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Abstract

Cross-validation is an important evaluation strategy in behavioral predictive modeling;

without it, a predictive model is likely to be overly optimistic. Statistical methods have

been developed that allow researchers to straightforwardly cross-validate predictive models

by using the same data employed to construct the model. In the present study,

cross-validation techniques were used to construct several decision-tree models with data

from the MacArthur Violence Risk Assessment Study (Monahan et al., 2001). The models

were then compared with the original (non-cross-validated) Classification of Violence Risk

assessment tool. The results show that the measures of predictive model accuracy (AUC,

misclassification error, sensitivity, specificity, positive and negative predictive values)

degrade considerably when applied to a testing sample, compared with the training sample

used to fit the model initially. In addition, unless false negatives (that is, incorrectly

predicting individuals to be nonviolent) are considered more costly than false positives

(that is, incorrectly predicting individuals to be violent), the models generally make few

predictions of violence. The results suggest that employing cross-validation when

constructing models can make an important contribution to increasing the reliability and

replicability of psychological research.
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The Lack of Cross-Validation Can Lead to Inflated Results and Spurious Conclusions: A

Re-Analysis of the MacArthur Violence Risk Assessment Study

Cross-validation is an important part of constructing a behavioral predictive model.

A failure to cross-validate may lead to inflated and overly-optimistic results, as Meehl and

Rosen (1955) noted some sixty years ago: “If a psychometric instrument is applied solely to

the criterion groups from which it was developed, its reported validity and efficiency are

likely to be spuriously high” (p. 194). The Classification of Violence Risk (COVR;

Monahan et al., 2001) assessment tool is an actuarial device designed to predict the risk of

violence in psychiatric patients. The COVR is a computer-implemented program based on

a classification tree construction method that has been praised for its “ease of

administration” (McDermott, Dualan, & Scott, 2011, p. 4). When constructed, however,

the COVR was not cross-validated; thus, the results from the construction sample may be

overly optimistic (for example, see McCusker, 2007).

The research presented in this paper reanalyzes data from the MacArthur Violence

Risk Assessment Study (VRAS) used to develop the COVR. We begin by describing a

widely-applied method for cross-validation, commonly called K-fold cross-validation. Data

are then presented from the MacArthur VRAS. Several classification tree models are built

from the VRAS dataset demonstrating the importance of cross-validation. In addition, we

show how differing cutscores (see Appendix A) implicitly affect the costs associated with

false negatives and positives. The COVR implicitly assumes that false negatives (incorrect

classifications of violent individuals) are more costly than false positives (incorrect

classifications of nonviolent individuals).

A Brief Introduction to Cross-Validation

Cross-validation is an important tool for prediction, allowing the researcher to

estimate the accuracy of a prediction tool in practice. Assessing the accuracy of a model

with the same data used to create the model will give overly optimistic estimates of
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accuracy because a model is typically fit by minimizing some measure of inaccuracy; thus,

the model reflects both the true data pattern as well as error. Cross-validation is a strategy

to separate these two entities.

Assume we have a dataset (X,y), where X is an n× p matrix containing n

observations measured across p predictor variables, and y is an n× 1 vector containing n

observations measured on a single outcome variable (for example, the outcome of whether

an act of violence was committed). In this scenario the outcome variable is known, and the

construction of a model to predict the known values of y is typically referred to as

supervised learning.

In prediction, interests generally center on modeling y as a function of X, where it is

assumed that for some function f ,

y = f(X) + ε;

here, ε represents an n× 1 vector of random error terms, assumed to have mean 0, finite

variance, and be uncorrelated with the set of predictor variables. The primary goal is to

estimate f(X) so that a practical classification function,

ŷ = f̂(X),

is constructed. The total error in prediction, y− ŷ, can be divided into two types of

components: reducible error and irreducible error. Decomposing the mean-squared error

gives

E
[
(y− ŷ)2

]
= E

[
(f(X) + ε− f̂(X))2

]
= E

[
(f(X)− f̂(X))2

]
+ 2E

[
(f(X)− f̂(X))ε

]
+ E(ε2)

= E
[
(f(X)− f̂(X))2

]
︸ ︷︷ ︸

reducible error

+ V(ε),︸ ︷︷ ︸
irreducible error

where E(·) and V(·) represent the expected value and variance, respectively. These two

types of error determine the accuracy of predictions. Typically V(ε) is unknown and hence
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cannot be reduced; the reducible error can be minimized, which is of course the goal of

predictive modeling. When the predicted function perfectly matches the true function, the

total mean squared error equals V(ε); thus, V(ε) represents a lower bound for the total

error. In practice, f(X) is not known, so one can only strive to get close to this lower

bound by constructing predictive models that produce the smallest total error values.

In constructing a predictive model, there are several available measures for assessing

how well the model fits the data (for example, the mean squared error, the coefficient of

determination [R2], the proportion of predictions correct). It is important to note that this

assessment of error is often made with the sample used to construct the model and not on

predictions with an independent sample. When a model is constructed for purposes of

prediction, the model’s predictive accuracy on new data is most relevant. Suppose there is

a given measure of accuracy, say γ, for assessing the model and this measure is obtained

with the same data used to construct the model. A way of evaluating a model’s predictive

ability is to collect new data and measure how accurate the predictions are; that is, a new

accuracy measure γ′ is obtained. The difference between γ and γ′ represents the drop in

how well the model predicts (assuming that a larger γ is associated with better accuracy,

typically, γ − γ′ > 0); this drop is known as shrinkage. Rather than assessing predictive

accuracy with the same data relied on to build the model, the original data can be

randomly split into two parts: the training data and the testing data. The training data is

for constructing the model; the testing data is for estimating the predictive accuracy of the

model. This process is typically more efficient in terms of time and cost than collecting

new data after the model is developed, and can help prevent overfitting.

K-fold Cross Validation

Given n observations, cross-validation involves splitting the data so that a specified

proportion, say q, of the data is present in the training set and the rest of the observations

are in the testing set (that is, qn observations are in the training set and (1− q)n are in the
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testing set). This can be carried out multiple times, choosing a different training and

testing set each time.

K-fold cross validation is one of the more popular cross-validation strategies and will

be the only one discussed. K-fold cross-validation involves splitting the data into K

subsets; the training set consists of the union of K − 1 subsets, and the testing set is

defined by the remaining observations. This process is repeated so that each subset acts

once as the testing sample. Because each replication of this process will produce results

that vary, it is common to compute an average across all replications. The simplest form of

K-fold cross validation is to let K = 2: the training set contains half of the observations,

and the testing set the other. The most computationally costly form is to let K = n, so

that each observation acts as the testing sample; this is commonly known as leave-one-out

cross-validation. In addition to the computational costs, another disadvantage of

leave-one-out cross-validation is that the variance of the estimate can be relatively large

compared to other estimates—it is, however, approximately unbiased; setting K < n

provides an estimate of the test error with less variance but more bias (see Hastie,

Tibshirani, & Friedman, 2009, pp. 242–243). A reasonable choice for K is commonly

considered to be ten (Breiman & Spector, 1992). Appendix B presents a thorough

discussion of what is known as the “bias-variance trade-off” in prediction, and how

cross-validation can help determine the equilibrium point that simultaneously minimizes

both the bias and the variance of a model.

Decision Trees

Decision trees, commonly referred to as Classification and Regression Trees (Breiman,

Friedman, Olshen, & Stone, 1984), are popular statistical learning techniques generally

used for prediction. Consider an n× p data matrix, X, containing n observations measured

across p predictor variables, and an n× 1 vector y containing n observations measured

across a single outcome variable. The outcome variable contained in y is the variable of
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interest with respect to prediction. When the outcome variable is continuous, regression

trees are constructed; when categorical, classification trees are constructed. For violence

prediction in general, the outcome variable is binary (that is, categorical with two classes)

representing the presence or absence of an act of violence; because of this specification, our

focus is solely on classification trees.

Classification trees are constructed by first splitting the data into two disjoint subsets

based on one of the p predictor variables. Within each subset, further partitioning of the

data is done, and within the resulting subsets this process continues until some

user-specified stopping criterion is reached; the complete procedure is known as recursive

partitioning. Recursive partitioning is a top-down greedy algorithm: top-down because the

algorithm begins with a tree with no splits and works “down” to a tree with many splits

(and once a split is made, it remains); greedy because each split made is the “best”

conditioned on the given splits (and not on possible future splits). An observation that

falls into a subset with no further splits (called a terminal node) is classified based on all

the observations within that subset, which is typically the modal observation (that is, the

most prevalent outcome within the node), but other choices are possible, as will be

discussed shortly.

The first split occurs at the root node of the tree; extending branches from the root

node lead to subsample nodes, called leaves. As mentioned, the splits continue until a

specified criterion is met, such as a constraint on the minimum number of observations in a

given leaf, or a criterion based on significance testing. After a tree is constructed, it can be

pruned to reduce the number of branches, eliminating those that add less to the tree’s

predictive ability. The notion behind pruning is to create a subtree that has better

predictive accuracy on new data, and thus, the level of pruning is commonly determined by

cross-validation.

The data are subjected to splitting with the goal of grouping the observations so as

to minimize the number of observations incorrectly classified. There are several ways to
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assess goodness of fit in classification, one being the Gini index (Breiman et al., 1984; Gini,

1912). Given R classes for an outcome variable, the Gini index for a group of observations

is given by

G =
R∑

r=1
gr(1− gr) = 1−

R∑
r=1

g2
r ,

where gr (r = 1, . . . , R) is the proportion in the group from the rth class. The Gini index

can be thought of as a measure of impurity. Note that when gr = 1, 1− gr = 0, and G = 0

indicating perfect purity. When g1 = · · · = gR = 1/R (that is, the proportion of

observations are evenly divided among the R classes), the index is maximal at G = 1− 1
R
.

The Gini index is commonly used for determining the splits of the trees, where the split

minimizing the Gini index is chosen at each step of the partitioning.

Decision trees are popular because they are easy to interpret, but they are not the

best statistical learning method in terms of predictive accuracy. Predictive accuracy can be

enhanced by various ensemble methods such as tree bagging and random forests (Breiman,

2001; these are more generally known as random subspace methods). Bagging (the term bag

is a short-hand phrase for bootstrap aggregation; see Breiman, 1996) is an ensemble

learning method designed to avoid the overfitting of a model and is commonly used with

classification trees (that is, tree bagging). Suppose a dataset, X, contains n observations

on p predictors. Similar to the bootstrap method, B training sets of size L are generated,

where 1 ≤ L ≤ n, by randomly sampling (with replacement) from X; each training set is fit

by the model and, after aggregating, an average over the B replications provides a

predicted response for each observation.

Note that some of the observations in the ith training set, B(i), may be duplicate.

The larger L is, the more likely there will be at least one duplicate observation; the

probability of such an event is 1− n!
nL(n−L)! . The probability that any given observation is

not selected is (1− 1
n
)L. If L = n and as n→∞, the probability approaches e−1 ≈ .37. For

a large enough n and when the training sample is equal to n, it would be expected that on

average, about 63% of the bootstrap sample consists of unique observations. The 63%
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represents a probabilistic lower bound; for L < n, one would expect more than 63% of the

sample to be unique (for example, in the trivial case where L = 1, there are no duplicate

observations). The approximately 37% of the observations not used in fitting the model on

the ith replication are called out-of-bag (OOB); thus, the OOB observations are the testing

set and can be used to assess predictive accuracy. For any given observation, by

aggregating over the subset of B replications—where the observation was not used to fit

the model—the average OOB prediction accuracy can be calculated and compared to the

cross-validated error; this comparison gives us the average OOB error difference. The OOB

errors can also be used to assess the importance of predictors by randomly permuting the

OOB data across variables one at a time, and estimating the OOB error after

permutation—a large increase in the OOB error indicates the variable’s importance in the

model.

Random forests (Breiman, 2001) are tree bagging methods that randomly select a

subset of predictors to be used at each split. The advantage here is that it can

“decorrelate” the trees by preventing a single variable from dominating the analysis; for

instance, if one predictor is very strong, it will likely be the root node for a majority of the

trees constructed; the subsequent nodes will be similar as well (that is, the trees will be

highly correlated). By convention (and default in R), √p predictors are randomly selected

at each node for classification trees.

The advantage of ensemble tree models is that they tend to reduce the variance found

in single decision tree models, leading to more accurate results by aggregating over a

number of single decision trees. For more information on decision trees and other statistical

learning models, the reader is referred to Kuhn and Johnson (2013), Hastie et al. (2009),

and James, Witten, Hastie, and Tibshirani (2013); the latter two references are freely

available online.

Here, a classification tree was first developed similar to that done in Monahan et al.

(2001); next random forests were built to create better classification tree models with
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better predictive accuracy. All classification tree models were constructed in R (R Core

Team, 2014). Before proceeding to the results, however, it is necessary to discuss how a

classification tree classifies observations and how this process is related to the costs of false

positives and negatives.

Misclassification Costs

In general, there are two types of misclassifications that are of concern: false positives

and false negatives. A false negative incorrectly predicts the absence of whatever the model

is designed to predict (for example, predicting nonviolence in a violent individual); a false

positive incorrectly predicts the presence (for example, predicting violence in a nonviolent

individual). These two types of misclassifications can have drastically different

consequences, and one may assign differing costs to each.

