
Module 12: An Olio of Topics in
Applied Probabilistic Reasoning

To understand God’s thoughts we must study statistics for these are the
measure of His purpose.

– Florence Nightingale.

Abstract: The last module is a collection of topics in applied

probabilistic reasoning that were all too small to command their

own separate modules. Topics include: 1) the randomized response

method as a way of asking sensitive questions and hopefully receiv-

ing truthful answers; 2) the use of surrogate end points (or proxies)

in the study of some phenomenon where the connections to “real”

outcomes of interest (for example, to mortality) are indirect and prob-

abilistically linked (for example, to lowered cholesterol levels); 3) the

comparison between a normative theory of choice and decision mak-

ing derived from probability theory and actual human performance;

4) permutation tests and statistical inference derived directly from

how a randomized controlled study was conducted. As an oddity

that can occur for this type of statistical inference procedure, the

famous 1954 Salk polio vaccine trials are discussed. Also, three brief

subsections are given that summarize the jackknife, the bootstrap,

and permutation tests involving correlational measures. This latter

material is provided in an abbreviated form suitable for slide presen-

tation in class, and where further explanatory detail would be given

by an instructor.
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1 The Randomized Response Method

As noted elsewhere, how questions are framed and the context in

which they are asked are crucial for understanding the meaning of

the given responses. This is true both in matters of opinion polling

and for collecting data on, say, the health practices of subjects. In

these situations, the questions asked are usually not sensitive, and

when framed correctly, honest answers are expected. For more sensi-

tive questions about illegal behavior, (reprehensible) personal habits,

suspect health-related behaviors, questionable attitudes, and so on,

asking a question outright may not garner a truthful answer.

The randomized response method is one mechanism for obtain-

ing “accurate” data for a sensitive matter at a group level (but not
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at the individual level). It was first proposed in 1965 by Stanley

Warner in the Journal of the American Statistical Association,

“Randomized Response: A Survey Technique for Eliminating Eva-

sive Answer Bias” (60, 63–69). A modified strategy was proposed by

Bernard Greenberg and colleagues in 1969, again in JASA: “The Un-

related Question Randomized Response Model: Theoretical Frame-

work” (64, 520–539). We first illustrate Warner’s method and then

Greenberg’s with an example.

Let Q be the question: “Have you ever smoked pot (and in-

haled)?”; and Q̄ the complement: “Have you never smoked pot (and

inhaled)?” With some known probability, θ, the subject is asked Q;

and with probability (1− θ), is given Q̄ to answer. The respondent

determines which question is posed by means of a probability mech-

anism under his or her control. For example, if the respondent rolls

a single die and a 1 or 2 appears, question Q is given; if 3, 4, 5, or 6

occurs, Q̄ is given. So, in this case, θ = 1/3.

As notation, let p be the proportion in the population for which

the true response to Q is “yes”; 1− p is then the proportion giving

a “yes” to Q̄. Letting Pyes denote the observed proportion of “yes”

responses generally, its expected value is θp+ (1− θ)(1− p); thus, p

can be estimated as

p̂w =
Pyes − (1− θ)

2θ − 1
,

where the subscript w is used to denote Warner’s method of esti-

mation. Obviously, θ cannot be 1/2 because the denominator would

then be zero; but all other values are legitimate. The extremes of θ
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being 0 or 1, however, do not insure the “privacy” of a subject’s re-

sponse because the question actually answered would then be known.

The Greenberg method is referred to as the unrelated (or innocu-

ous) question technique. The complement question Q̄ is replaced

with an unrelated question, say, QU , with a known probability of

giving a “yes” response, say γ. For example, QU could be “Flip a

coin. Did you get a head?” Here, γ = 1/2 for a “yes” response; the

expected value of Pyes is θp + (1− θ)γ, leading to

p̂g =
Pyes − (1− θ)γ

θ
,

where the subscript g now refers to Greenberg’s method of estima-

tion.

