
Module 10: Sleuthing with
Probability and Statistics

My mother made me a scientist without ever intending to. Every Jewish
mother in Brooklyn would ask her child after school: ‘So? Did you learn
anything today?’ But not my mother. She always asked me a different
question. ‘Izzy,’ she would say, ‘did you ask a good question today?’

— Isidor Tabi (Nobel Prize in Physics, 1944; quotation given by John
Barell in Developing More Curious Minds, 2003)

Abstract: Statistical sleuthing is concerned with the use of vari-

ous probabilistic and statistical tools and methods to help explain or

“tell the story” about some given situation. In this type of statistical

detective work, a variety of probability distributions can prove useful

as models for a given underlying process. These distributions in-

clude the Bernoulli, binomial, normal, Poisson (especially for spatial

randomness and the assessment of “Poisson clumping”). Other elu-

cidating probabilistic topics introduced include Benford’s Law, the

“birthday probability model,” survival analysis and Kaplan-Meier

curves, the Monty Hall problem, and what is called the “secretary

problem” (or more pretentiously, the “theory of optimal stopping”).

An amusing instance of the latter secretary problem is given as a

Car Talk Puzzler called the “Three Slips of Paper”; a full listing of

the script from the NPR show is included that aired on February 12,

2011.
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1 Sleuthing Interests and Basic Tools

Modern statistics is often divided into two parts: exploratory and

confirmatory. Confirmatory methods were developed over the first

half of the 20th century, principally by Karl Pearson and Ronald

Fisher. This was, and remains, a remarkable intellectual accomplish-

ment. The goal of confirmatory methods is largely judicial: they are

used to weigh evidence and make decisions. The aim of exploratory

methods is different. They are useful in what could be seen as de-

tective work; data are gathered and clues are sought to enable us

to learn what might have happened. Exploratory analysis generates

the hypotheses that are tested by the confirmatory methods. Sur-

prisingly, the codification, and indeed the naming of exploratory data

analysis, came after the principal work on the development of confir-

matory methods was complete. John Tukey’s (1977) influential book

changed everything. He taught us that we should understand what

might be true before we learn how well we have measured it.

Some of the more enjoyable intellectual activities statisticians en-

gage in might be called statistical sleuthing—the use of various sta-

tistical techniques and methods to help explain or “tell the story”

about some given situation. We first give a flavor of several areas

where such sleuthing has been of explanatory assistance:

(a) The irregularities encountered in Florida during the 2000 Pres-

idential election and why; see, for example, Alan Agresti and Brett
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Presnell, “Misvotes, Undervotes, and Overvotes: The 2000 Presiden-

tial Election in Florida” (Statistical Science, 17, 2002, 436–440).

(b) The attribution of authorship for various primary sources; for

example, we have the seminal work by Mosteller and Wallace (1964)

on the disputed authorship of some of the Federalist Papers.

(c) Searching for causal factors and situations that might influence

disease onset; for example, “Statistical Sleuthing During Epidemics:

Maternal Influenza and Schizophrenia” (Nicholas J. Horton & Emily

C. Shapiro, Chance, 18, 2005, 11–18);

(d) Evidence of cheating and corruption, such as the Justin Wolfers

(2006) article on point shaving in NCAA basketball as it pertains to

the use of Las Vegas point spreads in betting (but, also see the more

recent article by Bernhardt and Heston [2010] disputing Wolfers’

conclusions);

(e) The observations of Quetelet’s from the middle 1800s that

based on the very close normal distribution approximations for hu-

man characteristics, there were systematic understatements of height

(to below 5 feet, 2 inches) for French conscripts wishing to avoid the

minimum height requirement needed to be drafted (Stigler, 1986, pp.

215–216);

(f) Defending someone against an accusation of cheating on a high-

stakes exam when the “cheating” was identified by a “cold-hit” pro-

cess of culling for coincidences, and with subsequent evidence pro-

vided by a selective search (that is, a confirmation bias). A defense

that a false positive has probably occurred requires a little knowledge

of Bayes’ theorem and the positive predictive value.
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(g) Demonstrating the reasonableness of results that seem “too

good to be true” without needing an explanation of fraud or miscon-

duct. An exemplar of this kind of argumentation is in the article,

“A Little Ignorance: How Statistics Rescued a Damsel in Distress”

(Peter Baldwin and Howard Wainer, Chance, 2009, 22, 51–55).

