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Topic Areas

1) Clinical Efficiency Revisted: Meehl and Rosen
Test Sensitivity and Specificity
The Positive Predictive Value and the Negative Predictive
Value
“Betting the Base Rates”
The Test “Hit Rate”
Conditions for Clinical Efficiency: Meehl-Rosen; Dawes;
Bokhari-Hubert

2) Diagnostic Test Evaluation
The ROC Curve
The Area Under the Curve (AUC)
Base Rate Independence for the AUC

3) Issues in Medical Screening; Other Screening Difficulties
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Clinical Efficiency Revisited: Meehl and Rosen

We begin by (re)introducing a 2× 2 contingency table
cross-classifying n individuals by events A and Ā and B and B̄
but now with terminology attuned to a diagnostic testing
context.

The events B (positive) or B̄ (negative) occur when the test
says the person has “it” or doesn’t have “it,” respectively,
whatever “it” may be.

The events A (positive) or Ā (negative) occur when the “state
of nature” is such that the person has “it” or doesn’t have
“it,” respectively.
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The Generic 2× 2 Contingency Table

state of nature
A (pos) Ā (neg) row sums

test B (pos) nBA nBĀ nB

result B̄ (neg) nB̄A nB̄Ā nB̄
column sums nA nĀ n

Using the urn model (that is, picking a person at random from
the pool of size n) and conditionalizing on the state of nature
(that is, knowing whether the state of nature for the selected
individual is A (pos) or Ā (neg)), a number of common terms
can be defined that are relevant to a diagnostic testing context:
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Test Sensitivity and Specificity

state of nature
A (pos) Ā (neg)

test B (pos) P(B|A) = nBA/nA P(B|Ā) = nBĀ/nĀ
(sensitivity) (false positive)

result B̄ (neg) P(B̄|A) = nB̄A/nA P(B̄|Ā) = nB̄Ā/nĀ
(false negative) (specificity)

column sums
nBA+nB̄A

nA
= 1.0

nBĀ+nB̄Ā
nĀ

= 1.0

To give words to the two important concepts of test sensitivity
and specificity, we have:
sensitivity = P(B|A) = the probability that the test is positive
if the person has “it”;
specificity = P(B̄|Ā) = the probability that the test is negative
if the person doesn’t have “it.”
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The Positive Predictive Value and the Negative
Predictive Value

Using the urn model (that is, picking a person at random from
the pool of size n) and conditionalizing on the diagnostic test
result (that is, knowing whether the test result for the selected
individual is B (pos) or B̄ (neg)), a number of common terms
can be defined that are relevant to a diagnostic testing context:

state of nature
A (pos) Ā (neg)

B (pos) P(A|B) = nBA/nB P(Ā|B) = nBĀ/nB
(positive predictive

value)

B̄ (neg) P(A|B̄) = nB̄A/nB̄ P(Ā|B̄) = nB̄Ā/nB̄
(negative predictive)

value)
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B :
nBA+nBĀ

nB
= 1.0

B̄ :
nB̄A+nB̄Ā

nB̄
= 1.0

Again, to give words to the two important concepts of the
positive and negative predictive values, we have:

positive predictive value = P(A|B) = the probability that the
person has “it” if the test says the person has “it”;

negative predictive value = P(Ā|B̄) = the probability that the
person doesn’t have “it” if the test says the person doesn’t
have “it.”
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Prediction According to the Base Rates (or
“Betting the Base Rates”)

Assuming that P(A) ≤ 1/2 (this, by the way, can always be
done without loss of any generality because the roles of A and
Ā can be interchanged), prediction according to base rates
would be to consistently say that a person doesn’t have “it”
(because P(Ā) ≥ P(A)).

The probability of being correct in this prediction is P(Ā)
(which is greater than or equal to 1/2).

Prediction according to the test would be to say the person has
“it” if the test is positive, and doesn’t have “it” if the test is
negative.
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The Test “Hit Rate” (or “Accuracy”)

The probability of a correct diagnosis according to the test
(called the “hit rate” or “accuracy”) is:

P(B|A)P(A) + P(B̄|Ā)P(Ā) =

(
nBA
nA

)(
nA
n

) + (
nB̄Ā

nĀ
)(
nĀ
n

) =
nBA + nB̄Ā

n
,

which is just the sum of main diagonal frequencies in the 2× 2
contingency table divided by the total sample size n.
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A general condition can be given for when prediction by a test
will be better than prediction by base rates (again, assuming
that P(A) ≤ 1/2).