Suppose in a given terminal node there are n observations, of which nr are from class

r (r = 1, . . . , R). An observation is classified into class r based on the modal class at that

given terminal node; thus, if nr > nr′ for all r 6= r′, all observations within the terminal

node are classified as belonging to class r. The empirical posterior probability for each

class can be defined as the number of observations in the terminal node coming from a

particular class divided by the total number of observations; thus, the estimated posterior

probability is

P̂ (r|x) = nr

n
,

where x is a vector of predictor variables associated with the observation. Given this

definition, an observation is classified as coming from class r when P̂ (r|x) > P̂ (r′|x) for all

r 6= r′.

As an addition to the classification process, costs can be assigned to

misclassifications; the cost function is labeled Cs(r) and represents the cost of classifying

an observation into class s when it truly belongs in class r (note that Cr(r) = 0). By



LACK OF CROSS-VALIDATION 11

including a cost function, an observation is classified into class r by minimizing
R∑

r=1
P̂ (r|x)Cs(r)

across all s. Note that when Cs(r) is the same for all r = 1, . . . , R (that is, the costs are

equal across all classes), the previous situation obtains and an observation is classified

based on the modal class.

Given two classes (that is, r = 1, 2, where 1 could represent nonviolent individuals

and 2, those who are violent), an observation is classified into class r = 2 when

P̂ (2|x)C1(2) > P̂ (1|x)C2(1).

With respect to classification of nonviolent and violent individuals, C1(2) and C2(1) are,

respectively, the costs associated with a false negative and a false positive. Alternatively,

the above inequality can be written as

C1(2)
C2(1) >

P̂ (1|x)
P̂ (2|x)

.

The lower bound, P̂ (1|x)
P̂ (2|x) , is the conditional odds in favor of the event 1 because

P̂ (2|x) = 1− P̂ (1|x); for example, the odds in favor of an individual not being violent,

given the data.

If C1(2) = C2(1), an observation is classified as coming from class 2 when

P̂ (2|x) > P̂ (1|x), or equivalently,
P̂ (2|x)
P̂ (1|x)

> 1.

Bayes Theorem allows this to be rewritten as
P̂ (x|2)P̂ (2)

P̂ (x)
P̂ (x|1)P̂ (1)

P̂ (x)

= P̂ (x|2)P̂ (2)
P̂ (x|1)P̂ (1)

> 1.

Considering P̂ (x|2) and P̂ (x|1) fixed, the classification cutscore can be changed by

adjusting P̂ (1) and P̂ (2); these probabilities are the sample base rates (note that for

r = 1, 2, P̂ (2) = 1− P̂ (1)). Thus, adjusting the prior probabilities is an equivalent way of

adjusting costs.
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As will be discussed shortly, Monahan et al. (2001) suggested the cutscore for

classification of high-risk individuals as twice the sample base rate of violence

(approximately .37). This implies that an individual is classified as violent when the

individual belongs to a terminal node where P̂ (2|x) > .37, and implicitly assigns unequal

costs to false positives and negatives. Explicitly, let P̂ (2|x) = .37 (and consequently,

P̂ (1|x) = .63) so
C1(2)
C2(1) = P̂ (1|x)

P̂ (2|x)
= .63
.37 = 1.67.

By lowering the cutscore to .37 for classification of violence, the authors imply that, given

the specified prior probabilities, incorrectly classifying an individual as nonviolent (a false

negative) is 1.67 times worse than incorrectly classifying an individual as violent (a false

positive).

Most authors of actuarial measures for violence risk assessment are reluctant to

discuss the costs of false positives versus false negatives (Mossman, 2006, 2013; Vrieze &

Grove, 2008); an exception to this is Richard Berk. In his book, Criminal Justice Forecasts

of Risk: A Machine Learning Approach (Berk, 2012), he suggests that

the costs of forecasting errors need to be introduced at the very beginning when the

forecasting procedures are being developed [original emphasis]. Then, those costs can

be built into the forecasts themselves. The actual forecasts [original emphasis] need

to change in response to relative costs. (p. 20)

In the examples that Berk provides (regarding parole release), he suggests that the ratio of

false negatives to false positives be as high as twenty to one (also, see Berk, 2011). The

reasoning for such an extreme ratio, as justified by Berk (2012), is that the agency the

model was built for was “very concerned about homicides that could have been prevented”

(p. 5). Thus, the “agency” was willing to accept that a large number of potentially

non-violating parolees were not granted parole; the proportion of those predicted to fail

that actually did was only about .13 for the sample data used in the text (see Table 1.1 in

Berk, 2012)).
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The MacArthur Violence Risk Assessment Study

The Classification of Violence Risk (COVR; Monahan et al., 2006) is an assessment

instrument developed from the MacArthur Violence Risk Assessment Study (VRAS). The

COVR is computer-implemented and designed to estimate the risk of violence in psychiatric

patients; given the appropriate credentials, it is available for purchase from Psychological

Assessment Resources (http://www4.parinc.com). The COVR assigns patients to one of

five risk groups defined by the “likelihood that the patient will commit a violent act toward

another person in the next several months” (Monahan et al., 2006, p. 728). Table 1 gives

the five risk groups defined by their best point estimates and 95% confidence intervals.

The development of the COVR is detailed in Monahan et al. (2001; also see

Steadman et al., 2000, Monahan et al., 2000, and Banks et al., 2004 for less detailed

reviews). The COVR was based on a sample of 939 recently-discharged patients from acute

inpatient psychiatric facilities in three locations within the United States: Pittsburgh,

Pennsylvania; Kansas City, Missouri; and Worcester, Massachusetts. Patients were

restricted to those who were white, African-American, or Hispanic; English-speaking;

between the ages of 18–40; and charted as having thought, personality, or affective

disorder, or engaged in substance abuse.

According to the original MacArthur study (Monahan et al., 2001), violence is

defined as “acts of battery that resulted in physical injury; sexual assaults; assaultive acts

that involved the use of a weapon; or threats made with a weapon” (p. 17). A second

category of violent incidents was labeled as “other aggressive acts” (Monahan et al., 2001,

p. 17) including non-injurious battery; verbal threats were not considered. The outcome

variable of violence is dichotomous—either the patient committed an act of violence or did

not. It does not consider the number of violent acts or their severity. The patients were

interviewed once or twice during the twenty weeks after discharge. Of the 939 patients, 176

were considered violent; thus, the base rate for violence in this sample is .187.

The authors identified 134 potential risk factors, listed in detail in Monahan et al.
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(2001). Using SPSS’s CHAID (chi-squared automatic interaction detection) algorithm

(SPSS, Inc., 1993), the authors developed a classification tree based on the given risk

factors. The final classification model was constructed by an iterative classification tree

(ICT) process: after an initial classification tree was developed, those who were still

unclassified (that is, those within .09 to .37 estimated probabilities of committing violence

according to the model) were reanalyzed using the same CHAID algorithm. After four

iterations, 462 patients were classified as low risk (less than .09 probability of committing

violence), 257 were classified as high risk (greater than .37 probability of committing

violence), and 220 remained unclassified. The cutoffs of .09 and .37 were chosen because

they represent, respectively, one half and twice the base rate of violence in the sample.

The authors’ goal was to create an actuarial tool that was “clinically feasible”; thus,

it was to include only risk factors that could be computed easily. Of the 134 original risk

factors, 28 were eliminated that “would be the most difficult to obtain in clinical practice”

(Monahan et al., 2001, p. 108), as determined by the length of the instrument measuring

the risk factor (more than twelve items was considered too long), or the risk factor not

being readily or easily ascertainable by mental health professionals. After doing so, the

same ICT method was applied to the 106 remaining risk factors using three iterations.

The correlation between the predictions made by the clinically-feasible and original

ICT models was .52; the authors noted the low correlation:

The fact that these [two] prediction models are comparably associated with the

criterion measure, violence (as indicated by the ROC analysis), but only modestly

associated with each other [as indicated by the correlation coefficient], suggested to

us that each model taps into an important, but different, interactive process that

relates to violence. (p. 117)

The authors then constructed nine additional ICT models using the 106 clinically-feasible

variables; for each of the nine trees the authors “forced a different initial variable” (p. 118;

that is, the root nodes for the ten trees differed). The ten models led to ten classifications
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for each individual (high, average, or low) and each individual was assigned a score

corresponding to their risk level (1, 0, or −1, respectively); the scores were then summed to

create a composite score ranging from −10 to 10. The authors remarked, “As two models

predict violence better than one, so ten models predict violence better than two (that is,

the area under the ROC curve was .88 for ten models compared to .83 for two models)” (p.

122).

The authors questioned whether ten models were necessary; to determine this

empirically they performed stepwise logistic regression and concluded that only five of the

ten were needed, leading to composite scores ranging from −5 to 5 (the AUC remained the

same, .88). The composite scores were divided into five distinct groups based on the

following ranges: [−5,−3], [−2,−1], [0, 1], [2, 3], and [4, 5] (these five groups correspond to,

respectively, the very-low, low, average, high, and very-high risk groups found in Table 1;

the probabilities represent the proportion of those violent within each group).

The authors did not cross-validate their model. As Monahan et al. (2001) state on

page 106, “Dividing the sample leaves fewer cases for the purpose of model construction”

and, quoting Gardner, Lidz, Mulvey, and Shaw (1996), “wastes information that ought to

be used estimating the model.” When their ICT models were constructed in the late 1990s

and early 2000s, computing power was not what it is now, but cross-validation on a dataset

of 939 was certainly possible (although possibly not in the version of SPSS relied on). With

today’s computing power there is little reason not to cross-validate a model or to argue that

cross-validation “wastes” data. As will be shown, cross-validated error can be drastically

different from what is called the resubstitution error for the initially constructed model.

As noted, Monahan et al. (2001) cited the Gardner et al. (1996) source when they

made their remark claiming cross-validation wastes information, so this reasoning did not

necessarily originate with them. Looking at the Gardner et al. (1996) article referenced in

the quote above, a footnote on page 43 states that a bootstrap cross-validation was

performed on the authors’ logistic regression model, a perfectly reasonable alternative.
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Although Monahan et al. performed a bootstrap analysis to estimate the variability of the

predictions (and where 1,000 bootstrap samples helped estimate 95% confidence intervals

for the probability-of-violence point estimates given in Table 1), the base predictive model

was not cross-validated.

VRAS Dataset

To illustrate the process of cross-validation, we used the data from the MacArthur

Violence Risk Assessment Study (Monahan et al., 2001) to construct several decision-tree

models. As noted, the data were obtained from 939 patients discharged from inpatient

psychiatric facilities based in Pittsburgh, Kansas City, and Worcester, MA. The ages of the

patients range from 18 to 40 (Mean = 29.9; Median = 30.0). Of the 939 patients, 538

(57%) were male; 645 (69%) were White, 273 (29%) were African-American, and 21 (2%)

were Hispanic.

The response variable (Violence) is a binary outcome variable representing whether

an act of violence took place within the follow up period (Violence = 1 if an act of violence

occurred; Violence = 0 if not). Thirty-one predictor variables were included based on the

results from the main effects logistic regression and iterative classification tree models in

Monahan et al. (2001). The data are available for download through the MacArthur

Research Network website (http://www.macarthur.virginia.edu/risk.html); the

dataset for the present analysis was obtained directly from the MacArthur researchers—it

is a “cleaned-up” version from the statistician on the project. The best attempt was made

for preprocessing the data to match that in the Monahan et al. analysis. All software code,

including the preprocessing as well as variable descriptions, can be found in the

supplementary material appended to our report.

As a way of comparing how close our variables match those of the MacArthur

authors, Pearson product-moment correlation coefficients between the predictor variables

and Violence were compared to those found in Chapter 5 of Monahan et al. (2001; see
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Tables 5.2, 5.3, and 5.5). Table 2 displays the estimated correlations for each predictor

variable with the response variable as well as the reported correlations from Monahan et al.

Although not a foolproof method for confirming that the variables were preprocessed in a

similar manner, it certainly does indicate discrepancies that may exist. There is a lot of

agreement (at least to two decimal places), but it is not complete. Seven of the 31

correlations disagree, six only by one percent. The largest discrepancy is between prior

head injury (r = .03 vs. r′ = .06).

VRAS Classification Tree Model

The number of observations at each node in a classification tree is referred to as the

leaf size; the minimum leaf size is a constraint provided by the modeler (the default in R is

7; the minimum leaf size set by Monahan et al. 2001 was 50). Rather than using the

default setting, we determined the minimum leaf size using cross validation. The minimum

leaf size is plotted against the leave-one-out cross-validated error, shown in Figure 1 (solid

line). Several minimum leaf sizes give a cross-validated error less than the base rate,

implying that the expected error on new data is less than the error when simply predicting

all individuals to be nonviolent (that is, what is often called “base-rate prediction”; see

Appendix A for further details); the minimum cross-validated error of .179 was obtained at

the minimum leaf size of 48. As a comparison, the dotted line in Figure 1 gives the

resubstitution error at each minimum leaf size (that is, the misclassification error on the

same data used to construct the model); as the tree becomes less complex, or less flexible,

(that is, the minimum leaf size increases), the resubstitution error increases toward the base

rate. Trees with a resubstitution error equal to the base rate represents those without any

branches (that is, trees with only a root node so that no partitions are being made). The

observation that the resubstitution error increases as the trees become less complex, and

that the cross-validated error decreases and then increases, is an example of the trade-off

between bias and variance in predictive models (see Appendix B; also Hastie et al., 2009).
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Based on a minimum leaf size of 48, the initial classification tree constructed is shown

in Figure 2. The resubstitution error (with a cutscore of .50) was .181, implying the

misclassification of 170 observations; the cross-validated error was slightly lower, .179.

