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Part I

Linear Unidimensional Scaling (LUS)

4



The task of linear unidimensional scaling (LUS) can be characterized as a very specific
data analysis problem: given a set of n objects, S = {O1, ..., On}, and an n × n symmetric
proximity matrix P = {pij}, arrange the objects along a single dimension such that the in-
duced n(n− 1)/2 interpoint distances between the objects reflect the proximities in P. The
term “proximity” merely refers to some arbitrary symmetric numerical measure of relation-
ship between each object pair (pij = pji for 1 ≤ i, j ≤ n) and for which all self-proximities
are considered irrelevant and set equal to zero (pii = 0 for 1 ≤ i ≤ n). As a technical con-
venience, proximities are assumed nonnegative and are given a dissimilarity interpretation,
i.e., large proximities refer to dissimilar objects.

Given the inherent vagueness regarding the technical details involved in the unidimen-
sional scaling task, it should not be surprising that a variety of approaches to it are available
in the literature. As a starting point to be developed first in Chapter 1, we consider an
obvious formalization assuming the interpoint distances along a continuum are Euclidean
and that the measure of how close the interpoint distances are to the given proximities is the
sum of squared discrepancies. Specifically, we wish to find the n coordinates, x1, x2, . . . , xn,
such that the least-squares (or L2) criterion∑

i<j

(pij − |xj − xi|)2 (1)

is minimized. Although there is some inherent arbitrariness in the selection of this measure
of goodness-of-fit for metric scaling and the reliance on Euclidean interpoint distances, these
choices are traditional and have been discussed in some detail in the literature by Guttman
(1968), Defays (1978), de Leeuw and Heiser (1977), and Hubert and Arabie (1986), among
others. In the first chapter that follows in this Part I, we present several functions in the
Combinatorial Data Analysis (CDA) Toolbox (within a MATLAB environment) for this L2

task based on a number of different optimization strategies, e.g., dynamic programming, the
iterative use of a quadratic assignment improvement heuristic, Pliner’s technique of smooth-
ing, the original Guttman update method, and a nonlinear programming reformulation by
Lau, Leung, and Tse (1998). Several generalizations of the unidimensional scaling task are
given (along with appropriate Toolbox implementations): the incorporation of a fitted ad-
ditive constant by replacing the absolute coordinate difference |xj − xi| by [|xj − xi| − c],
where c is a constant to be estimated along with the n coordinates; the extension to multiple
(additive) unidimensional scalings of a common proximity matrix; and in Chapter 2, the
replacement of the L2 least-squares loss function by the minimization of the sum of absolute
deviations (the L1 criterion).

In addition to making available the basic MATLAB m-functions for carrying out the
various unidimensional scaling tasks, several important computational improvements are
also discussed and compared. These involve either transforming a given m-function with
the MATLAB Compiler into C code that can in turn be submitted to a C/C++ compiler,
or alternatively, rewriting an m-function and the mandatory MATLAB gateway directly in
Fortran90 and then compiling into a MATLAB callable *.dll file (within a windows envi-
ronment). In some cases studied, the computational improvements are very dramatic when
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the use of an external Fortran coded *.dll is compared either to one generated through C
by use of the MATLAB Compiler, or as might be more expected, to the original interpreted
m-function directly within a MATLAB environment.
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Chapter 1

LUS in the L2 Norm

As an alternative reformulation of the L2 unidimensional scaling task that will prove very
convenient as a point of departure in our development of computational routines, the op-
timization suggested by (1) can be subdivided into two separate problems to be solved
simultaneously: find a set of n numbers, x1 ≤ x2 ≤ · · · ≤ xn, and a permutation on the first
n integers, ρ(·) ≡ ρ, for which ∑

i<j

(pρ(i)ρ(j) − (xj − xi))
2 (1.1)

is minimized. Thus, a set of locations (coordinates) is defined along a continuum as repre-
sented in ascending order by the sequence x1, x2, . . . , xn; the n objects are allocated to these
locations by the permutation ρ, i.e., object Oρ(i) is placed at location i. In fact, without loss
of generality we can and will impose one additional constraint that

∑
i xi = 0, i.e., any set of

values, x1, x2, . . . , xn, can be replaced by x1 − x̄, x2 − x̄, . . . , xn − x̄, where x̄ = (1/n)
∑

i xi,
without altering the value of (1) or (1.1). Formally, if ρ∗ and x∗1 ≤ x∗2 ≤ · · · ≤ x∗n define a
global minimum of (1.1), and Ω denotes the set of all permutations of the first n integers,
then ∑

i<j

(pρ∗(i)ρ∗(j) − (x∗j − x∗i ))
2 =

min[
∑
i<j

(pρ(i)ρ(j) − (xj − xi))
2 | ρ ∈ Ω; x1 ≤ · · · ≤ xn;

∑
i

xi = 0].

The measure of loss in (1.1) can be reduced algebraically:∑
i<j

p2
ij + n(

∑
i

x2
i − 2

∑
i

xit
(ρ)
i ), (1.2)

subject to the constraints that x1 ≤ · · · ≤ xn and
∑

i xi = 0, and letting

t
(ρ)
i = (u

(ρ)
i − v

(ρ)
i )/n,

where

u
(ρ)
i =

i−1∑
j=1

pρ(i)ρ(j) for i ≥ 2;
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v
(ρ)
i =

n∑
j=i+1

pρ(i)ρ(j) for i < n,

and
u

(ρ)
1 = v(ρ)

n = 0.

In words, u
(ρ)
i is the sum of the entries within row ρ(i) of {pρ(i)ρ(j)} from the extreme left up

to the main diagonal; v
(ρ)
i is the sum from the main diagonal to the extreme right. Or, we

might rewrite (1.2) as

∑
i<j

p2
ij + n

(∑
i

(xi − t
(ρ)
i )2 −

∑
i

(t
(ρ)
i )2

)
. (1.3)

In (1.3), the two terms
∑

i(xi − t
(ρ)
i )2 and

∑
i(t

(ρ)
i )2 control the size of the discrepancy index

since
∑

i<j p2
ij is constant for any given data matrix. Thus, to minimize the original index in

(1.1), we should simultaneously minimize
∑

i(xi− t
(ρ)
i )2 and maximize

∑
i(t

(ρ)
i )2. If the equiv-

alent form of (1.2) is considered, our concern would be in minimizing
∑

i x
2
i and maximizing∑

i xit
(ρ)
i .

As noted first by Defays (1978), the minimization of (1.3) can be carried out directly

by the maximization of the single term,
∑

i(t
(ρ)
i )2 (under the mild regularity condition that

all off-diagonal proximities in P are positive and not merely nonnegative). Explicitly, if

ρ∗ is a permutation that maximizes
∑

i(t
(ρ)
i )2, then we can let xi = t

(ρ∗)
i , which eliminates

the term
∑

i(xi − t
(ρ∗)
i )2 from (1.3). In short, because the order induced by t

(ρ∗)
1 , . . . , t(ρ

∗)
n is

consistent with the constraint x1 ≤ x2 ≤ · · · ≤ xn, the minimization of (1.3) reduces to the

maximization of the single term
∑

i(t
(ρ)
i )2 with the coordinate estimation completed as an

automatic byproduct.

1.1 Optimization Methods for
∑

i(t
(ρ)
i )2

The maximization of
∑

i(t
(ρ)
i )2 over all permutations is a prototypical combinatorial optimiza-

tion task, and a variety of different methods are available for its solution. Unfortunately,
because this optimization task is representative of the class of so-called NP-hard problems
(e.g., see Garey and Johnson, 1979), any procedure yielding verifiably globally optimal so-
lutions would be severely limited by the size of the matrices that could be realistically
processed. We begin in the first subsection below, the discussion of a dynamic programming
strategy for the maximization of

∑
i(t

(ρ)
i )2 proposed by Hubert and Arabie (1986) that will

produce globally optimal solutions for proximity matrices of sizes up to, say, the low twenties
(within a MATLAB environment). We will provide and illustrate in some detail a MAT-
LAB function that carries out the optimization; also as a mechanism for speeding up the
optimization, we discuss the use of the MATLAB C/C++ Compiler and external Fortran
subroutines and their gateways to allow externally generated functions to be callable from
MATLAB. The other subsections of this section present other (heuristic) methods for the
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maximization of
∑

i(t
(ρ)
i )2 and illustrate the use of their MATLAB function implementations

that are provided.
It is convenient to have a small numerical example available as we discuss the various

optimization strategies in the unidimensional scaling context. To this end we list a data
file below, called ‘number.dat’, that contains a dissimilarity matrix taken from Shepard,
Kilpatric, and Cunningham (1975). The stimulus domain is the first ten single-digits {0,1,2,
. . . , 9} considered as abstract concepts; the 10 × 10 proximity matrix (with an ith row or
column corresponding to the i− 1 digit) was constructed by averaging dissimilarity ratings
for distinct pairs of those integers over a number of subjects and conditions. An inspection of
these data suggests there may be some very regular but possibly complex manifest patterning
reflecting either structural characteristics of the digits (e.g., the powers of 2 or of 3, the
salience of the two additive/multiplicative identities [0/1], oddness/evenness), or of absolute
magnitudes. These data will be relied on to provide concrete numerical illustrations of the
various MATLAB functions we introduce, and will be loaded as a proximity matrix (and
importantly, as one that is symmetric and has zero values along the main diagonal) in the
MATLAB environment by the command ‘load number.dat’.

.000 .421 .584 .709 .684 .804 .788 .909 .821 .850

.421 .000 .284 .346 .646 .588 .758 .630 .791 .625

.584 .284 .000 .354 .059 .671 .421 .796 .367 .808

.709 .346 .354 .000 .413 .429 .300 .592 .804 .263

.684 .646 .059 .413 .000 .409 .388 .742 .246 .683

.804 .588 .671 .429 .409 .000 .396 .400 .671 .592

.788 .758 .421 .300 .388 .396 .000 .417 .350 .296

.909 .630 .796 .592 .742 .400 .417 .000 .400 .459

.821 .791 .367 .804 .246 .671 .350 .400 .000 .392

.850 .625 .808 .263 .683 .592 .296 .459 .392 .000

1.1.1 Dynamic Programming

To maximize
∑

i(t
(ρ)
i )2 over all permutations, we construct a function, F(·), by recursion for

all possible subsets of the first n integers, {1, 2, . . . , n}:
a) F(�) = 0, where � is the empty set;

b) F(R′) = max[F(R) + d(R, i)], where R′ and R are subsets of size k + 1 and k,
respectively; the maximum is taken over all subsets R and indices i such that R′ = R ∪ {i};
and d(R, i) is the incremental value that would be added to the criterion if the objects in R
had formed the first k values assigned by the optimal permutation and i had been the next
assignment made, i.e., ρ(k + 1) = i. Explicitly,

d(R, i) = [(1/n){
∑
j∈R

pij −
∑

j( 6=i)/∈R

pij}]2;

c) the optimal value of the criterion, i.e., F({1, 2, . . . , n}), is obtained for R = {1, 2, . . . , n}
and the optimal permutation, ρ∗, identified by working backwards through the recursion to
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identify the sequence of successive subsets of decreasing size that led to the value attained
for F({1, 2, . . . , n}).

This type of dynamic programming strategy is a very general one and can be used for any
criterion for which the incremental value in identifying the index to be assigned to ρ(k + 1)
does not depend on the particular order of the assigned values in the set {ρ(1), . . . , ρ(k)}.
The reader might refer to Hubert, Arabie, and Meulman (2001) for many more applications
of dynamic programming in the combinatorial data analysis context.

The MATLAB function uniscaldp.m

The MATLAB function m-file given in Section A.1 of Appendix A, uniscaldp.m, carries out
a unidimensional scaling of a symmetric proximity matrix (with a zero main diagonal and a
dissimilarity interpretation) using the dynamic programming recursion just described. The
usage syntax has the form

[coord permut cumobfun diff] = uniscaldp(prox)

where PROX is the input proximity matrix; COORD is the set of coordinates of the optimal
unidimensional scaling in ascending order; PERMUT is the order of the objects in the optimal
permutation (say, ρ∗); CUMOBFUN gives the cumulative values of the objective function for

successive placements of the objects in the optimal permutation:
∑k

i=1(t
(ρ∗)
i )2 for k = 1, . . . , n;

DIFF is the value of the least-squares loss function for the optimal coordinates and object
permutation. A recording of a MATLAB session using the number.dat data file follows:

load number.dat

number

number =

Columns 1 through 7

0 0.4210 0.5840 0.7090 0.6840 0.8040 0.7880

0.4210 0 0.2840 0.3460 0.6460 0.5880 0.7580

0.5840 0.2840 0 0.3540 0.0590 0.6710 0.4210

0.7090 0.3460 0.3540 0 0.4130 0.4290 0.3000

0.6840 0.6460 0.0590 0.4130 0 0.4090 0.3880

0.8040 0.5880 0.6710 0.4290 0.4090 0 0.3960

0.7880 0.7580 0.4210 0.3000 0.3880 0.3960 0

0.9090 0.6300 0.7960 0.5920 0.7420 0.4000 0.4170

0.8210 0.7910 0.3670 0.8040 0.2460 0.6710 0.3500

0.8500 0.6250 0.8080 0.2630 0.6830 0.5920 0.2960

Columns 8 through 10
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0.9090 0.8210 0.8500

0.6300 0.7910 0.6250

0.7960 0.3670 0.8080

0.5920 0.8040 0.2630

0.7420 0.2460 0.6830

0.4000 0.6710 0.5920

0.4170 0.3500 0.2960

0 0.4000 0.4590

0.4000 0 0.3920

0.4590 0.3920 0

[coord permut cumobfun diff] = uniscaldp(number)

coord =

-0.6570

-0.4247

-0.2608

-0.1492

-0.0566

0.0842

0.1988

0.3258

0.4050

0.5345

permut =

1

2

3

5

4

6

7

9

10

8
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cumobfun =

43.1649

61.2019

68.0036

70.2296

70.5500

71.2590

75.2111

85.8257

102.2282

130.7972

diff =

1.9599

The second column of Table 1.1 provides some time comparisons (in seconds) for the
use of uniscaldp.m over randomly constructed proximity matrices of size n × n for n =
10 to 24. The matrices were randomly generated using the utility program ransymat.m

given in Section B.1 of Appendix B (the usage syntax of ransymat.m can be seen from its
header comments). The computer on which these times were obtained is a laptop with a
750MHz Pentium processor and 512MB of RAM; for matrices of size 25 × 25 and above,
an “insufficient memory” message is obtained so the largest matrix size possible in Table
1.1 is 24. The execution times (obtained using the tic toc command pair in MATLAB)
range from 1.43 seconds for n = 10 to a rather enormous 116550.0 seconds for n = 24
(which is about 32.4 hours). As can be seen from the timings given, there is a fairly regular
proportional increase in execution time of about 2.2 for each unit increase in n.

The MATLAB C/C++ Compiler

One of the separate add-on components that can be obtained with MATLAB is a C/C++
Compiler that when applied to a function m-file, such as uniscaldp.m, produces C or C++
code. The latter can itself then be compiled by a separate C/C++ compiler to produce
(in a windows environment) a *.dll file that can be called within MATLAB just like a *.m
function. As an example, we first renamed a version of uniscaldp.m to uniscaldpc.m

and then applied in MATLAB 6 the C/C++ Compiler Version 2.1 with all the possible
optimization options selected; the resulting code was compiled with the built-in C compiler
(called lcc) to produce uniscaldpc.dll

We give the timings for the use of uniscaldpc.dll in the third column of Table 1.1. As
n increases by 1, the execution times increase by about 2.2 just as for uniscaldp.m; but
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overall, the compiled uniscaldpc.dll executes at about 4.3 times faster than the interpreted
file uniscaldp.m.

A GAUSS procedure paralleling uniscaldp.m

One of the arguments heard informally (at least among some of our colleagues) for using
the program GAUSS rather than MATLAB is that the former is generally much faster com-
putationally than the latter, even though both are interpreters. To evaluate this conjecture
within the present unidimensional scaling context, a GAUSS procedure, given in Appendix
B.2, was written that parallels uniscaldp.m. The fourth column of Table 1.1 gives the tim-
ings for the recent version of GAUSS (Version 3.5). Again, there is an increase in execution
time of about 2.2 for each unit increase in n; GAUSS, however, is about 7.5 times faster
than the comparable MATLAB function, and even about 1.8 times faster than using the C
compiled uniscaldpc.dll. Our colleagues apparently have a point here.

External Fortran subroutines

One strategy for decreasing the execution time of an m-file would replace part of the code that
may be slow (usually nonvectorizable “for” loops, for example) by a call to a *.dll that is pro-
duced from a Fortran subroutine implementing the code in its own language. As an example,
the m-function listed in Appendix A.2, uniscaldpf.m, is a parallel of uniscaldp.m except
that the actual recursion constructing the two crucial vectors (and from which the optimal
solution is eventually identified by working backwards) is replaced by a call to uscalfor.dll.
This latter file (called a Fortran MEX-file in MATLAB) was produced using the MATLAB
Application Program Interface (API) through the Digital Visual Fortran90 (6.0) Compiler
and with the central computational Fortran subroutine uscalfor.for in Appendix Section
A.2.1 and the second necessary gateway Fortran subroutine uscalforgw.for in Appendix
Section A.2.2. These two subroutines are compiled together to produce uscalfor.dll that
is then called in uniscaldpf.m to do “the heavy lifting”.

In comparison to the other times listed in Table 1.1, the speedup provided by using
the routine uniscaldpf.m is rather incredible. There is generally the same type of 2.2
proportional increase in time for each unit change in n (except for the odd anomaly for
n = 24, which must be due to some type of caching/virtual memory difficulty). In comparison
to the basic m-function, uniscaldp.m, there is a 700/800 increase in speed for uniscaldpf.m.
As one dramatic example, when n = 23 the analysis takes about a minute for uniscaldpf.m,
but 15.5 hours for uniscaldp.m.

1.1.2 Iterative Quadratic Assignment

Because of the manner in which the discrepancy index for the unidimensional scaling task
can be rephrased as in (1.2) and (1.3), the two optimization subproblems to be solved simul-
taneously of identifying an optimal permutation and a set of coordinates can be separated:
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Table 1.1: Time comparisons in seconds for the various implementations of unidimensional
scaling through dynamic programming

matrix size uniscaldp.m uniscaldpc.dll gauss/uniscaldp uniscaldpf.m
10 1.43 .33 .22 .00
11 3.30 .77 .44 .00
12 7.42 1.81 .99 .00
13 16.75 3.96 2.25 .00
14 37.62 8.90 5.05 .05
15 83.98 19.88 11.37 .17
16 186.09 43.99 25.54 .28
17 411.45 96.95 56.63 .60
18 904.57 212.56 125.01 1.43
19 2007.5 465.66 272.65 3.02
20 4465.4 1050.3 595.29 6.54
21 11415. 2236.9 1351.3 14.06
22 24728. 4992.4 3103.8 30.04
23 55706. 12451. 6840.5 63.88
24 116550. 23371. 15942. 1148.4

(a) assuming that an ordering of the objects is known (and denoted, say, as ρ0 for the

moment), find those values x0
1 ≤ · · · ≤ x0

n to minimize
∑

i(x
0
i − t

(ρ0)
i )2. If the permutation ρ0

produces a monotonic form for the matrix {pρ0(i)ρ0(j)} in the sense that t
(ρ0)
1 ≤ t

(ρ0)
2 ≤ · · · ≤

t(ρ
0)

n , the coordinate estimation is immediate by letting x0
i = t

(ρ0)
i , in which case

∑
i(x

0
i−t

(ρ0)
i )2

is zero.

(b) assuming that the locations x0
1 ≤ · · · ≤ x0

n are known, find the permutation ρ0

to maximize
∑

i xit
(ρ0)
i . We note from the work of Hubert and Arabie (1986, p. 189) that

any such permutation which even only locally maximizes
∑

i xit
(ρ0)
i in the sense that no

adjacently placed pair of objects in ρ0 could be interchanged to increase the index, will
produce a monotonic form for the non-negative matrix {pρ0(i)ρ0(j)}. Also, the task of finding

the permutation ρ0 to maximize
∑

i xit
(ρ0)
i is actually a quadratic assignment (QA) task which

has been discussed extensively in the literature of operations research, e.g., see Francis and
White (1974), Lawler (1975), Hubert and Schultz (1976), among others. As usually defined, a
QA problem involves two n×n matrices A = {aij} and B = {bij}, and we seek a permutation
ρ to maximize

Γ(ρ) =
∑
i,j

aρ(i)ρ(j)bij. (1.4)

If we define bij = |xi − xj| and let aij = pij, then

Γ(ρ) =
∑
i,j

pρ(i)ρ(j)|xi − xj| = 2n
∑

i

xit
(ρ)
i ,
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and thus, the permutation that maximizes Γ(ρ) also maximizes
∑

xit
(ρ)
i .

The QA optimization task as formulated through (1.4) has an enormous literature at-
tached to it, and the reader is referred to Pardalos and Wolkowicz (1994) for an up-to-date
and comprehensive review. For current purposes and as provided in three general m-functions
of the next subsection (pairwiseqa.m, rotateqa.m, and insertqa.m), one might consider
the optimization of (1.4) through simple object interchange/rearrangement heuristics. Based
on given matrices A and B, and beginning with some permutation (possibly chosen at ran-
dom), local interchanges/rearrangements of a particular type are implemented until no im-
provement in the index can be made. By repeatedly initializing such a process randomly, a
distribution over a set of local optima can be achieved. At least within the context of some
common data analysis applications, such a distribution may be highly relevant diagnostically
for explaining whatever structure might be inherent in the matrix A.

