

88

end

p1 = fit(jone,jtwo);
coor(n) = fit(1,n);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+3);

for i = 1:(n-1)
if(i < jone)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
elseif((i >= jone) & (i < jtwo))

fit(i,i+1) = fit(i,i+1) - work(indexll+1);
elseif(i >= jtwo)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
end

end

fit(1,n) = fit(1,n) - work(indexll+2);

aa = 0.0;
bb = 0.0;
aac = 0.0;
bbc = 0.0;

for i = 1:(n-1)
if(i < jone)

bbc = bbc + targ(i,i+1);
elseif((i >= jone) & (i < jtwo))

aac = aac + targ(i,i+1);
elseif(i >= jtwo)

bbc = bbc + targ(i,i+1);
end

end

bbc = bbc + targ(1,n);

for i = 1:(n-1)
if(i < jone)

bb = bb + fit(i,i+1);
elseif((i >= jone) & (i < jtwo))

aa = aa + fit(i,i+1);
elseif(i >= jtwo)

bb = bb + fit(i,i+1);
end

end
bb = bb + fit(1,n);

89

if(aac <= bbc)
del = (aa - fit(jone,jtwo))/(nhto+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
for i = 1:nhto

fit(jone+i-1,jone+i) = ...
fit(jone+i-1,jone+i) - del;

end

work(indexll+1) = -del;
work(indexll+2) = 0.0;
work(indexll+3) = del;

cr = cr + abs(p1-fit(jone,jtwo));
indexll = indexll + 3;

elseif(aac > bbc)
del = (bb - fit(jone,jtwo))/(nhaf+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
if(jone ~= 1)

for i = 1:(jone-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end
if(jtwo ~= n)

for i = jtwo:(n-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end

fit(1,n) = fit(1,n) - del;

work(indexll+1) = 0.0;
work(indexll+2) = -del;
work(indexll+3) = del;

cr = cr + abs(p1 - fit(jone,jtwo));
indexll = indexll +3;

end
end

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

90

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - fit).^2));

denom = sum(sum((prox(inperm,inperm)).^2));

vaf = 1 - (diff/denom);

diff = (.5)*diff;

A.12 cirfitac.m

function [fit, vaf, addcon] = cirfitac(prox,inperm)

%CIRFITAC does a confirmatory fitting (including
% the estimation of an additive constant) for a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of
% VAF; ADDCON is the estimated additive constant.

[targ,diff] = cirfit(prox,inperm);

n = size(prox,1);
acondiff = 1.0;
addcon = 0.0;
fit = prox(inperm,inperm);

while (acondiff >= 1.0e-004)

for i = 1:n
for j = 1:n

if(i ~= j)
fit(i,j) = prox(inperm(i),inperm(j)) + addcon;

91

else
fit(i,j) = 0.0;

end
end

end

addconpv = addcon;

work = zeros(n*(n-1)*(n-2),1);
cr = 1.0;
coor = zeros(n,1);

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-1)
for jtwo = (jone+1):n

p1 = fit(jone,jtwo);
fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);

if(fit(jone,jtwo) < 0.0)

work(indexll+1) = -fit(jone,jtwo);
fit(jone,jtwo) = 0.0;

elseif(fit(jone,jtwo) >= 0.0)

work(indexll+1) = 0.0;

end

indexll = indexll + 1;
cr = cr + abs(p1-fit(jone,jtwo));

end
end

for jone = 1:(n-2)
for jtwo = (jone+2):n

if((jone ~= 1) | (jtwo ~= n))

nhto = jtwo - jone;
nhaf = n - nhto;