It is for the accuracy to be strictly greater than P(Ā):

P(B|A)P(A) + P(B̄|Ā)P(Ā) > P(Ā).

Based on this first general condition, we give three equivalent
conditions for clinical efficiency to hold that we attribute to
Meehl and Rosen (1955), Dawes (1962), and Bokhari and
Hubert (2015).
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Meehl-Rosen condition: assuming that P(A) ≤ 1/2, it is best
to use the test (over base rates) if and only if

P(A) >
1− P(B̄|Ā)

P(B|A) + (1− P(B̄|Ā))
=

1− specificity

sensitivity + (1− specificity)
.

Dawes condition: assuming that P(A) ≤ 1/2, it is better to use
the test (over base rates) if and only if P(Ā|B) < 1/2 (or,
equivalently, when P(A|B) > 1/2; that is, when the positive
predictive value is greater than 1/2).
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Bokhari-Hubert condition: assuming that P(A) ≤ 1/2, it is
better to use the test (over base rates) if and only if differential
prediction holds between the row entries in the frequency table:

nBA > nBĀ but nB̄A < nB̄Ā

In words, given the B (positive) row, the frequency of positive
states of nature, nBA, is greater than or equal to the frequency
of negative states of nature, nBĀ; the opposite occurs within
the B̄ (negative) row.
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The (Module 2) COVR Numerical Example
Revisited

To give a numerical example of these conditions, the COVR
2× 2 contingency table from Module 2 is used.

Recall that this table reports a cross-validation of an
instrument for the diagnostic assessment of violence risk (B:
positive (risk present); B̄: negative (risk absent)) in relation to
the occurrence of followup violence (A: positive (violence
present); Ā: negative (violence absent)):

state of nature
A (pos) Ā (neg) row sums

B (pos) 19 36 55
prediction

B̄ (neg) 9 93 102

column sums 28 129 157
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3 predictions of “dangerous” are wrong (.65 = 36/55, to be
precise); 1 out of 11 predictions of “not dangerous” are wrong
(.09 = 9/102, to be precise).

The accuracy or “hit-rate” is .71 (= (19 + 93)/157).

If everyone was predicted to be “not dangerous”, we would be
correct 129 out of 157 times, the base rate for Ā:
P(Ā) = 129/157 = .82.

Because this is better than the accuracy of .71, all three
conditions will fail for when the test would do better than the
base rates:
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sensitivity = 19/28 = .68, and P(A) = 28/157 = .18,

P(A) 6> 1− specificity

sensitivity + (1− specificity)

.18 6> 1− .72

.68 + (1− .72)
= .29

Dawes condition: the positive predictive value of .35 = 19/55
is not greater than 1/2.

Bokhari-Hubert condition: there is no differential prediction
because the row entries in the frequency table are ordered in
the same direction.
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Summary of the Dawes Condition: The False
Positive Paradox

The Dawes condition described in the previous section shows
the importance of clinical efficiency in the bottom-line
justification for the use of a diagnostic instrument.

When you can do better with base rates than with a diagnostic
test, the Dawes condition implies that the positive predictive
value is less than 1/2.

In other words, it is more likely that a person doesn’t have “it”
than they do, even though the test says the person has “it.”

This anomalous circumstance has been called the “false
positive paradox.”



Probabilistic
Reasoning and

Diagnostic
Testing

Summary of the Bokhari-Hubert Condition:
Differential Prediction

For base rates to be worse than the test, the Bokhari-Hubert
condition requires differential prediction to exist;

explicitly, within those predicted to be dangerous, the number
who were dangerous (nBA) must be greater than the number
who were not dangerous (nBĀ);

conversely, within those predicted to be not dangerous, the
number who were not dangerous (nB̄Ā) must be greater than
those who were dangerous (nB̄A).
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Unequal Costs of Prediction Errors

One might conclude that it is ethically questionable to use a
clinically inefficient test.

If you can’t do better than just predicting with base rates, what
is the point of using the diagnostic instrument in the first place.

The only mechanism that we know of that might justify the use
of a clinically inefficient instrument would be to adopt severe
unequal costs in the misclassification of individuals (that is, the
cost of predicting “dangerous” when the “state of nature” is
“not dangerous,” and in predicting “not dangerous” when the
“state of nature” is “dangerous”).