Both measures indicate the model was outperforming base-rate prediction (the base rate

for violence in the sample was .187 so base-rate prediction would be to predict all

individuals to be nonviolent resulting in a misclassification error of .187; see Appendix A

for more details). Based on a .50 cutscore, 48 individuals were classified as violent (27 of

whom were) and the rest nonviolent.

The same analyses were repeated but the cost matrix was set so the cutscore for

classifying individuals was twice the baserate (that is, .37); thus, false negatives were

considered to be about 1.67 times more costly than false positives. The minimum leaf size

was determined to also be 48 (in a similar fashion to that done using equal costs); this led

to the same tree being produced.

If we adhered to Berk’s (2012) 20:1 false negative to false positive ratio, the

resubstitution error (with a minimum leaf size of 30) is .570 and the cross-validated error is

.586. Because of these results and the fact that it is difficult to justify a 20:1 ratio for the

VRAS definition of violence, this cost ratio is not considered in the remaining analyses.

Suppose one decided not to empirically determine a minimum leaf size but let the

minimum leaf size be one, the default setting in some software (e.g., MATLAB). In doing

so, the resubstitution error for such a tree was .009; only 8 of the 939 patients were

misclassified. The sensitivity of the model (that is, the proportion of violent individuals

predicted to be violent) was .966; the specificity (that is, the proportion of nonviolent

individuals predicted to be nonviolent) was .997; the positive predictive value (PPV; that

is, the proportion of violent predictions that were correct) was .988; the negative predictive

value (NPV; that is, the proportion of nonviolent predictions that were correct) was .992;

the AUC (the area under the receiver operating characteristic curve) was .999. No method

in the literature for predicting violence comes close to these accuracy measures. Without
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cross-validating this model, however, one blindly believes that an extremely capable model

for predicting violence has been found; the cross-validated error was .296, providing strong

evidence that the model overfit the data. Based on a cutscore of .37 rather than .50, the

model with a minimum leaf size of one misclassified 12 individuals (resubstitution error of

.013) but the cross-validated error was .279. Again, this exemplifies the overfitting of a

model and the importance of cross-validation, and provides an example of how a more

flexible model (smaller minimum leaf size) performs well on the data for which the model

was fit but far worse on new data. A good fit does not imply a good model (Roberts &

Pashler, 2000).

VRAS Random Forest Model

Random forest models were next implemented for the VRAS dataset. A subset of the

VRAS dataset was randomly selected as the training sample with the remaining

observations representing the testing sample. The testing sample contained 30% of the

original data (282 observations); the training data contained the remaining 657

observations (the base rate for violence in the training sample was .181, and .202 in the

testing sample). The random forest model was fit to the training sample for B = 1000 trees

and a minimum leaf size of 10. After fitting 1000 trees, the random forest model was used

to predict violence in the training set (that is, the observations used for fitting the model);

the predictions were perfect. The 1000 trees generated were aggregated to estimate the

probability an individual will be violent by computing the proportion of times the

individual is classified as violent (an individual was classified as violent if the predicted

probability exceeded .50; that is, costs were considered equal here).

The results discussed thus far are, as noted, based on the training data. The greater

concern is with how well violence can be predicted in new observations with the random

forest model; this is evaluated with the testing data. Of the 282 observations, two were

predicted—one incorrectly—to be violent (see Table 3). The cross-validated error was .202,
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equal to the base rate. The sensitivity and specificity were, respectively, .018 and .973; the

positive and negative predictive values were, respectively, .500 and .800.

The next analysis was the same as the previous one except that the cost ratio of false

negatives to false positives was set to 1.67. At the individual tree level an observation was

classified as violent when it belonged to a terminal node where the proportion of violent

individuals was greater than .37; at the aggregate level (that is, across all 1000 trees) an

individual was predicted to be violent when classified as violent in more than 37% of the

trees. The results for the training data were again perfect; for the testing data, the results

can be found in the bottom of Table 4.

As expected, more predictions of violence were made. For the testing data, the model

classified 8.2% of the sample as violent—compared to 0.4% when costs were equal. The

random forest model appears to be performing fairly well on the testing data

(cross-validated error: .177).

Out-of-bag Prediction

Rather than splitting the data prior to fitting the ensemble method, the entire

dataset can be used and cross-validation error estimated from the OOB observations; this

maximizes sample size (that is, nothing is “wasted”) and a cross-validated error is still

obtained. The results produced by a cutscore of .50 are displayed in the top of Table 5.

The OOB error was .192, slightly more than the baserate. The sensitivity of the model was

.057; the specificity was .982; the positive predictive value was .417; the negative predictive

value was .819; and the AUC was .75.

Carrying out the same analysis but setting the classification cutscore to .37 produced

similar results. As the bottom of Table 5 shows, the model classified 2.9% of individuals as

violent. The sensitivity of the model was .074; the specificity is .980; the positive predictive

value is .464; the negative predictive value is .821. The OOB error was .190 with an AUC

of .75.
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Variable Selection

Thus far the decision trees have included all thirty-one variables. Out-of-bag

observations allow the quantification of variable importance to the classification trees. For

each variable the values are randomly permuted and the increase (or decrease) in the OOB

error calculated (that is, the difference in OOB error before and after permutation). This is

carried out for every tree and normalized with the standard deviations of the differences.

Variables with larger average differences can be quantified as more important than variables

with smaller averages. A dot plot displaying the variable importance is given in Figure 3.

From Figure 3, several variables appear to be more important than others (in

particular PCL), and several actually decrease the OOB error after permutation. It is

interesting to note that Schiz is among the more important variables but Age is not. The

decision for removing variables is conservative; only variables with average OOB error

differences near and less than zero are removed (PCS, Suicide, Consc, Age, DadArr,

HeadInj, and Threats); thus, the final model consists of twenty-four predictor variables.

Final Model

The final model was estimated with 1000 trees omitting the variables discussed in the

previous section and with equal costs. The estimated cross-validated error using OOB

observations for the final model is .186, a slight improvement upon the random forest

model that included all thirty-one variables. The results are summarized in Table 6. The

sensitivity of the model is .097; the specificity is .979; the PPV is .515; and the NPV is

.825. The ROC plot is given in Figure 4; the AUC for the final model is .75.

Conclusion

The results given in this paper reiterate the argument that predicting violent

behavior is extremely difficult. Unless unequal costs regarding false positives and negatives

are assumed—particularly when false negatives are considered to be more costly than false
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positives—the models made a small number of predictions of violence which consequently,

led to very low sensitivity. Therefore, unless the model explicitly states false negatives as

more costly than false positives, predictions of violence are infrequent and the sensitivity is

abysmally low. Even when false negatives were stated to be 1.67 times greater than false

positives, the sensitivity was far from adequate in the models. Harris and Rice (2013) claim

“it can be reasonable for public policy to operate on the basis that a miss (for example,

failing to detain a violent recidivist beforehand) is twice as costly as a false alarm (for

example, detaining a violent offender who would not commit yet another violent offense)”

(p. 106). Whether this is true, it is ethically questionable to assume that costs are anything

but equal unless public policy explicitly states otherwise.

The analyses presented also demonstrate the importance of cross-validation. Without

cross-validating a model, results and conclusions regarding accuracy can be misleading and

overly optimistic. Each type of classification tree model constructed performed quite well

when assessed on the data used to fit it, and almost always outperformed base-rate

prediction. But when cross-validation methods were implemented, the results were

dramatically different. Rarely did the model outperform base-rate prediction on the testing

sample, and the resubstitution error was often higher, indicating that the models even

failed to outperform base-rate prediction on the training data.

The random forest model was chosen for two reasons: (a) it is a decision tree model

and the COVR is based on a decision tree model and (b) random forests have been shown

to be highly accurate models in real world applications (Fernández-Delgado, Cernadas,

Barro, & Amorim, 2014). To be sure, a logistic regression model and linear and quadratic

discriminant analysis models were also fit for comparison (see the supplementary material

for the full details). The results were similar, but the logistic regression model performed

best and slightly outperformed the final random forest model in terms of cross-validated

error and AUC. But because of the reasons just given, the random forest model was chosen

to represent the final model. The final model also did not incorporate unequal costs; as
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mentioned, unless public policy explicitly states that false negatives should be considered

more costly than false positives with respect to the type of violent behavior being predicted

in the VRAS sample, we feel that costs do not warrant adjustment. If costs are considered

unequal, they should be determined a priori and not from an optimization based on the

data; we agree with the quote from Berk (2012) when he says, “the costs of forecasting

errors need to be introduced at the very beginning when the forecasting procedures are

being developed.” Optimizing a model based on differing cost ratios could lead to unethical

decision making and unintended consequences.

Table 7 is from the VRAS study (derived from Table 6.7 in Monahan et al., 2001).

When individuals who fall into the very high- and high-risk groups are classified as violent

and all others as nonviolent, the model correctly classifies 86.0% of individuals, better than

nearly every model presented in the current analysis. At this cutscore the model has a

sensitivity and specificity of (48+57)
176 = .60 and (135+229+339)

763 = .92, respectively; the positive

and negative predictive values are (48+57)
(63+102) = .64 and (135+229+339)

(183+248+343) = .91, respectively. Recall

that the COVR was a combination of ten ICT models, five of which were kept. The

authors claim that this “multiple model approach minimizes the problem of data

overfitting that can result when a single ‘best’ model is used” (p. 127). Because the authors

did not cross-validate, it is impossible to determine how much the model overfits the data,

but it certainly seems that it does. As McCusker (2007) says,

One could wonder whether the iterative classification tree methodology (a technique

that involves repetitive sifting of risk factors) that was used to create the COVR

ended up, in a sense, fitting the data in the development sample too specifically.

Perhaps as a very carefully tailored garment will be expected to fit one individual

perfectly but most other people not as well, so the algorithms of the COVR ought to

be anticipated to classify other samples less exactly than they categorized the

members of the development sample. (p. 682)

In November 2012, the journal Perspectives on Psychological Science released a
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special issue dedicated to the lack of replicability in psychological research. The issue

begins with a question from the editors: “Is there currently a crisis of confidence in

psychological science reflecting an unprecedented level of doubt among practitioners about

the reliability of research findings in the field?” (Pashler & Wagenmakers, 2012, p. 528);

they immediately follow their question with an answer: “It would certainly appear that

there is” (p. 528). The recent “replicability crisis” in psychology has given many reasons to

question and doubt the results published in psychological journals. Because of its

important role in reducing predictive error, cross-validation to construct predictive models

can be expected to contribute to improved replicability. Our results, when compared with

cross-validation studies of the COVR, provide an illustration of this assertion.

As important as cross-validation is for developing a model, the true test lies in how

well the model does with an independent sample; that is, can the results be replicated?

Therefore, the next step in validating the model is to assess the accuracy with an

independent sample. To date, five studies have attempted to validate the COVR (Doyle,

Shaw, Carter, & Dolan, 2010; McDermott et al., 2011; Monahan et al., 2005; Snowden,

Gray, Taylor, & Fitzgerald, 2009; Sturup, Kristiansson, & Lindqvist, 2011). Table 8

displays a summary of the original study, the five validation studies, and the present study;

many of the measures are more closely represented by the results found in the

cross-validated models presented here. For instance, the AUC from the original study

(Monahan et al., 2001) is .88 whereas the AUC for all validation studies are between .58

and .77 (the AUC for our final random forest model it is .75). The sensitivity in the

original study is .60; in four of the five validation studies the sensitivity is below .50 (for

our final random forest model it is .10). The positive predictive value for the construction

study is .64 whereas four of the five validation studies have a PPV below .50 (the PPV for

the final random forest model is .52).

The results from Table 8 suggest that the five validation studies did not replicate the

findings of Monahan et al. (2001). Rather, the validation results give more evidence of the
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results presented here; all measures provided in Table 8 are closer to the results from the

final random forest model than the original study’s model they are based on, aside from

the sensitivity and specificity which is a direct result of the choice to not apply unequal

costs in the final model. Thus, we conclude that the lack of cross-validation in a prediction

model should also be reason for skepticism.
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Table 1

The five risk categories for the Classification of Violence Risk (COVR) assessment tool

along with point estimate risks (in probabilities) and respective confidence intervals (CI)

(Monahan et al., 2006).

Category Risk Point Estimate 95% CI

5 Very High .76 [.65, .86]

4 High .56 [.46, .65]

3 Average .26 [.20, .32]

2 Low .08 [.05, .11]

1 Very Low .01 [.00, .02]
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Table 2

Pearson product-moment correlations of predictor variable with response variable,

Violence, in reanalyzed dataset (r) and reported correlations in Monahan et al. (2001)

(r′).

Variable r r′ Variable r r′

Age −.07 −.07 HeadInj .03 .06

BISnp .05 .05 LegalStatus .11 .11

BPRSa −.08 −.08 NASb .17 .16

BPRSh .08 .08 NegRel .05 .06

BPRSt −.04 −.04 PCL .26 .26

ChildAbuse .14 .14 PCS .03 .03

Consc .09 .10 PriorArr .24 .24

DadArr .15 .15 PropCrime .11 .11

DadDrug .14 .16 RecViol2 .14 .14

DrugAbuse .16 .17 Schiz −.12 −.12

Emp −.05 −.05 SNMHP −.10 −.10

FantEsc .13 .13 SubAbuse .18 .18

FantSing .10 .10 Suicide −.01 −.01

FantTarg .12 .12 tco −.09 −.10

Function −.01 −.01 Threats .06 .06

GranDel −.01 −.01
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Table 3

Predicting violence with a random forest model using the testing data. If a patient had a

predicted probability greater than .50, a prediction of violence was made; otherwise a

prediction of no violence was made.

