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A New Condition for Assessing the Clinical Efficiency of a
Diagnostic Test

Ehsan Bokhari and Lawrence Hubert
University of Illinois at Urbana-Champaign

When prediction using a diagnostic test outperforms simple prediction using base rates, the test is
said to be “clinically efficient,” a term first introduced into the literature by Meehl and Rosen (1955)
in Psychological Bulletin. This article provides three equivalent conditions for determining the
clinical efficiency of a diagnostic test: (a) Meehl-Rosen (Meehl & Rosen, 1955); (b) Dawes (Dawes,
1962); and (c) the Bokhari-Hubert condition, introduced here for the first time. Clinical efficiency
is then generalized to situations where misclassification costs are considered unequal (for example,
false negatives are more costly than false positives). As an illustration, the clinical efficiency of an
actuarial device for predicting violent and dangerous behavior is examined that was developed as
part of the MacArthur Violence Risk Assessment Study.

Keywords: clinical efficiency, diagnostic test evaluation, Meehl-Rosen condition, violence prediction

Suppose a diagnostic test is designed to determine whether a
person has “it,” whatever “it” may be. For example, when our
interest is in predicting violence, the test should indicate whether
the person will be violent in the future. Let B denote the event that

the test is positive indicating the person has “it,” and B, the event
that the test is negative indicating that the person does not have
“it.” Now, consider the events of whether a person truly has “it” or

truly does not and denote these two events as A and A, respec-
tively. The events B and B will be called the diagnostic test results

and the events A and /i, the states of nature.

Given the diagnostic test result and state of nature, a 2 X 2
contingency table can be constructed, as shown in Table 1. This
table provides the frequencies for marginal events (for example,
ny is the number of people who test positive), or for joint events
(for example, ng, is the number of people who have “it” and
test positive). In terms of violence prediction, n, is the number
predicted to be violent and n,, is the number predicted to be
and who are violent. The frequencies within the table have
familiar names worth noting: ng, is the number of true posi-
tives, ng, is the number of false positives, ng, is the number of
false negatives, and ng; is the number of frue negatives. Of
particular importance are the marginal frequencies: n,, repre-
senting the base frequency for those who have “it,” and n,, the
base frequency for those who do not. In addition, we may be
interested in n, and ng, the base frequencies for positive and
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negative diagnostic test outcomes, respectively; these are often
called selection frequencies.
In addition to frequencies, various marginal, joint, and condi-

n
tional probabilities can be defined. For example, P(A) = -,
n

n n n
P(ANB) = 2. P(AIB) = —22. P(BIA) = -2, and so forth. These
n n n

B A

conditional probabilities are of general interest, and again it is

worth noting their names. Conditionalizing on the state of nature,
Npa . .

— 1is the sensitivity or true

Ny

we have the following: P(BIA) =

npa .
— 1is the false positive rate (FPR);
ny

positive rate (TPR); P(BIA) =

- Npa

P(BIA) = — (= 1 — sensitivity) is the false negative rate (FNR);

Ny
__ Ny .. . .

and P(BIA) = — (= 1 — false positive rate) is the specificity or

1y
true negative rate (TNR). Conditionalizing on the diagnostic

n
test result, P(AIB) = 2 s called the positive predictive value

np
(PPV: the probability that the person has “it” given that the test

- npA
is positive); P(AIB) = — is the negative predictive value

np
(NPV: the probability that the person does not have “it” given

that the test is negative). The column marginal probabilities
represent the base rates, or prior probabilities, for those who

have “it” (P(A)) and those who do not (P(A)); the row marginal
probabilities represent the selection ratios for those who are

predicted to have “it” (P(B)) and those who are not (P(B)).

It is important to note the dependency among frequencies (and,
consequently, probabilities). For instance, if we know the base and
selection frequencies, the distribution of joint frequencies are
subject to a single degree of freedom. As another example, given

n, and ng,, ng, is not free to vary. Similarly, given P(BIA), the laws
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Table 1
A General 2 X 2 Contingency Table

State of nature

A (positive) A (negative) Totals
Diagnostic test result
B (positive) Npa nga ng
B (negative) TpA ngA ng
Totals ny n; n

of probability determine that P(BIA) = 1 — P(BIA). In other words,
given the true and false positive rates, the true and false negative
rates are redundant.