92

for i = 1:(n-1)

coor(i) = fit(i,i+1);

end

p1 = fit(jone,jtwo);
coor(n) = fit(1,n);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+3);

for i = 1:(n-1)
if(i < jone)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
elseif((i >= jone) & (i < jtwo))

fit(i,i+1) = fit(i,i+1) - work(indexll+1);
elseif(i >= jtwo)

fit(i,i+1) = fit(i,i+1) - work(indexll+2);
end

end

fit(1,n) = fit(1,n) - work(indexll+2);

aa = 0.0;
bb = 0.0;
aac = 0.0;
bbc = 0.0;

for i = 1:(n-1)
if(i < jone)

bbc = bbc + targ(i,i+1);
elseif((i >= jone) & (i < jtwo))

aac = aac + targ(i,i+1);
elseif(i >= jtwo)

bbc = bbc + targ(i,i+1);
end

end

bbc = bbc + targ(1,n);

for i = 1:(n-1)
if(i < jone)

bb = bb + fit(i,i+1);
elseif((i >= jone) & (i < jtwo))

aa = aa + fit(i,i+1);

93

elseif(i >= jtwo)
bb = bb + fit(i,i+1);

end
end
bb = bb + fit(1,n);

if(aac <= bbc)
del = (aa - fit(jone,jtwo))/(nhto+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
for i = 1:nhto

fit(jone+i-1,jone+i) = ...
fit(jone+i-1,jone+i) - del;

end

work(indexll+1) = -del;
work(indexll+2) = 0.0;
work(indexll+3) = del;

cr = cr + abs(p1-fit(jone,jtwo));
indexll = indexll + 3;

elseif(aac > bbc)
del = (bb - fit(jone,jtwo))/(nhaf+1);
fit(jone,jtwo) = fit(jone,jtwo) + del;
if(jone ~= 1)

for i = 1:(jone-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end
if(jtwo ~= n)

for i = jtwo:(n-1)
fit(i,i+1) = fit(i,i+1) - del;

end
end

fit(1,n) = fit(1,n) - del;

work(indexll+1) = 0.0;
work(indexll+2) = -del;
work(indexll+3) = del;

cr = cr + abs(p1 - fit(jone,jtwo));
indexll = indexll +3;

end

end
end

end

94

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

addcon = -sum(sum(prox(inperm,inperm) - fit))/(n*(n-1));
acondiff = abs(addcon - addconpv);

end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;
fmadd(i,j) = fit(i,j) - addcon;

else
proxave(i,j) = 0;
fmadd(i,j) = 0.0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - (fmadd)).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

vaf = 1 - (diff/denom);

A.13 cirarobfnd.m

function [fit, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

% CIRAROBFND fits a circular anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a permutation
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having a circular anti-Robinson form for the row and column

95

% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative quadratic assignment
% routine.

n = size(prox,1);
[proxrandom,targlin,targcir] = ransymat(n);

[outperm,rawindex,allperms,index] = order(prox,targcir,inperm,kblock);

[target,diff] = cirfit(prox,outperm);

[fit,vaf] = cirarobfit(prox,outperm,target);

nprevperm = 1;

while (nprevperm == 1)

nprevperm = 0;
prevperm = outperm;
inperm = outperm;

[outperm,rawindex,allperms,index] = order(prox,fit,inperm,kblock);
[fit,vaf] = cirarobfit(prox,outperm,target);

if (any(prevperm - outperm) == 1)
nprevperm = 1;

end
end

A.14 cirsarobfit.m

function [fit, vaf] = cirsarobfit(prox,inperm,target)

% CIRSAROBFIT fits a strongly circular anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers (around a circle);
% TARGET is a given $n \times n$ matrix having the circular anti-Robinson
% form that guides the direction in which distances are taken around the circle.
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having a strongly circular anti-Robinson form for the row and column
% object ordering given by INPERM.

[targ,vaf] = cirarobfit(prox,inperm,target);

n = size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);

96

cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone,jtwo+1);

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+2);

if(((abs(targ(jone,jtwo) - targ(jone,jtwo+1)) < 1.0e-006) ...
| ((targ(jone,jtwo) < targ(jone,jtwo+1)) & ...
(fit(jone,jtwo) > fit(jone,jtwo+1)))) | ...
((targ(jone,jtwo) > targ(jone,jtwo+1)) & ...
(fit(jone,jtwo) < fit(jone,jtwo+1))))

ave = (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);
fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

cr = cr + abs(fit(jone,jtwo) - p1) + ...
abs(fit(jone,jtwo+1) - p2);