Violence

Yes (A) No (Ā) Row Totals

Prediction
Yes (B) 1 1 2

No (B̄) 56 224 280

Column Totals 57 225 282
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Table 4

Predicting violence with a random forest model. If a patient had a predicted probability

greater than twice the base rate (.37), a prediction of violence was made; otherwise a

prediction of no violence was made.

Violence

Yes (A) No (Ā) Row Totals

Prediction
Yes (B) 15 8 23

No (B̄) 42 217 259

Column Totals 57 225 282
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Table 5

Predicting violence with a random forest model on the entire sample. The top of the table

uses a cutscore of .50: If a patient had a predicted probability greater than twice the base

rate (.50), a prediction of violence was made; otherwise a prediction of no violence was

made. The bottom table uses a cutscore of .37.

.50 cutscore

Violence

Yes (A) No (Ā) Row Totals

Prediction
Yes (B) 10 14 24

No (B̄) 166 749 915

Column Totals 176 763 939

.37 cutscore

Violence

Yes (A) No (Ā) Row Totals

Prediction
Yes (B) 13 15 28

No (B̄) 163 748 911

Column Totals 176 763 939
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Table 6

Predicting violence with the final random forest model with equal costs.

Violence

Yes (A) No (Ā) Row Totals

Prediction
Yes (B) 17 16 33

No (B̄) 159 747 906

Column Totals 176 763 939
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Table 7

COVR risk groups from Monahan et al. (2001, cf. Table 6.7, p. 125).

Violence

Yes No Row Totals Proportion Violent

Risk Group

Very High 48 15 63 .76

High 57 45 102 .56

Average 48 135 183 .26

Low 19 229 248 .08

Very Low 4 339 343 .01

Column Totals 176 763 939 .19
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Table 8

Summary of COVR studies.

Study

Original Present 1 2 3 4 5 Average

Violence Base Rate .19 .19 .23 .52 .24 .15 .06 .16

Violence Selection Ratio .17 .04 .35 .21 .05 .14 .03 .13

Reported AUC .88 .75 .70 .73 .58 .73 .77 —

Sensitivity .60 .10 .75 .37 .00 .41 .21 .39

Specificity .92 .98 .77 .96 .93 .91 .98 .92

PPV .64 .52 .49 .91 .00 .45 .36 .48

NPV .91 .82 .91 .59 .75 .90 .95 .89

Misclassification Error .14 .19 .24 .35 .29 .16 .07 .17

Note. Aside from Reported AUC, all statistics are calculated using data in the form of

2× 2 contingency tables where a COVR score of 4 or 5 leads to a prediction of violence

and all lower scores do not.

Original: Monahan et al. (2001); Present: Results are based on the final random forest

model with equal costs (see Table 6); Study 1: Monahan et al. (2005); Study 2: Snowden

et al. (2009); Study 3: Doyle et al. (2010); Study 4: McDermott et al. (2011); Study 5:

Sturup et al. (2011); Average: Weighted average of the five validation studies.



LACK OF CROSS-VALIDATION 38

●

0

.05

.10

.15

BR

.20

.25

0 20 40 60

Minimum Leaf Size

M
is

cl
as

si
fic

at
io

n 
E

rr
or

Error cross−validated resubsitution

Min Leaf Size vs. Misclassification Error

Figure 1 . Determining the minimum leaf size for a classification tree with leave-one-out

cross-validation error. The dotted line displays the resubstitution error; the solid line, the

cross-validated error. The minimum leaf size was determined to be 48.
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Total Sample
n = 939, 18.7% Violent

PCL = 0
748, 13.9%

PCL = 1
191, 37.7%

SNMHP ≥ .16
48, 20.8%

SNMHP < .16
143, 43.4%

PCS ≥ .5
95, 36.8%

PCS < .5
48, 56.2%

Figure 2 . Classification tree with a minimum leaf size of 48 and equal costs. The bold box

represents the node where predictions of violence are made. Note that PCL is the

Psychopathy Checklist (Hare, 1980); SNMHP is the proportion of social network members

who are also mental health professionals; and PCS is the Perceived Coercion Scale

(Monahan et al., 2001).
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Figure 3 . Measure of importance for each of the thirty-one variables. The importance

measure is the average of the differences in out-of-bag error before and after permutation

across all trees.
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Figure 4 . ROC plot for the final random forest model.
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Appendix A

Definitions

Frequencies and Probabilities Associated with Contingency Tables

Suppose a diagnostic test is designed to determine whether a person has “it,”

whatever “it” may be; for example, in predicting violence, the test indicates whether the

person will or will not be violent. Let B denote the event that the test is positive indicating

the person has “it,” and B̄, the event that the test is negative indicating that the person

does not have “it.” Now, consider the events of whether a person truly has “it” or truly

does not have “it” and denote these two events as A and Ā, respectively. The events B and

B̄ will be called the diagnostic test results, and the events A and Ā the states of nature.

Given the diagnostic test result and state of nature, a 2× 2 contingency table can be

constructed, as shown in Table A1. This table provides the frequencies of marginal events

(for example, nB is the number of people who test positive), or of joint events (for example,

nBA is the number of people who have “it” and tested positive). In terms of violence

prediction, nB is the number predicted to be violent and nBA is the number predicted to be

and who were violent. The frequencies within the table have familiar names: nBA is the

number of true positives, nBĀ is the number of false positives, nB̄A is the number of false

negatives, and nB̄Ā is the number of true negatives. Of particular importance are the

marginal frequencies: nA, representing the base frequency for those who have “it,” and nĀ,

the base frequency for those who do not. The marginal frequencies, nB and nB̄, are the

base frequencies for positive and negative diagnostic test outcomes, respectively, and are

often called selection frequencies.

In addition to frequencies, various marginal, joint, and conditional probabilities can

be defined. For example, P (A) = nA

n
; P (A∩B) = nBA

n
; P (A|B) = nBA

nB
; P (B|A) = nBA

nA
; and

so forth. These conditional probabilities are of general interest, and again it is worth

noting some of their names. Conditionalizing on the state of nature gives the following:

P (B|A) = nBA

nA
is the sensitivity or true positive rate; P (B|Ā) = nBĀ

nĀ
is the false positive
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rate; P (B̄|A) = nB̄A

nA
(= 1− sensitivity) is the false negative rate; and P (B̄|Ā) = nB̄Ā

nĀ

(= 1− false positive rate) is the specificity or true negative rate. Conditionalizing on the

diagnostic test result, P (A|B) = nBA

nB
is called the positive predictive value (PPV);

P (Ā|B̄) = nB̄Ā

nB̄
is the negative predictive value (NPV). The marginal probabilities represent

the base rates for those who have “it” (P (A)) and those who do not (P (Ā)) (also called

prior probabilities); and those who are predicted to have “it” (P (B)) and those who are not

(P (B̄)) (also called selection rates). Finally, the accuracy, or proportion correct, is

P (B|A)P (A) + P (Ā|Ā)P (Ā) which is equal to the sum of the diagonal entries divided by

the sample size: nBA+nĀB̄

n
.

Table A1

A general 2× 2 contingency table.

State of Nature

A (positive) Ā (negative) Totals

Diagnostic B (positive) nBA nBĀ nB

Test Result B̄ (negative) nB̄A nB̄Ā nB̄

Totals nA nĀ n

Base-rate prediction, or naïve prediction, is to say that everyone has “it” or nobody

has “it,” depending on the larger base rate (clearly the base rates need to be known or

confidently estimated). For example, if P (A) ≤ 1
2 , then prediction using the base rates is to

say that nobody has “it” because the accuracy will be greater than one-half. The term

“clinical efficiency” (Meehl & Rosen, 1955) refers to a test outperforming prediction using

the base rates. A general condition for when a test outperforms base-rate predictions

(assuming that P (A) ≤ 1
2) is

P (B|A)P (A) + P (Ā|Ā)P (Ā) > P (Ā);

that is, the accuracy is greater than the larger base-rate.
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A 2× 2 contingency table like that in Table A1 may represent the results of a

diagnostic test at a specific cutscore. Often, a number of cutscores might be definable for a

test; a common procedure to summarize the results at a number of cutscores is taken from

signal detection theory.

Signal Detection Theory

Signal Detection Theory (SDT) is a framework for assessing uncertainty in decision

making; it is also commonly used in evaluating diagnostic measures in psychology and

medicine, among other areas. SDT allows the researcher to quantify the ability of a

diagnostic tool to distinguish meaningful patterns and known processes (called the signal)

from random patterns or chance processes (called the noise). Based on the given data,

three important parameters are estimated: the strength of the signal relative to the noise,

called the discriminability index (denoted d′); the decision criterion of the diagnostic

measure, called the cutscore (denoted xc); and an indication of response bias (denoted β).

Given that the signal is truly present, a correct decision (i.e., stating that the signal

is present) is called a hit (or true positive); an incorrect decision (i.e., stating that noise is

present) is called a miss (or false negative). When noise is truly present, a correct decision

(i.e., stating that noise is present) is called a correct rejection (or true negative); an

incorrect decision (i.e., stating that the signal is present) is called a false alarm (or false

positive). Similar to our earlier discussion, these can be framed in terms of rates: the hit

rate (true positive rate; sensitivity) is the number of correct responses given the presence of

the signal; the false alarm rate (false positive rate; 1− specificity) is the number of incorrect

responses given the presence of noise. In SDT, these are the two rates of interest; the other

two are easily calculated from them and therefore provide no additional information.

Two distributions can be constructed; one represents the signal, the second represents

the noise (see Figure A1). To simplify our discussion, they are considered to be normal

distributions with equal variances but differing means. Without loss of generality, the
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mean of the signal distribution is assumed greater than that of the noise distribution. The

difference between the two means of the distributions is indicative of the strength of the

signal in relation to the noise; this is the discriminability index, d′. Based on the hit and

false alarm rates, d′ is calculated as Φ−1(hit rate)− Φ−1(false alarm rate), where Φ(·)

represents the cumulative standard normal distribution. Note that d′ requires several

parametric assumptions regarding normal distributions; there are nonparametric

alternatives, but these are not discussed here (e.g., the measure commonly denoted as A′;

Pollack & Norman, 1964). A d′ of 0 indicates that the diagnostic measure cannot

distinguish signal from noise. The criterion point distinguishing a positive response—with

respect to the presence of the signal—from a negative response is the cutscore, xc. Given

xc, the area under the noise distribution to the right of xc represents the probability of a

false alarm (i.e., the false alarm rate); the area under the signal distribution to the left of

xc represents the probability of a miss (i.e., 1− hit rate). Another detail gathered from xc

is the density (or height) of the two distributions corresponding to xc. These two densities

represent the likelihoods of signal (the height of the signal distribution at xc) and noise (the

height of the noise distribution at xc). The response bias of the test, β, is the ratio of these

two: signal likelihood
noise likelihood . If β > 1, the diagnostic test favors (i.e., is biased toward) a positive

decision (stating that the signal is present) over a negative one (stating that the signal is

absent); if β < 1, the diagnostic test favors a negative decision over a positive one; if β = 1,

there is no response bias as neither decision is favored over the other. Another way of

thinking about β is that when an observation x is greater than xc, the ratio of the two

likelihoods at the point x is greater than β. More realistically, the two distributions can

differ not only in their means but in their variances as well; further, the prior probability of

the noise distribution is not likely to be equal to the prior for the signal distribution.
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ROC Plots

There are numerous (possibly infinitely many) different choices for a cutscore, xc. A

unique hit and false alarm rate exists at each cutscore; these can be plotted in two

dimensions with the hit rate (often labeled sensitivity or true positive rate) along the

vertical axis and the false alarm rate (often labeled 1− specificity or false positive rate)

along the horizontal axis. This plot is referred to as a receiver operating characteristic

(ROC) curve (see Figure A2).

xc

false alarm rate

Noise Signal

d’

hit rate

likelihood of noise

likelihood of signal

Figure A1 . Two normal distributions representing the distribution of the signal (right) and

the noise (left).

The minimum along each axis is 0; the maximum is 1. The point (0, 0) corresponds

to hit and false alarm rates of 0; that is, a cutscore larger than any attainable score. This

is equivalent to stating that the signal is always absent or predicting nobody to have “it.”

The other extreme is at (1, 1) and corresponds to hit and false alarm rates of 1; that is, it is

representative of a cutscore that is smaller than any attainable score. In this situation the

signal is always stated to be present; that is, predicting everyone to have “it.” Neither of

the two extreme situations are useful—a diagnostic test is unnecessary if one is consistently

predicting one way or the other. What is of interest are the values in between that
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Figure A2 . A receiver operating characteristic (ROC) plot. The points along the curve

represent the different hit and false positive rate combinations achieved using different

cutscores. The shaded area represents the area under the curve.

correspond to meaningful cutscores. By moving along the curve a cutscore can be chosen

that corresponds to different hit and false alarm rates.

A 45◦ line is often placed on the plot, running from the point (0, 0) to (1, 1). This line

is called the line of no discrimination and represents a diagnostic test performing no better

than chance; ideally all points on the ROC curve are above this line. The discriminability

index, d′, is represented by the distance of the curve to the line of discrimination;

specifically, it is the orthogonal distance measured at the point (.5, .5) to the curve. As the

two distributions are further spread apart, this distance becomes larger.