Clinical Efficiency

Base rates play an important role in prediction and decision
making (Bar-Hillel, 1980; Kahneman & Tversky, 1973; Schwarz,
Strack, Hilton, & Naderer, 1991; Faust & Nurcombe, 1989). The
phrase “clinical efficiency” refers to prediction by a diagnostic test
being better than prediction using just base rates (Meehl & Rosen,
1955). If P(A) = %, then prediction by base rates would be to say
consistently that a person does not have “it” because then the
probability of a correct prediction is P(A) = % (that is, the predic-
tion is correct at least half the time). Similarly, if P(A) = %,
prediction by base rates would be to always say that the person has
“it.” Prediction according to the diagnostic test is to say that the
person has “it” when the test is positive and does not have “it”
when the test is negative. To measure how “good” a diagnostic test
is, consider the accuracy (or hit rate) of the test defined as

riomd = (25« (3]
P(BIAYPA) + PBIAPA) =22+ (=)=
Ny n ny n

npa + Npy

n

This expression is just the sum of the main diagonal frequencies
from a 2 X 2 contingency table (for example, see Table 1) divided
by the total number of subjects, n.

Assuming P(A) = %, a general condition can be given for when
prediction by a test will be better than prediction by base rates:

P(BIA)P(A) + P(BIA)P(A) > P(A); 1)

in words, when the base rate is at most %, the test should be used
for prediction only if the accuracy of the test is greater than the
proportion of the population not having “it.”

Using the general condition presented in Equation 1, there are
three important (and equivalent) conditions that can be derived for
clinical efficiency. All three conditions are relevant to an attempt
to predict an event having a typically low base rate by using a
test possessing less than ideal sensitivity and specificity values;
they characterize the circumstances when more accurate pre-
diction would just be to use the larger base rate (that is, to say
the person does not have “it”) rather than to rely on the
diagnostic test. These three equivalent conditions for base-rate
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prediction being superior to prediction from the test are attrib-
uted to Meehl and Rosen (1955); Dawes (1962), and Bokhari
and Hubert; the introduction of this latter condition is the major
justification for the current article.

Meehl-Rosen Condition

Assume P(A) = % The Meehl-Rosen condition (Meehl &
Rosen, 1955) states that it is best to use the test over base rates if
and only if

1 — P(BIA)

PA) > (@)

P(BIA) + (1 — P(BIA))
or in terms of specificity and sensitivity,

1 — specificit
P(A) > P Y

sensitivity + (1 — specificity)

Because 1 — P(BIA) = P(BIA), this condition implies that the
test should be used for prediction over base rates if and only if
the base-rate probability is larger than the ratio of the false
positive rate to the sum of the true positive and false positive
rates. The proof of the Meehl-Rosen condition can be found in
Appendix A.

If P(A) > %, the Meehl-Rosen condition becomes

I — P(BIA) -
P(BIA) + (1 — P(BIA)) ~ specificity + (1 — sensitivity)”

_ 1 — sensitivity
P(A) >

and the proof is similar.

Dawes Condition

Assume P(A) = % The Dawes condition (Dawes, 1962) states
that it is best to use the test over base rates if and only if

. 1
P(AIB) < -.
(AI1B) <2

Equivalently, the Dawes condition can be written as
P(AIB) > % implying that prediction by the test is better than
prediction by base rates if and only if the positive predictive value
is greater than % (for a proof, see Appendix B). If the positive
predictive value is less than % (that is, the Dawes condition fails to
hold and it is better to just use base rates for prediction rather than
the test), it is more likely that a person does not have “it” than they
do even if the test says the person has “it.” In other words, given
a positive test result there is a higher probability that the person
does not have “it” than they do. This has been called the “false
positive paradox.”

If P(A) > %, the Dawes condition becomes
- 1
PAIB) >~

in words, when P(A) > %, the negative predictive value must be
greater than % for prediction by the test to outperform prediction by
base rates. The proof is similar.
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Bokhari-Hubert Condition

Assume P(A) = % We claim that it is better to use the test over
base rates if and only if differential prediction holds between the
row entries in the contingency table: ng, > ng, and nzy < ng;. The
proof can be found in Appendix C. In words, when the number of
true positives (ny,) is greater than the number of false positives
(nga) and the number of true negatives (nz;) is greater than the
number of false negatives (ng,), prediction using the test is better
than prediction by base rates.