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end
end

for jone = 3:n
for jtwo = 1:(jone-2)

p1 = fit(jtwo,jone);
p2 = fit(jtwo+1,jone);

fit(jtwo,jone) = fit(jtwo,jone) - work(indexll+1);
fit(jtwo+1,jone) = fit(jtwo+1,jone) - work(indexll+2);

97

if(((abs(targ(jtwo+1,jone) - targ(jtwo,jone)) < 1.0e-006) ...
| ((targ(jtwo+1,jone) < targ(jtwo,jone)) & ...
(fit(jtwo+1,jone) > fit(jtwo,jone)))) | ...
((targ(jtwo+1,jone) > targ(jtwo,jone)) & ...
(fit(jtwo+1,jone) < fit(jtwo,jone))))

ave = (fit(jtwo+1,jone) + fit(jtwo,jone))/2.0;
work(indexll+1) = ave - fit(jtwo,jone);
work(indexll+2) = ave - fit(jtwo+1,jone);
fit(jtwo+1,jone) = ave;
fit(jtwo,jone) = ave;

cr = cr + abs(fit(jtwo,jone) - p1) + ...
abs(fit(jtwo+1,jone) - p2);

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end
end

for jone = 2:(n-1)

p1 = fit(jone,n);
p2 = fit(1,jone);

fit(jone,n) = fit(jone,n) - work(indexll+1);
fit(1,jone) = fit(1,jone) - work(indexll+2);

if(((abs(targ(jone,n) - targ(1,jone)) < 1.0e-006) ...
| ((targ(jone,n) < targ(1,jone)) & ...
(fit(jone,n) > fit(1,jone)))) | ...
((targ(jone,n) > targ(1,jone)) & ...
(fit(jone,n) < fit(1,jone))))

ave = (fit(jone,n) + fit(1,jone))/2.0;
work(indexll+1) = ave - fit(jone,n);
work(indexll+2) = ave - fit(1,jone);
fit(jone,n) = ave;
fit(1,jone) = ave;

cr = cr + abs(fit(jone,n) - p1) + ...
abs(fit(1,jone) - p2);

98

else
work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll +2;

end

for jone = 1:(n-3)
for jtwo = (jone+2):(n-1)

p1 = fit(jone,jtwo);
p2 = fit(jone+1,jtwo);
p3 = fit(jone,jtwo+1);
p4 = fit(jone+1,jtwo+1);

if(targ(jone,jtwo+1) <= targ(jone+1,jtwo))

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone+1,jtwo) = fit(jone+1,jtwo) - work(indexll+2);

if(abs(targ(jone,jtwo+1) - targ(jone+1,jtwo+1)) ...
<= 1.0e-006)

ave = (fit(jone,jtwo) + fit(jone+1,jtwo))/2.0;

work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone+1,jtwo);

fit(jone,jtwo) = ave;
fit(jone+1,jtwo) = ave;

cr = cr + abs(fit(jone,jtwo) - p1) + ...
abs(fit(jone+1,jtwo) - p2);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

else

fit(jone,jtwo+1) = fit(jone,jtwo+1) - work(indexll+1);

99

fit(jone+1,jtwo+1) = fit(jone+1,jtwo+1) - ...
work(indexll+2);

if(abs(targ(jone,jtwo) - targ(jone+1,jtwo)) ...
<= 1.0e-006)

ave = (fit(jone,jtwo+1) + fit(jone+1,jtwo+1))/2.0;

work(indexll+1) = ave - fit(jone,jtwo+1);
work(indexll+2) = ave - fit(jone+1,jtwo+1);

fit(jone,jtwo+1) = ave;
fit(jone+1,jtwo+1) = ave;

cr = cr + abs(fit(jone,jtwo+1) - p3) ...
+ abs(fit(jone+1,jtwo+1) - p4);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end

p1 = fit(jone,jtwo);
p2 = fit(jone+1,jtwo);
p3 = fit(jone,jtwo+1);
p4 = fit(jone+1,jtwo+1);

if(targ(jone,jtwo+1) <= targ(jone+1,jtwo))

fit(jone+1,jtwo) = fit(jone+1,jtwo) - work(indexll+1);
fit(jone+1,jtwo+1) = fit(jone+1,jtwo+1) - work(indexll+2);

if(abs(targ(jone,jtwo) - targ(jone,jtwo+1)) ...
<= 1.0e-006)

ave = (fit(jone+1,jtwo) + fit(jone+1,jtwo+1))/2.0;

work(indexll+1) = ave - fit(jone+1,jtwo);
work(indexll+2) = ave - fit(jone+1,jtwo+1);

fit(jone+1,jtwo) = ave;
fit(jone+1,jtwo+1) = ave;

cr = cr + abs(fit(jone+1,jtwo) - p2) + ...