But here we would soon have to acknowledge Sir William
Blackstone’s dictum (1765): “It is better that ten guilty escape
than one innocent suffer.”
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Bokhari and Hubert (2015)

Bokhari, E., & Hubert, L. (2015). A new condition for
assessing the clinical efficiency of a diagnostic test.
Psychological Assessment, 27, 745–754.

The Bokhari and Hubert paper (2015) (given at our web site
where these slides are housed: bokhari hubert.pdf) that
discusses the three equivalent statements for clinical efficiency,
also gives a generalized clinical efficiency condition that allows
for the assignment of unequal costs to the false positives and
false negatives.

Depending on how the costs of misclassification are assigned, a
determination can be made as to when generalized clinical
efficiency holds;

that is, when is the total costs of using a test less than the
total costs obtained by just classifying through base rates?
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Predicting Rare Events

When interests center on the prediction of a very infrequent
event (such as the commission of suicide) and the cost of a
false negative (releasing a suicidal patient) is greater than the
cost of a false positive (detaining a non-suicidal patient), there
still may be such a large number of false positives that
implementing and acting on such a prediction system would be
infeasible.

An older discussion of this conundrum is by Albert Rosen,
“Detection of Suicidal Patients: An Example of Some
Limitations in the Prediction of Infrequent Events,” Journal of
Consulting Psychology (18, 1954, 397–403).

[A particularly poignant change of example would be to replace
“commission of suicide” with the phrase “commission of mass
murder”]
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Diagnostic Test Evaluation

There is a longer handout that we will use for figures and an
extensive numerical example:

diagnostic test evaluation example.pdf

The Receiver Operating Characteristic (ROC) curve of a
diagnostic test is a plot of test sensitivity (the probability of a
“true” positive) against 1.0 minus test specificity (the
probability of a “false” positive).

As shown in Figure 1, when there is a single 2× 2 contingency
table, the ROC plot would be based on a single point.

In some cases, however, a diagnostic test might provide more
than a simple dichotomy (for example, more than a value of 0
or 1, denoting a negative or a positive decision, respectively),
and instead gives a numerical range (for example, integer
scores from 0 to 20, as in the illustration in the handout on the
Psychopathy Checklist, Screening Version (PCL:SV)).



Probabilistic
Reasoning and

Diagnostic
Testing

The ROC Curve

In these latter cases, different possible “cutscores” might be
used to reflect differing thresholds for a negative or a positive
decision.

Figure 2 gives the ROC plot for the PCL:SV using three
possible cutscores.

In general, the ROC curve is embedded in a box having
unit-length sides.

It begins at the origin defined by a sensitivity of 0.0 and a
specificity of 1.0, and ends at a sensitivity of 1.0 and a
specificity of 0.0.

Along the way, the ROC curve goes through the various
sensitivity and 1.0 − specificity values attached to the possible
cutscores.
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The Diagonal Lines of “No Discrimination”

The diagonals in both Figures 1 and 2 represent lines of “no
discrimination” where sensitivity values are equal to 1.0 minus
specificity values.

Restating, we have P(B|A) = 1− P(B̄|Ā), and finally,
P(B|A) = P(B|Ā).

This last equivalence provides an interpretation for the “no
discrimination” phrase: irrespective of the “state of nature” (A
or Ā), the probability of a “yes” prediction remains the same.
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The Area Under the Curve (AUC)

For an ROC curve to represent a diagnostic test that is
performing better than “chance,” it has to lie above the “no
discrimination” line where the probabilities of “true” positives
exceed the probabilities of “false” positives (or equivalently,
where sensitivities are greater than 1.0 minus the specificities).

The characteristic of good diagnostic tests is the degree to
which the ROC curve “gets close to hugging” the left and top
line of the unit-area box and where the sensitivities are much
bigger than 1.0 minus specificities.

The most common summary measure of diagnostic test
performance is the “area under the curve” (AUC), which
ranges from an effective lower value of .5 (for the line of “no
discrimination”) to 1.0 for a perfect diagnostic test with
sensitivity and specificity values both equal to 1.0.

So, as an operational comparison of diagnostic test
performances, those with bigger AUCs are better.
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Independence of Base Rates for the AUC

Figure 1 helps show the independence of base rates for the
AUC;

the AUC is simply the average of sensitivity and specificity
when only one cutscore is considered, and neither sensitivity or
specificity is a function of base rates:

A = (1 - sens)(1 - spec)
B = (1/2)(1 - spec)(sens)
C = (1/2)(1 - sens)(spec)
AUC = 1.0 - (A + B + C) = (1/2)(sensitivity + specificity)
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We can also see explicitly how different normalizations (using
base rates) are used in calculating an AUC or accuracy:

P(B|A) = nBA/nA = sensitivity
P(B̄|Ā) = nB̄Ā/nĀ = specificity

AUC = ((nBA/nA) + (nB̄Ā)/nĀ)/2

accuracy = (nBA + nB̄Ā)/n

Note that only when nA = nĀ (that is, when the base rates are
equal), are accuracy and the AUC identical.