This condition requires no probability calculations and can be
seen directly in the contingency table—for base rates to be
worse than the test, differential prediction must exist. All three
conditions are equivalent; if the Bokhari-Hubert (BH) condition

holds then the positive predictive value is greater than L (be-

cause of the Dawes condition). In addition, the BH con%iition
implies the negative predictive value is greater than %; thus, the
BH condition is equivalent to both the positive and negative
predictive values being greater than % Unlike the Meehl-Rosen
and Dawes conditions, when P(A) > % the BH condition is
exactly the same. Thus, if prediction by the test is better than
prediction by base rates, the BH condition holds for any P(A).

Relationship to measures of association. The Goodman-
Kruskal lambda coefficient (Goodman & Kruskal, 1954) is a

proportional-reduction-in-error measure for predicting a col-

umn event (A or A) from knowledge of a row event (B or B)
over a naive prediction based solely on marginal column fre-
quencies (n, and n;). Thus, the Goodman-Kruskal lambda
coefficient can be considered a measure of association between
the diagnostic test result and the state of nature. For the 2 X 2
contingency table (for example, Table 1), lambda is defined as:

max{nBA, nB,;} + max{nl;A, nl;,,;} - max{nA, nA‘}

A
n— max{nA, n/;}

columnlrow —

If Neoumnirow 18 Zero, the maximum of the column marginal
frequencies is the same as the sum of the maximum frequencies
within rows; therefore, no differential prediction of a column
event is made based on knowledge of what particular row an
object belongs to. A nonzero A qjumnirow 15 a0 alternative way of
specifying the BH differential prediction condition. If
)\columnlrow = 0, max {nBAanBA} + max {néA’né/&} = max {nA’nA}- If
max {n,,n;} = ny = ngy + ngy, ngy = ng; and ng, = ng;, and
the condition fails to hold. Similarly, if max {n4,n;} = n; =
ngy + nga, npy = npy and ngy = ng,, and again the condition
fails to hold.

An alternative and more popular test of association is based on
Pearson’s chi-squared statistic (Pearson, 1900). Although this test
can be used for significance testing in a 2 X 2 contingency table,
it says nothing about differential prediction. For instance, this test
may show a significant relation between the state of nature (A and

A) and the diagnostic test results (B and B), but when Ncolumnlrow 1S
zero, there is no differential prediction and the use of base rates
will outperform the diagnostic test.

Relationship to odds ratio and relative risk. Odds ratios, or
relative odds, are another way of measuring association. The odds
of an event is defined as the ratio of the probability that a person
has “it” to the probability that a person does not have “it,” given
a specific diagnostic test result:

A
P(AlB) ng npg

P(AIB) "BA  Ta

np
and

npa
P(AIB) nz  npy

? P(AIB) "BA  "Ba

ng

The first term, Oy, gives the odds of a person having “it” when
they test positive for having “it”; the second term, O, gives the
odds that a person has “it” when they do not test positive for “it.” In
Bayesian terms, the odds can be thought of as posterior odds, given

P(A

the test result; the prior odds are ?A;‘ The odds ratio is simply the ratio

of the two odds, OR = %;. Thus, the odds ratio compares which group
(B vs. é) is more likely to have “it.” If the BH condition holds, then
ngs > npy < Op > 1 and ngy > npy < Op < 1. This means that if
the person tests positive for “it,” the odds are greater than not that they
do have “it”; if the person tests negative for “it,” the odds are greater
that they do not have “it” than they do. If O > 1 and O < 1, then
OR > 1. Therefore, the BH condition implies that the odds ratio is
greater than one; thus, the odds someone has “it” is greater in the
group that tests positive for “it.” Of course, none of the entries in the
denominators can be zero, but when the BH condition holds, only ng,
has any possibility of being equal to 0.