In a subsequent subsection below, we introduce the main m-function (uniscalqa.m) for
unidimensional scaling based on these earlier QA optimization strategies. In effect, we begin
with an equally-spaced set of fixed coordinates with their interpoint distances defining the B
matrix of the general QA index in (1.4) and a random object permutation; a locally-optimal
permutation is then identified through a collection of local interchanges/rearrangements; the
coordinates are re-estimated based on this identified permutation, and the whole process
repeated until no change can be made in either the identified permutation or coordinate
collection.

The QA interchange/rearrangement heuristics

The three m-functions of Appendix B.3 that carry out general QA interchange/rearrangement
heuristics all have the same general usage syntax:

[outperm rawindex allperms index] = pairwiseqa(prox,targ,inperm)

[outperm rawindex allperms index] = rotateqa(prox,targ,inperm,kblock)

[outperm rawindex allperms index] = insertqa(prox,targ,inperm,kblock)

pairwiseqa.m carries out an iterative QA maximization task using the pairwise interchanges
of objects in the current permutation defining the row and column order of the data ma-
trix. All possible such interchanges are generated and considered in turn, and whenever an
increase in the cross-product index would result from a particular interchange, it is made
immediately. The process continues until the current permutation cannot be improved upon
by any such pairwise object interchange; this final locally optimal permutation is OUTPERM

The input beginning permutation is INPERM (a permutation of the first n integers); PROX

is the n × n input proximity matrix and TARG is the n × n input target matrix (which are
respective analogues of the matrices A and B of (1.4)); the final OUTPERM row and column
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permutation of PROX has the cross-product index RAWINDEX with respect to TARG. The cell
array ALLPERMS contains INDEX entries corresponding to all the permutations identified in
the optimization, from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM. (Notice
in the example given below how the entries of a cell array must be accessed through the
curly braces, { }.) rotateqa.m carries out a similar iterative QA maximization task but
now uses the rotation (or inversion) of from 2 to KBLOCK (which is less than or equal to
n− 1) consecutive objects in the current permutation defining the row and column order of
the data matrix. insertqa.m relies on the (re-)insertion of from 1 to KBLOCK consecutive
objects somewhere in the permutation defining the current row and column order of the data
matrix.

A recording of a MATLAB session follows using the data file number.dat, and as one
representative of the three QA heuristic m-functions, invoking insertqa.m for kblock =
2. Note (a) the application of the built-in MATLAB function randperm(10) to obtain a
random input permutation of the first 10 digits; (b) the use of the utility m-function from
the Appendix B.1, ransymat(10), to generate a target matrix targlin based on an equally
(and unit) spaced set of coordinates; (c) the mechanism through the use of a “for i = 1:18”
loop for displaying the permutations identified from INPERM to OUTPERM; and (d) the identified
OUTPERM here for a QA task relying on an equally-spaced set of coordinates turns out to be
the same as found for our (globally optimal) DP solution for LUS in the L2 norm.

load number.dat

[prox10 targlin targcir] = ransymat(10);

targlin

targlin =

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 7 6 5 4 3 2 1 0 1

9 8 7 6 5 4 3 2 1 0

inperm = randperm(10)

inperm =

10 5 6 8 4 3 1 9 7 2
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kblock = 2

kblock =

2

[outperm rawindex allperms index] = ...

insertqa(number,targlin,inperm,kblock)

elapsed_time =

0.0600

outperm =

1 2 3 5 4 6 7 9 10 8

rawindex =

206.4920

allperms =

Columns 1 through 4

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 5 through 8

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 9 through 12

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 13 through 16
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[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 17 through 18

[1x10 double] [1x10 double]

index =

18

for i = 1:18

allperms{i}

end

ans =

10 5 6 8 4 3 1 9 7 2

ans =

6 10 5 8 4 3 1 9 7 2

ans =

8 6 10 5 4 3 1 9 7 2

ans =

1 8 6 10 5 4 3 9 7 2

ans =

2 1 8 6 10 5 4 3 9 7

ans =
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1 2 8 6 10 5 4 3 9 7

ans =

1 2 4 8 6 10 5 3 9 7

ans =

1 2 3 4 8 6 10 5 9 7

ans =

1 2 3 5 4 8 6 10 9 7

ans =

1 2 3 5 6 4 8 10 9 7

ans =

1 2 3 5 9 6 4 8 10 7

ans =

1 2 3 5 7 9 6 4 8 10

ans =

1 2 3 5 7 4 9 6 8 10

ans =

1 2 3 5 4 7 9 6 8 10
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ans =

1 2 3 5 4 7 6 9 8 10

ans =

1 2 3 5 4 6 7 9 8 10

ans =

1 2 3 5 4 6 7 10 9 8

ans =

1 2 3 5 4 6 7 9 10 8

The MATLAB function uniscalqa.m

The MATLAB function m-file in Section A.3 of Appendix A, uniscalqa.m, carries out a
unidimensional scaling of a symmetric dissimilarity matrix (with a zero main diagonal) us-
ing an iterative quadratic assignment strategy. We begin with an equally-spaced target,
a (random) starting permutation, and use a sequential combination of the pairwise inter-
change/rotation/insertion heuristics; the target matrix is re-estimated based on the identified
(locally optimal) permutation. The whole process is repeated until no changes can be made
in the target or the identified (locally optimal) permutation. The explicit usage syntax is

[outperm rawindex allperms index coord diff] = uniscalqa(prox,targ,inperm,kblock)

where all terms are present either in uniscaldp.m or in the three QA heuristic m-functions
of the previous subsection. A recording of a MATLAB session using number.dat follows
with results completely consistent with what was identified using uniscaldp.m.

load number.dat

[prox10 targlin targcir] = ransymat(10);

kblock = 2;

inperm = randperm(10);

targlin
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targlin =

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 0 1 2 3 4 5 6

4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4

6 5 4 3 2 1 0 1 2 3

7 6 5 4 3 2 1 0 1 2

8 7 6 5 4 3 2 1 0 1

9 8 7 6 5 4 3 2 1 0

inperm

inperm =

10 5 6 8 4 3 1 9 7 2

[outperm rawindex allperms index coord diff] = ...

uniscalqa(number,targlin,inperm,kblock)

elapsed_time =

0.0600

outperm =

8 10 9 7 6 4 5 3 2 1

rawindex =

26.1594

allperms =

Columns 1 through 4
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[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 5 through 8

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 9 through 12

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 13 through 16

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 17 through 20

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

Columns 21 through 24

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

index =

24

coord =

-0.5345

-0.4050

-0.3258

-0.1988

-0.0842

0.0566

0.1492

0.2608

0.4247

0.6570
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diff =

1.9599

1.1.3 Gradient-Based Optimization

In Guttman’s 1968 paper on multidimensional scaling, the optimization task in (1) is treated
as a special case of his general iterative algorithm based on the partial derivatives of (1) with
respect to the unknown locations. For one dimension, Guttman’s multidimensional scaling
algorithm reduces to a simple updating procedure:

x
(t+1)
i =

1

n

n∑
j=1

pijsign(x
(t)
i − x

(t)
j ), (1.5)

where t is the index of iteration. As pointed out by de Leeuw and Heiser (1977), convergence

of (1.5) is guaranteed because x
(t+1)
i only depends on the rank order of x

(t)
1 , . . . , x(t)

n , there are
a finite number of different rank orders, and no rank order can be repeated with intermediate
different rank orders. In fact, the stationary points of (1.5) are defined by all possible
orderings of P that lead to monotonic forms. Specifically, if x1, . . . , xn is a stationary point
of (1.5) and ρ is the permutation for which xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n), then {pρ(i)ρ(j)} is

monotonic, i.e., t
(ρ)
1 ≤ · · · ≤ t(ρ)

n , and, in fact, t
(ρ)
i = xρ(i) for 1 ≤ i ≤ n. Conversely, if {pij}

is monotonic, then (1.5) converges in one step if we let the initial value of xi be, say, i for
1 ≤ i ≤ n.

Guttman’s updating algorithm is in reality a procedure for finding monotonic forms for
a proximity matrix and only very indirectly can it even be characterized as a strategy for
unidimensional scaling. From a somewhat wider perspective, the general weakness of the
monotonic forms for a given matrix may indicate why multidimensional scaling methods
generally have such difficulties with local optima when restricted to a single dimension (e.g.,
see Shepard, 1974, pp. 378–379). As can be seen in the way the index of goodness-of-fit is
rewritten in (1.3), the crucial quantity for distinguishing among different monotonic forms is∑

i(t
(ρ)
i )2. Unfortunately, consideration of this latter term disappears in Guttman’s update

method because of the algorithm’s reliance on a gradient approach.

The MATLAB function guttorder.m

The MATLAB m-function in Section A.4 of Appendix A, guttorder.m, carries out a unidi-
mensional scaling of a symmetric proximity matrix based on the Guttman update formula
in (1.5). The usage syntax is

[gcoordsort gperm] = guttorder(prox,inperm)

where PROX and INPERM are as before, and the output vector GCOORDSORT contains the
coordinates ordered from the most negative to most positive; GPERM is the object permutation

23



indicating where the objects are placed at the ordered coordinates in GCOORDSORT. One easy
exercise for the reader would be to call guttorder with inperm as randperm(10) and prox

as number and merely use the ‘up arrow’ key to retrieve the call to guttorder and rerun the
routine with a new random starting permutation. One will quickly see the weakest of the
update procedure in (1.5) in finding anything that isn’t just another local optimum.

Pliner’s smoothing strategy and the MATLAB function plinorder.m

Although the use of the basic Guttman update formula appears destined to be severely prone
to finding only local optima, a smoothing strategy applied to (1.5) seems to alleviate this
problem (almost) completely. Very simply, Pliner’s (1996) smoothing strategy for the sign
function would replace sign(t) in (1.5) with

(t/ε)(2− [|t|/ε]) if |t| ≤ ε;
sign (t) if |t| > ε,

for ε > 0. Beginning with a randomly generated set of initial coordinate values and a
sufficiently large value of ε (e.g., in the m-function plinorder.m introduced below, we use
Pliner’s suggestion of an initial value of ε equal to twice the maximum of the row (or column)
averages of the input proximity matrix), the update in (1.5) (with the replacement smoother)
would be applied until convergence. The parameter ε (given as ep in the m-function) is
then reduced (e.g., we use ep = ep*(100-k+1)/100 for k = 2:100), and beginning with the
coordinates from the previous solution, the update in (1.5) is again applied until convergence.
The process continues until ε has been effectively reduced to zero.

Pliner’s strategy is a relatively simple modification in the use of the iterative update in
(1.5), and although it is still a heuristic strategy in the sense that a globally optimal solution
is not guaranteed, the authors’ experience with it suggests that it works incredibly well. (We
might also add that because of its computational simplicity and speed of execution, it may
be the key to scaling huge proximity matrices.) The m-function plinorder.m in Section A.5
of the appendix has the usage syntax as follows:

[pcoordsort pperm gcoordsort gperm gdiff pdiff] = plinorder(prox,inperm)

where some of the terms are the same as in guttorder.m since that update method is
initially repeated with the invocation of plinorder.m; PCOORDSORT and PPERM are analogues
of GCOORDSORT and GPERM but using the smoother, and PDIFF and GDIFF are the least-squares
loss function values for using the Pliner smoother and the Guttman update, respectively. The
pattern illustrated by the single call of plinorder.m to follow is expected: the smoothing
strategy identifies a globally optimal solution and the Guttman update provides one that is
only locally optimal.

load number.dat

[pcoordsort, pperm, gcoordsort, gperm, gdiff, pdiff] = ...
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plinorder(number,randperm(10))

pcoordsort =

-0.5345

-0.4050

-0.3258

-0.1988

-0.0842

0.0566

0.1492

0.2608

0.4247

0.6570

pperm =

8 10 9 7 6 4 5 3 2 1

gcoordsort =

-0.5345

-0.3829

-0.2800

-0.1808

-0.0572

0.0982

0.1192

0.2708

0.2902

0.6570

gperm =

8 2 10 4 7 3 6 9 5 1

gdiff =
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3.4425

pdiff =

1.9599

1.1.4 A Nonlinear Programming Heuristic

In considering the unidimensional scaling task in (1), Lau, Leung, and Tse (1998) note the
equivalence to the minimization over x1, x2, . . . , xn of∑

i<j

min{[pij − (xi − xj)]
2, [pij − (xj − xi)]

2}. (1.6)

Two zero/one variables can then be defined, w1ij and w2ij, and (1.6) rewritten as the math-
ematical program

minimize
∑
i<j

{w1ij(e1ij)
2 + w2ij(e2ij)

2} (1.7)

subject to
pij = xi − xj + e1ij;

pij = xj − xi + e2ij;

w1ij + w2ij = 1;

w1ij, w2ij ≥ 0,

where e1ij is the error if xi > xj and e2ij is the error if xi < xj. The authors observe that the
binary restriction on w1ij and w2ij can be removed since they will automatically be forced
to zero or one. In short, what initially appears as a combinatorial optimization task in (1)
has now been replaced by a nonlinear programming model in (1.7).

The MATLAB function unifitl2nlp.m

The m-function unifitl2nlp.m given in Section A.6 carries out the optimization task speci-
fied in (1.7) by a call to a very general m-function from the MATLAB Optimization Toolbox,
fmincon.m. The latter is an extremely general routine for the minimization of a constrained
multivariable function, and requires in our case a separate m-function, objfunl2.m, that
we give in Section A.6.1 to evaluate the objective function in (1.7). So, to use the func-
tion unifitl2nlp.m, the user needs to have the Optimization Toolbox installed. The usage
syntax for unifitl2nlp.m has the form

[startcoord begval outcoord endval exitflag] = unifitl2nlp(prox,inperm)
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An input permutation INPERM is used to obtain a set of starting coordinates (STARTCOORD)
that would lead to an initial least-squares loss value (BEGVAL). The starting coordinates are

obtained from the usual t
(ρ)
i formula of (1.2) irrespective of whether INPERM provides a mono-

tonic form for the reordered matrix PROX(INPERM,INPERM) or not. The ending coordinates
(OUTCOORD) at the end of the process leads to a final least-squares loss value (ENDVAL). The
EXITFLAG variable gives the success of the optimization (greater than 0 indicates convergence;
0 implies that the maximum number of function evaluations or iterations were reached; less
than 0 denotes nonconvergence).

An example of the use of unifitl2nlp.m is given below for two starting permutations
— the identify ordering and the second one random. Given these results and others that the
reader can replicate given the availability of the m-function, it appears in general that “the
apple is not allowed to fall very far from the tree”. The end result is very close to where one
starts, which is very similar to the dismal performance of an unmodified Guttman update
strategy. The need to have such a good initial permutation to start with, pretty much defeats
the use of the nonlinear programming reformulation as a search technique. Both iterative
QA and Pliner’s smoother, which can begin just with random permutations and usually end
up with very good final permutations, would appear thus far to be the heuristic methods of
choice.

load number.dat
inperm = 1:10

inperm =

1 2 3 4 5 6 7 8 9 10

[startcoord begval outcoord endval exitflag] = unifitl2nlp(number,inperm)
Warning: Large-scale (trust region) method does not currently solve this type of problem,
switching to medium-scale (line search).

In C:\MATLABR12\toolbox\optim\fmincon.m at line 213
In D:\unifitl2nlp.m at line 115

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

startcoord =

-0.6570
-0.4247
-0.2608
-0.1392
-0.0666
0.0842
0.1988
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0.3627
0.4058
0.4968

begval =

2.1046

outcoord =

-0.6570
-0.4247
-0.2608
-0.1392
-0.0666
0.0842
0.1988
0.3627
0.4058
0.4968

endval =

2.1046

exitflag =

1

[startcoord begval outcoord endval exitflag] = unifitl2nlp(number,randperm(10))
Warning: Large-scale (trust region) method does not currently solve this type of problem,
switching to medium-scale (line search).
In C:\MATLABR12\toolbox\optim\fmincon.m at line 213
In D:\unifitl2nlp.m at line 115

Warning: Divide by zero.
In C:\MATLABR12\toolbox\optim\private\nlconst.m at line 198
In C:\MATLABR12\toolbox\optim\fmincon.m at line 458
In D:\unifitl2nlp.m at line 115

Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
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is less than options.TolCon

startcoord =

0.6570
-0.3829
0.0982
-0.1208
0.2902
0.1192
-0.1172
-0.5345
0.2708
-0.2800

begval =

3.5145

outcoord =

0.6572
-0.3830
0.0982
-0.1807
0.2902
0.1194
-0.0573
-0.5347
0.2707
-0.2800

endval =

3.4425

exitflag =

1
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1.1.5 Solving Linear (In)equality Constrained Least Squares Tasks:
The Example of the Confirmatory Fitting of a Given Order

A strategy for solving linear systems of equations through the use of iterative projection
and typically attributed to Kaczmarz (1937) (e.g., see Bodewig, 1956, pp. 163–164, or more
recently, Deutsch, 1992, pp. 107–108) has some very close connections with several more
recent approaches in the Applied Statistics/Psychometrics (AS/P) literature to the least-
squares representation of a data matrix. The latter rely on a close relative to the Kaczmarz
strategy and what is now commonly referred to as Dykstra’s method for solving linear
inequality constrained weighted least-squares tasks (e.g., see Dykstra, 1983).

Kaczmarz’s method can be characterized as follows:
Given A = {aij} of order m× n, x′ = {x1, . . . , xn}, b′ = {b1, . . . , bm}, and assuming the

linear system Ax = b is consistent, define the set Ci = {x | aijxj = bi}, for 1 ≤ i ≤ m.
The projection of any n × 1 vector y onto Ci is simply y − (a′iy − bi)ai(a

′
iai)

−1, where
a′i = {ai1, . . . , ain}. Beginning with a vector x0, and successively projecting x0 onto C1, and
that result onto C2, and so on, and cyclically and repeatedly reconsidering projections onto
the sets C1, . . . , Cm, leads at convergence to a vector x∗

0 that is closest to x0 (in vector 2-
norm, so

∑n
i=1(x0i−x∗0i)

2 is minimized) and Ax∗
0 = b. In short, Kaczmarz’s method provides

an iterative way to solve least-squares tasks subject to equality restrictions.
Dykstra’s method can be characterized as follows:
Given A = {aij} of order m × n, x′

0 = {x01, . . . , x0n}, b′ = {b1, . . . , bm}, and w′ =
{w1, . . . , wn}, where wj > 0 for all j, find x∗

0 such that a′ix
∗
0 ≤ bi for 1 ≤ i ≤ m and∑n

i=1 wi(x0i−x∗0i)
2 is minimized. Again, (re)define the (closed convex) sets Ci = {x | aijxj ≤

bi} and when a vector y /∈ Ci, its projection onto Ci (in the metric defined by the weight
vector w) is y− (a′iy− bi)aiW

−1(a′iW
−1ai)

−1, where W−1 = diag{w−1
1 , . . . , w−1

n }. We again
initialize the process with the vector x0 and each set C1, . . . , Cm is considered in turn. If
the vector being carried forward to this point when Ci is (re)considered does not satisfy the
constraint defining Ci, a projection onto Ci occurs. The sets C1, . . . , Cm are cyclically and
repeatedly considered but with one difference from the operation of Kaczmarz’s method —
each time a constraint set Ci is revisited, any changes from the previous time Ci was reached
are first “added back”. This last process ensures convergence to an optimal solution x∗

0 (see
Dykstra, 1983). Thus, Dykstra’s method generalizes the equality restrictions that can be
handled by Kaczmarz’s strategy to the use of inequality constraints.

The Dykstra method is currently serving as the major computational tool for a variety
of newer data representation devices in AS/P. For example, and first considering an arbi-
trary rectangular data matrix, Dykstra and Robertson (1982) use it to fit a least-squares
approximation constrained by entries within rows and within columns being monotonic with
respect to given row and column orders. For an arbitrary symmetric proximity matrix A
(of order p × p and with diagonal entries typically set to zero), a number of applications
of Dykstra’s method have been discussed for approximating A in a least-squares sense by
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A1 + · · ·+ AK , where K is typically small (e.g., 2 or 3) and each Ak is patterned in a par-
ticularly informative way that can be characterized by a set of linear inequality constraints
that its entries should satisfy. We note three exemplar classes of patterns that Ak might
have, and all with a substantial history in the AS/P literature. In each instance, Dykstra’s
method can be used to fit the additive structures satisfying the inequality constraints once
they are identified, possibly through an initial combinatorial optimization task seeking an
optimal reordering of a given (residual) data matrix, or in some instances in a heuristic form
to identify the constraints to impose in the first place. We merely give the patterns sought
in Ak and refer the reader to sources that develop the representations in more detail.

(a) Order constraints (Hubert and Arabie, 1994): The entries in Ak = {aij(k)} should
satisfy the anti-Robinson constraints: there exists a permutation on the first p integers ρ(·)
such that aρ(i)ρ(j)(k) ≤ aρ(i)ρ(j′)(k) for 1 ≤ i < j < j′ ≤ p, and aρ(i)ρ(j)(k) ≤ aρ(i′)ρ(j)(k) for
1 ≤ i < i′ < j ≤ p.

(b) Ultrametric and additive trees (Hubert and Arabie, 1995): The entries in Ak should
be represented by an ultrametric: for all i, j, and h, aij(k) ≤ max{aih(k), ajh(k)}; or an additive
tree: for all i, j, h, and l, aij(k) + ahl(k) ≤ max{aih(k) + ajl(k), ail(k) + ajh(k)}.

(c) Linear and circular unidimensional scales (Hubert, Arabie, and Meulman, 1997): The
entries in Ak should be represented by a linear unidimensional scale: aij(k) = |xj−xi| for some
set of coordinates x1, . . . , xn; or a circular unidimensional scale: aij(k) = min{|xj − xi|, x0 −
|xj −xi|} for some set of coordinates x1, . . . , xn and x0 representing the circumference of the
circular structure.