To decide which strategy might be the better, the variances of the

two estimates can be compared though closed-form formulas:

Var(p̂w) =
p(1− p)

n
+

θ(1− θ)

n(2θ − 1)2
;

Var(p̂g) =

p(1− p)

n
+

(1− θ)2γ(1− γ) + θ(1− θ)(p(1− γ) + γ(1− p))

nθ2
,

where the number of respondents is denoted by n. As an exam-

ple, suppose θ is .6; the coin flip defines QU so γ is .5; and let

the true proportion p be .3. Using the variance formulas above:

Var(p̂w) = 6.21/n and Var(p̂g) = .654/n. Here, the Greenberg

“innocuous question” variance is only about a tenth of that for the

Warner estimate, making the Greenberg method much more efficient
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in this instance (that is, the sampling variance for the Greenberg

estimate is much less than that for the Warner estimate).

The use of innocuous questions is the most common implemen-

tation of a randomized response method. This is likely due to the

generally smaller variance for the Greenberg estimator compared to

that for Warner; also, the possible confusion caused by using “ever”

and “never” and responding “yes” and “no” in Warner’s method is

avoided by the use of an innocuous question. As a practical example

of the unrelated question implementation of randomized response,

several excerpts are presented below from a New York Times arti-

cle by Tom Rohan (August 22, 2013), entitled “Antidoping Agency

Delays Publication of Research”:

Doping experts have long known that drug tests catch only a tiny fraction
of the athletes who use banned substances because athletes are constantly
finding new drugs and techniques to evade detection. So in 2011, the World
Anti-Doping Agency convened a team of researchers to try to determine more
accurately how many athletes use performance-enhancing drugs.

More than 2,000 track and field athletes participated in the study, and
according to the findings, which were reviewed by The New York Times, an
estimated 29 percent of the athletes at the 2011 world championships and
45 percent of the athletes at the 2011 Pan-Arab Games said in anonymous
surveys that they had doped in the past year.

...
The project began in 2011 when the researchers created a randomized-

response survey, a common research technique that is used to ask sensitive
questions while ensuring a subject’s confidentiality. The researchers con-
ducted their interviews at two major track and field events: the world cham-
pionships in Daegu, South Korea, and the Pan-Arab Games in Doha, Qatar.

Athletes at the events answered questions on tablet computers and were
asked initially to think of a birthday, either their own or that of someone close
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to them. Then, depending on the date of the birthday, they were instructed
to answer one of two questions that appeared on the same screen: one asked
if the birthday fell sometime between January and June, and the other asked,
“Have you knowingly violated anti-doping regulations by using a prohibited
substance or method in the past 12 months?”

The study was designed this way, the researchers said, so only the athlete
knew which of the two questions he or she was answering. Then, using
statistical analysis, the researchers could estimate how many of the athletes
admitted to doping.

The researchers noted that not every athlete participated, and those who
did could have lied on the questionnaire, or chosen to answer the birthday
question. They concluded that their results, which found that nearly a third
of the athletes at the world championships and nearly half at the Pan-Arab
Games had doped in the past year, probably underestimated the reality.

2 Surrogate End Points and Proxies

The presentation of data is an obvious area of concern when devel-

oping the basics of statistical literacy. Some aspects may be obvious,

such as not making up data or suppressing analyses or information

that don’t conform to prior expectations. At times, however, it is

possible to contextualize (or to “frame”) the same information in

different ways that might lead to differing probabilistic interpreta-

tions. An earlier module on the (mis)reporting of data was devoted

more extensively to the review of Gigerenzer et al. (2007), where the

distinctions are made between survival and mortality rates, absolute

versus relative risks, natural frequencies versus probabilities, among

others. Generally, the presentation of information should be as hon-

est, clear, and transparent as possible. One such example given by

Gigerenzer et al. (2007) suggests the use of frequency statements in-
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stead of single-event probabilities, thereby removing the ambiguity

of the reference class: instead of saying “there is a 30% to 50% prob-

ability of developing sexual problems with Prozac,” use “out of every

10 patients who take Prozac, 3 to 5 experience a sexual problem.”

Thus, a male taking Prozac won’t expect that 30% to 50% of his

personal sexual encounters will result in a “failure.”

In presenting data to persuade, and because of the “lead-time bias”

medical screening produces, it is ethically questionable to promote

any kind of screening based on improved five-year survival rates, or

to compare such survival rates across countries where screening prac-

tices vary. As a somewhat jaded view of our current health situation,

we have physicians practicing defensive medicine because there are

no legal consequences for overdiagnosis and overtreatment, but only

for underdiagnosis. Or, as the editor of the Lancet commented (as

quoted by R. Horton, New York Review of Books, March 11, 2004),

“journals have devolved into information laundering operations for

the pharmaceutical industry.” The issues involved in medical screen-

ing and its associated consequences are psychologically important;

for example, months after false positives for HIV, mammograms, or

prostate cancer, considerable and possibly dysfunctional anxiety may

still exist.