Relative risk is the ratio of the probability that a person has
“it” given they tested positive for having “it” to the probability
that a person has “it” given that they did not test positive for
“it.” The relative risk is defined as

o PAB) g nani

P(AIB) A npang

ng

This ratio is greater than one if and only if ng,ng > ngyng. If
the BH condition holds, it can be shown (see Appendix D for
proof) that the relative risk is necessarily greater than one. For
this implication to work, ng, > 0. In summary, if ngy,ng; >
0, the BH condition holds if and only if Oz > 1 and O < 1; the
BH condition also implies OR > 1 and RR > 1.

Relationship to diagnostic likelihood ratios. The positive
diagnostic likelihood ratios can be used to assess the perfor-
mance of a diagnostic test. A positive diagnostic likelihood
ratio, DLR, provides the likelihood that a positive test (indi-
cating that a person has “it”") occurs in an individual who truly
does have “it” than one who does not. Similarly, a negative
diagnostic likelihood ratio, DLRg, indicates the likelihood that
a negative test (indicating a person does not have “it”) occurs in
an individual who truly does have “it” than one who does not.
The diagnostic likelihood ratios are defined as follows:
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P(BIA)  n, nBA(nA)
= —=——=—\")
P(BIA) A BA\TA
o
pA
P(BIA) n, npa[ni
LRy = ——— =—A=—(—)-
P(BIA)  Ba A \4
o

Ideally, a diagnostic test has DLR,; > 1 and DLRy < 1. If the
BH condition holds, then we know ngs > ngi; DLR, > 1 if
2
A ”lA
condition holds, ng, > ngs and DLRg < 1 if "—z‘ < ™ which is
always true if P(A) = 5. Thus, if the BH condition holds at least
one of the two ideal diagnostlc likelihood ratio conditions also
holds.

And what about when the BH condition is not met? If the
condition fails, it is either because (a) ngy = ng,, or (b) ng; =
nga, or both (a) and (b) are true. If (a) is true and P(A) = %, then
DLR, = 1. Similarly, if (b) is true and P(A) < %, then DLR; =
1. The other two situations (where (a) is true but P(A) < % or (b)
is true but P(A) > %) will depend on the data.

Wthh is always true if P(A) = 5. Similarly, if the BH

The BH Condition and Unequal Costs

The discussion up to this point considers only the special case of
misclassification costs being equal; that is, the costs of false
positives and false negatives are weighted the same. Attention is
now given to the case where costs are not considered equal and
decisions should be made so the overall cost is minimized.

Suppose that the cost of a false negative is k times more costly
than a false positive, where k > 0. In determining whether the test
outperforms base-rate prediction where costs are considered un-
equal, clinical efficiency requires the lowest-cost option. Rather

= 2, or equivalently P(A) = P(A), consider the
case when C(P(A)) = C(P(A)), where C() is a cost function. In
words this states that the cost of predicting that everyone has “it”

is more than the cost of predicting no one has “it.” The costs can
be defined as C(P(A)) = nj; (the number of false positives when

than requiring P(A) =

predicting everyone to have “it”) and C(P(A)) = kn, (the number
of false negatives, weighted by k, when predicting no one to have
“it™). Thus, if C(P(A)) = C(P(A)), then n; = kn,. Note that when
k = 1,n; = n,, which is equivalent to P(A) = P(A).

Assume C(P(A)) = C(P(A)); that is, assume that the cost of
prediction using the base rates is lowest when predicting no one to
have “it.” Prediction using the test is better than prediction using
the base rates if and only if C(Test) < C(P(A)), where the cost of
the test is defined as C(Test) = ng; + kng, (the number of false
positives plus k times the number of false negatives). This will be
referred to as “generalized clinical efficiency.” When unequal
costs are assumed, generalized clinical efficiency can be charac-
terized by a generalized Bokhari-Hubert (GBH) condition: a test
outperforms base rate prediction if and only if ng, > %an; and

ngi > kng,. This holds true when C(P(A)) = C(P(A)) as well (see
Appendix E for proof).