The confirmatory fitting of a given order using the MATLAB function linfit.m

The MATLAB m-function in Section A.7, linfit.m, fits a set of coordinates to a given
proximity matrix based on some given input permutation, say, ρ(0). Specifically, we seek
x1 ≤ x2 ≤ · · · ≤ xn such that

∑
i<j(pρ0(i)ρ0(j) − |xj − xi|)2 is minimized (and where the

permutation ρ(0) may not even put the matrix {pρ0(i)ρ0(j)} into a monotonic form). Using
the syntax

[fit diff coord] = linfit(prox,inperm)

the matrix {|xj − xi|} is referred to as the fitted matrix (FIT); COORD gives the ordered
coordinates; and DIFF is the value of the least-squares criterion. The fitted matrix is found
through the Dykstra-Kaczmarz method where the equality constraints defined by distances
along a continuum are imposed to find the fitted matrix, i.e., if i < j < k, then |xi − xj| +
|xj − xk| = |xi − xk|. Once found, the actual ordered coordinates are retrieved by the usual

t
(ρ0)
i formula in (1.2) but computed on FIT.

The example below of the use of linfit.m fits two separate orders: the identity permu-
tation and the one that we know is least-squares optimal. The consistency of the results can
be compared to those given earlier.

load number.dat
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inperm = 1:10

inperm =

1 2 3 4 5 6 7 8 9 10

[fit diff coord] = linfit(number,inperm)

fit =

Columns 1 through 6

0 0.2323 0.3962 0.5178 0.5904 0.7412

0.2323 0 0.1639 0.2855 0.3581 0.5089

0.3962 0.1639 0 0.1216 0.1942 0.3450

0.5178 0.2855 0.1216 0 0.0726 0.2234

0.5904 0.3581 0.1942 0.0726 0 0.1508

0.7412 0.5089 0.3450 0.2234 0.1508 0

0.8558 0.6235 0.4596 0.3380 0.2654 0.1146

1.0179 0.7856 0.6217 0.5001 0.4275 0.2767

1.0646 0.8323 0.6684 0.5468 0.4742 0.3234

1.1538 0.9215 0.7576 0.6360 0.5634 0.4126

Columns 7 through 10

0.8558 1.0179 1.0646 1.1538

0.6235 0.7856 0.8323 0.9215

0.4596 0.6217 0.6684 0.7576

0.3380 0.5001 0.5468 0.6360

0.2654 0.4275 0.4742 0.5634

0.1146 0.2767 0.3234 0.4126

0 0.1621 0.2088 0.2980

0.1621 0 0.0467 0.1359

0.2088 0.0467 0 0.0892

0.2980 0.1359 0.0892 0

diff =

2.1046
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coord =

-0.6570

-0.4247

-0.2608

-0.1392

-0.0666

0.0842

0.1988

0.3627

0.4058

0.4968

inperm = [8 10 9 7 6 4 5 3 2 1]

inperm =

8 10 9 7 6 4 5 3 2 1

[fit diff coord] = linfit(number,inperm)

fit =

Columns 1 through 6

0 0.1295 0.2087 0.3357 0.4503 0.5911

0.1295 0 0.0792 0.2062 0.3208 0.4616

0.2087 0.0792 0 0.1270 0.2416 0.3824

0.3357 0.2062 0.1270 0 0.1146 0.2554

0.4503 0.3208 0.2416 0.1146 0 0.1408

0.5911 0.4616 0.3824 0.2554 0.1408 0

0.6837 0.5542 0.4750 0.3480 0.2334 0.0926

0.7953 0.6658 0.5866 0.4596 0.3450 0.2042

0.9592 0.8297 0.7505 0.6235 0.5089 0.3681

1.1915 1.0620 0.9828 0.8558 0.7412 0.6004

Columns 7 through 10

0.6837 0.7953 0.9592 1.1915

0.5542 0.6658 0.8297 1.0620

0.4750 0.5866 0.7505 0.9828

0.3480 0.4596 0.6235 0.8558
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0.2334 0.3450 0.5089 0.7412

0.0926 0.2042 0.3681 0.6004

0 0.1116 0.2755 0.5078

0.1116 0 0.1639 0.3962

0.2755 0.1639 0 0.2323

0.5078 0.3962 0.2323 0

diff =

1.9599

coord =

-0.5345

-0.4050

-0.3258

-0.1988

-0.0842

0.0566

0.1492

0.2608

0.4247

0.6570

1.1.6 Some Useful Utilities for Transforming and Displaying Prox-
imity Matrices

This section gives several miscellaneous m-functions that carry out various operations on
a proximity matrix, and for which no other section seemed appropriate. The first two,
proxstd.m and proxrand.m, given in Sections B.4 and B.5, are very simple and provide
standardized and randomly (entry-)permuted proximity matrices, respectively, that might
be useful, for example, in testing the various m-functions we give. The syntax

[stanprox stanproxmult] = proxstd(prox,mean)

is intended to suggest that STANPROX provides a linear transformation of the off-diagonal
entries in PROX to a standard deviation of one and a mean of MEAN; STANPROXMULT is a
multiplicative transformation so the entries in the upper-triangular portion of this n × n
matrix have a sum-of-squares of n(n− 1)/2. For the second utility m-function

[randprox] = proxrand(prox)
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implies that the symmetric matrix RANDPROX has its (upper-triangular) entries as a ran-
dom permutation of the (upper-triangular) entries in PROX. The illustration below using
number.dat should make both of these usages clear.

load number.dat

[stanprox stanproxmult] = proxstd(number,5.0)

stanprox =

Columns 1 through 7

0 4.4081 5.2105 5.8258 5.7027 6.2934 6.2147

4.4081 0 3.7337 4.0389 5.5157 5.2302 6.0670

5.2105 3.7337 0 4.0783 2.6261 5.6387 4.4081

5.8258 4.0389 4.0783 0 4.3687 4.4475 3.8124

5.7027 5.5157 2.6261 4.3687 0 4.3490 4.2456

6.2934 5.2302 5.6387 4.4475 4.3490 0 4.2850

6.2147 6.0670 4.4081 3.8124 4.2456 4.2850 0

6.8103 5.4369 6.2541 5.2498 5.9882 4.3047 4.3884

6.3771 6.2294 4.1423 6.2934 3.5466 5.6387 4.0586

6.5199 5.4123 6.3131 3.6303 5.6978 5.2498 3.7928

Columns 8 through 10

6.8103 6.3771 6.5199

5.4369 6.2294 5.4123

6.2541 4.1423 6.3131

5.2498 6.2934 3.6303

5.9882 3.5466 5.6978

4.3047 5.6387 5.2498

4.3884 4.0586 3.7928

0 4.3047 4.5951

4.3047 0 4.2653

4.5951 4.2653 0

stanproxmult =

Columns 1 through 7

0 6.9086 9.5835 11.6347 11.2245 13.1937 12.9311

6.9086 0 4.6605 5.6779 10.6009 9.6491 12.4388
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9.5835 4.6605 0 5.8092 0.9682 11.0111 6.9086

11.6347 5.6779 5.8092 0 6.7773 7.0399 4.9230

11.2245 10.6009 0.9682 6.7773 0 6.7117 6.3671

13.1937 9.6491 11.0111 7.0399 6.7117 0 6.4984

12.9311 12.4388 6.9086 4.9230 6.3671 6.4984 0

14.9167 10.3383 13.0624 9.7147 12.1762 6.5640 6.8430

13.4726 12.9803 6.0225 13.1937 4.0369 11.0111 5.7435

13.9485 10.2563 13.2593 4.3158 11.2081 9.7147 4.8574

Columns 8 through 10

14.9167 13.4726 13.9485

10.3383 12.9803 10.2563

13.0624 6.0225 13.2593

9.7147 13.1937 4.3158

12.1762 4.0369 11.2081

6.5640 11.0111 9.7147

6.8430 5.7435 4.8574

0 6.5640 7.5322

6.5640 0 6.4327

7.5322 6.4327 0

[randprox] = proxrand(number)

randprox =

Columns 1 through 7

0 0.4000 0.4000 0.4590 0.6840 0.2840 0.3960

0.4000 0 0.3540 0.3460 0.7090 0.7420 0.7580

0.4000 0.3540 0 0.8040 0.8040 0.6710 0.4210

0.4590 0.3460 0.8040 0 0.4130 0.4290 0.8500

0.6840 0.7090 0.8040 0.4130 0 0.7910 0.3670

0.2840 0.7420 0.6710 0.4290 0.7910 0 0.8080

0.3960 0.7580 0.4210 0.8500 0.3670 0.8080 0

0.9090 0.6300 0.6830 0.6250 0.4210 0.2460 0.7960

0.8210 0.6710 0.3880 0.7880 0.2630 0.3000 0.3500

0.4170 0.5920 0.5880 0.0590 0.4090 0.5920 0.5840

Columns 8 through 10

0.9090 0.8210 0.4170
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0.6300 0.6710 0.5920

0.6830 0.3880 0.5880

0.6250 0.7880 0.0590

0.4210 0.2630 0.4090

0.2460 0.3000 0.5920

0.7960 0.3500 0.5840

0 0.2960 0.6460

0.2960 0 0.3920

0.6460 0.3920 0

The third utility function, proxmon.m, given in Section B.6, provides a monotonically
transformed proximity matrix that is close in a least-squares sense to a given input matrix.
The syntax is

[monproxpermut vaf diff] = proxmon(proxpermut,fitted)

Here, PROXPERMUT is the original input proximity matrix (which may have been subjected to
an initial row/column permutation, hence the suffix ‘PERMUT’) and FITTED is a given target
matrix; the output matrix MONPROXPERMUT is closest to FITTED in a least-squares sense and
obeys the order constraints obtained from each pair of entries in (the upper-triangular portion
of) PROXPERMUT (and where the inequality constrained optimization is carried out using the
Dykstra-Kaczmarz iterative projection strategy); VAF denotes ‘variance-accounted-for’ and
indicates how much variance in MONPROXPERMUT can be accounted for by FITTED; finally DIFF

is the value of the least-squares loss function and is (one-half) the sum of squared differences
between the entries in MONPROXPERMUT and FITTED.

In the notation of the previous section when fitting a given order, FITTED would corre-
spond to the matrix {|xj − xi|}, where x1 ≤ x2 ≤ · · · ≤ xn; the input PROXPERMUT would
be {pρ0(i)ρ0(j)}; MONPROXPERMUT would be {f(pρ0(i)ρ0(j))}, where the function f(·) satisfies the
monotonicity constraints, i.e., if pρ0(i)ρ0(j) < pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and 1 ≤ i′ < j′ ≤ n,
then f(pρ0(i)ρ0(j)) ≤ f(pρ0(i′)ρ0(j′)). The transformed proximity matrix {f(pρ0(i)ρ0(j))} mini-
mizes the least-squares criterion (DIFF) of∑

i<j

(f(pρ0(i)ρ0(j))− |xj − xi|)2,

over all functions f(·) that satisfy the monotonicity constraints. The VAF is a normalization
of this loss value by the sum of squared deviations of the transformed proximities from their
mean:

VAF = 1−
∑

i<j(f(pρ0(i)ρ0(j))− |xj − xi|)2∑
i<j(f(pρ0(i)ρ0(j))− f̄)2

,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.
The script m-file listed below gives an application of proxmon.m using the globally opti-

mal permutation found previously for our number.dat matrix. First, linfit.m is invoked
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to obtain a fitted matrix (fit); proxmon.m then generates the monotonically transformed
proximity matrix (monproxpermut) with vaf = .5821 and diff = 1.0623. The strategy is
then repeated cyclically (i.e., finding a fitted matrix based on the monotonically transformed
proximity matrix, finding a new monotonically tranformed matrix, and so on). To avoid de-
generacy (where all matrices would converge to zeros), the sum of squares of the fitted matrix
is kept the same as it was initially; convergence is based on observing a minimal change (less
than 1.0e-006) in the vaf. As indicated in the output below, the final vaf is .6672 with a
diff of .9718.

load number.dat

inperm = [8 10 9 7 6 4 5 3 2 1]

[fit diff coord] = linfit(number,inperm)

[monproxpermut vaf diff] = ...

proxmon(number(inperm,inperm),fit)

sumfitsq = sum(sum(fit.^2));

prevvaf = 2;

while (abs(prevvaf-vaf) >= 1.0e-006)

prevvaf = vaf;

[fit diff coord] = linfit(monproxpermut,1:10);

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));

[monproxpermut vaf diff] = proxmon(number(inperm,inperm), fit);

end

fit

diff

coord

monproxpermut

vaf

inperm =

8 10 9 7 6 4 5 3 2 1

fit =
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Columns 1 through 7

0 0.1295 0.2087 0.3357 0.4503 0.5911 0.6837

0.1295 0 0.0792 0.2062 0.3208 0.4616 0.5542

0.2087 0.0792 0 0.1270 0.2416 0.3824 0.4750

0.3357 0.2062 0.1270 0 0.1146 0.2554 0.3480

0.4503 0.3208 0.2416 0.1146 0 0.1408 0.2334

0.5911 0.4616 0.3824 0.2554 0.1408 0 0.0926

0.6837 0.5542 0.4750 0.3480 0.2334 0.0926 0

0.7953 0.6658 0.5866 0.4596 0.3450 0.2042 0.1116

0.9592 0.8297 0.7505 0.6235 0.5089 0.3681 0.2755

1.1915 1.0620 0.9828 0.8558 0.7412 0.6004 0.5078

Columns 8 through 10

0.7953 0.9592 1.1915

0.6658 0.8297 1.0620

0.5866 0.7505 0.9828

0.4596 0.6235 0.8558

0.3450 0.5089 0.7412

0.2042 0.3681 0.6004

0.1116 0.2755 0.5078

0 0.1639 0.3962

0.1639 0 0.2323

0.3962 0.2323 0

diff =

1.9599

coord =

-0.5345

-0.4050

-0.3258

-0.1988

-0.0842

0.0566

0.1492
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0.2608

0.4247

0.6570

monproxpermut =

Columns 1 through 7

0 0.2701 0.2701 0.2701 0.2701 0.5380 0.6536

0.2701 0 0.2701 0.2701 0.4148 0.2701 0.5380

0.2701 0.2701 0 0.2701 0.5380 0.6960 0.2701

0.2701 0.2701 0.2701 0 0.2701 0.2701 0.2701

0.2701 0.4148 0.5380 0.2701 0 0.2701 0.2701

0.5380 0.2701 0.6960 0.2701 0.2701 0 0.2701

0.6536 0.5380 0.2701 0.2701 0.2701 0.2701 0

0.6960 0.7035 0.2701 0.2701 0.5380 0.2701 0.1116

0.5380 0.5380 0.6960 0.6536 0.4148 0.2701 0.5380

1.1915 1.0620 0.9828 0.6960 0.7035 0.6004 0.5380

Columns 8 through 10

0.6960 0.5380 1.1915

0.7035 0.5380 1.0620

0.2701 0.6960 0.9828

0.2701 0.6536 0.6960

0.5380 0.4148 0.7035

0.2701 0.2701 0.6004

0.1116 0.5380 0.5380

0 0.2701 0.3962

0.2701 0 0.2701

0.3962 0.2701 0

vaf =

0.5821

diff =

1.0623
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fit =

Columns 1 through 7

0 0.0824 0.1451 0.3257 0.4123 0.5582 0.5834

0.0824 0 0.0627 0.2432 0.3298 0.4758 0.5010

0.1451 0.0627 0 0.1806 0.2672 0.4131 0.4383

0.3257 0.2432 0.1806 0 0.0866 0.2325 0.2578

0.4123 0.3298 0.2672 0.0866 0 0.1459 0.1711

0.5582 0.4758 0.4131 0.2325 0.1459 0 0.0252

0.5834 0.5010 0.4383 0.2578 0.1711 0.0252 0

0.7244 0.6419 0.5793 0.3987 0.3121 0.1662 0.1410

0.8696 0.7872 0.7245 0.5440 0.4573 0.3114 0.2862

1.2231 1.1406 1.0780 0.8974 0.8108 0.6649 0.6397

Columns 8 through 10

0.7244 0.8696 1.2231

0.6419 0.7872 1.1406

0.5793 0.7245 1.0780

0.3987 0.5440 0.8974

0.3121 0.4573 0.8108

0.1662 0.3114 0.6649

0.1410 0.2862 0.6397

0 0.1452 0.4987

0.1452 0 0.3535

0.4987 0.3535 0

diff =

0.9718

coord =

-0.4558

-0.3795

-0.3215

-0.1544
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-0.0742

0.0609

0.0842

0.2147

0.3492

0.6764

monproxpermut =

Columns 1 through 7

0 0.2612 0.2458 0.2612 0.2458 0.5116 0.6080

0.2612 0 0.2458 0.2458 0.4286 0.2458 0.5116

0.2458 0.2458 0 0.2458 0.5116 0.6899 0.2458

0.2612 0.2458 0.2458 0 0.2458 0.2458 0.2458

0.2458 0.4286 0.5116 0.2458 0 0.2612 0.2458

0.5116 0.2458 0.6899 0.2458 0.2612 0 0.2458

0.6080 0.5116 0.2458 0.2458 0.2458 0.2458 0

0.6899 0.7264 0.2458 0.2612 0.5116 0.2458 0.1410

0.5116 0.5116 0.6899 0.6080 0.4286 0.2458 0.5116

1.2231 1.1406 1.0780 0.6899 0.7264 0.6080 0.6080

Columns 8 through 10

0.6899 0.5116 1.2231

0.7264 0.5116 1.1406

0.2458 0.6899 1.0780

0.2612 0.6080 0.6899

0.5116 0.4286 0.7264

0.2458 0.2458 0.6080

0.1410 0.5116 0.6080

0 0.2458 0.4286

0.2458 0 0.2612

0.4286 0.2612 0

vaf =

0.6672
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The final m-function of this miscellany section, matcolor.m, and given in Section B.7,
provides a way of displaying a set of permutations constructed for a proximity matrix (as
might be obtained, say, from one of the QA interchange routines) in a color-coded manner.
The usage syntax is

matcolor(datamat,perms,numperms)

where DATAMAT is an n × n symmetric proximity matrix; PERMS is a cell array containing
NUMPERMS permutations. A movie is constructed and played that illustrates the transforma-
tions carried out on the proximity matrix from the first permutation, perms{1}, to the last,
perms{numperms}. The colormap used in this example is ‘summer’, but a variety of other
alternatives are available within the MATLAB environment.

To give an example of the use of matcolor.m, the MATLAB statements given below
should be entered by the reader; stand back and enjoy the movie.

load number.dat

[prox10 targlin targcir] = ransymat(10);

inperm = randperm(10);

[outperm,rawindex,allperms,index] = ...

pairwiseqa(number,targlin,inperm);

matcolor(number,allperms,index)

1.2 The Incorporation of Additive Constants in L2 LUS

Thus far in Chapter 1 the emphasis has been solely on the basic unidimensional scaling model
in (1), where we seek a set of n coordinates x1, . . . , xn so the interpoint distances |xj − xi|
are close in a least-squares sense to the proximities pij (1 ≤ i, j ≤ n). This section will
extend this simple linear unidimensional scaling (LUS) structure to one that incorporates an
additional additive constant. Explicitly, we consider the slightly more general least-squares
loss function of the form ∑

i<j

(pij + c− |xj − xi|)2, (1.8)

or equivalently, ∑
i<j

(pij − {|xj − xi| − c})2, (1.9)

where c is some constant to be estimated along with the coordinates x1, . . . , xn. The opti-
mization task implicit in the use of (1.8) and (1.9) can be interpreted in either of two ways,
as reflected by the equality of the two forms of the loss function: (a) the interpoint distances
among a set of n coordinates along a line, {|xj − xi|}, are being fitted to a constant trans-
lation of the originally given proximities, {pij + c}; or (b) a generalization from the usual
unidimensional model to one of the form {|xj−xi|−c} is being fitted to the proximities {pij}
originally given. Although these two interpretations will not affect how we presently proceed,
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the second, which includes the additive constant as a part of the model, will become relevant
in how generalizations are framed in Section 1.2.2 concerning the fitting of multiple unidi-
mensional structures to a given proximity matrix. In any case, the presence of the constant
c in (1.8) and (1.9) obviates the need to impose any type of non-negativity constraints on
the input proximities (in fact, for consistency of presentation, we routinely begin with prox-
imities standardized to a mean of zero and standard deviation of one as a way of providing
some type of common interpretive scale for whatever proximities we may be originally given,
although such a transformation is not necessary for the methods of optimization pursued).
This step of estimating an additive constant may seem like a minor modification at first, but
the presence of negative proximities can produce rather serious difficulties in discussions of
linear unidimensional scaling; e.g., they cannot be accommodated in Pliner’s (1996) sugges-
tion of a smooth gradient approximation, and their presence invalidates several convenient
properties or characterizations that certain optimization heuristics would otherwise possess.
In various related optimization tasks, specialized algorithms have been devised to deal with
the possibility of negative proximities, however they might arise (see Heiser, 1989, 1991).

The discussion in the previous sections has been restricted to the fitting of a single
unidimensional structure to a symmetric proximity matrix. Given the type of computational
approach being developed here for carrying out this task that lack dependence on the presence
of non-negative proximities, extensions are very direct to the use of multiple unidimensional
structures through a process of successive residualization of the original proximity matrix.
For example, the fitting of two LUS structures to a proximity matrix {pij} could be rephrased
as the minimization of a least squares loss function that generalizes (1.9) to the form∑

i<j

(pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2])
2. (1.10)

The attempt to minimize (1.10) could proceed with the fitting of a single LUS structure to
{pij}, [|xj1−xi1| − c1], using the iterative QA procedure of section 1.1.2, and once obtained,
fitting a second LUS structure, [|xj2 − xi2| − c2], to the residual matrix, {pij − [|xj1 − xi1| −
c1]}. The process would then cycle by repetitively fitting the residuals from the second
linear structure by the first, and the residuals from the first linear structure by the second,
until the sequence converges. In any case, obvious extensions would exist for (1.10) to the
inclusion of more than two LUS structures, or even to the eventual mixture of other types
of representations in the spirit of Carroll and Pruzansky’s (1980) hybrid models.