A variety of sleuthing approaches are available to help explain

what might be occurring over a variety of different contexts. Some of

those discussed in this monograph include Simpson’s Paradox, Bayes’

rule and base rates, regression toward the mean, the effects of culling

on the identification of false positives and the subsequent inability

to cross-validate, the operation of randomness and the difficulty in

“faking” such a process, and confusions caused by misinterpreting

conditional probabilities. We mention a few other tools below that

may provide some additional assistance: the use of various discrete

probability distributions, such as the binomial, Poisson, or those for

runs, in constructing convincing explanations for some phenomena;

the digit regularities suggested by what is named Benford’s law (Ben-

ford, 1938); a reconception of some odd probability problems by con-

sidering pairs (what might be labeled as the “the birthday probability

model”); and the use of the statistical techniques in survival analysis

to model time-to-event processes.1

1There are several quantitative phenomena useful in sleuthing but which are less than
transparent to understand. One particularly bedeviling result is called the Inspection Para-
dox. Suppose a light bulb now burning above your desk (with an average rated life of, say,
2000 hours), has been in operation for a year. It now has an expected life longer than 2000
hours because it has already been on for a while, and therefore cannot burn out at any earlier
time than right now. The same is true for life spans in general. Because we have not, as
they say, “crapped out” as yet, and we cannot die at any earlier time than right now, our
lifespans have an expectancy longer than what they were when we were born. This is good
news brought to you by Probability and Statistics!
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The simplest probability distribution has only two event classes

(for example, success/fail, live/die, head/tail, 1/0). A process that

follows such a distribution is called Bernoulli; typically, our concern

is with repeated and independent Bernoulli trials. Using an interpre-

tation of the two event classes of heads (H) and tails (T ), assume

P (H) = p and P (T ) = 1 − p, with p being invariant over repeated

trials (that is, the process is stationary). The probability of any se-

quence of size n that contains k heads and n−k tails is pk(1−p)n−k.

Commonly, our interest is in the distribution of the number of heads

(say, X) seen in the n independent trials. This random variable

follows the binomial distribution:

P (X = r) =

(
n

r

)
pr(1 − p)n−r ,

where 0 ≤ r ≤ n, and
(
n
r

)
is the binomial coefficient:(
n

r

)
=

n!

(n− r)!r!
,

using the standard factorial notation.

Both the binomial distribution and the underlying repeated Bernoulli

process offer useful background models against which to compare ob-

served data, and to evaluate whether a stationary Bernoulli process

could have been responsible for its generation. For example, suppose

a Bernoulli process produces a sequence of size n with r heads and

n − r tails. All arrangements of the r Hs and n − r T s should be

equally likely (cutting, say, various sequences of size n all having r

Hs and n − r T s from a much longer process); if not, possibly the

process is not stationary or the assumption of independence is inap-

propriate. A similar use of the binomial would first estimate p from

5



the long sequence, and then use this value to find the expected num-

ber of heads in sequences of a smaller size n; a long sequence could

be partitioned into segments of this size and the observed number

of heads compared to what would be expected. Again, a lack of fit

between the observed and expected might suggest lack of stationarity

or trial dependence (a more formal assessment of fit could be based

on the usual chi-square goodness-of-fit test).

A number of different discrete distributions prove useful in sta-

tistical sleuthing. We mention two others here, the Poisson and a

distribution for the number of runs in a sequence. A discrete ran-

dom variable, X , that can take on values 0, 1, 2, 3, . . . , follows a

Poisson distribution if

P (X = r) =
e−λλr

r!
,

where λ is an intensity parameter, and r can take on any integer value

from 0 onward. Although a Poisson distribution is usually considered

a good way to model the number of occurrences for rare events, it

also provides a model for spatial randomness as the example adapted

from Feller (1968, Vol. 1, pp. 160–161) illustrates:

Flying-bomb hits on London. As an example of a spatial distri-

bution of random points, consider the statistics of flying-bomb hits

in the south of London during World War II. The entire area is di-

vided into 576 small areas of 1/4 square kilometers each. Table 1

records the number of areas with exactly k hits. The total number

of hits is 537, so the average is .93 (giving an estimate for the inten-

sity parameter, λ). The fit of the Poisson distribution is surprisingly

good. As judged by the χ2-criterion, under ideal conditions, some 88
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Table 1: Flying-bomb hits on London.