Note that when £ = 1 (that is, costs are equal) the original BH
condition holds, as desired. When k > 1 (so that false negatives are
considered more costly than false positives), % < 1, and the
requirement in the first row is weaker (that is, more easily satis-
fied) than when costs are equal because the number of true posi-
tives only needs to be larger than i times the number of false
positives; for the second row, the requirement is stronger (that is,
less easily satisfied) than when costs are equal because the number
of true negatives now needs to be larger than k times the number
of false negatives. Similarly, when 0 < k < 1 (so that false
positives are considered more costly than false negatives), the
requirement for differential prediction is stronger in the first row
but weaker in the second.

One interesting consequence of the above results is when the
frequencies are known but the costs are not. If the GBH condition is
not met, one is able to determine upper and lower bounds for & so that
the GBH condition is satisfied; the first requirement of the GBH
condition provides a lower bound, the second requirement provides an
upper bound. To see this, simply solve for k. The first part of the
condition states that 74 > nBA, thus, the lower bound for k is - "% The
second part states that ngy; > kng, so the upper bound is
k < -2 Thus, for a test to satisfy the GBH condition, the costs of a
false negative to a false positive must be bounded as follows:

: npa
— <k<—
1ipA NipA

In words, the bounds state that the cost of a false negative
relative to a false positive cannot be less than the ratio of false
positives to true positives and cannot be more than the ratio of true
negatives to false negatives. If k is not within the bounds, then the
GBH condition fails and the test is not generalized clinically
efficient.

Meehl-Rosen and Dawes Conditions

The Meehl-Rosen condition does not appear to be generalizable
when costs are unequal. The Dawes condition can be, however; using
the GBH condition, it can be shown that the generalizable Dawes
condition is

B 1
PAIB)<1— —,
k+1

when C(P(A)) = C(P(A)). The condition is best stated in terms of
the positive predictive value: P(AIB) > . For k = 1, this is the
original Dawes condition.

The more general Dawes condition given above implies a test is
generalized clinically efficient when C(P(A)) = C(P(A)), but not
when C(P(A)) = C(P(A)); that is, the condition may be met when
C(P(A)) = C(P(A)) but it is not necessarily true that the test is
generalized clinically efficient. Thus, one needs to know k even
though the costs of false positives and false negatives will not always
be known; the GBH condition holds regardless of the relationship

between C(P(A)) and C(P(A)) (that is, it is independent of whether
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C(P(A)) is greater than or less than C(P(A))), making it more usable
in practice because when k is unknown, bounds for & to make the test
generalized clinically efficient can be constructed.

The Dawes condition for unequal costs only characterizes gener-

alized clinical efficiency when C(P(A)) = C(P(A)). Because the
condition was derived from the GBH condition it can be extended so
that it is no longer dependent on the relationship between C(P(A)) and
C(P(A)) (that is, it holds when C(P(A)) = C(P(A)) as well). What may
be referred to as the generalized Dawes condition can be stated as

P(AIB) > ﬁ and P(AIB) > 1;1 For example, if the cost of false
4L

negatives is weighted as three tim’és the cost of false positives then the
generalized Dawes condition states that the positive predictive value
needs to be greater than i and the negative predictive value needs to
be greater than % to have the test be generalized clinically efficient
(that is, the cost of the test is less than that of prediction using the base
rates). The fact that these two lower bounds sum to one is not a
coincidence—this will always be the case. The generalized Dawes
condition characterizes a test that is generalized clinically efficient
regardless of the relationship between the costs using base-rate pre-
dictions, C(P(A)) and C(P(A)).

Given that the generalized Dawes condition holds for all k, bounds
can be constructed for k in terms of the positive and negative predic-
tive values as follows:

P(AIB)

1< .
1 — P(AIB)

PAIB)

(Some authors have referred to the first term, the inverse of the
positive predictive value, as “the number needed to detain” [Bu-
chanan, 2008]). For example, if the positive predictive value is .25
and the negative predictive value is .9, then the cost of a false
negative relative to a false positive would need to be between three
and nine for the test to be generalized clinically efficient. Figure 1
gives an illustration of the lower bounds of the PPV and NPV for
different values of k. The shaded region are the values the PPV and
NPV can take for generalized clinical efficiency to be met, across
different values of k.