When data are presented to make a health-related point, it is com-

mon practice to give the argument in terms of a “surrogate endpoint.”

Instead of providing direct evidence based on a clinically desired out-

come (for example, if you engage in this recommended behavior, the

chance of dying from, say, a heart attack is reduced by such and

such amount), the case is stated in terms of a proxy (for example,
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if you engage in this recommended behavior, your cholesterol levels

will be reduced). In general, a surrogate end point or biomarker is a

measure of a certain treatment that may correlate with a real clinical

endpoint, but the relationship is probabilistically determined and not

guaranteed. This caution can be rephrased as “a correlate does not

a surrogate make.”

It is a common misconception that something correlated with the

true clinical outcome must automatically then be usable as a valid

surrogate end point and can act as a proxy replacement for the clinical

outcome of primary interest. As is true for all correlational phenom-

ena, causal extrapolation requires further argument. In this case, it

is that the effect of the intervention on the surrogate directly predicts

the clinical outcome. Obviously, this is a more demanding require-

ment.

Outside of the medical arena, proxies play prominently in the cur-

rent climate-change debate. When actual surface temperatures are

unavailable, surrogates for these are typically used (for example, tree-

ring growth, coral accumulation, evidence in ice). Whether these are

satisfactory stand-ins for the actual surface temperatures is question-

able. Before automatically accepting a causal statement (for exam-

ple, that greenhouse gases are wholly responsible for the apparent

recent increase in earth temperature), pointed (statistical) questions

should be raised, such as:

(a) why don’t the tree-ring proxies show the effects of certain cli-

mate periods in our history—the Medieval Warm Period (circa 1200)

and the Little Ice Age (circa 1600)?;
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(b) over the last century or so, why has the tree-ring and surface

temperature relationship been corrupted so that various graphical

“tricks” need to be used to obtain the “hockey stick” graphic demon-

strating the apparent catastrophic increase in earth temperature over

the last century?;

(c) what effect do the various solar cycles that the sun goes through

have on our climate; could these be an alternative mechanism for

what we are seeing in climate change?;

(d) or, is it some random process and we are on the up-turn of

something comparable to the Medieval Warm Period, with some later

downturn expected into another Little Ice Age?

3 The Normative Theory of Probability and Human

Decision Making

One important area of interest in developing statistical literacy skills

and learning to reason probabilistically is the large body of work pro-

duced by psychologists. This work compares the normative theory of

choice and decisions derivable from probability theory, and how this

may not be the best guide to the actual reasoning processes individ-

uals use. The contributions of Tversky and Kahneman (for example,

1971, 1974, 1981) are particularly germane to our understanding of

reasoning. People rely on various simplifying heuristic principles to

assess probabilities and engage in judgments under uncertainty. We

give a classic Tversky and Kahneman (1983) illustration to show how

various reasoning heuristics might operate:

Linda is 31 years old, single, outspoken and very bright. She majored in phi-
losophy. As a student she was deeply concerned with issues of discrimination
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and social justice, and also participated in anti-nuclear demonstrations.

Which . . . [is] more probable?
1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Eighty-five percent of one group of subjects chose option 2, even

though the conjunction of two events must be less likely than either

of the constituent events. Tversky and Kahneman argue that this

“conjunction fallacy” occurs because the “representativeness heuris-

tic” is being used to make the judgment; the second option seems

more representative of Linda based on the description given for her.

The representativeness heuristic operates where probabilities are

evaluated by the degree to which A is representative of B; if highly

representative, the probability that A originates from B is assessed

to be higher. When representativeness heuristics are in operation,

a number of related characteristics of the attendant reasoning pro-

cesses become apparent: prior probabilities (base rates) are ignored;

insensitivity develops to the operation of sample size on variability;

an expectation that a sequence of events generated by some random

process, even when the sequence is short, will still possess all the

essential characteristics of the process itself. This leads to the “gam-

bler’s fallacy” (or, “the doctrine of the maturity of chances”), where

certain events must be “due” to bring the string more in line with

representativeness; as one should know, corrections are not made in a

chance process but only diluted as the process unfolds. When a belief

is present in the “law of small numbers,” even small samples must

be highly representative of the parent population; thus, researchers

put too much faith in what is seen in small samples and overestimate

replicability. Also, people may fail to recognize regression toward the
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mean because predicted outcomes should be maximally representa-

tive of the input and therefore be exactly as extreme.