The explicit inclusion of two constants, c1 and c2 in (1.10) rather than adding these two
together and including a single additive constant c, deserves some additional explanation.
In the case of fitting a single LUS structure using the loss functions in (1.8) and (1.9), it was
noted in the introduction that two interpretations exist for the role of the additive constant
c. We could consider {|xj − xi|} to be fitted to the translated proximities {pij + c}, or
alternatively, {|xj −xi|− c} to be fitted to the original proximities {pij}, where the constant
c becomes part of the actual model. Although these two interpretations do not lead to any
algorithmic differences in how we would proceed with minimizing the loss functions in (1.8)
and (1.9), a consistent use of the second interpretation suggests that we frame extensions to
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the use of multiple LUS structures as we did in (1.10), where it is explicit that the constants
c1 and c2 are part of the actual models to be fitted to the (untransformed) proximities {pij}.
Once c1 and c2 are obtained, they could be summed as c = c1 + c2, and an interpretation
made that we have attempted to fit a transformed set of proximities {pij + c} by the sum
{|xj1 − xi1|+ |xj2 − xi2|} (and in this latter case, a more usual terminology would be one of
a two-dimensional scaling (MDS) based on the city-block distance function). However, such
a further interpretation is unnecessary and could lead to at least some small terminological
confusion in further extensions that we might wish to pursue. For instance, if some type
of (optimal nonlinear) transformation, say f(·), of the proximities is also sought (e.g., a
monotonic function of some form as in Section 1.2.3 below) in addition to fitting multiple
LUS structures, and where pij in (1.10) is replaced by f(pij), and f(·) is to be constructed,
the first interpretation would require the use of a ‘doubly transformed’ set of proximities
{f(pij) + c} to be fitted by the sum {|xj1 − xi1| + |xj2 − xi2|}. In general, it seems best
to avoid the need to incorporate the notion of a double transformation in this context, and
instead merely consider the constants c1 and c2 to be part of the models being fitted to a
transformed set of proximities f(pij).

1.2.1 The L2 Fitting of a Single Unidimensional Scale (with an
Additive Constant)

Given a fixed object permutation, ρ(0), we denote the set of all n × n matrices that are
additive translations of the off-diagonal entries in the reordered symmetric proximity matrix
{pρ(0)(i)ρ(0)(j)} by ∆ρ(0) , and let Ξ be the set of all n×n matrices that represent the interpoint
distances between all pairs of n coordinate locations along a line. Explicitly,

∆ρ(0) ≡ {{qij}|qij = pρ(0)(i)ρ(0)(j) + c, for some constant c, i 6= j; qii = 0, 1 ≤ i ≤ n};

Ξ ≡ {{rij}|rij = |xj − xi| for some set of n coordinates, x1 ≤ · · · ≤ xn;
∑

i

xi = 0}.

Alternatively, we could define Ξ through a set of linear inequality (for non-negativity re-
strictions) and equality constraints (to represent the additive nature of distances along a
line – as we did in linfit.m). In any case, both ∆ρ(0) and Ξ are closed convex sets (in a
Hilbert space), and thus, given any n × n symmetric matrix with a zero main diagonal, its
projection onto either ∆ρ(0) or Ξ exists, i.e., there is a (unique) member of ∆ρ(0) or Ξ at
a closest (Euclidean) distance to the given matrix (e.g., see Cheney and Goldstein, 1959).
Moreover, if a procedure of alternating projections onto ∆ρ(0) and Ξ is carried out (where a
given matrix is first projected onto one of the sets, and that result is then projected onto
the second which result is in turn projected back onto the first, and so on), the process is
convergent and generates members of ∆ρ(0) and Ξ that are closest to each other (again, this
last statement is justified in Cheney and Goldstein, 1959, Theorems 2 and 4).

Given any n × n symmetric matrix with a main diagonal of all zeros, which we denote
arbitrarily as U = {uij}, its projection onto ∆ρ(0) may be obtained by a simple formula for
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the sought constant c. Explicitly, the minimum over c of∑
i<j

({pρ(0)(i)ρ(0)(j)}+ c− uij)
2,

is obtained for
ĉ = (2/n(n− 1))

∑
i<j

(uij − pρ(0)(i)ρ(0)(j)),

and thus, this last value defines a constant translation of the proximities necessary to generate
that member of ∆ρ(0) closest to U = {uij}. For the second necessary projection and given any
n× n symmetric matrix (again with a main diagonal of all zeros, that we denote arbitrarily
as V = {vij} (but which in our applications will generally have the form vij = pρ(0)(i)ρ(0)(j) +c
for i 6= j and some constant c), its projection onto Ξ is somewhat more involved and requires
minimizing ∑

i<j

(vij − rij)
2,

over rij, where {rij} is subject to the linear inequality nonnegativity constraints, and the
linear equality constraints of representing distances along a line (of the set Ξ). Although
this is a (classic) quadratic programming problem for which a wide variety of optimization
techniques has been published, we adopt (as we did in fitting a LUS without an additive
constant in linfit.m, the Dykstra-Kaczmarz iterative projection strategy that we reviewed
earlier in Section 1.1.5).

The MATLAB function linfitac.m

As discussed above, the MATLAB m-function in Section A.8, linfitac.m, fits a set of
coordinates to a given proximity matrix based on some given input permutation, say, ρ(0),
plus an additive constant c. The usage syntax of

[fit vaf coord addcon] = linfitac(prox,inperm)

is similar to that of linfit.m except for the inclusion (as output) of the additive constant
ADDCON, and the replacement of the least-squares criterion of DIFF by the variance-accounted-
for (VAF) given by the general formula

vaf = 1−
∑

i<j(pρ(0)(i)ρ(0)(j) + c− |xj − xi|)2∑
i<j(pij − p̄)2

,

where p̄ is the mean of the proximity values being used.
To illustrate the invariance of VAF to the use of linear transformations of the proximity

matrix (although COORD and ADDCON obviously will change depending on the transformation
used), we fit the permutation found optimal earlier, to three different matrices: the original
proximity matrix for number.dat; one standardized to mean zero and variance one; and the
third standardized to have the sum of the (upper-triangular) squared entries be n(n− 1)/2.
The latter two matrices are obtained with the utility proxstd.m.
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load number.dat

inperm = [1 2 3 5 4 6 7 9 10 8]

inperm =

1 2 3 5 4 6 7 9 10 8

[numberstan numbermult] = proxstd(number,0.0);

[fit vaf coord addcon] = linfitac(number,inperm)

fit =

Columns 1 through 6

0 0.1705 0.2727 0.3225 0.3533 0.4323

0.1705 0 0.1021 0.1520 0.1828 0.2618

0.2727 0.1021 0 0.0498 0.0807 0.1597

0.3225 0.1520 0.0498 0 0.0308 0.1099

0.3533 0.1828 0.0807 0.0308 0 0.0790

0.4323 0.2618 0.1597 0.1099 0.0790 0

0.4852 0.3146 0.2125 0.1627 0.1319 0.0528

0.5504 0.3799 0.2777 0.2279 0.1971 0.1181

0.5678 0.3973 0.2952 0.2453 0.2145 0.1355

0.6355 0.4650 0.3629 0.3131 0.2822 0.2032

Columns 7 through 10

0.4852 0.5504 0.5678 0.6355

0.3146 0.3799 0.3973 0.4650

0.2125 0.2777 0.2952 0.3629

0.1627 0.2279 0.2453 0.3131

0.1319 0.1971 0.2145 0.2822

0.0528 0.1181 0.1355 0.2032

0 0.0652 0.0827 0.1504

0.0652 0 0.0174 0.0852

0.0827 0.0174 0 0.0677

0.1504 0.0852 0.0677 0

vaf =

0.5612
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coord =

-0.3790

-0.2085

-0.1064

-0.0565

-0.0257

0.0533

0.1061

0.1714

0.1888

0.2565

addcon =

-0.3089

[fit vaf coord addcon] = linfitac(numberstan,inperm)

fit =

Columns 1 through 6

0 0.8394 1.3421 1.5873 1.7390 2.1280

0.8394 0 0.5027 0.7479 0.8996 1.2886

1.3421 0.5027 0 0.2452 0.3969 0.7859

1.5873 0.7479 0.2452 0 0.1517 0.5407

1.7390 0.8996 0.3969 0.1517 0 0.3890

2.1280 1.2886 0.7859 0.5407 0.3890 0

2.3880 1.5486 1.0459 0.8007 0.6490 0.2600

2.7091 1.8697 1.3670 1.1217 0.9700 0.5811

2.7948 1.9554 1.4527 1.2075 1.0558 0.6668

3.1282 2.2888 1.7861 1.5408 1.3891 1.0002

Columns 7 through 10

2.3880 2.7091 2.7948 3.1282

1.5486 1.8697 1.9554 2.2888

1.0459 1.3670 1.4527 1.7861
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0.8007 1.1217 1.2075 1.5408

0.6490 0.9700 1.0558 1.3891

0.2600 0.5811 0.6668 1.0002

0 0.3210 0.4068 0.7401

0.3210 0 0.0857 0.4191

0.4068 0.0857 0 0.3334

0.7401 0.4191 0.3334 0

vaf =

0.5612

coord =

-1.8656

-1.0262

-0.5235

-0.2783

-0.1266

0.2624

0.5224

0.8435

0.9292

1.2626

addcon =

1.1437

[fit vaf coord addcon] = linfitac(numbermult,inperm)

fit =

Columns 1 through 6

0 2.7982 4.4740 5.2916 5.7974 7.0941

2.7982 0 1.6758 2.4934 2.9991 4.2958

4.4740 1.6758 0 0.8176 1.3233 2.6200

5.2916 2.4934 0.8176 0 0.5058 1.8025
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5.7974 2.9991 1.3233 0.5058 0 1.2967

7.0941 4.2958 2.6200 1.8025 1.2967 0

7.9609 5.1626 3.4868 2.6693 2.1635 0.8668

9.0311 6.2329 4.5571 3.7395 3.2338 1.9371

9.3170 6.5188 4.8430 4.0254 3.5196 2.2229

10.4283 7.6301 5.9543 5.1367 4.6309 3.3342

Columns 7 through 10

7.9609 9.0311 9.3170 10.4283

5.1626 6.2329 6.5188 7.6301

3.4868 4.5571 4.8430 5.9543

2.6693 3.7395 4.0254 5.1367

2.1635 3.2338 3.5196 4.6309

0.8668 1.9371 2.2229 3.3342

0 1.0703 1.3561 2.4674

1.0703 0 0.2859 1.3972

1.3561 0.2859 0 1.1113

2.4674 1.3972 1.1113 0

vaf =

0.5612

coord =

-6.2193

-3.4210

-1.7452

-0.9277

-0.4219

0.8748

1.7416

2.8119

3.0977

4.2090

addcon =
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-5.0690

1.2.2 The L2 Finding and Fitting of Multiple Unidimensional Scales

As reviewed in the introduction of Section 1.2, the fitting of multiple unidimensional struc-
tures will be done by (repetitive) successive residualization, along with a reliance on the m-
function, linfitac.m, to fit each separate unidimensional structure, including its associated
additive constant. The m-function, biscalqa.m, in Section A.9 is a two-(or bi-)dimensional
scaling strategy for the L2 loss function of (1.10). It has the syntax

[outpermone outpermtwo coordone coordtwo fitone fittwo addconone addcontwo

vaf] = biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

where the variables are similar to linfitac.m, but with a suffix of ONE or TWO to indicate
which one of the two unidimensional structures is being referenced. The new variable NOPT

controls the confirmatory or exploratory fitting of the two unidimensional scales; a value
of NOPT = 0 will fit in a confirmatory manner the two scales indicated by INPERMONE and
INPERMTWO; if NOPT = 1, iterative QA is used to locate the better permutations to fit.

In the example given below, the input PROX is the standardized (to a mean of zero
and a standard deviation of one) 10 × 10 proximity matrix based on number.m (referred
to as STANNUMBER); TARGONE and TARGTWO are identical 10 × 10 equally-spaced target ma-
trices; INPERMONE and INPERMTWO are different random permutations of the first 10 inte-
gers; KBLOCK is set at 2 (for the iterative QA subfunctions). In the output, OUTPERMONE
and OUTPERMTWO refer to the object orders; COORDONE and COORDTWO give the coordinates;
FITONE and FITTWO are based on the absolute coordinate differences for the two unidimen-
sional structures; ADDCONONE and ADDCONTWO are the two associated additive constraints; and
finally, VAF is the variance-accounted-for in PROX by the two-dimensional structure.

load number.dat
[stannumber,stannumbermult] = proxstd(number,0);
stannumber

stannumber =

Columns 1 through 6

0 -0.5919 0.2105 0.8258 0.7027 1.2934
-0.5919 0 -1.2663 -0.9611 0.5157 0.2302
0.2105 -1.2663 0 -0.9217 -2.3739 0.6387
0.8258 -0.9611 -0.9217 0 -0.6313 -0.5525
0.7027 0.5157 -2.3739 -0.6313 0 -0.6510
1.2934 0.2302 0.6387 -0.5525 -0.6510 0
1.2147 1.0670 -0.5919 -1.1876 -0.7544 -0.7150
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1.8103 0.4369 1.2541 0.2498 0.9882 -0.6953
1.3771 1.2294 -0.8577 1.2934 -1.4534 0.6387
1.5199 0.4123 1.3131 -1.3697 0.6978 0.2498

Columns 7 through 10

1.2147 1.8103 1.3771 1.5199
1.0670 0.4369 1.2294 0.4123
-0.5919 1.2541 -0.8577 1.3131
-1.1876 0.2498 1.2934 -1.3697
-0.7544 0.9882 -1.4534 0.6978
-0.7150 -0.6953 0.6387 0.2498

0 -0.6116 -0.9414 -1.2072
-0.6116 0 -0.6953 -0.4049
-0.9414 -0.6953 0 -0.7347
-1.2072 -0.4049 -0.7347 0

inpermone = randperm(10)

inpermone =

10 5 6 8 4 3 1 9 7 2

inpermtwo = randperm(10)

inpermtwo =

2 6 5 9 1 10 8 4 3 7

kblock = 2

kblock =

2

nopt = 1

nopt =

1

[prox10 targone targcir] = ransymat(10);
targone

targone =

0 1 2 3 4 5 6 7 8 9
1 0 1 2 3 4 5 6 7 8
2 1 0 1 2 3 4 5 6 7
3 2 1 0 1 2 3 4 5 6
4 3 2 1 0 1 2 3 4 5
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5 4 3 2 1 0 1 2 3 4
6 5 4 3 2 1 0 1 2 3
7 6 5 4 3 2 1 0 1 2
8 7 6 5 4 3 2 1 0 1
9 8 7 6 5 4 3 2 1 0

targtwo = targone;
[outpermone outpermtwo coordone coordtwo fitone fittwo addconone ...
addcontwo vaf] = biscalqa(stannumber,targone,targtwo,inpermone, ...
inpermtwo,kblock,nopt)

elapsed_time =

552.2200

outpermone =

10 8 9 7 6 5 4 3 2 1

outpermtwo =

5 9 3 1 7 4 10 2 8 6

coordone =

-1.4191
-1.0310
-1.0310
-0.6805
-0.0858
-0.0009
0.2915
0.5418
1.2363
2.1786

coordtwo =

-0.8791
-0.8791
-0.8791
-0.2629
-0.1151
0.2472
0.2472
0.3639
0.9885

53



1.1688

fitone =

Columns 1 through 6

0 0.3881 0.3881 0.7386 1.3333 1.4182
0.3881 0 0 0.3505 0.9452 1.0301
0.3881 0 0 0.3505 0.9452 1.0301
0.7386 0.3505 0.3505 0 0.5947 0.6796
1.3333 0.9452 0.9452 0.5947 0 0.0849
1.4182 1.0301 1.0301 0.6796 0.0849 0
1.7106 1.3225 1.3225 0.9720 0.3773 0.2924
1.9609 1.5727 1.5727 1.2222 0.6275 0.5426
2.6554 2.2673 2.2673 1.9168 1.3221 1.2371
3.5977 3.2096 3.2096 2.8591 2.2644 2.1795

Columns 7 through 10

1.7106 1.9609 2.6554 3.5977
1.3225 1.5727 2.2673 3.2096
1.3225 1.5727 2.2673 3.2096
0.9720 1.2222 1.9168 2.8591
0.3773 0.6275 1.3221 2.2644
0.2924 0.5426 1.2371 2.1795

0 0.2503 0.9448 1.8871
0.2503 0 0.6945 1.6368
0.9448 0.6945 0 0.9423
1.8871 1.6368 0.9423 0

fittwo =

Columns 1 through 6

0 0 0 0.6162 0.7640 1.1263
0 0 0.0000 0.6162 0.7640 1.1263
0 0.0000 0 0.6162 0.7640 1.1263

0.6162 0.6162 0.6162 0 0.1478 0.5101
0.7640 0.7640 0.7640 0.1478 0 0.3623
1.1263 1.1263 1.1263 0.5101 0.3623 0
1.1263 1.1263 1.1263 0.5101 0.3623 0
1.2430 1.2430 1.2430 0.6268 0.4790 0.1167
1.8676 1.8676 1.8676 1.2514 1.1036 0.7413
2.0479 2.0479 2.0479 1.4317 1.2839 0.9216

Columns 7 through 10

1.1263 1.2430 1.8676 2.0479
1.1263 1.2430 1.8676 2.0479
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1.1263 1.2430 1.8676 2.0479
0.5101 0.6268 1.2514 1.4317
0.3623 0.4790 1.1036 1.2839

0 0.1167 0.7413 0.9216
0 0.1167 0.7413 0.9216

0.1167 0 0.6246 0.8049
0.7413 0.6246 0 0.1803
0.9216 0.8049 0.1803 0

addconone =

1.3137

addcontwo =

0.8803

vaf =

0.8243

Although we have used the proximity matrix in number.m primarily as a convenient
numerical example to illustrate the various m-functions provided in the appendix, the sub-
stantive interpretation for this particular two-dimensional structure is rather remarkable and
worth pointing out. The first dimension reflects number magnitude perfectly (in its coor-
dinate order) with two objects (the actual digits 7 8) at the same (tied) coordinate value.
The second axis reflects the structural characteristics perfectly, with the coordinates split
into the odd and even numbers (the digits 4 8 2 0 6 in the first five positions; 3 9 1 7 5 in
the second five); there is a grouping of 4 8 2 at the same coordinates (reflecting powers of
2); a grouping of 6 3 9 (reflecting multiples of three) and of 3 9 at the same coordinates
(reflecting the powers of 3); the odd numbers 7 5 that are not powers of 3 are at the extreme
two coordinates of this second dimension.