Number of hits 0 1 2 3 4 5 or more
Number of areas 229 211 93 35 7 1
Expected number 226.74 211.39 98.54 30.62 7.14 1.57

per cent of comparable observations should show a worse agreement.

It is interesting to note that most people believed in a tendency of

the points of impact to cluster. If this were true, there would be a

higher frequency of areas with either many hits or no hits and a de-

ficiency in the intermediate classes. Table 1 indicates a randomness

and homogeneity of the area, and therefore, we have an instructive

illustration of the established fact that to the untrained eye, random-

ness appears as regularity or tendency to cluster (the appearance of

this regularity in such a random process is sometimes referred to as

“Poisson clumping”).

To develop a distribution for the number of runs in a sequence,

suppose we begin with two different kinds of objects (say, white (W)

and black (B) balls) arranged randomly in a line. We count the num-

ber of runs, R, defined by consecutive sequences of all Ws or all Bs

(including sequences of size 1). If there are n1 W balls and n2 B

balls, the distribution for R under randomness can be constructed.

We note the expectation and variance of R, and the normal approx-

imation:

E(R) =
2n1n2

n1 + n2
+ 1 ;

V (R) =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
;
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and
R− E(R)√

V (R)

is approximately (standard) normal with mean zero and variance

one. Based on this latter distributional approximation, an assessment

can be made as to the randomness of the process that produced

the sequence, and whether there are too many or too few runs for

the continued credibility that the process is random. Run statistics

have proved especially important in monitoring quality control in

manufacturing, but these same ideas could be useful in a variety of

statistical sleuthing tasks.

Besides the use of formal probability distributions, there are other

related ideas that might be of value in the detection of fraud or

other anomalies. One such notion, called Benford’s law, has captured

some popular attention; for example, see the article by Malcolm W.

Browne, “Following Benford’s Law, or Looking Out for No. 1” (New

York Times, August 4, 1998). Benford’s law gives a “probability

distribution” for the first digits (1 to 9) found for many (naturally)

occurring sets of numbers. If the digits in some collection (such as

tax returns, campaign finances, (Iranian) election results, or com-

pany audits) do not follow this distribution, there is a prima facie

indication of fraud.2

2The International Society for Clinical Biostatistics through its Subcommittee on Fraud
published a position paper entitled “The Role of Biostatistics in the Prevention, Detection,
and Treatment of Fraud in Clinical Trials” (Buyse et al., Statistics in Medicine, 1999, 18,
3435–3451). Its purpose was to point out some of the ethical responsibilities the statistical
community has in helping monitor clinical studies with public or personal health implications.
The abstract is given below, but we still refer the reader directly to the article for more detail
on a range of available statistical sleuthing tools (including Benford’s law) that can assist in
uncovering data fabrication and falsification:

8



Benford’s law gives a discrete probability distribution over the

digits 1 to 9 according to:

P (X = r) = log10(1 +
1

r
) ,

for 1 ≤ r ≤ 9. Numerically, we have the following:

Recent cases of fraud in clinical trials have attracted considerable media attention, but
relatively little reaction from the biostatistical community. In this paper we argue that
biostatisticians should be involved in preventing fraud (as well as unintentional errors),
detecting it, and quantifying its impact on the outcome of clinical trials. We use the term
“fraud” specifically to refer to data fabrication (making up data values) and falsification
(changing data values). Reported cases of such fraud involve cheating on inclusion criteria
so that ineligible patients can enter the trial, and fabricating data so that no requested
data are missing. Such types of fraud are partially preventable through a simplification of
the eligibility criteria and through a reduction in the amount of data requested. These two
measures are feasible and desirable in a surprisingly large number of clinical trials, and neither
of them in any way jeopardizes the validity of the trial results. With regards to detection
of fraud, a brute force approach has traditionally been used, whereby the participating
centres undergo extensive monitoring involving up to 100 per cent verification of their case
records. The cost-effectiveness of this approach seems highly debatable, since one could
implement quality control through random sampling schemes, as is done in fields other
than clinical medicine. Moreover, there are statistical techniques available (but insufficiently
used) to detect “strange” patterns in the data including, but no limited to, techniques for
studying outliers, inliers, overdispersion, underdispersion and correlations or lack thereof.
These techniques all rest upon the premise that it is quite difficult to invent plausible data,
particularly highly dimensional multivariate data. The multicentric nature of clinical trials
also offers an opportunity to check the plausibility of the data submitted by one centre by
comparing them with the data from all other centres. Finally, with fraud detected, it is
essential to quantify its likely impact upon the outcome of the clinical trial. Many instances
of fraud in clinical trials, although morally reprehensible, have a negligible impact on the
trial’s scientific conclusions. (pp. 3435–3436)
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r Probability r Probability