A second powerful reasoning heuristic is availability. We quote

from Tversky and Kahneman (1974):

Lifelong experience has taught us that, in general, instances of large classes
are recalled better and faster than instances of less frequent classes; that likely
occurrences are easier to imagine than unlikely ones; and that the associative
connections between events are strengthened when the events frequently co-
occur. As a result, man has at his disposal a procedure (the availability
heuristic) for estimating the numerosity of a class, the likelihood of an event,
or the frequency of co-occurrences, by the ease with which the relevant mental
operations of retrieval, construction, or association can be performed. (p.
1128)

Because retrievability can be influenced by differential familiarity and

saliences, the probability of an event may not be best estimated by

the ease to which occurrences come to mind. A third reasoning

heuristic is one of anchoring and adjustment, which may also be

prone to various biasing effects. Here, estimates are made based

on some initial value that is then adjusted (Tversky & Kahneman,

1974).

When required to reason about an individual’s motives in some

ethical context, it is prudent to remember the operation of the fun-

damental attribution error, where people presume that actions of

others are indicative of the true ilk of a person, and not just that

the situation compels the behavior. As one example from the courts,

even when confessions are extracted that can be demonstrably shown

false, there is still a greater likelihood of inferring guilt compared to

the situation where a false confession was not heard. The classic
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experiment on the fundamental attribution error is from Jones and

Harris (1967); we quote a summary given in the Wikipedia article on

the fundamental attribution error:

Subjects read pro- and anti-Fidel Castro essays. Subjects were asked to rate
the pro-Castro attitudes of the writers. When the subjects believed that
the writers freely chose the positions they took (for or against Castro), they
naturally rated the people who spoke in favor of Castro as having a more
positive attitude toward Castro. However, contradicting Jones and Harris’
initial hypothesis, when the subjects were told that the writer’s positions
were determined by a coin toss, they still rated writers who spoke in favor of
Castro as having, on average, a more positive attitude towards Castro than
those who spoke against him. In other words, the subjects were unable to
see the influence of the situational constraints placed upon the writers; they
could not refrain from attributing sincere belief to the writers.

A particulary egregious example of making the fundamental attri-

bution error (and moreover, for nefarious political purposes), is Liz

Cheney and her ad on the website “Keep America Safe” regarding

those lawyers currently at the Justice Department who worked as

advocates for “enemy combatants” at Guantanamo Bay, Cuba. We

give an article that lays out the issues by Michael Stone of the Port-

land Progressive Examiner (March 5, 2010; “Toxic Politics: Liz

Cheney’s Keep America Safe ‘Al Qaeda Seven’ Ad”):

Liz Cheney, daughter of former Vice President Dick Cheney and co-founder of
the advocacy group “Keep America Safe,” is taking heat for a controversial
ad questioning the values of Justice Department lawyers who represented
Guantanamo Bay detainees.

Several top political appointees at the Justice Department previously worked
as lawyers or advocates for ‘enemy combatants’ confined at Guantanamo Bay,
Cuba. In their ad, Cheney’s group derides the unidentified appointees as the
‘Al Qaeda 7.’ The ad implies the appointees share terrorist values.
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Aside from questioning the values of these Justice Department lawyers,
the ad is using fear and insinuations to smear both the Justice Department
lawyers and the Obama administration.

Demonizing Department of Justice attorneys as terrorist sympathizers for
their past legal work defending Gitmo detainees is wrong. The unfounded
attacks are vicious, and reminiscent of McCarthyism.

Indeed, the ad itself puts into question Cheney’s values, her patriotism, her
loyalty. One thing is certain: her understanding of US history, the founding
of our country, and the US Constitution, is left seriously wanting.

John Aloysius Farrell, writing in the Thomas Jefferson Street blog, for US
News and World Report, explains:

There are reasons why the founding fathers . . . in the Bill of Rights, strove
to protect the rights of citizens arrested and put on trial by the government
in amendments number 4, 5, 6, 7, and 8.