In instances of unequal base rates (such as in the prediction of
“dangerous behavior”), the AUC can be a very poor measure of
diagnostic test usage in a particular sample.
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The Wilcoxon Test Statistic Interpretation of the
AUC

As developed in detail by Hanley and McNeil (1982), it is
possible to calculate numerically the AUC for an ROC curve
that is constructed for multiple cutscores by first computing a
well-known two-sample Wilcoxon test statistic.

An numerical example is given for this in the handout for the
PCL:SV data; the AUC turns out to be .73.
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Summary Comments About Using the AUC to
Evaluate Diagnostic Tests

The answer we have for the general question of “how should a
diagnostic test be evaluated?” is in contrast to current
widespread practice.

Whenever the base rate for the condition being assessed is
relatively low (for example, for “dangerous” behavior), the area
under the ROC curve (AUC) is not necessarily a good measure
for conveying the adequacy of the actual predictions made from
a diagnostic test.

The AUC does not incorporate information about base rates.

It only evaluates the test itself and not how the test actually
performs when used on a specific population with differing base
rates for the presence or absence of the condition being
assessed.



Probabilistic
Reasoning and

Diagnostic
Testing

What About the PPV and the NPV?

The use of AUC as a measure of diagnostic value can be very
misleading in assessing conditions with unequal base rates,
such as being “dangerous.”

This misinformation is further compounded when AUC
measures become the basic data subjected to a meta-analysis.

Our general suggestion is to rely on some function of the
positive and negative predictive values to evaluate a diagnostic
test.

These measures incorporate both specificity and sensitivity as
well as the base rates in the sample for the presence or absence
of the condition under study.
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What Should Be a Minimal Condition That a
Diagnostic Test Should Have?

A simple condition given earlier (and attributed to Robyn
Dawes) points to a minimal condition that a diagnostic test
should probably satisfy (and which leads to prediction with the
test being better than just prediction according to base rates):
the positive predictive value must be greater than 1/2.

If this minimal condition does not hold, it will be more likely
that a person doesn’t have “it” than they do, even where the
test says the person has “it.”

As noted earlier, this situation is so unusual that it has been
referred to as the “false positive paradox.”
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Issues in Medical Screening

It might be an obvious statement to make, but in our
individual dealings with doctors and the medical establishment
generally, it is important for all to understand the positive
predictive values (PPVs) for whatever screening tests we now
seem to be constantly subjected to, and thus, the number, (1
− PPV), referring to the false positives;

that is, if a patient tests positive, what is the probability that
“it” is not actually present.

It is a simple task to plot PPV against P(A) from 0 to 1 for
any given pair of sensitivity and specificity values. Such a plot
can show dramatically the need for highly reliable tests in the
presence of low base rate values for P(A) to attain even
mediocre PPV values.
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A Personal Favorite: Prostate Screening

Besides a better understanding of how PPVs are determined,
there is a need to recognize that even when a true positive
exists, not every disease needs to be treated.

In prostate cancer screening, for example, the worst danger is
one of overdiagnosis and overtreatment, leading to more harm
than good (see, for example, Gina Kolata, “Studies Show
Prostate Test Save Few Lives,” New York Times, March 19,
2009).

When I informed my doctor that I no longer would give blood
for a PSA screening test, she agreed completely – the only
reason such tests were done routinely was to practice
“defensive medicine” on behalf of their clinics, and to prevent
possible lawsuits arising from such screening tests not being
administered routinely.

In other words, clinics get sued for underdiagnosis but not for
overdiagnosis and overtreatment.
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Other Screening Difficulties Discussed in the
Readings

Premarital screenings for HIV – (a new “Wasserman” test, but
not for syphilis)

Prenatal screening for Down’s syndrome

The Screening efforts of the Transportation Security
Administration (TSA)

Colon cancer screening through sigmoidoscopy or colonoscopy

Computer tomography scans for lung cancer (CT scans)
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Life-line Screening: A Final Cautionary Example

www.lifelinescreening.com

www.lifelinescreening.com