1 .301 6 .067

2 .176 7 .058

3 .125 8 .051

4 .097 9 .046

5 .079

Although there may be many examples of using Benford’s law for

detecting various monetary irregularities, one of the most recent ap-

plications is to election fraud, such as in the 2009 Iranian Presidential

decision. A recent popular account of this type of sleuthing is Carl

Bialik’s article, “Rise and Flaw of Internet Election-Fraud Hunters”

(Wall Street Journal, July 1, 2009). It is always prudent to remem-

ber, however, that heuristics, such as Benford’s law and other digit

regularities, might point to a potentially anomalous situation that

should be studied further, but violations of these presumed regulari-

ties should never be considered definitive “proof.”

Another helpful explanatory probability result is commonly re-

ferred to as the “birthday problem”: what is the probability that

in a room of n people, at least one pair of individuals will have the

same birthday. As an approximation, we have 1 − e−n
2/(2×365); for

example, when k = 23, the probability is .507; when k = 30, it is

.706. These surprisingly large probability values result from the need

to consider matchings over all pairs of individuals in the room; that

is, there are
(
n
2

)
chances to consider for a matching, and these inflate

the probability beyond what we might intuitively expect. We give

an example from Leonard Mlodinow’s book, The Drunkard’s Walk

(2009):
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Another lottery mystery that raised many eyebrows occurred in Germany on
June 21, 1995. The freak event happened in a lottery named Lotto 6/49,
which means that the winning six numbers are drawn from the numbers 1
to 49. On the day in question the winning numbers were 15-25-27-30-42-48.
The very same sequence had been drawn previously, on December 20, 1986.
It was the first time in 3,016 drawings that a winning sequence had been
repeated. What were the chances of that? Not as bad as you’d think. When
you do the math, the chance of a repeat at some point over the years comes
out to around 28 per cent. (p. 65)

2 Survival Analysis

The area of statistics that models the time to the occurrence of an

event, such as death or failure, is called survival analysis. Some

of the questions survival analysis is concerned with include: what is

the proportion of a population that will survive beyond a particular

time; among the survivors, at what (hazard) rate will they die (or

fail); how do the circumstances and characteristics of the population

change the odds of survival; can multiple causes of death (or failure)

be taken into account. The primary object of interest is the survival

function, specifying the probability that time of death (the term to

be used generically from now on), is later than some specified time.

Formally, we define the survival function as: S(t) = P (T > t),

where t is some time, and T is a random variable denoting the time

of death. The function must be nonincreasing, so: S(u) ≤ S(v),

when v ≤ u. This reflects the idea that survival to some later time

requires survival at all earlier times as well.

The most common way to estimate S(t) is through the now ubiq-

uitous Kaplan–Meier estimator, which allows a certain (important)

11



type of right-censoring of the data. This censoring is where the cor-

responding objects have either been lost to observation or their life-

times are still ongoing when the data were analyzed. Explicitly,

let the observed times of death for the N members under study be

t1 ≤ t2 ≤ · · · ≤ tN . Corresponding to each ti is the number of

members, ni, “at risk” just prior to ti; di is the number of deaths

at time ti. The Kaplan–Meier nonparametric maximum likelihood

estimator, Ŝ(t), is a product:

Ŝ(t) =
∏
ti≤t

(1 − di
ni

) .