Although we will not explicitly illustrate its use here, a tridimensional m-function, triscalqa.m,
is given in A.10 that is an obvious generalization of biscalqa.m. The pattern of program-
ming that this shows could be used directly as a pattern for extensions even beyond three
unidimensional structures.
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1.2.3 Incorporating Monotonic Transformation of a Proximity Ma-
trix in Fitting Multiple Unidimensional Scales: L2 Non-
metric Multidimensional Scaling in the City-Block Metric

As a direct extension of the m-function biscalqa.m discussed in the last section, Appendix
A.11 gives bimonscalqa.m which provides an optimal monotonic transformation (by incor-
porating the use of proxmon.m) of the original proximity matrix given as input in addition
to the later’s bidimensional scaling. To prevent degeneracy, the sum-of-squares value for the
initial input proximity matrix is maintained in the optimally transformed proximities; the
overall strategy is iterative with termination again dependent on a change in the variance-
accounted-for being less than 1.0e-005. The usage syntax is almost identical to that of
biscalqa.m except for the inclusion of the monotonically transformed proximity matrix
MONPROX as an output matrix:

[ ... monprox] = bimonscalqa( ... )

The ellipses indicate that the same items should be used as in biscalqa.m. If bimonscalqa
would have been used in the numerical example of the previous section, the same results given
would have been provided initially plus the results for the optimally transformed proximity
matrix. We give this additional output below, which shows that the incorporation of an
optimal monotonic transformation provides an increase in the VAF from .8243 to .9362; the
orderings on the two dimensions remain the same as well as the nice substantive explanation
of the previous section.

outpermone =

Columns 1 through 8

10 8 9 7 6 5 4 3

Columns 9 through 10

2 1

outpermtwo =

Columns 1 through 8

6 8 2 4 10 7 1 3

Columns 9 through 10
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5 9

coordone =

-1.6247

-1.1342

-1.1342

-0.5857

-0.1216

-0.0775

0.3565

0.6409

1.3290

2.3514

coordtwo =

-1.0035

-0.8467

-0.3480

-0.3242

-0.3242

0.1196

0.3891

0.7793

0.7793

0.7793

fitone =

Columns 1 through 5

0 0.4906 0.4906 1.0390 1.5032

0.4906 0 0 0.5484 1.0126

0.4906 0 0 0.5484 1.0126

1.0390 0.5484 0.5484 0 0.4642

1.5032 1.0126 1.0126 0.4642 0

1.5473 1.0567 1.0567 0.5083 0.0441
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1.9812 1.4906 1.4906 0.9422 0.4780

2.2657 1.7751 1.7751 1.2267 0.7625

2.9538 2.4632 2.4632 1.9148 1.4506

3.9762 3.4856 3.4856 2.9372 2.4730

Columns 6 through 10

1.5473 1.9812 2.2657 2.9538 3.9762

1.0567 1.4906 1.7751 2.4632 3.4856

1.0567 1.4906 1.7751 2.4632 3.4856

0.5083 0.9422 1.2267 1.9148 2.9372

0.0441 0.4780 0.7625 1.4506 2.4730

0 0.4339 0.7184 1.4065 2.4289

0.4339 0 0.2845 0.9726 1.9950

0.7184 0.2845 0 0.6881 1.7105

1.4065 0.9726 0.6881 0 1.0224

2.4289 1.9950 1.7105 1.0224 0

fittwo =

Columns 1 through 5

0 0.1568 0.6555 0.6793 0.6793

0.1568 0 0.4987 0.5225 0.5225

0.6555 0.4987 0 0.0238 0.0238

0.6793 0.5225 0.0238 0 0

0.6793 0.5225 0.0238 0 0

1.1231 0.9663 0.4677 0.4439 0.4439

1.3926 1.2358 0.7371 0.7133 0.7133

1.7828 1.6260 1.1273 1.1035 1.1035

1.7828 1.6260 1.1273 1.1035 1.1035

1.7828 1.6260 1.1273 1.1035 1.1035

Columns 6 through 10

1.1231 1.3926 1.7828 1.7828 1.7828

0.9663 1.2358 1.6260 1.6260 1.6260

0.4677 0.7371 1.1273 1.1273 1.1273

0.4439 0.7133 1.1035 1.1035 1.1035

0.4439 0.7133 1.1035 1.1035 1.1035

0 0.2695 0.6597 0.6597 0.6597
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0.2695 0 0.3902 0.3902 0.3902

0.6597 0.3902 0 0.0000 0

0.6597 0.3902 0.0000 0 0

0.6597 0.3902 0 0 0

addconone =

1.4394

addcontwo =

0.7922

vaf =

0.9362

monprox =

Columns 1 through 5

0 -0.7387 -0.1667 0.5067 0.5067

-0.7387 0 -0.8218 -0.8218 0.5067

-0.1667 -0.8218 0 -0.8218 -1.6174

0.5067 -0.8218 -0.8218 0 -0.7387

0.5067 0.5067 -1.6174 -0.7387 0

1.4791 -0.1667 0.5067 -0.7387 -0.7387

1.0321 0.5067 -0.7387 -0.8218 -0.8218

2.6590 0.5067 1.0321 -0.1667 0.5067

1.7609 1.0321 -0.8218 1.0321 -1.2541

2.6231 0.5067 1.4791 -0.8218 0.5067

Columns 6 through 10

1.4791 1.0321 2.6590 1.7609 2.6231

-0.1667 0.5067 0.5067 1.0321 0.5067

0.5067 -0.7387 1.0321 -0.8218 1.4791

-0.7387 -0.8218 -0.1667 1.0321 -0.8218
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-0.7387 -0.8218 0.5067 -1.2541 0.5067

0 -0.8218 -0.8218 0.5067 -0.0534

-0.8218 0 -0.7387 -0.8218 -0.8218

-0.8218 -0.7387 0 -0.7387 -0.7387

0.5067 -0.8218 -0.7387 0 -0.8218

-0.0534 -0.8218 -0.7387 -0.8218 0

Although we will not provide an example of its use here, Appendix A.12 gives trimonscalqa.m,
which extends triscalqa.m (listed in A.10) to include an optimal monotonic transformation
of whatever is given as the original input proximity matrix.
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Chapter 2

LUS in the L1 Norm

The linear unidimensional scaling task in the L1 norm can be phrased as one of finding a set
of coordinates x1, . . . , xn such that the L1 criterion∑

i<j

|pij − (|xj − xi| − c)| (2.1)

is minimized, where we now immediately include the possibility of an additive constant in
the model (in what follows, c can just be set to 0 for the more elemental model without an
additive constant). As an alternative reformulation of the optimization task in (1) that will
prove convenient as a point of departure in our development of computational routines (much
as what we did within the L2 norm), we subdivide (2.1) into the two separate problems of
finding a set of n numbers, x1 ≤ · · · ≤ xn, and a permutation on the first n integers, ρ(·) ≡ ρ,
for which ∑

i<j

|pρ(i)ρ(j) − ((xj − xi)− c)| (2.2)

is minimized. We can again impose the additional constraint that
∑n

i=1 xi = 0.
Assuming for now that the permutation ρ is given, the task of finding x1 ≤ · · · ≤ xn

to minimize (2.2) is a linear programming problem. Without loss of generality, we let ρ be
the identity permutation and first rewrite

∑
i<j |pij − (|xj − xi| − c)| as the loss criterion∑

i<j(z
+
ij + z−ij), where

z+
ij =

1

2
{|pij − (|xj − xi| − c)| − (pij − (|xj − xi| − c))};

z−ij =
1

2
{|pij − (|xj − xi| − c)|+ (pij − (|xj − xi| − c))},

for 1 ≤ i < j ≤ n. The unknowns are c, x1, . . . , xn, and for 1 ≤ i < j ≤ n, z+
ij , z−ij , and yij

(≡ |xj − xi|). The constraints of the linear program take the form:

−z+
ij + z−ij + yij − c = pij;

−xj + xi + yij = 0;
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z+
ij ≥ 0, z−ij ≥ 0, yij ≥ 0,

for 1 ≤ i < j ≤ n, and
x1 + · · ·+ xn = 0.

2.1 The L1 Fitting of a Single Unidimensional Scale

Based on the linear programming reformulation just given for finding a set of ordered co-
ordinates for a fixed object permutation, Appendices A.13 and A.14 give the m-functions,
linfitl1.m and linfitl1ac.m, where the latter includes an additive constant in the model
and the former does not. Both of these m-functions serve to setup the relevant (constraint)
matrices for the associated linear programming task; the actual linear programming opti-
mization is carried out by invoking linprog.m from the MATLAB Optimization Toolbox.

The syntax for linfitl1.m is

[fit diff coord exitflag] = linfitl1(prox,inperm)

where if we denote the given permutation as ρ0(·) (INPERM), we seek a set of coordinates
x1 ≤ · · · ≤ xn (COORD) to minimize (at a value of DIFF)∑

i<j

|pρ0(i)ρ0(j) − |xj − xi||;

FIT refers to the matrix {|xj − xi|}, and EXITFLAG describes the exit condition of the linear
program optimization (greater than 0 for convergence; 0 denotes the maximum number of
function evaluations or iterations was exceeded; less than 0 indicates a failure of convergence
to a solution). For using linfitl1ac.m, the syntax is

[fit dev coord addcon exitflag] = linfitl1ac(prox,inperm)

Here, we minimize ∑
i<j

|pρ0(i)ρ0(j) − (|xj − xi| − c)|

where c is given by ADDCON and DEV refers to the deviance(-accounted-for) defined by the
normalized L1 loss value:

DEV = 1−
∑

i<j |pρ0(i)ρ0(j) − (|xj − xi| − c)|∑
i<j |pij − pmed|

,

where pmed is the median of the off-diagonal proximity values.
We illustrate below the use of linfitl1.m and linfitl1ac.m on the number.m proximity

matrix using the identity permutation as the input object order.
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load number.dat

inperm = 1:10

inperm =

1 2 3 4 5 6 7 8 9 10

[fit diff coord exitflag] = linfitl1(number,inperm)

Optimization terminated successfully.

fit =

Columns 1 through 6

0 0.3000 0.5840 0.6460 0.6460 0.8040

0.3000 0 0.2840 0.3460 0.3460 0.5040

0.5840 0.2840 0 0.0620 0.0620 0.2200

0.6460 0.3460 0.0620 0 0.0000 0.1580

0.6460 0.3460 0.0620 0.0000 0 0.1580

0.8040 0.5040 0.2200 0.1580 0.1580 0

1.0050 0.7050 0.4210 0.3590 0.3590 0.2010

1.2040 0.9040 0.6200 0.5580 0.5580 0.4000

1.2040 0.9040 0.6200 0.5580 0.5580 0.4000

1.3290 1.0290 0.7450 0.6830 0.6830 0.5250

Columns 7 through 10

1.0050 1.2040 1.2040 1.3290

0.7050 0.9040 0.9040 1.0290

0.4210 0.6200 0.6200 0.7450

0.3590 0.5580 0.5580 0.6830

0.3590 0.5580 0.5580 0.6830

0.2010 0.4000 0.4000 0.5250

0 0.1990 0.1990 0.3240

0.1990 0 0.0000 0.1250

0.1990 0.0000 0 0.1250

0.3240 0.1250 0.1250 0

diff =
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8.2120

coord =

-0.7722

-0.4722

-0.1882

-0.1262

-0.1262

0.0318

0.2328

0.4318

0.4318

0.5568

exitflag =

1

[fit dev coord addcon exitflag] = linfitl1ac(number,inperm)

Optimization terminated successfully.

fit =

Columns 1 through 6

0 0.4993 0.5840 0.6130 0.6783 0.7397

0.4993 0 0.4323 0.4613 0.5267 0.5880

0.5840 0.4323 0 0.3767 0.4420 0.5033

0.6130 0.4613 0.3767 0 0.4130 0.4743

0.6783 0.5267 0.4420 0.4130 0 0.4090

0.7397 0.5880 0.5033 0.4743 0.4090 0

0.7880 0.6363 0.5517 0.5227 0.4573 0.3960

0.8573 0.7057 0.6210 0.5920 0.5267 0.4653

0.8573 0.7057 0.6210 0.5920 0.5267 0.4653

0.9017 0.7500 0.6653 0.6363 0.5710 0.5097

Columns 7 through 10

0.7880 0.8573 0.8573 0.9017
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0.6363 0.7057 0.7057 0.7500

0.5517 0.6210 0.6210 0.6653

0.5227 0.5920 0.5920 0.6363

0.4573 0.5267 0.5267 0.5710

0.3960 0.4653 0.4653 0.5097

0 0.4170 0.4170 0.4613

0.4170 0 0.3477 0.3920

0.4170 0.3477 0 0.3920

0.4613 0.3920 0.3920 0

dev =

0.4252

coord =

-0.3390

-0.1873

-0.1026

-0.0736

-0.0083

0.0530

0.1014

0.1707

0.1707

0.2150

addcon =

-0.3477

exitflag =

1
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2.1.1 Iterative Linear Programming

Given the availability of the two linear programming based m-functions (discussed in the
previous Section 2.1) for fitting given unidimensional scales defined by specific input object
permutations, it is possible to imbed these two routines in a search strategy for actually
finding the (at least hopefully) best such permutations in the first place. This imbedding
is analogous to adopting iterative quadratic assignment in uniscalqa.m (of Section 1.1.2)
and attempting to locate good unidimensional scalings in the L2 norm. Here, we have an
iterative use of linear programming in uniscallp.m (in A.15) and uniscallpac.m (in A.16)
to identifying the good unidimensional scales in the L1 norm, without and with, respectively,
an additive constant in the fitted model. The usage syntax of both m-functions are as follows:

[outperm coord diff fit] = uniscallp(prox,inperm)

[outperm coord dev fit addcon] = uniscallpac(prox,inperm)

Both m-functions begin with a given object ordering (INPERM) and evaluate the effect of
pairwise object interchanges on the current permutation carried forward to that point. If an
object interchange is identified that improves the L1 loss value, that interchange is made and
the changed permutation becomes the current one. When no pairwise object interchange
can reduce DIFF in uniscallp.m, or increase DEV in uniscallpac.m over its current value,
that ending permutation is provided as OUTPERM along with its coordinates (COORD) and the
matrix FIT (the absolute differences of the ordered coordinates). In uniscallpac.m, the
additive constant (ADDCON) is also given.

The numerical example that follows on our number.dat proximity matrix, initialize both
the m-functions with the identity permutation (1:10). From other random starts that we
have tried in addition to this very rational starting permutation, the resulting scales we give
below are (almost undoubtedly) L1 norm optimal. We might note that the (optimal) object
orderings differ depending on whether or not an additive constant is included in the model.

[outperm coord diff fit] = uniscallp(number,1:10)

elapsed_time =

1.0611e+003

outperm =

1 2 3 5 4 9 7 6 10 8

coord =
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-0.7025

-0.3685

-0.2485

-0.1895

-0.0225

0.1185

0.1725

0.2195

0.4685

0.5525

diff =

7.0430

fit =

Columns 1 through 6

0 0.3340 0.4540 0.5130 0.6800 0.8210

0.3340 0 0.1200 0.1790 0.3460 0.4870

0.4540 0.1200 0 0.0590 0.2260 0.3670

0.5130 0.1790 0.0590 0 0.1670 0.3080

0.6800 0.3460 0.2260 0.1670 0 0.1410

0.8210 0.4870 0.3670 0.3080 0.1410 0

0.8750 0.5410 0.4210 0.3620 0.1950 0.0540

0.9220 0.5880 0.4680 0.4090 0.2420 0.1010

1.1710 0.8370 0.7170 0.6580 0.4910 0.3500

1.2550 0.9210 0.8010 0.7420 0.5750 0.4340

Columns 7 through 10

0.8750 0.9220 1.1710 1.2550

0.5410 0.5880 0.8370 0.9210

0.4210 0.4680 0.7170 0.8010

0.3620 0.4090 0.6580 0.7420

0.1950 0.2420 0.4910 0.5750

0.0540 0.1010 0.3500 0.4340

0 0.0470 0.2960 0.3800

0.0470 0 0.2490 0.3330
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0.2960 0.2490 0 0.0840

0.3800 0.3330 0.0840 0

[outperm coord dev fit addcon] = uniscallpac(number,1:10)

elapsed_time =

1651

outperm =

1 2 3 4 5 7 6 9 10 8

coord =

-0.3807

-0.1647

-0.1087

-0.0637

0.0143

0.0903

0.1113

0.1283

0.1573

0.2163

dev =

0.4479

fit =

Columns 1 through 6

0 0.5280 0.5840 0.6290 0.7070 0.7830

0.5280 0 0.3680 0.4130 0.4910 0.5670

0.5840 0.3680 0 0.3570 0.4350 0.5110
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0.6290 0.4130 0.3570 0 0.3900 0.4660

0.7070 0.4910 0.4350 0.3900 0 0.3880

0.7830 0.5670 0.5110 0.4660 0.3880 0

0.8040 0.5880 0.5320 0.4870 0.4090 0.3330

0.8210 0.6050 0.5490 0.5040 0.4260 0.3500

0.8500 0.6340 0.5780 0.5330 0.4550 0.3790

0.9090 0.6930 0.6370 0.5920 0.5140 0.4380

Columns 7 through 10

0.8040 0.8210 0.8500 0.9090

0.5880 0.6050 0.6340 0.6930

0.5320 0.5490 0.5780 0.6370

0.4870 0.5040 0.5330 0.5920

0.4090 0.4260 0.4550 0.5140

0.3330 0.3500 0.3790 0.4380

0 0.3290 0.3580 0.4170

0.3290 0 0.3410 0.4000

0.3580 0.3410 0 0.3710

0.4170 0.4000 0.3710 0

addcon =

-0.3120

2.2 The L1 Finding and Fitting of Multiple Unidimen-

sional Scales

In analogy to the L2 fitting of multiple unidimensional structures, the use of the L1 norm
can again be done by (repetitive) successive residualization, but now with a reliance on the
m-function, linfitl1ac.m, to fit each separate unidimensional structure with its additive
constant. The m-function, biscallp.m, given in the Appendix Section A.17 is a two-(or
bi-)dimensional scaling strategy for the L1 loss-function∑

i<j

|pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2]|, (2.3)

with syntax (and all variables) similar to biscalqa.m of Section 1.2.2, including a provision
for the confirmatory fitting of two given input orders (by setting NOPT = 1).

69



In the example given below, the two beginning permutations used were the ones identified
with the L2 norm. Compared to the input permutations, there is only one slight change in the
interchange of “3” and “5” in the second output permutation. The final deviance-accounted-
for (DEV) of this solution is .6780.

load number.dat

[stannumber,stannumbermult] = proxstd(number,0);

nopt = 1;

inpermone = [10 8 9 7 6 5 4 3 2 1]

inpermone =

10 8 9 7 6 5 4 3 2 1

inpermtwo = [5 9 3 1 7 4 10 2 8 6]

inpermtwo =

5 9 3 1 7 4 10 2 8 6

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...

addconone,addcontwo,dev] = biscallp(stannumber,inpermone,inpermtwo,nopt)

outpermone =

10 8 9 7 6 5 4 3 2 1

outpermtwo =

5 3 9 1 7 4 10 2 8 6

coordone =

-1.3666

-1.1641

-0.8702

-0.4647

-0.1317
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-0.0203

0.3600

0.4902

1.1473

2.0201

coordtwo =

-0.9600

-0.9356

-0.8132

-0.1471

-0.0082

0.1366

0.1366

0.5387

0.8147

1.2375

fitone =

Columns 1 through 7

0 -1.0431 -0.7492 -0.3436 -0.0106 0.1008 0.4810

-1.0431 0 -0.9516 -0.5461 -0.2131 -0.1017 0.2786

-0.7492 -0.9516 0 -0.8400 -0.5070 -0.3956 -0.0153

-0.3436 -0.5461 -0.8400 0 -0.9125 -0.8011 -0.4209

-0.0106 -0.2131 -0.5070 -0.9125 0 -1.1341 -0.7539

0.1008 -0.1017 -0.3956 -0.8011 -1.1341 0 -0.8653

0.4810 0.2786 -0.0153 -0.4209 -0.7539 -0.8653 0

0.6113 0.4088 0.1149 -0.2906 -0.6236 -0.7350 -1.1153

1.2684 1.0659 0.7720 0.3664 0.0334 -0.0780 -0.4582

2.1412 1.9388 1.6449 1.2393 0.9063 0.7949 0.4147

Columns 8 through 10

0.6113 1.2684 2.1412

0.4088 1.0659 1.9388

0.1149 0.7720 1.6449

-0.2906 0.3664 1.2393
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-0.6236 0.0334 0.9063

-0.7350 -0.0780 0.7949

-1.1153 -0.4582 0.4147

0 -0.5885 0.2844

-0.5885 0 -0.3727

0.2844 -0.3727 0

fittwo =

Columns 1 through 7

0 -0.8806 -0.7583 -0.0922 0.0468 0.1915 0.1915

-0.8806 0 -0.7827 -0.1166 0.0223 0.1671 0.1671

-0.7583 -0.7827 0 -0.2389 -0.1000 0.0448 0.0448

-0.0922 -0.1166 -0.2389 0 -0.7661 -0.6213 -0.6213

0.0468 0.0223 -0.1000 -0.7661 0 -0.7603 -0.7603

0.1915 0.1671 0.0448 -0.6213 -0.7603 0 -0.9050

0.1915 0.1671 0.0448 -0.6213 -0.7603 -0.9050 0

0.5936 0.5692 0.4469 -0.2192 -0.3582 -0.5029 -0.5029

0.8697 0.8452 0.7229 0.0568 -0.0821 -0.2269 -0.2269

1.2925 1.2680 1.1457 0.4796 0.3407 0.1959 0.1959

Columns 8 through 10

0.5936 0.8697 1.2925

0.5692 0.8452 1.2680

0.4469 0.7229 1.1457

-0.2192 0.0568 0.4796

-0.3582 -0.0821 0.3407

-0.5029 -0.2269 0.1959

-0.5029 -0.2269 0.1959

0 -0.6290 -0.2062

-0.6290 0 -0.4822

-0.2062 -0.4822 0

addconone =

1.2455
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addcontwo =

0.9050

dev =

0.6780
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Appendix A

main program files

A.1 uniscaldp.m

function [coord,permut,cumobfun,diff] = uniscaldp(prox)

%UNISCALDP carries out a unidimensional scaling of a symmetric proximity
% matrix using dynamic programming.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% COORD is the set of coordinates of the optimal unidimensional scaling
% in ascending order;
% PERMUT is the order of the objects in the optimal permutation(say,
% $\rho^{*}$);
% CUMOBFUN gives the cumulative values of the objective function for
% the successive placements of the objects in the optimal permutation:
% $\sum_{i=1}^{k} (t_{i}^{(\rho^{*})})^{2}$ for $k = 1, \ldots, n$;
% DIFF is the value of the least-squares loss function for the optimal
% coordinates and object permutation.