The founders had just fought a long and bloody revolution against King
George, and knew well how tyrants like the British sovereign perpetuated
power with arbitrary arrests, imprisonments, and executions. And so, along
with guarantees like the right to due process, and protection from unrea-
sonable searches and cruel and unusual punishment, the first patriots also
included, in the Sixth Amendment, the right of an American to a speedy
trial, by an impartial jury, with “the Assistance of Counsel for his defense.”

John Adams regarded his defense of the British soldiers responsible for the
Boston Massacre as one of the noblest acts of his life for good reason. Our
adversarial system of justice depends upon suspects receiving a vigorous de-
fense. That means all suspects must receive adequate legal counsel, including
those accused of the most heinous crimes: murder, rape, child abuse and yes,
even terrorism.

Defending a terrorist in court does not mean that one is a terrorist or shares
terrorist values. Implying otherwise is despicable. Cheney’s attacks are a
dangerous politicization and polarization of the terrorism issue. Those who
would honor our system of law and justice by defending suspected terrorists
deserve our respect. Instead Cheney and her group smear these patriots in
an attempt to score points against political enemies.
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4 Permutation Tests and Statistical Inference

The aim of any well-designed experimental study is to make a causal

claim, such as “the difference observed between two groups is caused

by the different treatments administered.” To make such a claim

we need to know the counterfactual: what would have happened if

this group had not received the treatment? This counterfactual is

answered most credibly when subjects are assigned to the treatment

and control groups at random. In this instance, there is no reason to

believe that the group receiving the treatment condition would have

reacted any differently (than the control condition) had it received the

control condition. If there is no differential experimental mortality

to obscure this initial randomness, one can even justify the analyses

used by how the groups were formed (for example, by randomization

tests, or their approximations defined by the usual analysis methods

based on normal theory assumptions). As noted by R. A. Fisher

(1971, p. 34), “the actual and physical conduct of an experiment

must govern the statistical procedure of its interpretation.” When the

gold standard of inferring causality is not met, however, we are in the

realm of quasi-experimentation, where causality must be approached

differently.

An important benefit from designing an experiment with random

assignment of subjects to conditions, possibly with blocking in vari-

ous ways, is that the method of analysis through randomization tests

is automatically provided. As might be expected, the original phi-

losophy behind this approach is due to R. A. Fisher, but it also has

been developed and generalized extensively by others (see Edgington

& Onghena, 2007). In Fisher’s time, and although randomization
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methods may have been the preferred strategy, approximations were

developed based on the usual normal theory assumptions to serve as

computationally feasible alternatives. But with this view, our stan-

dard methods are just approximations to what the preferred analyses

should be. A short quotation from Fisher’s The Design of Exper-

iments (1971) makes this point well (and one that expands on the

short phrase given in the previous paragraph):

In these discussions it seems to have escaped recognition that the physical
act of randomisation, which, as has been shown, is necessary for the validity
of any test of significance, affords the means, in respect of any particular
body of data, of examining the wider hypothesis in which no normality of
distribution is implied. The arithmetical procedure of such an examination
is tedious, and we shall only give the results of its application . . . to show
the possibility of an independent check on the more expeditious methods in
common use. (p. 45)

A randomization (or permutation) test uses the given data to gen-

erate an exact null distribution for a chosen test statistic. The ob-

served test statistic for the way the data actually arose is compared

to this null distribution to obtain a p-value, defined as the proba-

bility (if the null distribution were true) of an observed test statistic

being as or more extreme than what it actually was. Three situations

lead to the most common randomization tests: K-dependent sam-

ples, K-independent samples, and correlation. When ranks are used

instead of the original data, all of the common nonparametric tests

arise. In practice, null randomization distributions are obtained ei-

ther by complete enumeration, sampling (a Monte Carlo strategy), or

through various kinds of large sample approximations (for example,

normal or chi-squared distributions).
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Permutation tests can be generalized beyond the usual correla-

tional framework or that of K-dependent or K-independent samples.

Much of this work falls under a rubric of combinatorial data analy-

sis (CDA), where the concerns are generally with comparing various

kinds of complete matrices (such as proximity or data matrices) using

a variety of test statistics. The most comprehensive source for this

material is Hubert (1987), but the basic matrix comparison strate-

gies are available in a number of places, for example, see discussions

of the “Mantel Test” in many packages in R (as one example, see

the “Mantel–Hubert general spatial cross-product statistic” in the

package, spdep). Even more generally, one can at times tailor a test

statistic in nonstandard situations and then implement a permuta-

tion strategy for its evaluation through the principles developed in

CDA.