100

abs(fit(jone+1,jtwo+1) - p4);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

else

fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jone,jtwo+1) = fit(jone,jtwo+1) - ...

work(indexll+2);

if(abs(targ(jone+1,jtwo) - targ(jone+1,jtwo+1)) ...
<= 1.0e-006)

ave = (fit(jone,jtwo) + fit(jone,jtwo+1))/2.0;

work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jone,jtwo+1);

fit(jone,jtwo) = ave;
fit(jone,jtwo+1) = ave;

cr = cr + abs(fit(jone,jtwo) - p1) ...
+ abs(fit(jone,jtwo+1) - p3);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end

end
end

for jone = 2:(n-2)

p1 = fit(jone,n);
p2 = fit(jone+1,n);

101

p3 = fit(1,jone);
p4 = fit(1,jone+1);

if(targ(1,jone) <= targ(jone+1,n))

fit(jone,n) = fit(jone,n) - work(indexll+1);
fit(jone+1,n) = fit(jone+1,n) - work(indexll+2);

if(abs(targ(1,jone) - targ(1,jone+1)) ...
<= 1.0e-006)

ave = (fit(jone,n) + fit(jone+1,n))/2.0;

work(indexll+1) = ave - fit(jone,n);

work(indexll+2) = ave - fit(jone+1,n);

fit(jone,n) = ave;
fit(jone+1,n) = ave;

cr = cr + abs(fit(jone,n) - p1) + ...
abs(fit(jone+1,n) - p2);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

else

fit(1,jone) = fit(1,jone) - work(indexll+1);
fit(1,jone+1) = fit(1,jone+1) - ...

work(indexll+2);

if(abs(targ(jone,n) - targ(jone+1,n)) ...
<= 1.0e-006)

ave = (fit(1,jone) + fit(1,jone+1))/2.0;

work(indexll+1) = ave - fit(1,jone);
work(indexll+2) = ave - fit(1,jone+1);

fit(1,jone) = ave;
fit(1,jone+1) = ave;

cr = cr + abs(fit(1,jone) - p3) ...
+ abs(fit(1,jone+1) - p4);

102

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end

p1 = fit(jone,n);
p2 = fit(jone+1,n);
p3 = fit(1,jone);
p4 = fit(1,jone+1);

if(targ(1,jone) <= targ(jone+1,n))

fit(jone+1,n) = fit(jone+1,n) - work(indexll+1);
fit(1,jone+1) = fit(1,jone+1) - work(indexll+2);

if(abs(targ(jone,n) - targ(1,jone)) ...
<= 1.0e-006)

ave = (fit(jone+1,n) + fit(1,jone+1))/2.0;

work(indexll+1) = ave - fit(jone+1,n);
work(indexll+2) = ave - fit(1,jone+1);

fit(jone+1,n) = ave;
fit(1,jone+1) = ave;

cr = cr + abs(fit(jone+1,n) - p2) + ...
abs(fit(1,jone+1) - p4);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

else

fit(jone,n) = fit(jone,n) - work(indexll+1);
fit(1,jone) = fit(1,jone) - ...

work(indexll+2);

103

if(abs(targ(jone+1,n) - targ(1,jone+1)) ...
<= 1.0e-006)

ave = (fit(jone,n) + fit(1,jone))/2.0;

work(indexll+1) = ave - fit(jone,n);
work(indexll+2) = ave - fit(1,jone);

fit(jone,n) = ave;
fit(1,jone) = ave;

cr = cr + abs(fit(jone,n) - p1) ...
+ abs(fit(1,jone) - p3);

else

work(indexll+1) = 0.0;
work(indexll+2) = 0.0;

end

indexll = indexll + 2;