When there is no right-censoring, ni is just the number of survivors

prior to time ti; otherwise, ni is the number of survivors minus the

number of censored cases (by that time ti). Only those surviving

cases are still being observed (that is, not yet censored), and thus

at risk of death. The function Ŝ(t) is a nonincreasing step function,

with steps at ti, 1 ≤ i ≤ N ; it is also usual to indicate the censored

observations with tick marks on the graph of Ŝ(t).

The original Kaplan and Meir article that appeared in 1958 (Ka-

plan, E. L., & Meier, P., “Nonparametric Estimation From Incom-

plete Observations,” Journal of the American Statistical Associa-

tion, 53, 457–481), is one of the most heavily cited papers in all of the

sciences. It was featured as a “Citation Classic” in the June 13, 1983

issue of Current Contents: Life Sciences. As part of this recog-

nition, Edward Kaplan wrote a short retrospective that we excerpt

below:

This paper began in 1952 when Paul Meier at Johns Hopkins University (now
at the University of Chicago) encountered Greenwood’s paper on the duration
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of cancer. A year later at Bell Telephone Laboratories I became interested in
the lifetimes of vacuum tubes in the repeaters in telephone cables buried in
the ocean. When I showed my manuscript to John W. Tukey, he informed me
of Meier’s work, which already was circulating among some of our colleagues.
Both manuscripts were submitted to the Journal of the American Statistical
Association, which recommended a joint paper. Much correspondence over
four years was required to reconcile our differing approaches, and we were
concerned that meanwhile someone else might publish the idea.

The nonparametric estimate specifies a discrete distribution, with all the
probability concentrated at a finite number of points, or else (for a large
sample) an actuarial approximation thereto, giving the probability in each of
a number of successive intervals. This paper considers how such estimates
are affected when some of the lifetimes are unavailable (censored) because
the corresponding items have been lost to observation, or their lifetimes are
still in progress when the data are analyzed. Such items cannot simply be
ignored because they may tend to be longer-lived than the average. (p. 14)

To indicate the importance of the Kaplan–Meier estimator in sleuth-

ing within the medical/pharmaceutical areas and elsewhere, we give

the two opening paragraphs of Malcolm Gladwell’s New Yorker ar-

ticle (May 17, 2010), entitled “The Treatment: Why Is It So Difficult

to Develop Drugs for Cancer?”:

In the world of cancer research, there is something called a Kaplan–Meier
curve, which tracks the health of patients in the trial of an experimental
drug. In its simplest version, it consists of two lines. The first follows the
patients in the “control arm,” the second the patients in the “treatment arm.”
In most cases, those two lines are virtually identical. That is the sad fact
of cancer research: nine times out of ten, there is no difference in survival
between those who were given the new drug and those who were not. But
every now and again—after millions of dollars have been spent, and tens of
thousands of pages of data collected, and patients followed, and toxicological
issues examined, and safety issues resolved, and manufacturing processes fine-
tuned—the patients in the treatment arm will live longer than the patients in
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the control arm, and the two lines on the Kaplan–Meier will start to diverge.
Seven years ago, for example, a team from Genentech presented the results

of a colorectal-cancer drug trial at the annual meeting of the American Society
of Clinical Oncology—a conference attended by virtually every major cancer
researcher in the world. The lead Genentech researcher took the audience
through one slide after another—click, click, click—laying out the design and
scope of the study, until he came to the crucial moment: the Kaplan–Meier.
At that point, what he said became irrelevant. The members of the audience
saw daylight between the two lines, for a patient population in which that
almost never happened, and they leaped to their feet and gave him an ovation.
Every drug researcher in the world dreams of standing in front of thousands
of people at ASCO and clicking on a Kaplan–Meier like that. “It is why we
are in this business,” Safi Bahcall says. Once he thought that this dream
would come true for him. It was in the late summer of 2006, and is among
the greatest moments of his life. (p. 69)

A great deal of additional statistical material involving survival

functions can be helpful in our sleuthing endeavors. Survival func-

tions may be compared over samples (for example, the log-rank test),

and generalized to accommodate different forms of censoring; the

Kaplan–Meier estimator has a closed-form variance estimator (for

example, the Greenwood formula); various survival models can in-

corporate a mechanism for including covariates (for example, the

proportional hazard models introduced by Sir David Cox; see Cox

and Oakes (1984): Analysis of Survival Data). All of the usual

commercial software (SAS, SPSS, SYSTAT) include modules for sur-

vival analysis. And, as might be expected, a plethora of cutting edge

routines are in R, as well as in the Statistics Toolbox in MATLAB.
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3 Sleuthing in the Media