As a measure of diagnostic accuracy, the area under the ROC curve (AUC; also called

the concordance index) is commonly used. The total area ranges from 0 to 1; however, an

AUC less than .50 is infrequently found because it represents a test that performs worse

than chance. The AUC can be interpreted as the probability that a randomly selected

individual who has “it” will have a larger score on the diagnostic test than a randomly
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selected individual who does not have “it.” There are ways to test whether two ROC curves

are different from each other (e.g., whether one diagnostic test outperforms another), or

when an ROC curve is different from a diagnostic test that is no better than chance (i.e.,

an ROC curve equal to the line of no discrimination). As a final point, it is noted that the

ROC curve is not influenced by the base rates.
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Appendix B

Bias-Variance Trade-Off

Let x = (x1, x2, . . . , xp) be a collection of p predictor variables and let Y be a response

variable. Suppose

Y = f(x) + ε,

where ε is an error random variable with E(ε|X) = 0 and V(ε|X) = σ2
ε ; that is, there exists

a function f(·) for modeling the response variable, plus unknown error ε. Note that all

expectations and variances are conditioned on the data, X, but this notation is suppressed

for simplicity.

A loss function measures the error between the estimated function, f̂(x), and the

true one, f(x); a common type of loss function is the squared error loss,

L2(f(x), f̂(x)) =
(
f(x)− f̂(x)

)2
.

The quality of an estimator can be quantified by taking the expectation of the loss

function; this is called the risk function and defined as

R(f(x), f̂(x)) = E(L(f(x), f̂(x))).

The interest in prediction reduces to estimating the function, f(x), given the

observed data, (X,y), where X is an n× p matrix of n observations on p predictors and y

is an n× 1 vector containing the outcome; the estimated function will be denoted as

ŷ ≡ f̂(x) ≡ f̂(x|X). Given the observed data, (X,y), the estimated risk function for the

estimator ŷ using the squared loss function, is

1
n
‖y− ŷ‖2

2 = 1
n

n∑
i=1

(yi − ŷi)2,

where ‖ · ‖2 is the Euclidean, or `2, norm (for simplicity, the subscript 2 is dropped); this is

commonly known as the mean squared error.

As presented in the text, the risk function for the squared error,

R(y, ŷ) = E (L2(y, ŷ)) = E
[
(y − ŷ)2

]
,
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can be decomposed into two parts; here we show how this is done:

E
[
(y − f(x) + f(x)− ŷ)2

]
= E

[
(y − f(x))2

]
+ E

[
(f(x)− ŷ)2

]
+ 2E [(y − f(x))(f(x)− ŷ)] .

The first term reduces to

E
[
(y − f(x))2

]
= E

[
(f(x) + ε− f(x))2

]
= E

(
ε2
)

= V(ε).

The last term (disregarding the 2) reduces to

E [(y − f(x))(f(x)− ŷ)] = f(x)E(y)− f(x)2 + E(yŷ)− f(x)E(ŷ)

= f(x)2 − f(x)2 + E ((f(x) + ε)ŷ)− f(x)E(ŷ)

= E (f(x)ŷ + εŷ))− f(x)E(ŷ)

= f(x)E(ŷ)− f(x)E(ŷ) = 0.

Thus,

R(y, ŷ) = E
[
(f(x)− ŷ)2

]
+ V(ε). (B1)

As mentioned in the text, the first term, E [(f(x)− ŷ)2|X], is the reducible error. The

better the estimator ŷ, the closer the reducible error is to zero; the reducible error is equal

to zero when ŷ = f(x). The second term in Equation (B1), V(ε|X), is the irreducible error

and represents a lower bound for the risk function. Even when f(x) is perfectly estimated

(that is, ŷ = f(x)), R(y, ŷ) = V(ε|X) > 0.

The reducible error can be further decomposed as follows:

E
[
(f(x)− ŷ)2

]
= E

[
(f(x)− E(ŷ) + E(ŷ)− ŷ)2

]
= E

[
(f(x)− E(ŷ))2

]
+ E

[
(E(ŷ)− ŷ)2

]
+ 2E [(f(x)− E(ŷ))(E(ŷ)− ŷ)]

= E
[
bias(ŷ)2

]
+ V(ŷ) + 2 [E (f(x)E(ŷ))− E(f(x)ŷ)− E(E(ŷ)E(ŷ)) + E (E(ŷ)ŷ)]

= E
[
bias(ŷ)2

]
+ V(ŷ) + 2

[
f(x)E (ŷ)− f(x)E(ŷ)− E(ŷ)2 + E(ŷ)2

]
= bias(ŷ)2 + V(ŷ).

Thus,

R(y, ŷ) = (bias(ŷ))2 + V(ŷ) + V(ε). (B2)
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The first term is the squared bias associated with the estimator for the function. The bias

measures how much, on average, the estimated function over- or underestimates the true

function, f(x); an unbiased estimator has a squared bias equal to zero. The second term is

the variance of the estimator and represents how much, on average, the estimated function

deviates from the true function. Thus, reducible error depends on both the variance and

the bias of the estimator.

As alluded to in the text, as some models become more complex (for example,

reducing the minimum leaf size in a decision tree), the training error tends to decrease

whereas the testing error increases. As Equation (B2) suggests, this increase in testing

error can be attributed to either an increase in the variance of the predictor or an increase

in the squared bias, or both. Higher variance implies that a change in a set of observations

(for example, applying a model to a new data set) can lead to dramatic changes in the

model error; higher bias implies that the model assumes a less complex relationship than is

true (for example, assuming a linear relationship when the true relationship is nonlinear).

An increase in model complexity generally leads to an increase in the variance and a

decrease in the squared bias (Hastie et al., 2009, p. 38). The test error may initially

decrease as the model becomes more complex but it eventually increases; in contrast, the

training error always decreases because the more complex model fits the data more closely.

Fitting too complex of a model leads to increased test error and can be thought of as

overfitting. Similarly, fitting too simple of a model that leads to increased test error can be

considered underfitting. Ideally, the researcher wants to find the minimal point, or

equilibrium, where the model neither under- or overfits the data; this minimum can be

estimated using cross-validation.

As an illustration, consider the function

f(x) = 5− 3x+ 2x2 − 7x3 + ε;

one-hundred observations were simulated from the above function, where V(ε|X) = 1, and

plotted in Figure B1; the black curve represents the true cubic function. Figure B2 plots
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the linear, quadratic, cubic, and quartic least-squares line fit to the data.

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

−10

0

10

20

−1.0 −0.5 0.0 0.5 1.0
x

y

f(x) = 5 − 3x + 2x2 − 7x3

Figure B1 . Scatter plot of data simulated from f(x) = 5− 3x+ 2x2 − 7x3 + ε where

V(ε|X) = 1. The black line represents the true relationship.

Next, test error for estimating the function using different polynomial regression

models is estimated using leave-one-out cross-validation; in Figure B3, this is plotted

against the model complexity (that is, the order of the polynomial which ranges from

first-order up to twelfth-order). The horizontal dashed line represents V(ε|X) = 1, the

irreducible error. The training error (blue line) approaches this line quickly and eventually

decreases to 0. The testing error is at a minimum for the cubic model, as expected. The

test error for the fourth-order model is only slightly larger; but moving to a tenth- or

higher-order model leads to large increases in the testing error.

The test error can be split into the squared bias and the variance of the model and

this is shown in Figure B4. The squared bias is at a maximum for the linear model and is

still large for the quadratic model but quickly decreases for the cubic model. Further
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Model: Linear Quadratic Cubic Quartic

Figure B2 . Scatter plot of data simulated from f(x) = 5− 3x+ 2x2 − 7x3 + ε where

V(ε|X) = 1. The lines represent the different least squares fits.

increasing the complexity of the model leads to near-zero bias. In contrast, the variance is

near zero for the linear model and remains near zero until the tenth-order model when the

variance rapidly increases with greater complexity.

It is clear that the linear and quadratic models underfit the data and the quartic- and

higher-order models overfit the data (although this overfitting is hardly noticeable until the

degree is greater than or equal to 10). This simple example illustrates the importance of

the bias-variance trade-off; in building the best predictive model, often one must sacrifice

an increase in bias for less variance to minimize the overall test error.
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Figure B3 . Training and testing error plotted against different levels of model complexity

(that is, different order polynomial regression models).
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Supplementary R Syntax for The Lack of
Cross-Validation Can Lead to Inflated Results and

Spurious Conclusions: A Re-Analysis of the
MacArthur Violence Risk Assessment Study

1



Supplementary R Syntax — Data Preprocessing

Variable Variable Original
Description Coding Variables Used

Response Variable
Violence Violence F12VIOL

Predictor Variables
Age Age AGE

BIS Non-Planning Subscale BISnp BISPLN
BPRS Activation Subscale BPRSa OACTV

BPRS Hostile-Suspiciousness Subscale BPRSh OHOST
BPRS Total Score BPRSt OBPRS

Child Abuse Seriousness ChildAbuse Q5.5.1, Q5.5.2, Q5.5.3,
Q5.5.4, Q5.5.5, Q5.5.6

Loss of Consciousness (Head Injury) Consc NEU2A
Father Arrest History DadArr Q5.20A, Q5.20B

Father’s Drug Use DadDrug Q5.19A, Q5.19B
Drug Abuse (DSM-III-R) DrugAbuse DSM16A, DSM16B,

DSM17A, DSM17B
Employed Prior to Hospitalization Emp Q4.4

Violent Fantasies: Escalating Seriousness FantEsc Q7.1, Q7.7
Violent Fantasies: Single Target Focus FantSing Q7.1, Q7.6

Violent Fantasies: Target Present FantTarg Q7.1, Q7.8
Level of Functioning Function Q9.1, Q9.2, Q9.3,

Q9.4, Q9.5, Q9.6
Grandiose Delusions GranDel DEL03.1

Previous Head Injuries HeadInj NEU4B.1, NEU4B.2, NEU4B.3,
NEU4B.4, NEU4B.5, NEU4B.6,
NEU4B.7, NEU4B.8, NEU4B.9

Legal Status for Hospitalization LegalStatus LEGALR
Novaco Anger Scale Behavioral Subscale NASb NASBEH

Number of Negative Relationships NegRel Q10.10N, Q10.11N,
Q10.12N, Q10.13N

Psychopathy Checklist: Screening Version PCL PCLTOT
MacArthur Perceived Coercion Scale PCS Q1.8, Q1.11, Q1.14,

Q1.21, Q1.22
Prior Arrest Frequency PriorArr FREQARR
Property Crime Arrest PropCrime PROPARR

Violent Before Hospitalized RecViol2 VIOL
Schizophrenic Schiz DSM2A, DSM5A

Proportion of Social Network
SNMHP SNMHPare Mental Health Professionals

Substance Abuse SubAbuse DSM14A, DSM14B, DSM15A DSM15B
DSM16A, DSM16B, DSM17A, DSM17B

Admission Reason: Suicide Suicide QREAS.02
Threat/Control Override Symptoms tco K1.1, K1.3, K2.1, K2.3,

K3.1, K3.3, K4.1, K4.3,
K8.1, K8.3, K9.1, K9.3,

K10.1, K10.3, K12.1, K12.3
Threats at Admission Threats QREAS.20, QREAS.21

Table 1: Variables used in analyses, from the MacArthur Violence Risk
Assessment Study (Monahan et al., 2001).



Table 1 above displays the variables included in the initial analyses. The first column is a brief description;
the second column is the coding used in the analysis; the third column consists of the variable codes used in
the original VRAS dataset. All variables come from the SPSS file baseline.sav except F12VIOL and PCLTOT
that were from the SPSS file follow_up_subjects.sav.

We begin by loading the necessary packages; this assumes the packages are installed. If not, use
install.packages() (e.g., install.packages("dplyr") installs the dplyr package).

# for reading in SPSS files
require(Hmisc)
# for data frame manipulation
library(dplyr)
# for creating data tables
library(data.table)

Data Preprocessing

First, we bring in the two data files and sort in order of STUDYID and then merge them into one master file
data table called COVR.

# read in data files
COVR1 = data.table(spss.get('baseline.sav'))
COVR2 = data.table(spss.get('follow_up_subjects.sav'))

# sort data, select desired variables, and merge into one master data table
COVR1 = COVR1 %>%

select(STUDYID, BISNPLN, OACTV, OHOST, OBPRS, LEGALR, SNMHP, NOVBEH, NEU2A,
NEU4B.1:NEU4B.9, TYPEARR, FREQARR, PROPARR, DEL03.1, VIOL, DSM2A, DSM5A,
DSM14A:DSM17B, AGE, Q1.8, Q1.11, Q1.14, Q1.21, Q1.22, Q4.4, Q5.5.1:Q5.5.6,
Q5.19A, Q5.19B, Q5.20A, Q5.20B, Q7.1, Q7.6:Q7.8, Q9.1:Q9.6, Q10.10N, Q10.11N,
Q10.12N, Q10.13N, QREAS.02, QREAS.20, QREAS.21, K1.1, K1.3, K2.1, K2.3, K3.1,
K3.3, K4.1, K4.3, K8.1, K8.3, K9.1, K9.3, K10.1, K10.3, K12.1, K12.3) %>%

arrange(STUDYID)
COVR2 = COVR2 %>%

mutate(STUDYID = studyid, F12VIOL = f12viol, PCLTOT = pcltot) %>%
select(STUDYID, F12VIOL, PCLTOT) %>%
arrange(STUDYID)

COVRdata = inner_join(COVR1, COVR2, by = 'STUDYID')
rm('COVR1', 'COVR2')

# remove data with missing outcome variable
COVRdata = filter(COVRdata, !is.na(F12VIOL))

Preprocess the data to create the variables used in the VRAS study.