Predicting Violence and Dangerousness

Predicting violent and dangerous behavior continues to be a heavily
debated topic; the importance of base rates in predicting violent
behavior has been discussed elsewhere (Doren, 1998; Vrieze &
Grove, 2008; Wollert, 2006), although not all agree (for example, see
Harris & Rice, 2007). We begin with a numerical example of pre-
dicting violence using an actuarial model developed in the MacArthur
Violence Risk Assessment Study called the Classification of Violence
Risk (COVR; Monahan et al., 2001). The COVR was designed for the

diagnostic assessment of violence risk (event B, risk present; event B,
risk absent) in relation to the occurrence of follow-up violence (event

A, violence present; event A, violence absent) among persons with
mental illnesses. Table 2 displays the results from the construction
sample (that is, the sample used to construct the COVR instrument).
Those who are classified as having a “high” or “very-high” risk of
violence are predicted to be violent (that is, risk is considered present);
those who are classified as “low” or “very-low” are not (risk absent).

128

The base rate for violence in the sample is P(A) = 75 = .17 < %

749

1.00-

0.75 -

=
3
T050-
<)
o
0.25-
0.00-
0 5 10 15 20
k
— NPV — PPV
Figure 1. The figure gives a visual demonstration of the lower bounds on

the positive predictive value (PPV) and negative predictive value (NPV).
The decreasing curve represents the lower bound on the PPV; the shaded
region above it gives the values of the PPV that satisfy the first part of the
generalized Dawes condition across k. The increasing curve is for the NPV;
the shaded region above it gives the values of the NPV that satisfy the
second part of the generalized Dawes condition across k. When both the
PPV and NPV fall in the shaded region(s) for a given k (such as for the stars
given in the figure representing a test with a PPV of .45 and a NPV of .80
for the case when k = 3; the horizontal lines represent the lower bounds at
k = 3), the test satisfies the generalized Dawes condition and is therefore
generalized clinically efficient. The two curves intersect at k = 1, where
both the PPV and NPV lower bounds are equal to one half. See the online
article for the color version of this figure.

Because ngy = 105 > 60 = np, and ng; = 568 > 23 = ng,, the
BH condition is satisfied implying the COVR outperforms base-rate
prediction. The other equivalent conditions can be verified but require
some calculations. The sensitivity of the test is % = .82, the speci-
ficity is 2% — 90, and the Meehl-Rosen condition is satisfied:

628
% = .10 < .17 = P(A). The positive predictive value is

i—gg = .64 > .5, so the Dawes condition is satisfied. Finally, because
the accuracy of the test is 1057;'6568 = .89 and this is greater than 1 —
P(A) = .83, the general condition for clinical efficiency is satisfied as
well.

Next, data from a Monahan et al. (2005) study attempting to
validate the COVR model on new data are considered. Table 3
displays the results in the form of a 2 X 2 contingency table.
The base rate for violence in this sample is % = .18 < %

The model correctly predicts violence in approximately one
third of the patients (g = .35); the model also correctly predicts
nonviolence in about 10 of every 11 patients (% = 91).

Overall, the model correctly diagnosed three of every four

. . 19+93
patients; the accuracy of their test was ¢ = ) = .71. Because

PA) = %, prediction by base rates would be to say that all
patients will not commit violence. In doing so, one would be
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Table 2
A 2 X 2 Contingency Table for Predicting Risk of Violence in
the Classification of Violence Risk Construction Sample

State of nature

A
(Violence present) (Violence absent) Totals
Prediction
B (Risk present) 105 60 165
B (Risk absent) 23 568 591
Totals 128 628 756

Note. Compare Table 6.7 in Monahan et al. (2001, p. 125).

correct 82% of the time for this sample (P(A) = % = .82).
Because prediction using base rates is better than prediction using the
test, all three of the conditions fail, as demonstrated below.

The specificity is % = .72, the sensitivity of the test is % = .68,
and the base rate for violence is P(A) = .18. Verifying the Meehl-

Rosen condition, we see

1 — specificity _ 1-.72 _
sensitivity + (1 — specificity) .68 + (1 —.72)

18 = P(A) ¥ ,
so the condition fails to hold. The PPV of the test is PPV =
% =35< %, so the Dawes condition fails to hold. Finally, because
ngy = 93 > 9 = ngy but ngy = 19 < 36 = nyy, the BH condition
also fails. Another easy way to detect the failure of this latter
condition is to note there is no differential prediction because the
row entries in the contingency table (see Table 3) are ordered in
the same direction. This demonstrates the ease with which the BH
condition can be verified, relative to the other conditions.