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

104

diff = sum(sum((prox(inperm,inperm) - fit).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

vaf = 1 - (diff/denom);

[newtarg,vaf] = csrobpolish(prox,inperm,fit);

[renewtarg,vaf] = csrobpolish(prox,inperm,newtarg);

[fit,vaf] = csrobpolish(prox,inperm,renewtarg);

A.15 cirsarobfnd.m

function [fit, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)

% CIRSAROBFND fits a strongly circular anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a permutation
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIT is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX having a strongly circular anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative quadratic assignment
% routine.

[target,vaf,outperm] = cirarobfnd(prox,inperm,kblock)

[fit,vaf] = cirsarobfit(prox,outperm,target);

A.16 bicirarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = bicirarobfnd(prox,inperm,kblock)

% BICIRAROBFND finds and fits the sum of two circular anti-Robinson matrices using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX and is the sum of the two circular anti-Robinson matrices
% TARGONE and TARGTWO based on the two row and column

105

% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

n = size(prox,1);

[targ1,vaftarg1,outperm1] = cirarobfnd_ac(prox,inperm,kblock);

resprox1(outperm1,outperm1) = prox(outperm1,outperm1) - targ1;

[targ2,vaftarg2,outperm2] = cirarobfnd_ac(resprox1,inperm,kblock);

resprox2(outperm2,outperm2) = resprox1(outperm2,outperm2) - targ2;

find = prox - resprox2;

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0.0;

end
end

end

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

targone = targ1;
targtwo = targ2;
outpermone = outperm1;
outpermtwo = outperm2;

vafdiff = 1.0;

while (vafdiff >= 1.0e-006)

vafprev = vaf;

resprox(outpermtwo,outpermtwo) = prox(outpermtwo,outpermtwo) - targtwo;
[targone,vafone] = cirarobfit(resprox,outpermone,targone);

resprox(outpermone,outpermone) = prox(outpermone,outpermone) - targone;
[targtwo,vaftwo] = cirarobfit(resprox,outpermtwo,targtwo);

find(outpermone,outpermone) = targone;

106

find(outpermtwo,outpermtwo) = find(outpermtwo,outpermtwo) + targtwo;

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf - vafprev);
end

A.17 bicirsarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = bicirsarobfnd(prox,inperm,kblock)

% BICIRSAROBFND fits the sum of two stongly circular-anti-Robinson matrices using iterative
% projection to a symmetric proximity matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
% PROX is the input proximity matrix ($n \times n$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-accounted-for
% of VAF) to PROX and is the sum of the two strongly circular-anti-Robinson matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

n = size(prox,1);

[targ1,vaftarg1,outperm1] = cirsarobfnd_ac(prox,inperm,kblock);

resprox1(outperm1,outperm1) = prox(outperm1,outperm1) - targ1;

[targ2,vaftarg2,outperm2] = cirsarobfnd_ac(resprox1,inperm,kblock);

resprox2(outperm2,outperm2) = resprox1(outperm2,outperm2) - targ2;

find = prox - resprox2;

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if(i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0.0;

end
end

end

107

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

targone = targ1;
targtwo = targ2;
outpermone = outperm1;
outpermtwo = outperm2;

vafdiff = 1.0;
iteration = 0;

while ((vafdiff >= 1.0e-006) & (iteration <= 100))

vafprev = vaf;
iteration = iteration + 1;

resprox(outpermtwo,outpermtwo) = prox(outpermtwo,outpermtwo) - targtwo;
[targone,vafone] = cirsarobfit(resprox,outpermone,targone);

resprox(outpermone,outpermone) = prox(outpermone,outpermone) - targone;
[targtwo,vaftwo] = cirsarobfit(resprox,outpermtwo,targtwo);

find(outpermone,outpermone) = targone;
find(outpermtwo,outpermtwo) = find(outpermtwo,outpermtwo) + targtwo;

diff = sum(sum((prox - find).^2));
denom = sum(sum((prox - proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf - vafprev);
end

108