ChildAbuseVars = COVRdata %>%
select(Q5.5.1:Q5.5.6) %>%
transmute(ChildAbuse = 5*(rowSums(cbind(Q5.5.4, Q5.5.5, Q5.5.6)) > 3) +

3*(rowSums(cbind(Q5.5.2, Q5.5.3)) > 2) + (as.numeric(Q5.5.1) > 1))
SubAbVars = COVRdata %>%

select(DSM14A, DSM14B, DSM15A, DSM15B, DSM16A, DSM16B, DSM17A, DSM17B)



DrugAbVars = COVRdata %>%
select(DSM16A, DSM16B, DSM17A, DSM17B)

HeadInjVars = COVRdata %>%
select(NEU4B.1, NEU4B.2, NEU4B.3, NEU4B.4, NEU4B.5,

NEU4B.6, NEU4B.7, NEU4B.8, NEU4B.9)
tcoPatient = select(COVRdata, K1.1, K2.1, K3.1, K4.1, K8.1, K9.1, K10.1, K12.1)
tcoClinical = select(COVRdata, K1.3, K2.3, K3.3, K4.3, K8.3, K9.3, K10.3, K12.3)

COVRdata = COVRdata %>%
transmute(

Violence = factor(ifelse(F12VIOL == 'Yes', 1, 0)),
Age = as.numeric(AGE),
BISnp = as.numeric(BISNPLN),
BPRSa = as.numeric(OACTV),
BPRSh = as.numeric(OHOST),
BPRSt = as.numeric(OBPRS),
ChildAbuse = ifelse(ChildAbuseVars$ChildAbuse >= 5, 3,

ifelse(ChildAbuseVars$ChildAbuse >= 3, 2,
ifelse(ChildAbuseVars$ChildAbuse >= 1, 1, 0))),

Consc = factor(ifelse(NEU2A == 'YES', 1, ifelse(NEU2A == 'NO', 0, NA))),

DadDrug = factor(ifelse(((Q5.19A == 'DAILY' | Q5.19A == 'ONCE A WEEK' |
Q5.19A == 'TWICE A WEEK') |

(Q5.19B == 'DAILY' | Q5.19B == 'ONCE A WEEK' |
Q5.19B == 'TWICE A WEEK')), 1,

ifelse(((is.na(Q5.19A) | Q5.19A == 'NA') &
(Q5.19B == 'NA' | Q5.19B == 'DK')),

NA, 0))),
DadArr = factor(ifelse((Q5.20A == 'NEVER' &

(Q5.20B == 'NA' | Q5.20B == 'DK') |
(Q5.20B == 'NEVER' &

(is.na(Q5.20A) | Q5.20A == 'NA')) |
(Q5.20A == 'NEVER' & Q5.20B == 'NEVER')), 0,

ifelse(((is.na(Q5.20A) | Q5.20A == 'NA') &
(Q5.20B == 'NA' | Q5.20B == 'DK')),

NA, 1))),
DrugAbuse = factor(ifelse(rowSums(DrugAbVars == 'UNCERTAIN') == 4, NA,

ifelse(rowSums(DrugAbVars == 'PRESENT') > 0, 1, 0))),
Emp = factor(ifelse(Q4.4 %in% c('YES - FULL-TIME', 'YES - PART-TIME'), 1,

ifelse(Q4.4 == 'NO', 0, NA))),
FantEsc = factor(ifelse((Q7.1 == 'YES' & Q7.7 == 'MORE SERIOUS'), 1, 0)),
FantSing = factor(ifelse((Q7.1 == 'YES' & Q7.6 == 'SAME'), 1, 0)),
FantTarg = factor(ifelse((Q7.1 == 'YES' & Q7.8 == 'YES'), 1, 0)),
Function = ifelse(rowSums(is.na(cbind(Q9.1, Q9.2,

Q9.3, Q9.4, Q9.5, Q9.6))) == 6, NA,
rowSums(cbind(Q9.1, Q9.2, Q9.3, Q9.4, Q9.5, Q9.6) - 1,

na.rm = T)),
GranDel = factor(ifelse(DEL03.1 == 'YES - CHECKED', 1, 0)),
HeadInj = factor(ifelse(rowSums(HeadInjVars == 'YES, HEAD INJURY',

na.rm = T) > 0, 1,
ifelse(rowSums(is.na(HeadInjVars)) == 9, NA, 0))),

LegalStatus = factor(ifelse(LEGALR == 'INVOLUNTARY', 1, 0)),
NASb = as.numeric(NOVBEH),



NegRel = rowSums(cbind(Q10.10N, Q10.11N, Q10.12N, Q10.13N)),
PCL = factor(ifelse(PCLTOT > 12, 1, 0)),
PCS = ifelse(rowSums(is.na(cbind(Q1.8, Q1.11, Q1.14, Q1.21, Q1.22))) == 5, NA,

rowSums(-1*(cbind(Q1.8, Q1.11, Q1.14, Q1.21, Q1.22)) + 2,
na.rm = T)),

PriorArr = as.numeric(FREQARR) - 1,
PropCrime = factor(ifelse(PROPARR == 'Yes', 1, 0)),
RecViol2 = factor(ifelse(VIOL == 'Violence', 1, 0)),
Schiz = factor(ifelse(((DSM2A == 'ABSENT' | DSM2A == 'UNCERTAIN') &

(DSM5A == 'ABSENT'| DSM5A == 'UNCERTAIN')), 0, 1)),
SNMHP = as.numeric(SNMHP),
SubAbuse = factor(ifelse(rowSums(SubAbVars == 'UNCERTAIN') == 8, NA,

ifelse(rowSums(SubAbVars == 'PRESENT') > 0, 1, 0))),
Suicide = factor(ifelse(QREAS.02 == 'YES - CHECKED', 1, 0)),
tco = factor(ifelse(rowSums((tcoPatient == 'YES') == (tcoClinical == 'YES'),

na.rm = T) > 0, 1, 0)),
Threats = factor(ifelse((QREAS.20 == 'YES - CHECKED' |

QREAS.21 == 'YES - CHECKED'), 1,
ifelse(rowSums(is.na(cbind(QREAS.20, QREAS.21))) == 2,

NA, 0)))
)

rm(list = ls()[ls() != 'COVRdata'])

Save the data table for construction of classification models.

save.image('COVRdata.rda')

Compute correlations between predictor variables and the response.

R = data.frame(sapply(COVRdata, as.numeric))
COVRr = apply(select(R, Violence), 2, cor, select(R, -Violence), 'pairwise.complete.obs')
rownames(COVRr) = colnames(select(R, -Violence))
round(COVRr, 2)

Violence
Age -0.07
BISnp 0.05
BPRSa -0.08
BPRSh 0.08
BPRSt -0.04
ChildAbuse 0.14
Consc 0.09
DadDrug 0.14
DadArr 0.15
DrugAbuse 0.16
Emp -0.05
FantEsc 0.13
FantSing 0.10
FantTarg 0.12
Function -0.01
GranDel -0.01
HeadInj 0.03



LegalStatus 0.11
NASb 0.17
NegRel 0.05
PCL 0.26
PCS 0.03
PriorArr 0.24
PropCrime 0.11
RecViol2 0.14
Schiz -0.12
SNMHP -0.10
SubAbuse 0.18
Suicide -0.01
tco -0.09
Threats 0.06



Supplementary R Syntax — Classification Modeling
First load the necessary packages; this assumes the packages are installed. If not, use install.packages()
(e.g., install.packages("dplyr") installs the dplyr package).

# for linear discriminant analysis
library(MASS)
# for imputation missing values
library(Hmisc)
# for cross-validation of models
library(boot)
# constructing ROC plots and computing AUC
library(ROCR)
# for data frame manipulation
library(dplyr)
# for plotting
library(ggplot2)

Next load preprocessed data.

load('COVRdata.rda')

Calculate the base rate of violence in the sample.

BR = mean(select(COVRdata, Violence) == 1)

Loading required namespace: data.table

Logisitic Regression Model

Monahan et al. (2001) constructed a main effects logistic regression (MELR) model to predict violence that
was fit with forward-stepwise variable selection with a p < .05-threshold for retaining predictor variables.
The present analysis constructs an MELR model but fitted with only the variables from the final model given
by Monahan et al. The results are similar, but not exact (see Monahan et al., 2001, Table 5.1).

Before constructing the logistic regression model, we impute missing data by replacing all missing data
with the mean of the non-missing data for continuous variables and the mode of the non-missing data for
categorical variables, as was done by Monahan et al. (2001).

# function for computing the mode
varMode <- function(x) return(factor(names(table(x))[table(x) == max(table(x))]))

# function for missing value imputation; the function impute() is from Hsmic package
imputeNA <- function(x) {

if (is.factor(x)) { #impute mode for factor variables

return(factor(impute(x, varMode)))

} else {



return(impute(x, mean))

}

}

# impute missing data
COVRdata = COVRdata %>%

summarise_each(funs(imputeNA))

First select variables used in Monahan et al.’s (2001) logistic regression model.

logRegData = COVRdata %>%
select(Violence, BISnp, BPRSa, BPRSh, BPRSt, ChildAbuse, Consc, DadDrug, DrugAbuse,

Emp, FantEsc, FantSing, GranDel, LegalStatus, NASb, PCL, PriorArr, SNMHP, tco)

Next construct the logistic regression model.

logisticModel = glm(Violence ~ ., data = logRegData, family = binomial(logit))
summary(logisticModel)

Call:
glm(formula = Violence ~ ., family = binomial(logit), data = logRegData)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7407 -0.6019 -0.4001 -0.2304 2.8571

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.89903 0.67142 -4.318 1.58e-05 ***
BISnp -0.02796 0.01286 -2.174 0.029689 *
BPRSa -0.15113 0.06327 -2.389 0.016914 *
BPRSh 0.11751 0.04022 2.922 0.003481 **
BPRSt -0.03305 0.01605 -2.059 0.039469 *
ChildAbuse 0.37445 0.10422 3.593 0.000327 ***
Consc1 0.51808 0.26122 1.983 0.047330 *
DadDrug1 0.73625 0.27620 2.666 0.007685 **
DrugAbuse1 0.38073 0.22965 1.658 0.097344 .
Emp1 -0.47708 0.20007 -2.385 0.017098 *
FantEsc1 0.67541 0.32616 2.071 0.038375 *
FantSing1 0.56422 0.25876 2.181 0.029219 *
GranDel1 0.71089 0.34357 2.069 0.038533 *
LegalStatus1 0.51104 0.19855 2.574 0.010059 *
NASb 0.03796 0.01508 2.518 0.011808 *
PCL1 0.89817 0.21125 4.252 2.12e-05 ***
PriorArr 0.29782 0.08199 3.632 0.000281 ***
SNMHP -1.85496 0.74709 -2.483 0.013032 *
tco1 -0.90025 0.34200 -2.632 0.008481 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



(Dispersion parameter for binomial family taken to be 1)

Null deviance: 906.10 on 938 degrees of freedom
Residual deviance: 731.06 on 920 degrees of freedom
AIC: 769.06

Number of Fisher Scoring iterations: 5

We now compute the cross-validation error of logistic regression model, using leave-one-out cross-validation.

# function for calculating error when using classification cutscore of .5
LRcost50 = function(x, p = 0) mean(abs(x - p) > .5)
# estimated cross-validated error
cv.glm(logRegData, logisticModel, LRcost50)$delta[1]

[1] 0.1821086

# resubstitution error
LRpreds = predict(logisticModel, type = 'resp')
mean((LRpreds > .5) != (select(COVRdata, Violence) == 1))

[1] 0.1693291

# function for calculating error when using classification cutscore of .37
LRcost37 = function(x, p = 0) mean(abs(x - p) > .37)
# estimated cross-validated error
cv.glm(logRegData, logisticModel, LRcost37)$delta[1]

[1] 0.2406816

# resubstitution error
mean((LRpreds > 2*BR) != (select(COVRdata, Violence) == 1))

[1] 0.1789137

Next we plot an ROC curve and calculate the AUC. We want to use cross-validated results, not the results
from the model. To do so, we need to manually compute the cross-validated estimates because cv.glm()
unfortunately does not provide this.

err = double()
for (k in 1:939) {

t = glm(Violence ~ ., data = logRegData, family = binomial(logit), subset = -k)
# predicted probabilty of being violent
err[k] = predict(t, COVRdata[k,], type = 'resp')

}

lrPreds = prediction(err, select(COVRdata, Violence))
lrPerf = performance(lrPreds, 'tpr', 'fpr')



AUC = round(performance(lrPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +

geom_line(aes(x = lrPerf@x.values[[1]],
y = lrPerf@y.values[[1]])) +

ggtitle('ROC Plot for Logistic Regression Model') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
geom_text(aes(x = .6, y = .4, label = paste0('AUC = ', AUC), parse = T),

size = 8)

AUC = 0.77
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ROC Plot for Logistic Regression Model

Discriminant Function Analysis

This section applies discriminant function analysis (DFA) to classify individuals as violent, for both a linear
fit (i.e., assuming the covariances among the two populations—nonviolent and violent—are equal) and a
quadratic fit (i.e., the covariances are allowed to be unequal). This was not done by Monahan et al. (2001)
but allows comparison with the other methods used (logistic regression and classification trees).

The same data with missing value imputation that was used in the logistic regression model is used for the
discriminant analyses. All the data are used.

First, a linear discriminant function is constructed, with equal costs and unequal costs. Before doing so, the
workspace is cleared, the base rate for violence is calculated, and the prior probabilities are established such
that unequal costs are applied.