The idea of repeatedly using the sample itself to evaluate a hypoth-

esis or to generate an estimate of the precision of a statistic, can be

placed within the broader category of resampling statistics or sample

reuse. Such methods include the bootstrap, jackknife, randomization

and permutation tests, and exact tests (for example, Fisher’s exact

test for 2 × 2 contingency tables). Given the incorporation of these

techniques into conveniently available software, such as R, there are

now many options for gauging the stability of the results of one’s

data analysis.

4.1 The Jackknife

An idea similar to the “hold-out-some(one)-at-a-time” is Tukey’s

Jackknife.
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This was devised by Tukey to obtain a confidence interval on a pa-

rameter (and indirectly to reduce the bias of an estimator that is not

already unbiased).

In Psychology, there is an early discussion of the Jackknife in the

Handbook of Social Psychology (Volume II) (Lindzey and Aronson;

1968) by Mosteller and Tukey: Data Analysis — Including Statistics.

General approach for the Jackknife:

suppose I have n observations X1, . . . , Xn and let θ be an unknown

parameter of the population.

We have a way of estimating θ (by, say, θ̂) –

Group the n observations into t groups of m; thus, n = tm:

{X1, . . . , Xm}, . . . , {X(t−1)m+1, . . . , Xtm}

Let θ̂−0 be the estimate based on all groups;

Let θ̂−i be the estimate based on all groups except the ith

Define new estimates of θ, called “pseudo-values” as follows:

θ̂∗i = tθ̂−0 − (t− 1)θ̂−i, for i = 1, . . . , t

The Jackknife estimate of θ is the mean of the pseudo-values:

θ̂∗· =
∑t

i=1
θ̂∗i
t

An estimate of its standard error is

sθ̂∗· = [
∑t

i=1
(θ̂∗i−θ̂∗·)2
t(t−1) ]1/2
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Approximate confidence interval:

θ̂∗· ± sθ̂∗·tα2 ,t−1

We act as if the t pseudo-values θ̂∗1, . . . , θ̂∗t are independent and

identically distributed observations.

We also reduce some bias in estimation if the original estimate was

biased.

An example:

suppose I want to estimate µ based on X1, . . . , Xn

Choose t = n

θ̂−0 = 1
n

∑n
j=1Xj

θ̂−i = 1
n−1

∑n
j=1,i 6=jXj

θ̂∗i = n( 1
n

∑n
j=1Xj)− (n− 1)( 1

n−1

∑n
j=1,i 6=jXj) = Xi

Thus, θ̂∗· = 1
n

∑n
i=1Xi = X̄

sθ̂∗· =
√

1
n(n−1)

∑n
i=1(Xi − X̄)2 =√

s2
X/n, where s2

X is an unbiased estimate of σ2

Confidence interval:

X̄ ± (
√
s2
X/n) tα

2 ,t−1
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4.2 The Bootstrap

Population (“Theory World”): the pair of random variables X and

Y are, say, bivariate normal

Sample (“Data World”): n pairs of independent and identically dis-

tributed observations on (X, Y ):

(X1, Y1), . . . , (Xn, Yn); these could be used to give rXY as an esti-

mate of ρXY

Now, make Data World the Theory World Population:

(X1, Y1), . . . , (Xn, Yn), and each occurs with probability 1
n

Sample this Theory World Population (with replacement) to get one

“bootstrap” sample (with possible repeats):

(X
′
1, Y

′
1), . . . , (X

′

n
′ , Y

′

n
′) (usually, n equals n

′
)

Get B bootstrap samples and compute the correlation for each:

r
(1)
XY , . . . , r

(B)
XY

This last distribution could be used, for example, to obtain a confi-

dence interval on ρXY

4.2.1 Permutation tests for correlation measures

We start at the same place as for the Bootstrap:

Population (“Theory World”): the pair of random variables X and

Y are, say, bivariate normal

Sample (“Data World”): n pairs of independent and identically dis-

tributed observations on (X, Y ):
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(X1, Y1), . . . , (Xn, Yn); these could be used to give rXY as an esti-

mate of ρXY

Now, to test Ho : X and Y are statistically independent.