Given unequal costs, the GBH condition is ng, > %”BA and

ngy > kng,, and an upper and lower bound for k can be constructed
n

so that a test is clinically efficient: -2 < k < % Using the data from

Table 3, the second requirement of) Igfle GBH condition states that the
upper bound for k is Z—;: = % =~ 10.3; that is, false negatives cannot
be considered more than 10.3 times more costly than false positives or
the GBH condition fails in the second row. For the first requirement,

the lower bound for k is Z,L: = ‘:—g =~ 1.9. (Note the result is the same
if the PPV and NPV are use to construct the bounds.) In other words,
one would need to consider false negatives to be almost twice as
costly as false positives for the COVR to be clinically efficient in the
validation sample.

The authors also provide “revised estimates” of their sample, re-
classifying participants from both groups by “using a slightly more
inclusive operational definition of violence” (Monahan et al., 2005, p.

814). In their revised estimate their accuracy is better (it is exactly
equal to P(A)), but all three conditions again fail to hold.

Conclusion

The BH condition presented in this article provides a simple con-
dition for determining whether prediction from a diagnostic test
outperforms prediction by base rates; this condition is equivalent to
those presented by Meehl and Rosen (1955) and Dawes (1962).
Unlike these latter two conditions, the BH pattern is unchanged with

respect to base-rate probability. The BH condition also has several
interpretive relationships with measures of association, such as the
Goodman-Kruskal lambda and the odds ratios.

The simplicity of the BH condition relies on the use of 2 X 2
contingency tables; this in turn leads to a question as to why research-
ers typically fail to present data in this simple form. Besides its use in
assessing the BH condition directly, 2 X 2 contingency tables provide
all the information needed to determine the quality of a diagnostic test
at a given cut score.

This article has also demonstrated that a popular instrument for
predicting violence outperforms base-rate prediction in the construc-
tion sample but fails to do so in a validation sample; this is an example
of the expected shrinkage in the accuracy of a diagnostic measure
when used on new data. Unfortunately, the COVR’s failure to out-
perform base-rate prediction appears to be the norm among violence
prediction measures. In a meta-analysis of 73 samples, Fazel, Singh,
Doll, and Grann (2012) determined that the median positive predictive
value among the measures examined was .41, suggesting that the
instruments failed to satisty the BH condition in over half of the
studies if costs are considered equal.

‘When an event that is being predicted is rare (so the base rate is small),
clinical efficiency can be extremely difficult to meet. An example of such
a rare event is suicide; Rosen (1954) noted that “[t]he low incidence of
suicide is in itself a major limitation in the development of an effective
suicide predictor, for in any attempt at prediction of infrequent behavior,
a large number of false positives are obtained,” implying that the test is
not likely be clinically efficient. For a test used to predict a rare event, it
may be that the only way for it to be clinically efficient in the generalized
sense is to weight false negatives as far more costly than false positives,
and which arguably is reasonable for an event like suicide. Given the
large number of false positives, however, Rosen (1954) noted that “it
would be impractical to treat as suicidal the prodigious number of mis-
classified cases.” Even if the unequal costs are justifiable, it may not be
practical to implement.

In assessing and predicting violence, it is often not the case that the
costs of false negatives and false positives are equally weighted. As one
reviewer suggested, “a child should not go to a parent who has a roughly
one chance in three of becoming violent, even though the parent has a
higher likelihood of being nonviolent than violent,” suggesting that false
negatives are more costly than false positives. The authors agree with the
reviewer but note that there are other situations where the opposite may
be true and false positives are considered more costly than false negatives.
An instance of this may be determining whether an individual accused of

Table 3

A 2 X 2 Contingency Table for Predicting Risk of Violence in a
Classification of Violence Risk Validation Sample (Monahan et
al., 2005)