% Initializations. The vectors VALSTORE and IDXSTORE store the results of
% of the recursion for the $(2^n)-1$ nonempty subsets of $S$. The integer
% positions in these vectors correspond to subsets whose binary
% number equivalents are equal those integer positions.

tic;
n = size(prox,1);
bigneg = -1.0e+20;
nsum = (2^n) - 1;
valstore = ones(nsum,1)*bigneg;
idxstore = zeros(nsum,1);
sub = zeros(n,1);
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subcomp = zeros(n,1);
coord = zeros(n,1);
permut = zeros(n,1);
cumobfun = zeros(n,1);

% Initializing the recursion for subsets of size 1
for i = 1:n

rowsum = 0;
for j = 1:n

rowsum = rowsum + prox(i,j);
end
index = 2^(i-1);
idxstore(index) = i;
valstore(index) = rowsum^2;

end

% Carrying out the recursion for subsets of size $k$ from $k = 1$
% to $n-1$ by adapting a Fortran subroutine from Nijenhuis and Wilf
% (1978, Combinatorial Algorithms, Academic Press, pp. 26--38) on
% generating the next k-subset from an n-Set
% (and placed in the variable SUB)
mtc = 0;
for k = 1:(n-1)

nfirst = 0;
if(mtc == 0)

m2 = 0;
nh = k;
for j = 1:nh

sub(k+j-nh) = m2 + j;
end
if(sub(1) ~= (n-k+1))

mtc = 1;
end

end

while (mtc == 1)
if(nfirst == 1)

if(m2 < (n-nh))
nh = 0;

end
nh = nh + 1;
m2 = sub(k+1-nh);
for j = 1:nh

sub(k+j-nh) = m2 + j;
end
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if(sub(1) ~= (n-k+1))
mtc = 1;

else
mtc = 0;

end
end

if(nfirst == 0)
nfirst = 1;

end
index = 0;

for i = 1:k
index = index + 2^(sub(i)-1);

end

% Generating the complement (SUBCOMP) of the subset indicated in SUB
jj = 1;
subcomp = zeros(n,1);
for i = 1:n

idxcomp = 1;
for j = 1:k

if(sub(j) == i)
idxcomp = 0;

end
end
if(idxcomp == 1)

subcomp(jj) = i;
jj = jj + 1;

end
end

% Trying to add objects from SUBCOMP one at a time to the end of
% SUB to see if better placements can be found

nk = n - k;
for jj = 1:nk

jone = subcomp(jj);
sum = 0.0;
for i = 1:k

ione = sub(i);
sum = sum + prox(jone,ione);

end
for i = 1:nk

ione = subcomp(i);
if(ione ~= jone)

sum = sum - prox(jone,ione);
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end
end

% Evaluating the placement of the objects from SUBCOMP to
% the end of those in SUB

incre = sum^2;
temp = valstore(index) + incre;
idxtmp = index + 2^(jone-1);
comp = valstore(idxtmp);
if(temp > comp)

valstore(idxtmp) = temp;
idxstore(idxtmp) = jone;

end
end

end
end

% Recursion complete; working backwards to find the optimal solution
permut(n) = idxstore(nsum);
cumobfun(n) = valstore(nsum);
index = nsum;
lastint = permut(n);
for i = 1:(n-1)

index = index - (2^(lastint-1));
lastint = idxstore(index);
permut(n-i) = lastint;
cumobfun(n-i) = valstore(index);

end

for i = 1:n
for j = 1:n

if(i > j)
coord(i) = coord(i) + prox(permut(i),permut(j));

end
if(i < j)

coord(i) = coord(i) - prox(permut(i),permut(j));
end

end
coord(i) = coord(i)/n;

end

diff = 0;
for i = 1:(n-1)

for j = (i+1):n
diff = diff + (prox(permut(i),permut(j)) - ...
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abs(coord(i) - coord(j)))^2;
end

end
toc

A.2 uniscaldpf.m

function [coord,permut,cumobfun,diff] = uniscaldpf(prox)

tic;
n = size(prox,1);
bigneg = -1.0e+20;
nsum = (2^n) - 1;
sub = zeros(n,1);
subcomp = zeros(n,1);
coord = zeros(n,1);
permut = zeros(n,1);
cumobfun = zeros(n,1);

[valstore vidxstore] = uscalfor(prox);

permut(n) = vidxstore(nsum);
cumobfun(n) = valstore(nsum);
index = nsum;
lastint = permut(n);
for i = 1:(n-1)

index = index - (2^(lastint-1));
lastint = vidxstore(index);
permut(n-i) = lastint;
cumobfun(n-i) = valstore(index);

end

for i = 1:n
for j = 1:n

if(i > j)
coord(i) = coord(i) + prox(permut(i),permut(j));

end
if(i < j)

coord(i) = coord(i) - prox(permut(i),permut(j));
end

end
coord(i) = coord(i)/n;
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end

diff = 0;
for i = 1:(n-1)

for j = (i+1):n
diff = diff + (prox(permut(i),permut(j)) - ...

abs(coord(i) - coord(j)))^2;
end

end
toc

A.2.1 uscalfor.for

subroutine uscalfor(valstore,vidxstore,prox,n,nsum)

integer nsum,i,n,j,index,k,nfirst,mtc,m2,nh,idxcomp
integer nk,jone,ione,idxtmp,jj
integer nsub(n),nsubcomp(n)
real*8 bigneg,zero,rowsum,sum,xincre,temp,comp
real*8 valstore(nsum),prox(n,n),vidxstore(nsum)

bigneg = -1.0E20
nsum = (2**n) - 1
zero = 0.0

do i = 1,nsum
valstore(i) = bigneg
vidxstore(i) = zero

end do

do i = 1,n
nsub(i) = 0
nsubcomp(i) = 0

end do

do i = 1,n
rowsum = 0
do j = 1,n

rowsum = rowsum + prox(i,j)
end do
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index = 2**(i-1)
valstore(index) = rowsum**2
vidxstore(index) = i

end do

mtc = 0

do k = 1,n-1
nfirst = 0

if(mtc.eq.0) then
m2 = 0
nh = k
do j = 1,nh

nsub(k+j-nh) = m2 + j
end do
if(nsub(1).ne.(n-k+1)) then

mtc = 1
end if

end if

do while(mtc.eq.1)
if(nfirst.eq.1) then

if(m2.lt.(n-nh)) then
nh = 0

end if
nh = nh + 1
m2 = nsub(k+1-nh)
do j = 1,nh

nsub(k+j-nh) = m2 + j
end do
if(nsub(1).ne.(n-k+1)) then

mtc = 1
else

mtc = 0
end if

end if

if(nfirst.eq.0) then
nfirst = 1

end if
index = 0

do i = 1,k
index = index + 2**(nsub(i)-1)

end do
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jj = 1
do i =1,n

nsubcomp(i) = 0
end do

do i = 1,n
idxcomp = 1
do j = 1,k

if(nsub(j).eq.i) then
idxcomp = 0

end if
end do
if(idxcomp.eq.1) then

nsubcomp(jj) = i
jj = jj + 1

end if
end do

nk = n - k

do jj = 1,nk
jone = nsubcomp(jj)
sum = zero
do i = 1,k

ione = nsub(i)
sum = sum + prox(jone,ione)

end do
do i = 1,nk

ione = nsubcomp(i)
if(ione.ne.jone) then

sum = sum - prox(jone,ione)
end if

end do

xincre = sum**2
temp = valstore(index) + xincre
idxtmp = index + 2**(jone-1)
comp = valstore(idxtmp)

if(temp.gt.comp) then
valstore(idxtmp) = temp
vidxstore(idxtmp) = jone

end if
end do
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end do
end do

return
end

A.2.2 uscalforgw.for

subroutine mexFunction(nlhs,plhs,nrhs,prhs)

integer plhs(*),prhs(*)
integer mxCreateFull,mxGetPr
integer mxGetM,mxGetN,m,n,nsize,nsum
integer valstore_pr,vidxstore_pr,prox_pr
integer nlhs,nrhs
real*8 valstore(2**25),prox(25*25),vidxstore(2**25)

m = mxGetM(prhs(1))
n = mxGetN(prhs(1))
nsize = m*n
nsum = (2**n) - 1
if(n.gt.25) then

call mexErrMsgTxt(’n must be <= 25’)
end if

plhs(1) = mxCreateFull(nsum,1,0)
plhs(2) = mxCreateFull(nsum,1,0)
prox_pr = mxGetPr(prhs(1))
valstore_pr = mxGetPr(plhs(1))
vidxstore_pr = mxGetPr(plhs(2))

call mxCopyPtrToReal8(prox_pr,prox,nsize)
call uscalfor(valstore,vidxstore,prox,n,nsum)
call mxCopyReal8ToPtr(valstore,valstore_pr,nsum)
call mxCopyReal8ToPtr(vidxstore,vidxstore_pr,nsum)

return

end
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A.3 uniscalqa.m

function [outperm, rawindex, allperms, index, coord, diff] = ...
uniscalqa(prox, targ, inperm, kblock)

%UNISCALQA carries out a unidimensional scaling of a symmetric proximity
% matrix using iterative quadratic assignment.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% TARG is the input target matrix (usually with a zero main diagonal and
% with a dissimilarity interpretation representing equally-spaced locations
% along a continuum);
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX
% with respect to TARG redefined as $ = \{abs(coord(i) - coord(j))\}$;
% ALLPERMS is a cell array containing INDEX entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.
% The insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$)
% consecutive objects in
% the permutation defining the row and column order of the data matrix.
% COORD is the set of coordinates of the unidimensional scaling
% in ascending order;
% DIFF is the value of the least-squares loss function for the
% coordinates and object permutation.

tic;
n = size(prox,1);
outperm = inperm;
index = 1;
allperms{index} = inperm;
begindex = sum(sum(prox(inperm,inperm).*targ));
coord = zeros(n,1);

prevperm = inperm;
nprevperm = 1;

while (nprevperm == 1)
nprevperm = 0;

nchange = 1;

while (nchange == 1)
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nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outperm;

intrperm(k) = outperm(j);
intrperm(j) = outperm(k);

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outperm;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outperm(insertpt+jone);
jone = jone + 1;

end
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elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outperm(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index +1;
allperms{index} = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outperm;

for j = 1:k
intrperm(nlimlow+j-1) = outperm(nlimlow+k-j);

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));
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if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

end

end

rawindex = begindex;
if(any(prevperm - outperm) == 1)

nprevperm = 1;
prevperm = outperm;

end

coord = zeros(n,1);

for i = 1:n
for j = 1:n

if(i > j)
coord(i) = coord(i) + prox(outperm(i),outperm(j));

end
if(i < j)

coord(i) = coord(i) - prox(outperm(i),outperm(j));
end

end
coord(i) = coord(i)/n;

end

diff = 0;
for i = 1:(n-1)

for j = (i+1):n
diff = diff + (prox(outperm(i),outperm(j)) - ...

abs(coord(i) - coord(j)))^2;
end

end

for i = 1:n
for j = 1:n
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targ(i,j) = abs(coord(i) - coord(j));
end

end

begindex = sum(sum(prox(outperm,outperm).*targ));

end

toc

A.4 guttorder.m

function [gcoordsort, gperm] = ...
guttorder(prox,inperm)

%GUTTORDER carries out a unidimensional scaling of a symmetric proximity
% matrix using Guttman’s updating algorithm.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERM is an input permutation of the first $n$ integers;
% GCOORDSORT are the coordinates ordered from most negative to most positive;
% GPERM is the object permutation that indicates which objects are at which of the
% ordered coordinates in GCOORDSORT.

n = size(prox,1);
gpermprev = inperm;
gcoord = zeros(n,1);
gcoordprev = zeros(n,1);

for i = 1:n
for j = 1:n

if(inperm(j) == i)
gcoordprev(i) = j;

end
end

end

for i = 1:n
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for j = 1:n
gcoord(i) = gcoord(i) + (prox(i,j)*sign(gcoordprev(i) - ...

gcoordprev(j)))/n;
end

end

gperm = 1:n;
gcoordsort = gcoord;

for i = 1:(n-1)
for j = (i+1):n

if(gcoordsort(i) > gcoordsort(j))
tempcoord = gcoordsort(i);
gcoordsort(i) = gcoordsort(j);
gcoordsort(j) = tempcoord;
tempperm = gperm(i);
gperm(i) = gperm(j);
gperm(j) = tempperm;

end
end

end

while(any(gpermprev - gperm) == 1)
gcoordprev = gcoord;
gpermprev = gperm;
gcoord = zeros(n,1);
for i = 1:n

for j = 1:n
gcoord(i) = gcoord(i) + (prox(i,j)*sign(gcoordprev(i) - ...

gcoordprev(j)))/n;
end

end

gperm = 1:n;
gcoordsort = gcoord;

for i = 1:(n-1)
for j = (i+1):n

if(gcoordsort(i) > gcoordsort(j))
tempcoord = gcoordsort(i);
gcoordsort(i) = gcoordsort(j);
gcoordsort(j) = tempcoord;
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tempperm = gperm(i);
gperm(i) = gperm(j);
gperm(j) = tempperm;

end
end

end

end

A.5 plinorder.m

function [pcoordsort, pperm, gcoordsort, gperm, gdiff, pdiff] = ...
plinorder(prox,inperm)

%PLINORDER carries out a unidimensional scaling of a symmetric proximity
% matrix using Pliner smoothing function in Guttman’s updating algorithm.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERM is an input permutation of the first $n$ integers;
% GCOORDSORT are the coordinates from the Guttman update ordered from most negative to most positive;
% GPERM is the object permutation that indicates which objects are at which of the
% ordered coordinates in GCOORDSORT;
% PCOORDSORT are the coordinates from the Pliner smoother of the Guttman update ordered from most
% negative to most positive;
% PPERM is the object permutation that indicates which objects are at which of the ordered
% coordinates in PCOORDSORT;
% GDIFF is the value of the least-squares loss function for the
% coordinates and object permutation obtained from the Guttman update;
% PDIFF is the value of the least-squares loss function for the coordinates
% and object permutation obtained from the Pliner smoothing procedure.

n = size(prox,1);
gpermprev = inperm;
gcoord = zeros(n,1);
gcoordprev = zeros(n,1);

for i = 1:n
for j = 1:n

if(inperm(j) == i)
gcoordprev(i) = j;
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end
end

end

for i = 1:n
for j = 1:n

gcoord(i) = gcoord(i) + (prox(i,j)*sign(gcoordprev(i) - ...
gcoordprev(j)))/n;

end
end

gperm = 1:n;
gcoordsort = gcoord;

for i = 1:(n-1)
for j = (i+1):n

if(gcoordsort(i) > gcoordsort(j))
tempcoord = gcoordsort(i);
gcoordsort(i) = gcoordsort(j);
gcoordsort(j) = tempcoord;
tempperm = gperm(i);
gperm(i) = gperm(j);
gperm(j) = tempperm;

end
end

end
gpermprev = randperm(n);

while(any(gpermprev - gperm) == 1)
gcoordprev = gcoord;
gpermprev = gperm;
gcoord = zeros(n,1);
for i = 1:n

for j = 1:n
gcoord(i) = gcoord(i) + (prox(i,j)*sign(gcoordprev(i) - ...

gcoordprev(j)))/n;
end

end

gperm = 1:n;
gcoordsort = gcoord;

for i = 1:(n-1)
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for j = (i+1):n
if(gcoordsort(i) > gcoordsort(j))

tempcoord = gcoordsort(i);
gcoordsort(i) = gcoordsort(j);
gcoordsort(j) = tempcoord;
tempperm = gperm(i);
gperm(i) = gperm(j);
gperm(j) = tempperm;

end
end

end

gdiff = 0;
for i = 1:n

for j = 1:n
gdiff = gdiff + (prox(i,j) - abs(gcoord(i) - gcoord(j)))^2;

end
end

end

ep = 2*(max(sum(prox))/n);
pperm = gperm;
pcoord = gcoord;

for k = 2:100

ppermprev = randperm(n);

while(any(ppermprev - pperm) == 1)

pcoordprev = pcoord;
ppermprev = pperm;

pcoord = zeros(n,1);
for i = 1:n

for j = 1:n
abst = abs(pcoordprev(i) - pcoordprev(j));
if(abst < ep)

factor = ((pcoordprev(i) - pcoordprev(j))/ep)* ...
(2 - (abst/ep));

end
if(abst >= ep)

factor = sign(pcoordprev(i) - pcoordprev(j));
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end
pcoord(i) = pcoord(i) + (prox(i,j)*factor)/n;

end
end

pperm = 1:n;
pcoordsort = pcoord;

for i = 1:(n-1)
for j = (i+1):n

if(pcoordsort(i) > pcoordsort(j))
tempcoord = pcoordsort(i);
pcoordsort(i) = pcoordsort(j);
pcoordsort(j) = tempcoord;
tempperm = pperm(i);
pperm(i) = pperm(j);
pperm(j) = tempperm;

end
end

end

pdiff = 0;
for i = 1:n

for j = 1:n
pdiff = pdiff + (prox(i,j) - abs(pcoord(i) - pcoord(j)))^2;

end
end

end
ep = ep*(100 - k +1)/100;

end
gdiff = .5*gdiff;
pdiff = .5*pdiff;

A.6 unifitl2nlp.m

function [startcoord, begval, outcoord, endval, exitflag] = ...
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unifitl2nlp(prox,inperm)

%UNIFITL2NLP carries out a unidimensional scaling of a symmetric proximity
% matrix using the l2 norm and the nonlinear programming refomulation of
% Lau, Leung, and Tse.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERM is the input permutation of the first $n$ integers which is used to
% obtain the starting coordinates (STARTCOORD) and the initial least squares
% loss value (BEGVAL);
% OUTCOORD are the ending coordinates values having the final least squares loss
% value of ENDVAL;
% EXITFLAG indicates the success of the optimization ( > 0 indicates convergence;
% 0 indicates that the maximum number of function evaluations or iterations were
% reached; and < 0 denotes nonconvergence).

n = size(prox,1);
outcoord = zeros(n,1);
tmpcoord = zeros(n,1);
coord = zeros(n,1);
proxmat = prox(inperm,inperm);

for i = 1:n
for j = 1:n

if(i>j)
tmpcoord(i) = tmpcoord(i) + proxmat(i,j);

end
if(i<j)

tmpcoord(i) = tmpcoord(i) - proxmat(i,j);
end

end

tmpcoord(i) = tmpcoord(i)/n;

end

for i = 1:n
for j = 1:n

if(inperm(i) == j)
coord(j) = tmpcoord(i);

end
end

end

nch2 = n*(n-1)/2;
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xlength = (4*nch2) + n;
xstart = zeros(xlength,1);

for i = 1:n
xstart(i) = coord(i);

end

index = n;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
xstart(index) = prox(i,j) - coord(i) + coord(j);
xstart(index+nch2) = prox(i,j) - coord(j) + coord(i);
if(coord(i) > coord(j))

xstart(index+2*nch2) = 1;
end
if(coord(i) < coord(j))

xstart(index+3*nch2) = 1;
end

end
end

aequal = zeros(3*nch2+1,xlength);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
aequal(index,i) = 1;
aequal(index,j) = -1;
aequal(index,index+n) = 1;
aequal(index+nch2,i) = -1;
aequal(index+nch2,j) = 1;
aequal(index+nch2,index+nch2+n) = 1;
aequal(index+2*nch2,index+2*nch2+n) = 1;
aequal(index+2*nch2,index+3*nch2+n) = 1;

end
end

for i = 1:n
aequal(3*nch2+1,i) = 1;

end
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bconst = zeros(3*nch2+1,1);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
bconst(index) = prox(i,j);
bconst(index+nch2) = prox(i,j);
bconst(index+2*nch2) = 1;

end
end

bconst(3*nch2+1) = 0;

for i = 1:xlength
lbound(i) = -inf;
if(i > (n+2*nch2))

lbound(i) = 0;
end

end

[xend,fval,exitflag,output] = ...
fmincon(’objfunl2’,xstart,[],[],aequal,bconst,lbound,[]);

for i = 1:n
outcoord(i) = xend(i);

end

startcoord = coord;
begval = objfunl2(xstart);
outcoord;
endval = objfunl2(xend);

A.6.1 objfunl2.m

function f = objfunl2(x)
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%OBJFUNL2 provides the objective function evaluations needed for unifitl2nlp.m.

c = length(x);
n = round((1 + sqrt(1+8*c))/4);
nch2 = n*(n-1)/2;

f = 0;
index = n;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
f = f + x(index+2*nch2)*x(index)*x(index) + ...

x(index+3*nch2)*x(index+nch2)*x(index+nch2);
end

end

A.7 linfit.m

function [fit, diff, coord] = linfit(prox,inperm)

%LINFIT does a confirmatory fitting of a given unidimensional order using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to PROX(INPERM,INPERM) with
% least-squares value DIFF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT.

n=size(prox,1);
work = zeros(n*(n-1)*(n-2),1);
fit = prox(inperm,inperm);
work = zeros(n*(n-1)*(n-2),1);
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
index = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

for jthree = (jtwo+1):n
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p1 = fit(jone,jtwo);
p2 = fit(jone,jthree);
p3 = fit(jtwo,jthree);

fit(jone,jtwo) = fit(jone,jtwo) - work(index+1);
fit(jone,jthree) = fit(jone,jthree) - work(index+2);
fit(jtwo,jthree) = fit(jtwo,jthree) - work(index+3);

del = (fit(jone,jthree) - fit(jone,jtwo) - ...
fit(jtwo,jthree))/3.0;

fit(jone,jthree) = fit(jone,jthree) - del;
fit(jone,jtwo) = fit(jone,jtwo) + del;
fit(jtwo,jthree) = fit(jtwo,jthree) + del;

work(index+1) = del;
work(index+2) = -del;
work(index+3) = del;

index = index + 3;

cr = cr + abs(p1-fit(jone,jtwo)) + abs(p2-fit(jone,jthree)) ...
+ abs(p3 - fit(jtwo,jthree));

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

p1 = fit(jone,jtwo);
fit(jone,jtwo) = fit(jone,jtwo) - work(index+1);

if(fit(jone,jtwo) < 0.0)

work(index+1) = -fit(jone,jtwo);
fit(jone,jtwo) = 0.0;

else

work(index+1) = 0.0;

end
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index = index + 1;

cr= cr + abs(p1-fit(jone,jtwo));
end

end
end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if( i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - fit).^2));

% denom = sum(sum((prox(inperm,inperm) - proxave).^2));

denom = sum(sum((prox(inperm,inperm)).^2));

vaf = 1 - (diff/denom);
coord = zeros(n,1);

for i = 1:n
for j = 1:n

if(i>j)
coord(i) = coord(i) + fit(i,j);

end
if(i<j)

coord(i) = coord(i) - fit(i,j);

100



end
end

coord(i) = coord(i)/n;
end

diff = (.5)*diff;

A.8 linfitac.m

function [fit, vaf, coord, addcon] = linfitac(prox,inperm)

%LINFITAC does a confirmatory fitting of a given unidimensional order
% using the Dykstra-Kaczmarz iterative projection least-squares method,
% but differing from LINFIT.M in including the estimation of an additive
% constant.
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to PROX(INPERM,INPERM) with
% variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT; ADDCON is the estimated additive constant
% that can be interpreted as being added to PROX.