# Clear workspace
rm(list = ls()[!(ls() %in% c('BR', 'COVRdata'))])
# cost of FN to FP
fnCost = (1-2*BR)/(2*BR)
# priors
priors = c((1 - BR)/(BR*fnCost + (1-BR)), BR*fnCost/(BR*fnCost + (1-BR)))
rm(fnCost)

We then compute resubstitution error and cross-validation error of the linear discriminant model, using
leave-one-out cross-validation. This is found for both the model with equal costs and the one with unequal
costs.

# Equal costs
# resubstitution error
ldaModel_equal = lda(Violence ~ ., data = COVRdata)
mean(predict(ldaModel_equal)$class != COVRdata$Violence)

[1] 0.1735889

# estimated cross-validated error
ldaModel_equal = lda(Violence ~ ., data = COVRdata, CV = T)
mean(ldaModel_equal$class != COVRdata$Violence)

[1] 0.1884984

# Unequal costs
# resubstitution error
ldaModel_unequal = lda(Violence ~ ., data = COVRdata, prior = priors)
mean(predict(ldaModel_unequal)$class != COVRdata$Violence)

[1] 0.1842386

# estimated cross-validated error
ldaModel_unequal = lda(Violence ~ ., data = COVRdata, CV = T, prior = priors)
mean(ldaModel_unequal$class != COVRdata$Violence)

[1] 0.2044728

Next a quadratic discriminant function is constructed, again with equal costs and unequal costs.

# Equal costs
# resubstitution error
qdaModel_equal = qda(Violence ~ ., data = COVRdata)
mean(predict(qdaModel_equal)$class != COVRdata$Violence)

[1] 0.14377

# estimated cross-validated error
qdaModel_equal = qda(Violence ~ ., data = COVRdata, CV = T)
mean(qdaModel_equal$class != COVRdata$Violence)



[1] 0.2300319

# Unequal costs
# resubstitution error
qdaModel_unequal = qda(Violence ~ ., data = COVRdata, prior = priors)
mean(predict(qdaModel_unequal)$class != COVRdata$Violence)

[1] 0.1522897

# estimated cross-validated error
qdaModel_unequal = qda(Violence ~ ., data = COVRdata, CV = T, prior = priors)
mean(qdaModel_unequal$class != COVRdata$Violence)

[1] 0.2513312

Plotting ROC curve.

ldaPreds = prediction(ldaModel_equal$post[,2], select(COVRdata, Violence))
ldaPerf = performance(ldaPreds, 'tpr', 'fpr')
qdaPreds = prediction(qdaModel_equal$post[,2], select(COVRdata, Violence))
qdaPerf = performance(qdaPreds, 'tpr', 'fpr')
AUC = data_frame(lda = round(performance(ldaPreds, 'auc')@y.values[[1]], 2),

qda = round(performance(qdaPreds, 'auc')@y.values[[1]], 2))

# AUC for models
AUC

Source: local data frame [1 x 2]

lda qda
(dbl) (dbl)

1 0.76 0.71

# ROC plot
dfaStats = data_frame(x = c(ldaPerf@x.values[[1]], qdaPerf@x.values[[1]]),

y = c(ldaPerf@y.values[[1]], qdaPerf@y.values[[1]]),
DFA = rep(c('Linear', 'Quadratic'),

times = c(length(ldaPerf@x.values[[1]]),
length(qdaPerf@x.values[[1]]))))

ggplot(data = dfaStats) +
geom_line(aes(x = x, y = y, color = DFA)) +
ggtitle('ROC Plot for Discriminant Function Analysis Models') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
scale_color_manual(values = c('darkorange', 'darkblue'))
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Supplementary R Syntax – Classification Trees
First load the necessary packages; this assumes the packages are installed. If not, use install.packages()
(e.g., install.packages("rpart") installs the rpart package).

# for recursive partitioning trees
library(rpart)
# for plotting rpart trees
library(rpart.plot)
# for random forest model
library(randomForest)
# for plotting
library(ggplot2)
# for data frame manipulation
library(dplyr)
# for cross-validation and other machine learning tools
library(caret)
# for constructing ROC plots and computing AUC
library(ROCR)

Next load preprocessed data.

load('COVRdata.rda')

Calculate the base rate of violence in the sample.

BR = mean(select(COVRdata, Violence) == 1)

Classification Trees

Using leave-one-out cross-validated error, we determine the minimum leaf size; the range of the minimum leaf
size is [1, 60]. The minimum leaf size is specified with the minbucket statement and the cp = 0 requests that
the tree is not pruned. In addition we set the minimum split to be twice the minimum leaf (the minimum
split is the minimum number needed to make a split; the default is three times the minimum leaf). Note
that the relative error (rel error) and the expected error (xerror) are multiplied by the base rate giving,
respectively, the estimated resubstitution and cross-validated error. The base rate is the root node error and
the relative and expected errors are with respect to the root node error. Note that the cross-validated and
resubstitution errors are from the unpruned trees. Missing values are treated as suggested by Breimen et
al. (1984) and as was done by Monahan et al. (2001); this is automatically implemented in rpart with the
rpart.control option usesurrogate set equal to 2 (default). The xval option is set equal to the sample
size (this gives the estimate for leave-one-out cross-validation; the default is ten-fold).

CVerror = double() #cross-validated error
RSerror = double() #resubstitution error

for (j in 1:60) {

t = rpart(Violence ~ ., COVRdata, control = rpart.control(minbucket = j,
minsplit = 2*j, cp = 0,
xval = nrow(COVRdata)))



# error estimates
CVerror[j] = t$cp[nrow(t$cp),4]*BR
RSerror[j] = t$cp[nrow(t$cp),3]*BR

}

# create data frame with errors and leaf sizes
misclassError = data_frame('minleaf' = rep(1:60, 2), mcerror = c(RSerror, CVerror),

Error = rep(c('resubsitution', 'cross-validated'), each = 60))

# remove CVerror = 0
misclassError = misclassError %>%

filter((mcerror != 0 & Error == 'cross-validated') | Error == 'resubsitution')

# optimal minimum leaf size
minLeaf = misclassError %>%

filter(Error == 'cross-validated') %>%
filter(rank(mcerror, ties.method = 'first') == 1)

minLeaf

Source: local data frame [1 x 3]

minleaf mcerror Error
(int) (dbl) (chr)

1 48 0.1789137 cross-validated

# plot error across minimum leaf size
ggplot(data = misclassError, aes(minleaf, mcerror, linetype = Error)) +

geom_line() +
geom_hline(yintercept = BR, lty = 2) +
scale_y_continuous(breaks = c(0, .05, .1, .15, BR, .20, .25),

labels = c('0', '.05', '.10', '.15', 'BR', '.20','.25')) +
theme(plot.title = element_text(size = 21, face = 'bold'),

axis.title = element_text(size = 17, face = "bold")) +
xlab('Minimum Leaf Size') + ylab('Misclassification Error') +
labs(title = 'Min Leaf Size vs. Misclassification Error') +
theme(legend.position = 'bottom') +
geom_point(data = minLeaf, aes(y = mcerror, x = minleaf, size = 3), show_guide = F)
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Now we construct a tree using the minimum leaf size that minimized the cross-validated error (this was
found to be 48). A confusion matrix is given (the function confsuionMatrix() is available through the
caret package). The tree is then plotted using the prp() function that is available through the rpart.plot
package.

ctree = rpart(Violence ~ ., COVRdata,
control = rpart.control(minbucket = select(minLeaf, minleaf),

minsplit = 2*select(minLeaf, minleaf), cp = 0))
# resubstitution error
mean(predict(ctree, COVRdata, type = 'class') != COVRdata$Violence)

[1] 0.1810437

# confusion Matrix
confusionMatrix(predict(ctree, type = 'class'), COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 742 149
1 21 27

Accuracy : 0.819
95% CI : (0.7928, 0.8431)



No Information Rate : 0.8126
P-Value [Acc > NIR] : 0.3253

Kappa : 0.1748
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.15341
Specificity : 0.97248

Pos Pred Value : 0.56250
Neg Pred Value : 0.83277

Prevalence : 0.18743
Detection Rate : 0.02875

Detection Prevalence : 0.05112
Balanced Accuracy : 0.56294

'Positive' Class : 1

# plot tree
prp(ctree, type = 4, extra = 1)

PCL = 0

SNMHP >= 0.16

PCS >= 0.5

1

 < 0.16

 < 0.5

0
763  176

0
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0
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0
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Next we implement unequal costs as implied by Monahan et al. (2001). We begin by creating a cost matrix;
this is based on Monahan et al.’s (2001) choice of cutscore equal to 0.37.



# Clear the workspace.
rm(list = ls()[!(ls() %in% c('BR', 'COVRdata'))])
# cost matrix
twoBR = (1-2*BR)/(2*BR)
costMatrix = matrix(c(0, twoBR, 1, 0), 2)

We again determine the minimum leaf size, as was done with equal costs. Note that the root node error
is 0.31 (= BR*twoBR; that is, the number of false negatives at the root note weighted by the cost of false
negatives to false positives, 1.67).

CVerror = double() #cross-validated error
RSerror = double() #resubstitution error

for (j in 1:60) {

t = rpart(Violence ~ ., COVRdata, parms = list(loss = costMatrix),
control = rpart.control(minbucket = j, minsplit = 2*j, cp = 0,

xval = nrow(COVRdata)))

# error estimates
CVerror[j] = t$cp[nrow(t$cp),4]*BR*twoBR
RSerror[j] = t$cp[nrow(t$cp),3]*BR*twoBR

}

# create data frame with error and leaf size
misclassError = data_frame('minleaf' = rep(1:60, 2), mcerror = c(RSerror, CVerror),

Error = rep(c('resubsitution', 'cross-validated'), each = 60))

# optimal minimum leaf size
minLeaf = misclassError %>%

filter(Error == 'cross-validated') %>%
filter(rank(mcerror, ties.method = 'first') == 1)

# plot error across minimum leaf size
ggplot(data = misclassError, aes(minleaf, mcerror, linetype = Error)) +

geom_line() +
geom_hline(yintercept = BR, linetype = 2) +
geom_hline(yintercept = BR*twoBR, lty = 2) +
scale_y_continuous(breaks = c(0, .1, BR, .2, BR*twoBR, .4),

labels = c('0', '.10', 'BR', '.20','RNE', '.40')) +
theme(plot.title = element_text(size = 21, face = 'bold'),

axis.title = element_text(size = 17, face = "bold")) +
xlab('Minimum Leaf Size') + ylab('Misclassification Error') +
labs(title = 'Min Leaf Size vs. Misclassification Error') +
theme(legend.position = 'bottom') +
geom_point(data = minLeaf, aes(y = mcerror, x = minleaf, size = 3), show_guide = F)
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Next we construct and plot the tree using minimum leaf size, which was found to be 48. This is exactly
the same as the tree with equal costs aside from one slight difference which does not affect the classification
results: the non-terminal node at SNMHP < .16 is classified as violent as opposed to nonviolent (as is the case
when the costs were equal). A this node the proportion violent is 0.43 which is less than .5 but more than
0.37.

ctree = rpart(Violence ~ ., COVRdata, parms = list(loss = costMatrix),
control = rpart.control(minbucket = select(minLeaf, minleaf),

minsplit = 2*select(minLeaf, minleaf), cp = 0,
xval = nrow(COVRdata)))

# resubstitution error
mean(predict(ctree, COVRdata, type = 'class') != COVRdata$Violence)

[1] 0.1810437

# confusion Matrix
confusionMatrix(predict(ctree, type = 'class'), COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 742 149
1 21 27



Accuracy : 0.819
95% CI : (0.7928, 0.8431)

No Information Rate : 0.8126
P-Value [Acc > NIR] : 0.3253

Kappa : 0.1748
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.15341
Specificity : 0.97248

Pos Pred Value : 0.56250
Neg Pred Value : 0.83277

Prevalence : 0.18743
Detection Rate : 0.02875

Detection Prevalence : 0.05112
Balanced Accuracy : 0.56294

'Positive' Class : 1

# plot tree
prp(ctree, type = 4, extra = 1)

PCL = 0

SNMHP >= 0.16

PCS >= 0.5

1

 < 0.16

 < 0.5

0
763  176

0
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1
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0
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1
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Now we construct a tree using unequal costs as suggested in Berk (2012). Here, the minimum leaf size is
chosen (arbitrarily) to be 30, and pruned. The relative error (rel error) and expected error (xerror) are
not appropriate to use for calculating resubstitution error and cross-validated error here because they are



in relation to the root node error, which is itself in relation to the specified priors and costs. Instead, we
implement the train() function, an extremely versatile cross-validation tool from the caret() package.