State of nature

A A
(Violence present) (Violence absent)  Totals
Prediction
B (Risk present) 19 36 55
B (Risk absent) 9 93 102
Totals 28 129 157
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committing a crime should be indefinitely detained because he or she is
deemed a threat to society. Using a device in this context that is correct in
only one out of three positive predictions seems ethically questionable. In
both the situations presented, it may be appropriate to use an actuarial tool
such as the COVR, but depending on the costs of misclassification, the
decision made as a result of the actuarial device may be seen as inappro-
priate. Costs should be decided a priori and justified both ethically and
legally.
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Appendix A
The Meehl-Rosen Condition: Proof

1 — P(BIA)
PA) > —
P(BIA) + (1 — P(BIA))
PA[PBIA)+ (1 —PBIA)] > 1-PBA) <
P(BIA)P(A) + P(A) — P(BIA)P(A) > |- PBIA) <
P(BIA)P(A) — P(BIA)P(A) + P(BIA) > 11— P(A) &
P(BIA)P(A) + P(BIA)(1 — P(A)) > PA) <
P(BIA)P(A) + P(BIA)P(A) > P(A).

Appendix B

The Dawes Condition: Proof

Before proving the Dawes condition, note that P(AIB)P(B) = P(A N B) = P(BIA)P(A) and P(AIB)P
(B) + P(AIB)P(B) = P(A). These two equalities are used in the proof.

_ 1
PAIB) < S &

2PAIB) < |l &
P(AIB) + P(AIB) < 1 &
PAIB) < 1—P(AIB) &
P(AIB) < P(AIB) &
P(AIB)P(B) < P(AIB)P(B) &
P(AIB)P(B) + P(AIB)P(B) < P(AIB)P(B) + P(AIB)P(B) <
P(A) < P(BIA)P(A) + P(BIA)P(A)

(Appendices continue)
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Appendix C
The Bokhari-Hubert Condition: Proof

We begin with the general condition:

P(BIA)P(A) + P(BIA)P(A) > P(A) &
npy + nga n,
n o
npsy +ngy = Ny &
npa + gy > npytngy &

Mgy = Npg-
Thus, P(BIA)P(A) + P(BIA)P(A) > P(A) < ng, > ng;. Now,

npy = Npa &

nga + Ny + npy Ngs + Ny +ngp &

>
Npy > npyt+ngytngy — (npy T ngy) ©
Npx > npy +n, —ny.

Because (by assumption) n; > n,, we have ny; — n, > 0, and therefore, ngy > ng,, as desired.

Appendix D
The Bokhari-Hubert Condition and Relative Risk: Proof

gical Association or one of its allied publishers.

We assume the Bokhari-Hubert condition holds.

nps > npiand ngy > ngy = Npalipi > Npallgs =
npalpy t Npalgy = Npalpy + Npaigy =
npa (Npa +ngy) > ngy (ngg + ngy) =
npAlp = Npslpg =
npallp
- > 1=
npallg
RR > 1

(Appendices continue)
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Appendix E
The Generalized Bokhari-Hubert Condition and Unequal Costs: Proof

We begin with the general condition of clinical efficiency under unequal costs where false negatives (r5,) are
considered k times more costly than false positives (rp,), for some k£ > 0. Assume that the number of negative cases

is greater than or equal to k times the number of positive cases (n; = kn,) so that C(P(A)) = C(P(A)).

C(P(A)) > C(Test) &
kny, > ngy+ kng, &
k(ngy + ngy) > ngi+ kngy <
kngy > ngi &
1

ngya > Eng,;.

Now,
kngy > npg <
npa +knga tkngy > ngp+ngg+ kngy <
ngx > ny — kny + kngy.

Because n; — kn, = 0 by assumption, it holds that ng; > kng,.
Now consider the case when kn, = n,.

C(P(A)

ny

C(Test) &
ngs + kng, <

ngi + nga ngay + kng, &

vV V. V V

i kngy.

In addition,

\Y

A kngy <
kngy +ngi +ngy > kngy + kngy + ngp &

kngy > kny—ng+np,.

1
Because, by assumption, kn, — ny = 0, it holds that kng, > npy, or equivalently, ng, > Zn&;. Thus, the GBH
condition for unequal costs remains the same regardless of the relationship between C(P(A)) and C(P(A)).
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