n=size(prox,1);
acondiff = 1.0;
addcon = 0.0;

while (acondiff >= 1.0e-005)

for i =1:n
for j=1:n

if(i ~= j)
fit(i,j) = prox(inperm(i),inperm(j)) + addcon;

else
fit(i,j) = 0.0;

end
end

end
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addconpv = addcon;

work = zeros(n*(n-1)*(n-2),1);
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
index = 0;

for jone = 1:(n-2)
for jtwo = (jone+1):(n-1)

for jthree = (jtwo+1):n

p1 = fit(jone,jtwo);
p2 = fit(jone,jthree);
p3 = fit(jtwo,jthree);

fit(jone,jtwo) = fit(jone,jtwo) - work(index+1);
fit(jone,jthree) = fit(jone,jthree) - work(index+2);
fit(jtwo,jthree) = fit(jtwo,jthree) - work(index+3);

del = (fit(jone,jthree) - fit(jone,jtwo) - ...
fit(jtwo,jthree))/3.0;

fit(jone,jthree) = fit(jone,jthree) - del;
fit(jone,jtwo) = fit(jone,jtwo) + del;
fit(jtwo,jthree) = fit(jtwo,jthree) + del;

work(index+1) = del;
work(index+2) = -del;
work(index+3) = del;

index = index + 3;

cr = cr + abs(p1-fit(jone,jtwo)) + abs(p2-fit(jone,jthree)) ...
+ abs(p3 - fit(jtwo,jthree));

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n
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p1 = fit(jone,jtwo);

fit(jone,jtwo) = fit(jone,jtwo) - work(index+1);

if(fit(jone,jtwo) < 0.0)

work(index+1) = -fit(jone,jtwo);
fit(jone,jtwo) = 0.0;

else

work(index+1) = 0.0;

end

index = index + 1;

cr= cr + abs(p1-fit(jone,jtwo));
end

end
end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

addcon = -sum(sum(prox(inperm,inperm) - fit))/(n*(n-1));

acondiff = abs(addcon - addconpv);

end

aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if( i ~= j)
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proxave(i,j) = aveprox;
fmadd(i,j) = fit(i,j) - addcon;

else
proxave(i,j) = 0;
fmadd(i,j) = 0.0;

end
end

end

diff = sum(sum((prox(inperm,inperm) - (fmadd)).^2));

denom = sum(sum((prox(inperm,inperm) - proxave).^2));

%denom = sum(sum((prox(inperm,inperm)).^2));

vaf = 1 - (diff/denom);

coord = zeros(n,1);

for i = 1:n
for j = 1:n

if(i>j)
coord(i) = coord(i) + fit(i,j);

end
if(i<j)

coord(i) = coord(i) - fit(i,j);
end

end

coord(i) = coord(i)/n;
end

A.9 biscalqa.m

function [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...
biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

%BISCALQA carries out a bidimensional scaling of a symmetric proximity
% matrix using iterative quadratic assignment.
% PROX is the input proximity matrix (with a zero main diagonal and a
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% dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension (usually with
% a zero main diagonal and with a dissimilarity interpretation representing
% equally-spaced locations along a continuum); TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the first dimension
% (a permuation of the first $n$ integers); INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data matrix.
% NOPT controls the confirmatory or exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first dimension;
% OUTPERMTWO is the final object permutation for the second dimension;
% COORDONE is the set of first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first dimensional model;
% ADDCONTWO is the additive constant for the second dimensional model;
% VAF is the variance-accounted-for in PROX by the bidimensional scaling.

tic;
n = size(prox,1);
outpermone = inpermone;
outpermtwo = inpermtwo;
coordone = zeros(n,1);
coordtwo = zeros(n,1);
fitone = targone;
fittwo = targtwo;

addconone = 0.0;
addcontwo = 0.0;
fitonedim = zeros(n,n);
fittwodim = zeros(n,n);

proxone = prox;
proxtwo = zeros(n,n);
proxave = zeros(n,n);
aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
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for j = 1:n
if (i ~= j)

proxave(i,j) = aveprox;
else

proxave(i,j) = 0.0;

end
end

end

vafdiff = 1.0;
vaf = 0.0;

while (vafdiff >= 1.0e-005)

vafprev = vaf;

if(nopt == 1)

begindexone = sum(sum(proxone(outpermone,outpermone).*fitone));

nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outpermone;

intrperm(k) = outpermone(j);
intrperm(j) = outpermone(k);

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;
begindexone = tryindex;
outpermone = intrperm;

end

end
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end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outpermone;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outpermone(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outpermone(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outpermone(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outpermone(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;

107



begindexone = tryindex;
outpermone = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outpermone;

for j = 1:k
intrperm(nlimlow+j-1) = outpermone(nlimlow+k-j);

end

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;
begindexone = tryindex;
outpermone = intrperm;

end

end
end

end
end
end

[fitone,vafone,coordone,addconone] = linfitac(proxone,outpermone);

fitonedim = fitone;

for i = 1:n
for j = 1:n

if(i ~= j)

proxtwo(outpermone(i),outpermone(j)) = proxone(outpermone(i),outpermone(j)) - ...
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fitonedim(i,j) + addconone;

else
proxtwo(outpermone(i),outpermone(j)) = 0.0;

end
end

end
for i = 1:n

for j = 1:n
if(i ~= j)

proxtwo(outpermtwo(i),outpermtwo(j)) = ...
proxtwo(outpermtwo(i),outpermtwo(j)) + fittwodim(i,j) - addcontwo;

else

end
end

end

if(nopt == 1)

begindextwo = sum(sum(proxtwo(outpermtwo,outpermtwo).*fittwo));

nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outpermtwo;

intrperm(k) = outpermtwo(j);
intrperm(j) = outpermtwo(k);

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
begindextwo = tryindex;
outpermtwo = intrperm;

end

end
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end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outpermtwo;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outpermtwo(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outpermtwo(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outpermtwo(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outpermtwo(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
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begindextwo = tryindex;
outpermtwo = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outpermtwo;

for j = 1:k
intrperm(nlimlow+j-1) = outpermtwo(nlimlow+k-j);

end

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
begindextwo = tryindex;
outpermtwo = intrperm;

end

end
end

end
end
end

[fittwo,vaftwo,coordtwo,addcontwo] = linfitac(proxtwo,outpermtwo);

fittwodim = fittwo;

for i = 1:n
for j = 1:n

if(i ~= j)

proxthree(outpermtwo(i),outpermtwo(j)) = proxtwo(outpermtwo(i),outpermtwo(j)) - ...
fittwodim(i,j) + addcontwo;
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else
proxthree(outpermtwo(i),outpermtwo(j)) = 0.0;

end
end

end

diff = sum(sum(proxthree.^2));
denom = sum(sum((prox-proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf-vafprev);

for i = 1:n
for j = 1:n

if (i ~= j)

proxone(outpermone(i),outpermone(j)) = fitone(i,j) - addconone + ...
proxthree(outpermone(i),outpermone(j));

end

if (i == j)

proxone(outpermone(i),outpermone(j)) = 0.0;

end
end

end

end

toc

A.10 triscalqa.m

function [outpermone,outpermtwo,outpermthree,coordone,coordtwo,coordthree, ...
fitone,fittwo,fitthree,addconone,addcontwo,addconthree,vaf] = ...

triscalqa(prox,targone,targtwo,targthree,inpermone,inpermtwo,inpermthree,kblock,nopt)
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%TRISCALQA carries out a tridimensional scaling of a symmetric proximity
% matrix using iterative quadratic assignment.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension (usually with
% a zero main diagonal and with a dissimilarity interpretation representing
% equally-spaced locations along a continuum); TARGTWO is the input target
% matrix for the second dimension; TARGTHREE is the input target matrix
% for the third dimension;
% INPERMONE is the input beginning permutation for the first dimension
% (a permuation of the first $n$ integers); INPERMTWO is the input beginning
% permutation for the second dimension; INPERMTHREE is the input beginning
% permutation for the third dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data matrix;
% NOPT controls the confirmatory or exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will fit in a confirmatory manner the three scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.
% OUTPERMONE is the final object permutation for the first dimension;
% OUTPERMTWO is the final object permutation for the second dimension;
% OUTPERMTHREE is the final object permutation for the third dimension;
% COORDONE is the set of first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending order;
% COORDTHREE is the set of third dimension coordinates in asceding order;
% ADDCONONE is the additive constant for the first dimensional model;
% ADDCONTWO is the additive constant for the second dimensional model;
% ADDCONTHREE is the additive constant for the third dimensional model;
% VAF is the variance-accounted-for in PROX by the bidimensional scaling.

tic;
n = size(prox,1);
outpermone = inpermone;
outpermtwo = inpermtwo;
outpermthree = inpermthree;
coordone = zeros(n,1);
coordtwo = zeros(n,1);
coordthree = zeros(n,1);
fitone = targone;
fittwo = targtwo;
fitthree = targthree;

addconone = 0.0;
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addcontwo = 0.0;
addconthree = 0.0;
fitonedim = zeros(n,n);
fittwodim = zeros(n,n);
fitthreedim = zeros(n,n);

proxone = prox;
proxtwo = zeros(n,n);
proxthree = zeros(n,n);
proxave = zeros(n,n);
aveprox = sum(sum(prox))/(n*(n-1));

for i = 1:n
for j = 1:n

if (i ~= j)
proxave(i,j) = aveprox;

else
proxave(i,j) = 0.0;

end
end

end

vafdiff = 1.0;
vaf = 0.0;

while (vafdiff >= 1.0e-005)

vafprev = vaf;

if (nopt == 1)

begindexone = sum(sum(proxone(outpermone,outpermone).*fitone));

nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n
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intrperm = outpermone;

intrperm(k) = outpermone(j);
intrperm(j) = outpermone(k);

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;
begindexone = tryindex;
outpermone = intrperm;

end

end
end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outpermone;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outpermone(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outpermone(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outpermone(nlimlow+jtwo);
jtwo = jtwo + 1;

end
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jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outpermone(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;
begindexone = tryindex;
outpermone = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outpermone;

for j = 1:k
intrperm(nlimlow+j-1) = outpermone(nlimlow+k-j);

end

tryindex = sum(sum(proxone(intrperm,intrperm).*fitone));

if(tryindex > (begindexone + 1.0e-008))
nchange = 1;
begindexone = tryindex;
outpermone = intrperm;

end

end
end

end
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end
end

[fitone,vafone,coordone,addconone] = linfitac(proxone,outpermone);

fitonedim = fitone;

for i = 1:n
for j = 1:n

if(i ~= j)

proxtwo(outpermone(i),outpermone(j)) = proxone(outpermone(i),outpermone(j)) - ...
fitonedim(i,j) + addconone;

else
proxtwo(outpermone(i),outpermone(j)) = 0.0;

end
end

end
for i = 1:n

for j = 1:n
if(i ~= j)

proxtwo(outpermtwo(i),outpermtwo(j)) = ...
proxtwo(outpermtwo(i),outpermtwo(j)) + fittwodim(i,j) - addcontwo;

else

end
end

end

if (nopt == 1)

begindextwo = sum(sum(proxtwo(outpermtwo,outpermtwo).*fittwo));

nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outpermtwo;
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intrperm(k) = outpermtwo(j);
intrperm(j) = outpermtwo(k);

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
begindextwo = tryindex;
outpermtwo = intrperm;

end

end
end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outpermtwo;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outpermtwo(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outpermtwo(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outpermtwo(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
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for j = nlimlow:(insertpt-k-1)
intrperm(j) = outpermtwo(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
begindextwo = tryindex;
outpermtwo = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outpermtwo;

for j = 1:k
intrperm(nlimlow+j-1) = outpermtwo(nlimlow+k-j);

end

tryindex = sum(sum(proxtwo(intrperm,intrperm).*fittwo));

if(tryindex > (begindextwo + 1.0e-008))
nchange = 1;
begindextwo = tryindex;
outpermtwo = intrperm;

end

end
end

end
end
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end

[fittwo,vaftwo,coordtwo,addcontwo] = linfitac(proxtwo,outpermtwo);

fittwodim = fittwo;

for i = 1:n
for j = 1:n

if(i ~= j)

proxthree(outpermtwo(i),outpermtwo(j)) = proxtwo(outpermtwo(i),outpermtwo(j)) - ...
fittwodim(i,j) + addcontwo;

else
proxthree(outpermtwo(i),outpermtwo(j)) = 0.0;

end
end

end

for i = 1:n
for j = 1:n

if(i ~= j)
proxthree(outpermthree(i),outpermthree(j)) = ...

proxthree(outpermthree(i),outpermthree(j)) + fitthreedim(i,j) - addconthree;
else

end
end

end

if (nopt == 1)

begindexthree = sum(sum(proxthree(outpermthree,outpermthree).*fitthree));

nchange = 1;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outpermthree;
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intrperm(k) = outpermthree(j);
intrperm(j) = outpermthree(k);

tryindex = sum(sum(proxthree(intrperm,intrperm).*fitthree));

if(tryindex > (begindexthree + 1.0e-008))
nchange = 1;
begindexthree = tryindex;
outpermthree = intrperm;

end

end
end

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outpermthree;

if (nlimlow > insertpt)

jtwo = 0;
for j = insertpt:(insertpt+k-1)

intrperm(j) =outpermthree(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outpermthree(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outpermthree(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
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for j = nlimlow:(insertpt-k-1)
intrperm(j) = outpermthree(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(proxthree(intrperm,intrperm).*fitthree));

if(tryindex > (begindexthree + 1.0e-008))
nchange = 1;
begindexthree = tryindex;
outpermthree = intrperm;

end

end
end

end

if (kblock > 1)

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outpermthree;

for j = 1:k
intrperm(nlimlow+j-1) = outpermthree(nlimlow+k-j);

end

tryindex = sum(sum(proxthree(intrperm,intrperm).*fitthree));

if(tryindex > (begindexthree + 1.0e-008))
nchange = 1;
begindexthree = tryindex;
outpermthree = intrperm;

end

end
end

end
end
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end

[fitthree,vafthree,coordthree,addconthree] = linfitac(proxthree,outpermthree);

fitthreedim = fitthree;

for i = 1:n
for j = 1:n

if(i ~= j)

proxfour(outpermthree(i),outpermthree(j)) = proxthree(outpermthree(i), ...
outpermthree(j)) - fitthreedim(i,j) + addconthree;

else
proxfour(outpermthree(i),outpermthree(j)) = 0.0;

end
end

end

diff = sum(sum(proxfour.^2));
denom = sum(sum((prox-proxave).^2));
vaf = 1 - (diff/denom);

vafdiff = abs(vaf-vafprev);

for i = 1:n
for j = 1:n

if (i ~= j)

proxone(outpermone(i),outpermone(j)) = fitone(i,j) - addconone + ...
proxfour(outpermone(i),outpermone(j));

end

if (i == j)

proxone(outpermone(i),outpermone(j)) = 0.0;

end
end

end
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end

toc

A.11 bimonscalqa.m

function [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone, ...
addcontwo,vaf,monprox] = ...

bimonscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

%BIMONCALQA carries out a bidimensional scaling of a symmetric proximity
% matrix using iterative quadratic assignment, plus it provides an
% optimal monotonic transformation (MONPROX) of the original input
% proximity matrix.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension (usually with
% a zero main diagonal and with a dissimilarity interpretation representing
% equally-spaced locations along a continuum); TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the first dimension
% (a permuation of the first $n$ integers); INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data matrix;
% NOPT controls the confirmatory or exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first dimension;
% OUTPERMTWO is the final object permutation for the second dimension;
% COORDONE is the set of first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first dimensional model;
% ADDCONTWO is the additive constant for the second dimensional model;
% VAF is the variance-accounted-for in MONPROX by the bidimensional scaling.

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...
biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)
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n = size(prox,1);
sumproxsq = sum(sum(prox.^2));
vafdiff = 1.0;
vaf = 0.0;

while (vafdiff >= 1.0e-005)

vafprev = vaf;

fit = zeros(n,n);

for i = 1:n
for j = 1:n

if(i ~= j)
fit(outpermone(i),outpermone(j)) = fitone(i,j) - addconone;

end
end

end

for i = 1:n
for j = 1:n

if(i ~= j)
fit(outpermtwo(i),outpermtwo(j)) = fit(outpermtwo(i),outpermtwo(j)) + ...

fittwo(i,j) -addcontwo;
end

end
end

[monprox vaf diff] = proxmon(prox,fit);

summonnewsq = sum(sum(monprox.^2));
monprox = sqrt(sumproxsq)*(monprox/sqrt(summonnewsq));

targone = fitone;
targtwo = fittwo;
inpermone = outpermone;
inpermtwo = outpermtwo;

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone, ...
addcontwo,vaf] = ...

biscalqa(monprox,targone,targtwo,inpermone,inpermtwo,kblock,nopt);
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vafdiff = abs(vaf - vafprev);

end

A.12 trimonscalqa.m

function [outpermone,outpermtwo,outpermthree,coordone,coordtwo,coordthree, ...
fitone,fittwo,fitthree,addconone,addcontwo,addconthree,vaf,monprox] = ...

trimonscalqa(prox,targone,targtwo,targthree,inpermone,inpermtwo, ...
inpermthree,kblock,nopt)

%TRIMONSCALQA carries out a tridimensional scaling of a symmetric proximity
% matrix using iterative quadratic assignment, plus it provides an
% optimal monotonic transformation (MONPROX) of the original input
% proximity matrix.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension (usually with
% a zero main diagonal and with a dissimilarity interpretation representing
% equally-spaced locations along a continuum); TARGTWO is the input target
% matrix for the second dimension; TARGTHREE is the input target matrix
% for the third dimension;
% INPERMONE is the input beginning permutation for the first dimension
% (a permuation of the first $n$ integers); INPERMTWO is the input beginning
% permutation for the second dimension; INPERMTHREE is the input
% beginning permutation for the third dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data matrix;
% NOPT controls the confirmatory or exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first dimension;
% OUTPERMTWO is the final object permutation for the second dimension;
% OUTPERMTHREE is the final object permutation for the third dimension;
% COORDONE is the set of first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending order;
% COORDTHREE is the set of second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first dimensional model;
% ADDCONTWO is the additive constant for the second dimensional model;
% ADDCONTHREE is the additive constant for the second dimensional model;
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% VAF is the variance-accounted-for in MONPROX by the tridimensional scaling.

[outpermone,outpermtwo,outpermthree,coordone,coordtwo,coordthree,fitone,fittwo, ...
fitthree,addconone,addcontwo,addconthree,vaf] = ...

triscalqa(prox,targone,targtwo,targthree,inpermone,inpermtwo,inpermthree, ...
kblock,nopt)

n = size(prox,1);
sumproxsq = sum(sum(prox.^2));
vafdiff = 1.0;
vaf = 0.0;

while (vafdiff >= 1.0e-005)

vafprev = vaf;

fit = zeros(n,n);

for i = 1:n
for j = 1:n

if(i ~= j)
fit(outpermone(i),outpermone(j)) = fitone(i,j) - addconone;

end
end

end

for i = 1:n
for j = 1:n

if(i ~= j)
fit(outpermtwo(i),outpermtwo(j)) = fit(outpermtwo(i),outpermtwo(j)) + ...

fittwo(i,j) -addcontwo;
end

end
end

for i = 1:n
for j = 1:n

if(i ~= j)
fit(outpermthree(i),outpermthree(j)) = fit(outpermthree(i),outpermthree(j)) + ...

fitthree(i,j) -addconthree;
end

end
end
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[monprox vaf diff] = proxmon(prox,fit);

summonnewsq = sum(sum(monprox.^2));
monprox = sqrt(sumproxsq)*(monprox/sqrt(summonnewsq));

targone = fitone;
targtwo = fittwo;
targthree = fitthree;
inpermone = outpermone;
inpermtwo = outpermtwo;
inpermthree = outpermthree;

[outpermone,outpermtwo,outpermthree,coordone,coordtwo,coordthree, ...
fitone,fittwo,fitthree,addconone,addcontwo,addconthree,vaf] = ...

triscalqa(monprox,targone,targtwo,targthree,inpermone,inpermtwo, ...
inpermthree,kblock,nopt)

vafdiff = abs(vaf - vafprev);

end

A.13 linfitl1.m

function [fit,diff,coord,exitflag] = ...
linfitl1(prox,inperm)

%LINFITL1 does a confimatory fitting in the $L_{1}$ norm of a given unidimensional
% order using linear programming.
% INPERM is the given order; FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with $L_{1}$ value DIFF; COORD gives the ordered coordinates
% whose absolute differences could be used to reconstruct FIT.
% EXITFLAG indicates the success of the optimization ( > 0 indicates convergence;
% 0 indicates that the maximum number of function evaluations or iterations were
% reached; and < 0 denotes nonconvergence).

n=size(prox,1);
coord = zeros(n,1);
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proxmat = prox(inperm,inperm);
nch2 = n*(n-1)/2;
xlength = 3*nch2 + n;
aequal = zeros(2*nch2+1,xlength);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
aequal(index,index+n) = -1;
aequal(index,index+n+nch2) = 1;
aequal(index,index+n+2*nch2) = 1;
aequal(index+nch2,i) = -1;
aequal(index+nch2,j) = 1;
aequal(index+nch2,index+n+2*nch2) = 1;

end
end

for i = 1:n
aequal(2*nch2+1,i) = 1;

end

bconst = zeros(2*nch2+1,1);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index +1;
bconst(index) = proxmat(i,j);
bconst(index+nch2) = 0;

end
end

bconst(2*nch2+1) = 0;

for i = 1:xlength
lbound(i) = -inf;
if (i > n )

lbound(i) = 0;
end

end

fweight = zeros(xlength,1);

for i = 1:xlength
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if((i > n) & (i < (2*nch2+n+1)))
fweight(i) = 1;

end
end

options = optimset(’LargeScale’,’off’);
[xend,diff,exitflag,output] = ...
linprog(fweight,[],[],aequal,bconst,lbound,[],[],options);

for i = 1:n
coord(i) = xend(i);

end

dev = 0;
fit = zeros(n,n);
for i = 1:n

for j = 1:n
if (i ~= j)

fit(i,j) = abs(coord(i) - coord(j));
dev = dev + abs(proxmat(i,j) - fit(i,j));

end
end

end

if (exitflag <= 0)
exitflag

end

A.14 linfitl1ac.m

function [fit,dev,coord,addcon,exitflag] = ...
linfitl1ac(prox,inperm)

%LINFITL1AC does a confimatory fitting in the $L_{1}$ norm of a given unidimensional
% order using linear programming, with the estimation of
% an additive constant (ADDCON).
% INPERM is the given order; FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with deviance DEV; COORD gives the ordered coordinates
% whose absolute differences could be used to reconstruct FIT.
% EXITFLAG indicates the success of the optimization ( > 0 indicates convergence;
% 0 indicates that the maximum number of function evaluations or iterations were
% reached; and < 0 denotes nonconvergence).