Under Ho, the X ’s and Y ’s are matched at random; so, assuming

(without loss of generality) that we fix the X ’s, all n! permutations

of the Y ’s against the X ’s are equally likely to occur.

We can calculate a correlation for each of these n! permutations and

graph:

the distribution is symmetric and unimodal at zero; the range along

the horizontal axis obviously goes from −1 to +1

p-value (one-tailed) = number of correlations as or larger than the

observed correlation/n!

Also, as an approximation, rXY ∼ N(0, 1
n−1);

Thus, the standard error is close to 1√
n
; this might be useful for quick

“back-of-the-envelope” calculations

4.3 An Introductory Oddity: The 1954 Salk Polio Vaccine Trials

The 1954 Salk polio vaccine trials was the biggest public health ex-

periment ever conducted. One field trial, labeled an observed control

experiment, was carried out by the National Foundation for Infan-

tile Paralysis. It involved the vaccination, with parental consent, of

second graders at selected schools in selected parts of the country.

A control group would be the first and third graders at these same
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schools, and indirectly those second graders for whom parental con-

sent was not obtained. The rates for polio contraction (per 100,000)

are given below for the three groups (see Francis et al., 1955, for the

definitive report on the Salk vaccine trials).1

Grade 2 (Vaccine): 25/100,000;

Grade 2 (No consent): 44/100,000;

Grades 1 and 3 (Controls): 54/100,000.

The interesting observation we will return to below is that the Grade

2 (No consent) group is between the other two in the probability

of polio contraction. Counterintuitively, the refusal to give consent

seems to be partially protective.

The second field trial was a (double-blind) randomized controlled

experiment. A sample of children were chosen, all of whose parents

consented to vaccination. The sample was randomly divided into

two, with half receiving the Salk vaccine and the other half a placebo

of inert salt water. There is a third group formed from those children

with no parental consent and who therefore were not vaccinated. We

give the rates of polio contraction (per 100,000) for the three groups:

Vaccinated: 28/100,000;

Control: 71/100,000;

No consent: 46/100,000.

Again, not giving consent appears to confer some type of immunity;
1The interpretation of results and the source of the information given in this section, An

Evaluation of the 1954 Poliomyelitis Vaccine Trials, is by Thomas Francis, Robert Korns,
and colleagues (1955) (in particular, see Table 2b: Summary of Study of Cases by Diagnostic
Class and Vaccination Status; p. 35).
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the probability for contracting polio for the “no consent” group is

between the other two.

The seeming oddity in the ordering of probabilities, where “no

consent” seems to confer some advantage, is commonly explained by

two “facts”: (a) children from higher-income families are more vul-

nerable to polio; children raised in less hygienic surroundings tend

to contract mild polio and immunity early in childhood while still

under protection from their mother’s antibodies; (b) parental con-

sent to vaccination appears to increase as a function of education

and income, where the better-off parents are much more likely to

give consent. The “no consent” groups appear to have more natural

immunity to polio than children from the better-off families. This

may be one of the only situations we know of where children growing

up in more resource-constrained contexts are conferred some type of

advantage.

References

[1] Edgington, E. S., & Onghena, P. (2007). Randomization tests

(4th ed.). New York: Chapman & Hall / CRC.

[2] Fisher, R. A. (1971). The design of experiments (9th ed.). New

York: Hafner.

[3] Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L.

M., & Woloshin, S. (2007). Helping doctors and patients make

sense of health statistics. Psychological Science in the Public

Interest, 8, 53–96.

22



[4] Hubert, L. J. (1987). Assignment methods in combinatorial

data analysis. New York: Marcel Dekker.

[5] Jones, E. E., & Harris, V. A. (1967). The attribution of attitudes.

Journal of Experimental Social Psychology, 3, 1–24.

[6] Tversky, A., & Kahneman, D. (1971). Belief in the law of small

numbers. Psychological Bulletin, 76, 105–110.

[7] Tversky, A., & Kahneman, D. (1974). Judgment under uncer-

tainty: Heuristics and biases. Science, 185, 1124–1131.

[8] Tversky, A., & Kahneman, D. (1981). The framing of decisions

and the psychology of choice. Science, 211, 453–458.

[9] Tversky, A., & Kahneman, D. (1983). Extensional versus intu-

itive reasoning: The conjunction fallacy in probability judgment.

Psychological Review, 90, 293–315.

23