# clear workspace
rm(list = ls()[!(ls() %in% c('BR', 'COVRdata', 'costMatrix'))])
# construct tree
ctree = train(select(COVRdata, -Violence), COVRdata$Violence,

method = 'rpart', parms = list(loss = matrix(c(0, 20, 1, 0), 2)),
control = rpart.control(minbucket = 30, minsplit = 60),
trControl = trainControl('cv', 'LOOCV'), tuneLength = 20)

# leave-one-out cross-validated error
1 - ctree$results$Accuracy[which.max(ctree$results$Accuracy)]

[1] 0.5857295

# resubstitution error
mean(predict(ctree) != COVRdata$Violence)

[1] 0.5697551

Finally, to demonstrate overfitting with classification trees, we fit a tree with a minimum leaf of one and
without pruning.

rm(list = ls()[!(ls() %in% c('BR', 'COVRdata', 'costMatrix'))])
# equal costs
ctree = rpart(Violence ~ ., COVRdata, control = rpart.control(minbucket = 1, cp = 0,

xval = nrow(COVRdata)))

# leave-one-out cross-validated error
ctree$cp[nrow(ctree$cp),4]*BR

[1] 0.2960596

# resubstitution error
ctree$cp[nrow(ctree$cp),3]*BR

[1] 0.008519702

# Confusion Matrix
ctreePredClass = predict(ctree, COVRdata, type = 'class')
confusionMatrix(ctreePredClass, COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 761 6
1 2 170



Accuracy : 0.9915
95% CI : (0.9833, 0.9963)

No Information Rate : 0.8126
P-Value [Acc > NIR] : <2e-16

Kappa : 0.9718
Mcnemar's Test P-Value : 0.2888

Sensitivity : 0.9659
Specificity : 0.9974

Pos Pred Value : 0.9884
Neg Pred Value : 0.9922

Prevalence : 0.1874
Detection Rate : 0.1810

Detection Prevalence : 0.1832
Balanced Accuracy : 0.9816

'Positive' Class : 1

# unequal costs
ctree2 = train(select(COVRdata, -Violence), COVRdata$Violence,

method = 'rpart', parms = list(loss = costMatrix),
control = rpart.control(minbucket = 1),
trControl = trainControl('cv', 'LOOCV'), tuneGrid = expand.grid(.cp = 0))

# leave-one-out cross-validated error
1 - ctree2$results$Accuracy

[1] 0.2790202

# resubstitution error
mean(predict(ctree2) != COVRdata$Violence)

[1] 0.01277955

# Confusion Matrix
confusionMatrix(predict(ctree2), COVRdata$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 751 0
1 12 176

Accuracy : 0.9872
95% CI : (0.9778, 0.9934)

No Information Rate : 0.8126
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9591



Mcnemar's Test P-Value : 0.001496

Sensitivity : 1.0000
Specificity : 0.9843

Pos Pred Value : 0.9362
Neg Pred Value : 1.0000

Prevalence : 0.1874
Detection Rate : 0.1874

Detection Prevalence : 0.2002
Balanced Accuracy : 0.9921

'Positive' Class : 1

# ROC plot
ctreePredProbs = predict(ctree, COVRdata)[,2]
ctreePreds = prediction(ctreePredProbs, select(COVRdata, Violence))
ctreePerf = performance(ctreePreds, 'tpr', 'fpr')
AUC = round(performance(ctreePreds, 'auc')@y.values[[1]], 3)
ggplot(data = NULL) +

geom_line(aes(x = ctreePerf@x.values[[1]],
y = ctreePerf@y.values[[1]])) +

ggtitle('ROC Plot for Classification Tree') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),

size = 8)
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Random Forests

The next step is to construct the random forest models. Begin by clearing the workspace. Random forest
models can be generated using the randomForest() function from the randomForest package.

rm(list = ls()[!(ls() %in% c('BR', 'COVRdata'))])

First we impute missing data. The function rfImpute() first imputes missing data by using the mean (for
continuous data) or the mode (for categorical data). Next, a random forest is fit to the new dataset that
no longer contains missing data. A proximity matrix is calculated such that the (i, j)th entry contains the
proportion of times that the ith and jth observation fall into the same terminal node. For continuous data, the
missing values are imputed using the weighted (by proximity) average across the variable of the observations;
for categorical data, the missing values are equal to the value with the largest proximity, averaged across all
the observations for the variable in question. Random seeds are set for replication of results.

set.seed(917)
COVRdataRF = rfImpute(Violence ~ ., COVRdata)

ntree OOB 1 2
300: 18.32% 0.92% 93.75%

ntree OOB 1 2
300: 18.32% 1.18% 92.61%

ntree OOB 1 2
300: 18.74% 1.83% 92.05%



ntree OOB 1 2
300: 19.06% 2.10% 92.61%

ntree OOB 1 2
300: 18.85% 1.57% 93.75%

The data are split into a training set and testing set. The testing set contains 282 (30%) observations; the
training set contains the remaining 657 (70%) observations.

set.seed(1983)
COVRtrain = sample_frac(COVRdataRF, .7)
COVRtest = COVRdataRF %>%

filter(!(row_number() %in% rownames(COVRtrain)))

Here, the random forest model is constructed using equal costs.

set.seed(91783)
covrRF = randomForest(Violence ~ ., data = COVRtrain, ntree = 1000)

A confusion matrix for the training data is created; the misclassification error (i.e., the proportion along the
off-diagonal) is the resubstitution error.

confusionMatrix(predict(covrRF, COVRtrain), COVRtrain$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 538 0
1 0 119

Accuracy : 1
95% CI : (0.9944, 1)

No Information Rate : 0.8189
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 1
Mcnemar's Test P-Value : NA

Sensitivity : 1.0000
Specificity : 1.0000

Pos Pred Value : 1.0000
Neg Pred Value : 1.0000

Prevalence : 0.1811
Detection Rate : 0.1811

Detection Prevalence : 0.1811
Balanced Accuracy : 1.0000

'Positive' Class : 1

The cross-validated error can be estimated using the testing dataset.



confusionMatrix(predict(covrRF, COVRtest), COVRtest$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 224 56
1 1 1

Accuracy : 0.7979
95% CI : (0.7462, 0.8432)

No Information Rate : 0.7979
P-Value [Acc > NIR] : 0.5354

Kappa : 0.0205
Mcnemar's Test P-Value : 8.523e-13

Sensitivity : 0.017544
Specificity : 0.995556

Pos Pred Value : 0.500000
Neg Pred Value : 0.800000

Prevalence : 0.202128
Detection Rate : 0.003546

Detection Prevalence : 0.007092
Balanced Accuracy : 0.506550

'Positive' Class : 1

To visualize the separation between the violent and non-violent individuals, we construct parallel coordinate
plots for the training data and the testing data.

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtrain, type = 'prob'),

select(COVRtrain, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)

Using Training Data')
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# remove rfPreds
rm(rfPreds)

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtest, type = 'prob'),

select(COVRtest, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)

Using Testing Data')
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Now the random forest model is constructed using unequal costs.

rm(covrRF, rfPreds)
set.seed(917)
covrRF = randomForest(Violence ~ ., data = COVRtrain, ntree = 1000,

cutoff = c(1-2*BR, 2*BR))

The misclassification rates:

# resubstitution error
confusionMatrix(predict(covrRF, COVRtrain), COVRtrain$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 538 0
1 0 119

Accuracy : 1
95% CI : (0.9944, 1)

No Information Rate : 0.8189
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 1



Mcnemar's Test P-Value : NA

Sensitivity : 1.0000
Specificity : 1.0000

Pos Pred Value : 1.0000
Neg Pred Value : 1.0000

Prevalence : 0.1811
Detection Rate : 0.1811

Detection Prevalence : 0.1811
Balanced Accuracy : 1.0000

'Positive' Class : 1

# cross-validated error
confusionMatrix(predict(covrRF, COVRtest), COVRtest$Violence, positive = '1')

Confusion Matrix and Statistics

Reference
Prediction 0 1

0 217 42
1 8 15

Accuracy : 0.8227
95% CI : (0.773, 0.8654)

No Information Rate : 0.7979
P-Value [Acc > NIR] : 0.1678

Kappa : 0.2928
Mcnemar's Test P-Value : 3.058e-06

Sensitivity : 0.26316
Specificity : 0.96444

Pos Pred Value : 0.65217
Neg Pred Value : 0.83784

Prevalence : 0.20213
Detection Rate : 0.05319

Detection Prevalence : 0.08156
Balanced Accuracy : 0.61380

'Positive' Class : 1

And the parallel coordinate plots:

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtrain, type = 'prob'),

select(COVRtrain, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),



labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Unequal Costs)

Using Training Data')
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# remove rfPreds
rm(rfPreds)

# data frame of estimated probabilities of violence and actual classification
rfPreds = data.frame(Preds = predict(covrRF, COVRtest, type = 'prob'),

select(COVRtest, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Unequal Costs)

Using Testing Data')
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Now a random forest model with all the data and using the OOB error to estimate test error. First with
equal costs.

# Clear workspace
rm(list = ls()[!(ls() %in% c('BR', 'COVRdata', 'COVRdataRF'))])
# Equal costs
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntree = 1000)
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE

FALSE 749 166
TRUE 14 10

Accuracy : 0.8083
95% CI : (0.7816, 0.833)

No Information Rate : 0.8126
P-Value [Acc > NIR] : 0.6494

Kappa : 0.0576
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.05682



Specificity : 0.98165
Pos Pred Value : 0.41667
Neg Pred Value : 0.81858

Prevalence : 0.18743
Detection Rate : 0.01065

Detection Prevalence : 0.02556
Balanced Accuracy : 0.51923

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVRdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +

geom_line(aes(x = rfPerf@x.values[[1]],
y = rfPerf@y.values[[1]])) +

ggtitle('ROC Plot for Random Forest Model (Equal Costs)') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),

size = 8)
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# Parallel coordinate plot
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Equal Costs)

Using OOB Data')
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             Using OOB Data

Now with unequal costs.

rm(covrRF, rfPreds, rfPerf, AUC)
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntree = 1000,

cutoff = c(1-2*BR, 2*BR))
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')

Confusion Matrix and Statistics

Reference



Prediction FALSE TRUE
FALSE 748 163
TRUE 15 13

Accuracy : 0.8104
95% CI : (0.7839, 0.835)

No Information Rate : 0.8126
P-Value [Acc > NIR] : 0.586

Kappa : 0.0801
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.07386
Specificity : 0.98034

Pos Pred Value : 0.46429
Neg Pred Value : 0.82108

Prevalence : 0.18743
Detection Rate : 0.01384

Detection Prevalence : 0.02982
Balanced Accuracy : 0.52710

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVRdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +

geom_line(aes(x = rfPerf@x.values[[1]],
y = rfPerf@y.values[[1]])) +

ggtitle('ROC Plot for Random Forest Model (Unequal Costs)') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),

size = 8)
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# Parallel coordinate plot
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Random Forest Model (Unequal Costs)

Using OOB Data')
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             Using OOB Data

Finally, using the OOB error to measure variable importance, we use a subset of variables for prediction,
eliminating those that negatively affect or add very little to the accuracy. This is the “final model.”

set.seed(1983917)
# measuring variable importance
covrRF = randomForest(Violence ~ ., data = COVRdataRF, ntrees = 1000, imp = T)

# variable importance plots
varImp = data_frame(Variables = rownames(importance(covrRF)),

Accuracy = importance(covrRF)[,3])
ggplot(data = varImp, aes(Accuracy, reorder(Variables, Accuracy))) +

geom_point() +
geom_vline(xintercept = 0, lty = 2) +
xlab('Mean Decrease in Accuracy') +
ylab('Variables') +
ggtitle('Variable Importance Plot')
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# select subset of variables that whose mean decrease in accuracy is greater than .5
COVRdataRF_Imp = select(COVRdataRF, Violence, (2:32)[select(varImp, Accuracy) > .5])

# final model
set.seed(1983917)
covrRF = randomForest(Violence ~ ., data = COVRdataRF_Imp, ntrees = 1000)
confusionMatrix((covrRF$votes > .5)[,2], COVRdataRF$Violence == 1, positive = 'TRUE')

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE

FALSE 747 159
TRUE 16 17

Accuracy : 0.8136
95% CI : (0.7872, 0.8381)

No Information Rate : 0.8126
P-Value [Acc > NIR] : 0.4868

Kappa : 0.11
Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.09659
Specificity : 0.97903

Pos Pred Value : 0.51515



Neg Pred Value : 0.82450
Prevalence : 0.18743

Detection Rate : 0.01810
Detection Prevalence : 0.03514

Balanced Accuracy : 0.53781

'Positive' Class : TRUE

# ROC plot
rfPreds = prediction(covrRF$votes[,2], select(COVRdataRF, Violence))
rfPerf = performance(rfPreds, 'tpr', 'fpr')
AUC = round(performance(rfPreds, 'auc')@y.values[[1]], 2)
ggplot(data = NULL) +

geom_line(aes(x = rfPerf@x.values[[1]],
y = rfPerf@y.values[[1]])) +

ggtitle('ROC Plot for Final Random Forest Model') +
xlab('False Positive Rate') +
ylab('True Positive Rate') +
geom_segment(aes(x = 0, y = 0, xend = 1, yend = 1),

linetype = 'dotted') +
geom_text(aes(x = .7, y = .4, label = paste0('AUC = ', AUC), parse = T),

size = 8)
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# Parallel coordinate plot
rfPreds = data.frame(Preds = covrRF$votes, select(COVRdataRF, Violence))
rfPreds = arrange(rfPreds, Preds.0)
ggplot(data = rfPreds) +

geom_segment(aes(x = 0, xend = 1, y = Preds.0, yend = Preds.1, color = Violence)) +
scale_x_continuous(breaks = c(0, 1),

labels = c('Nonviolent', 'Violent')) +
xlab('Predicted Outcome') +
ylab('Estimated Probabilities') +
scale_color_manual(values = c('darkorange', 'darkblue'),

labels = c('No', 'Yes')) +
ggtitle('Parallel Coordinate Plot for Final Random Forest Model')

0.00

0.25

0.50

0.75

1.00

Nonviolent Violent
Predicted Outcome

E
st

im
at

ed
 P

ro
ba

bi
lit

ie
s

Violence

No

Yes

Parallel Coordinate Plot for Final Random Forest Model


	JoC_supplementary_material.pdf
	dataPreProcess.pdf
	Data Preprocessing

	LR_DFA.pdf
	Logisitic Regression Model
	Discriminant Function Analysis

	CART.pdf
	Classification Trees
	Random Forests