130



n=size(prox,1);
coord = zeros(n,1);
proxmat = prox(inperm,inperm);
nch2 = n*(n-1)/2;
xlength = 3*nch2 + n + 1;
aequal = zeros(2*nch2+1,xlength);
proxvec = zeros(nch2,1);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
proxvec(index) = prox(i,j);

end
end

medprox = median(proxvec);

index = 0;
for i = 2:n

for j = 1:(i-1)
index = index + 1;
aequal(index,index+n) = -1;
aequal(index,index+n+nch2) = 1;
aequal(index,index+n+2*nch2) = 1;
aequal(index,xlength) = -1;
aequal(index+nch2,i) = -1;
aequal(index+nch2,j) = 1;
aequal(index+nch2,index+n+2*nch2) = 1;

end
end

for i = 1:n
aequal(2*nch2+1,i) = 1;

end

bconst = zeros(2*nch2+1,1);

index = 0;
for i = 2:n

for j = 1:(i-1)
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index = index +1;
bconst(index) = proxmat(i,j);
bconst(index+nch2) = 0;

end
end

bconst(2*nch2+1) = 0;

for i = 1:(xlength - 1)
lbound(i) = -inf;
if (i > n )

lbound(i) = 0;
end

end

lbound(xlength) = -inf;

fweight = zeros(xlength,1);

for i = 1:xlength
if((i > n) & (i < (2*nch2+n+1)))

fweight(i) = 1;
end

end

options = optimset(’LargeScale’,’off’);
[xend,diff,exitflag,output] = ...
linprog(fweight,[],[],aequal,bconst,lbound,[],[],options);

for i = 1:n
coord(i) = xend(i);

end

devnum = 0;
devdem = 0;
fit = zeros(n,n);
addcon = xend(xlength);

for i = 1:n
for j = 1:n

if (i ~= j)
fit(i,j) = abs(coord(i) - coord(j)) - addcon;
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devnum = devnum + abs(proxmat(i,j) - fit(i,j));
devdem = devdem + abs(proxmat(i,j) - medprox);

end
end

end

dev = 1 - (devnum/devdem);
if (exitflag <= 0)

exitflag
end

A.15 uniscallp.m

function [outperm,coord,dev,fit,addcon] = uniscallpac(prox,inperm)

%UNISCALLPAC carries out a unidimensional scaling of a symmetric proximity
% matrix using iterative linear programming, with the inclusion of an
% additive constant (ADDCON) in the model.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% OUTPERM is the final permutation of PROX.
% COORD is the set of coordinates of the unidimensional scaling
% in ascending order;
% DEV is the value of deviance (the normalized $L_{1}$ loss function) for the
% coordinates and object permutation; and FIT is the matrix being fit to
% PROX(OUTPERM,OUTPERM) with the given deviance.
tic;
n = size(prox,1);
outperm = inperm;

[fit begindex coord addcon exitflag] = linfitl1ac(prox,inperm);

nchange = 1;

while (nchange == 1)

nchange = 0;

for k = 1:(n-1)
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for j = (k+1):n

intrperm = outperm;
intrperm(k) = outperm(j);
intrperm(j) = outperm(k);

[fit tryindex coord addcon exitflag] = linfitl1ac(prox,intrperm);

if ((tryindex > (begindex + 1.0e-008)) & (exitflag > 0))

nchange = 1;
begindex = tryindex;
outperm = intrperm;

end
end

end
end

[fit dev coord addcon exitflag] = linfitl1ac(prox,outperm);
toc

A.16 uniscallpac.m

function [outperm,coord,dev,fit,addcon] = uniscallpac(prox,inperm)

%UNISCALLPAC carries out a unidimensional scaling of a symmetric proximity
% matrix using iterative linear programming, with the inclusion of an
% additive constant (ADDCON) in the model.
% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% OUTPERM is the final permutation of PROX.
% COORD is the set of coordinates of the unidimensional scaling
% in ascending order;
% DEV is the value of deviance (the normalized l1 loss function) for the
% coordinates and object permutation; and FIT is the matrix of absolute
% coordinate differences being fit to PROX(OUTPERM,OUTPERM).
tic;
n = size(prox,1);
outperm = inperm;
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[fit begindex coord addcon exitflag] = linfitl1ac(prox,inperm);

nchange = 1;

while (nchange == 1)

nchange = 0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outperm;
intrperm(k) = outperm(j);
intrperm(j) = outperm(k);

[fit tryindex coord addcon exitflag] = linfitl1ac(prox,intrperm);

if ((tryindex > (begindex + 1.0e-008)) & (exitflag > 0))

nchange = 1;
begindex = tryindex;
outperm = intrperm;

end
end

end
end

[fit dev coord addcon exitflag] = linfitl1ac(prox,outperm);
toc

A.17 biscallp.m

function [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,dev] = ...
biscallp(prox,inpermone,inpermtwo,nopt)

%BISCALLP carries out a bidimensional scaling of a symmetric proximity
% matrix using iterative linear programming.
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% PROX is the input proximity matrix (with a zero main diagonal and a
% dissimilarity interpretation);
% INPERMONE is the input beginning permutation for the first dimension
% (a permuation of the first $n$ integers); INPERMTWO is the input beginning
% permutation for the second dimension;
% NOPT controls the confirmatory or exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative LP
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first dimension;
% OUTPERMTWO is the final object permutation for the second dimension;
% COORDONE is the set of first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first dimensional model;
% ADDCONTWO is the additive constant for the second dimensional model;
% DEV is the variance-accounted-for in PROX by the bidimensional scaling.

tic;
n = size(prox,1);
outpermone = inpermone;
outpermtwo = inpermtwo;
coordone = zeros(n,1);
coordtwo = zeros(n,1);
fitone = zeros(n,n);
fittwo = zeros(n,n);

addconone = 0.0;
addcontwo = 0.0;
fitonedim = zeros(n,n);
fittwodim = zeros(n,n);

proxone = prox;
proxtwo = zeros(n,n);
proxmed = zeros(n,n);

nch2 = n*(n-1)/2;
proxvec = zeros(nch2,1);

index = 0;

for i = 2:n
for j = 1:(i-1)
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index = index + 1;
proxvec(index) = prox(i,j);

end
end
medprox = median(proxvec);

for i = 1:n
for j = 1:n

if (i ~= j)
proxmed(i,j) = medprox;

else
proxmed(i,j) = 0.0;

end
end

end

devdiff = 1.0;
dev = 0.0;

while (devdiff >= 1.0e-005)

devprev = dev;

if (nopt == 1)
[outperm,coordone,devone,fitone,addconone] = ...

uniscallpac(proxone,outpermone);
outpermone = outperm;

end

if (nopt == 0)
[fitone,devone,coordone,addconone,exitflag] = linfitl1ac(proxone,outpermone);

end

fitonedim = fitone;

for i = 1:n
for j = 1:n

if(i ~= j)
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proxtwo(outpermone(i),outpermone(j)) = proxone(outpermone(i),outpermone(j)) - ...
fitonedim(i,j);

else
proxtwo(outpermone(i),outpermone(j)) = 0.0;

end
end

end
for i = 1:n

for j = 1:n
if(i ~= j)

proxtwo(outpermtwo(i),outpermtwo(j)) = ...
proxtwo(outpermtwo(i),outpermtwo(j)) + fittwodim(i,j);

else

end
end

end

if (nopt == 1)
[outperm,coordtwo,devtwo,fittwo,addcontwo] = ...

uniscallpac(proxtwo,outpermtwo);
outpermtwo = outperm;

end

if (nopt == 0)
[fittwo,devtwo,coordtwo,addcontwo,exitflag] = linfitl1ac(proxtwo,outpermtwo);

end

fittwodim = fittwo;

for i = 1:n
for j = 1:n

if(i ~= j)

proxthree(outpermtwo(i),outpermtwo(j)) = proxtwo(outpermtwo(i),outpermtwo(j)) - ...
fittwodim(i,j);

else
proxthree(outpermtwo(i),outpermtwo(j)) = 0.0;

end
end
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end

diff = sum(sum(abs(proxthree)));
denom = sum(sum(abs(prox-proxmed)));
dev = 1 - (diff/denom)

devdiff = abs(dev-devprev);

for i = 1:n
for j = 1:n

if (i ~= j)

proxone(outpermone(i),outpermone(j)) = fitone(i,j) + ...
proxthree(outpermone(i),outpermone(j));

end

if (i == j)

proxone(outpermone(i),outpermone(j)) = 0.0;

end
end

end

end

toc
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Appendix B

utility program files

B.1 ransymat.m

function [prox, targlin, targcir] = ransymat(n)

% RANSYMAT produces a random symmetric proximity matrix of size
% $n \times n$, plus two fixed patterned symmetric proximity
% matrices, all with zero main diagonals.

% The size of all the generated matrices is n.
% PROX is symmetric with a zero main diagonal and entries uniform
% between 0 and 1.
% TARGLIN contains distances between equally and unit-spaced positions
% along a line: targlin(i,j) = abs(i-j).
% TARGCIR contains distances between equally and unit-spaced positions
% along a circle: targcir(i,j) = min(abs(i-j),n-abs(i-j)).

prox = zeros(n,n);
targlin = zeros(n,n);
targcir = zeros(n,n);
for i = 1:n-1

for j = (i+1):n
prox(i,j) = rand;
prox(j,i) = prox(i,j);
targlin(i,j) = abs(i-j);
targlin(j,i) = targlin(i,j);
targcir(i,j) = min(abs(i-j),n-abs(i-j));
targcir(j,i) = targcir(i,j);

end
end
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B.2 A GAUSS procedure corresponding to uniscaldp.m

proc (4) = uniscaldp(prox);

local bigneg,nsum,valstore,idxstore,sub,subcomp,coord,permut,cumobfun;
local rowsum,index,mtc,nfirst,m2,nh,idxcomp,jone,sum,ione,incre,temp;
local idxtmp,comp,lastint,diff,jj,nk,n,et;

et = hsec;

n = rows(prox);
bigneg = -1.0e+20;
nsum = (2^n) - 1;
valstore = ones(nsum,1)*bigneg;
idxstore = zeros(nsum,1);
sub = zeros(n,1);
subcomp = zeros(n,1);
coord = zeros(n,1);
permut = zeros(n,1);
cumobfun = zeros(n,1);

for i (1,n,1);
rowsum = 0;
for j (1,n,1);

rowsum = rowsum + prox[i,j];
endfor;
index = 2^(i-1);
idxstore[index] = i;
valstore[index] = rowsum^2;

endfor;

mtc = 0;
for k (1,n-1,1);

nfirst = 0;
if mtc == 0;

m2 = 0;
nh = k;
for j (1,nh,1);

sub[k+j-nh] = m2 + j;
endfor;
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if sub[1] /= (n-k+1);
mtc = 1;

endif;
endif;

do while mtc == 1;
if nfirst == 1;

if m2 < (n-nh);
nh = 0;

endif;
nh = nh + 1;
m2 = sub[k+1-nh];
for j (1,nh,1);

sub[k+j-nh] = m2 + j;
endfor;
if sub[1] /= (n-k+1);

mtc = 1;
else;

mtc = 0;
endif;

endif;

if nfirst == 0;
nfirst = 1;

endif;
index = 0;

for i (1,k,1);
index = index + 2^(sub[i]-1);

endfor;

jj = 1;
subcomp = zeros(n,1);
for i (1,n,1);

idxcomp = 1;
for j (1,k,1);

if sub[j] == i;
idxcomp = 0;

endif;
endfor;
if idxcomp == 1;

subcomp[jj] = i;
jj = jj + 1;

endif;
endfor;

142



nk = n - k;
for jj (1,nk,1);

jone = subcomp[jj];
sum = 0.0;
for i (1,k,1);

ione = sub[i];
sum = sum + prox[jone,ione];

endfor;
for i (1,nk,1);

ione = subcomp[i];
if ione /= jone;

sum = sum - prox[jone,ione];
endif;

endfor;

incre = sum^2;
temp = valstore[index] + incre;
idxtmp = index + 2^(jone-1);
comp = valstore[idxtmp];
if temp > comp;

valstore[idxtmp] = temp;
idxstore[idxtmp] = jone;

endif;
endfor;

endo;
endfor;

permut[n] = idxstore[nsum];
cumobfun[n] = valstore[nsum];
index = nsum;
lastint = permut[n];
for i (1,n-1,1);

index = index - (2^(lastint-1));
lastint = idxstore[index];
permut[n-i] = lastint;
cumobfun[n-i] = valstore[index];

endfor;

for i (1,n,1);
for j (1,n,1);

if i > j;
coord[i] = coord[i] + prox[permut[i],permut[j]];

endif;
if i < j;

coord[i] = coord[i] - prox[permut[i],permut[j]];
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endif;
endfor;
coord[i] = coord[i]/n;

endfor;

diff = 0;
for i (1,n-1,1);

for j (i+1,n,1);
diff = diff + (prox[permut[i],permut[j]] - abs(coord[i] - coord[j]))^2;

endfor;
endfor;

et = hsec - et;
print et;

retp(coord,permut,cumobfun,diff);

endp;

B.3 Iterative improvement Quadratic Assignment pro-

cedures

B.3.1 pairwiseqa.m

function [outperm, rawindex, allperms, index] = ...
pairwiseqa(prox, targ, inperm)

% PAIRWISEQA carries out an iterative Quadratic Assignment maximization task using the
% pairwise interchanges of objects in the permutation defining the row and column
% order of the data matrix.
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX
% with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

tic;
begindex = sum(sum(prox(inperm,inperm).*targ));
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outperm = inperm;
nchange = 1;
n = length(inperm);
index = 1;
allperms{index} = inperm;

while (nchange == 1)

nchange=0;

for k = 1:(n-1)
for j = (k+1):n

intrperm = outperm;

intrperm(k) = outperm(j);
intrperm(j) = outperm(k);

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

end

rawindex = begindex;
toc

B.3.2 rotateqa.m

function [outperm, rawindex, allperms, index] = ...
rotateqa (prox, targ, inperm, kblock)

% ROTATEQA carries out a Quadratic Assignment maximization task using the
% rotation of from 2 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
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% the permutation defining the row and column order of the data matrix.
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX
% with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

tic;
begindex = sum(sum(prox(inperm,inperm).*targ));
outperm = inperm;
nchange = 1;
n = length(inperm);
index = 1;
allperms{index} = inperm;

while (nchange == 1)

nchange=0;

for k = 2:kblock
for nlimlow = 1:(n+1-k)

intrperm = outperm;

for j = 1:k
intrperm(nlimlow+j-1) = outperm(nlimlow+k-j);

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index + 1;
allperms{index} = intrperm;

end

end
end

end
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rawindex = begindex;
toc

B.3.3 insertqa.m

function [outperm, rawindex, allperms, index] = ...
insertqa(prox, targ, inperm, kblock)

% INSERTQA carries out an iterative Quadratic Assignment maximization task using the
% insertion of from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data matrix.
% INPERM is the input beginning permutation (a permuation of the first $n$ integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the cross-product index RAWINDEX
% with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} = INPERM to
% ALLPERMS{INDEX} = OUTPERM.

tic;
begindex = sum(sum(prox(inperm,inperm).*targ));
outperm = inperm;
nchange = 1;
n = length(inperm);
index = 1;
allperms{index} = inperm;

while (nchange == 1)

nchange=0;

for k = 1:kblock
for insertpt = 1:(n+1)

for nlimlow = 1:(n+1-k)

intrperm = outperm;

if (nlimlow > insertpt)

jtwo = 0;
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for j = insertpt:(insertpt+k-1)
intrperm(j) =outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = (insertpt+k):(nlimlow+k-1);

intrperm(j) = outperm(insertpt+jone);
jone = jone + 1;

end

elseif ((nlimlow+k) < insertpt)

jtwo = 0;
for j = (insertpt-k):(insertpt-1)

intrperm(j) = outperm(nlimlow+jtwo);
jtwo = jtwo + 1;

end

jone = 0;
for j = nlimlow:(insertpt-k-1)

intrperm(j) = outperm(nlimlow+k+jone);
jone = jone + 1;

end

else

end

tryindex = sum(sum(prox(intrperm,intrperm).*targ));

if(tryindex > (begindex + 1.0e-008))
nchange = 1;
begindex = tryindex;
outperm = intrperm;
index = index +1;
allperms{index} = intrperm;

end

end
end

end
end

rawindex = begindex;
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toc

B.4 proxstd.m

function [stanprox, stanproxmult] = proxstd(prox,mean)

%PROXSTD produces a standardized proximity matrix (STANPROX) from the input
% $n \times n$ proximity matrix (PROX) with zero main diagonal and a dissimilarity
% interpretation.
% STANPROX entries have unit variance (standard deviation of one) with a
% mean of MEAN given as an input number;
% STANPROXMULT (upper-triangular) entries have a sum of squares equal to
% $n(n-1)/2$.

n = size(prox,1);
aveprox = sum(sum(prox))/(n*(n-1));
sumprxsq = sum(sum(prox.^2));
stddev = sqrt(((1/(n*(n-1)))*sumprxsq) - ((aveprox)*(aveprox)));
stanprox = zeros(n,n);
stanproxmult = zeros(n,n);

for i = 1:n
for j = 1:n

if(i ~= j)

stanprox(i,j) = ((prox(i,j) - aveprox)/stddev) + mean;
stanproxmult(i,j) = (n*(n-1))*(prox(i,j)/sqrt(sumprxsq));

else

stanprox(i,j) = 0.0;
stanproxmult(i,j) = 0.0;

end
end

end
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B.5 proxrand.m

function [randprox] = proxrand(prox)

%PROXRAND produces a symmetric proximity matrix with a zero main diagonal having
% entries that are a random permutation of those in the symmetric input proximity
% matrix PROX.

n= size(prox,1);
change = randperm((n*(n-1))/2);
randprox = prox;

for i = 1:(n-2)
for j = (i+1):n

k = i + j;

for ione = 1:(n-2)
for jone = (ione+1):n

kk = ione + jone;

if(change(k) == kk)

temp = randprox(i,j);
randprox(i,j) = randprox(ione,jone);
randprox(j,i) = randprox(i,j);
randprox(ione,jone) = temp;
randprox(jone,ione) = randprox(ione,jone);

end
end

end

end
end

B.6 proxmon.m
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function [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

%PROXMON produces a monotonically transformed proximity matrix (MONPROXPERMUT)
% from the order constraints obtained from each pair of entries in the input
% proximity matrix PROXPERMUT (symmetric with a zero main diagonal and a dissimilarity
% interpretation).
% MONPROXPERMUT is close to the $n \times n$ matrix FITTED in the least-squares sense;
% The variance accounted for (VAF) is how much variance in MONPROXPERMUT can be accounted for by
% FITTED; DIFF is the value of the least-squares criterion.

n = size(proxpermut,1);
work = zeros(n*(n-1)*n*(n-1),1);
targ = proxpermut;
fit = fitted;
cr = 1.0;

while (cr >= 1.0e-006)

cr = 0.0;
indexll = 0;

for jone = 1:(n-1)
for jtwo = (jone+1):n

for jthree = 1:(n-1)
for jfour = (jthree+1):n

if((jone ~= jthree) | (jtwo ~= jfour))

p1 = fit(jone,jtwo);
p2 = fit(jthree,jfour);
fit(jone,jtwo) = fit(jone,jtwo) - work(indexll+1);
fit(jthree,jfour) = fit(jthree,jfour) - work(indexll+2);

if((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) < ...
targ(jthree,jfour)))

if(fit(jone,jtwo) <= fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;
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elseif(fit(jone,jtwo) > fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);

fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

end

elseif((abs(targ(jone,jtwo) - targ(jthree,jfour)) ...
> 1.0e-006) & (targ(jone,jtwo) > ...
targ(jthree,jfour)))

if(fit(jone,jtwo) >= fit(jthree,jfour))

work(indexll+1) = 0;
work(indexll+2) = 0;

elseif(fit(jone,jtwo) < fit(jthree,jfour))

ave = (fit(jone,jtwo) + fit(jthree,jfour))/2.0;
work(indexll+1) = ave - fit(jone,jtwo);
work(indexll+2) = ave - fit(jthree,jfour);
fit(jone,jtwo) = ave;
fit(jthree,jfour) = ave;

end
end

cr = cr + abs(p1-fit(jone,jtwo)) + ...
abs(p2-fit(jthree,jfour));

end

indexll = indexll + 2;

152



end
end

end
end

end

for jone = 1:(n-1)
for jtwo = (jone+1):n

fit(jtwo,jone) = fit(jone,jtwo);

end
end

avefit = sum(sum(fit))/(n*(n-1));

for i = 1:n
for j = 1:n

if( i ~= j)
proxave(i,j) = avefit;

else
proxave(i,j) = 0;

end
end

end

diff = sum(sum((fit - fitted).^2));

denom = sum(sum((fit - proxave).^2));

vaf = 1 - (diff/denom);

monproxpermut = fit;

diff = (.5)*diff;

153



B.7 matcolor.m

function matcolor(datamat,perms,numperms)

%MATCOLOR constructs a color movie of the effects of a series of
% permutations on a proxmity matrix.
% DATAMAT is an $n \times n$ symmetric proximity matrix;
% PERMS is a cell array containing NUMPERMS permutations.

m=moviein(numperms);

for i=1:numperms
pcolor(datamat(perms{i},perms{i}));
axis ij off;
colormap(bone(256));
colorbar;
m(:,i) = getframe;

end
movie(m);
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