One of the trite quantitative sayings that may at times drive indi-

viduals “up a wall” is when someone says condescendingly, “just do

the math.” This saying can become a little less obnoxious when

reinterpreted to mean working through a situation formally rather

than just giving a quick answer based on first impressions. We give

two examples of this that may help: one is called the Monty Hall

problem; the second is termed the Secretary problem.

In 1990, Craig Whitaker wrote a letter to Marilyn vos Savant’s

column in Parade magazine stating what has been named the Monty

Hall problem:3

Suppose you’re on a game show, and you’re given the choice of three doors.
Behind one door is a car; behind the others, goats. You pick a door, say No.
1, and the host, who knows what’s behind the doors, opens another door, say
No. 3, which has a goat. He then says to you, ‘Do you want to pick door No.
2?’ Is it to your advantage to switch your choice? (p. 16)

The answer almost universally given to this problem is that switching

does not matter, presumably with the reasoning that there is no way

for the player to know which of the two unopened doors is the winner,

and each of these must then have an equal probability of being the

winner. By writing down three doors hiding one car and two goats,

and working through the options in a short simulation, it becomes

clear quickly that the opening of a goat door changes the information

one has about the original situation, and that always changing doors
3As an interesting historical note, the “Monty Hall” problem has been a fixture of prob-

ability theory from at least the 1890s; it was named the problem of the “three caskets” by
Henri Poincaré, and is more generally known as (Joseph) Bertrand’s Box Paradox
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doubles the probability of winning from 1/3 to 2/3.4

An enjoyable diversion on Saturday mornings is the NPR radio

show, Car Talk, with Click and Clack, The Tappet Brothers (aka

Ray and Tom Magliozzi). A regular feature of the show, besides

giving advice on cars, is The Puzzler; a recent example on Febuary

12, 2011 gives us another chance to “do the math.” It is called the

Three Slips of Paper, and it is stated as follows on the Car Talk

website:

Three different numbers are chosen at random, and one is written on

each of three slips of paper. The slips are then placed face down on

the table. You have to choose the slip with the largest number. How

can you improve your odds?

The answer given on the show:

Ray: This is from Norm Leyden from Franktown, Colorado. The

date on it is 1974—I’m a little behind.
4To show the reach of the Monty Hall problem, we give the abstract for an article by

Herbranson and Schroeder (2010): “Are Birds Smarter Than Mathematicians? Pigeons
(Columba livia) Perform Optimally on a Version of the Monty Hall Dilemma” (Journal of
Comparative Psychology, 124, 1–13):

The “Monty Hall Dilemma” (MHD) is a well known probability puzzle in which a player
tries to guess which of three doors conceals a desirable prize. After an initial choice is made,
one of the remaining doors is opened, revealing no prize. The player is then given the option
of staying with their initial guess or switching to the other unopened door. Most people
opt to stay with their initial guess, despite the fact that switching doubles the probability
of winning. A series of experiments investigated whether pigeons (Columba livia), like most
humans, would fail to maximize their expected winnings in a version of the MHD. Birds
completed multiple trials of a standard MHD, with the three response keys in an operant
chamber serving as the three doors and access to mixed grain as the prize. Across experi-
ments, the probability of gaining reinforcement for switching and staying was manipulated,
and birds adjusted their probability of switching and staying to approximate the optimal
strategy. Replication of the procedure with human participants showed that humans failed
to adopt optimal strategies, even with extensive training. (p. 1)
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Three different numbers are chosen at random, and one is written

on each of three slips of paper. The slips are then placed face down

on the table. The objective is to choose the slip upon which is written

the largest number.

Here are the rules: You can turn over any slip of paper and look

at the amount written on it. If for any reason you think this is the

largest, you’re done; you keep it. Otherwise you discard it and turn

over a second slip. Again, if you think this is the one with the biggest

number, you keep that one and the game is over. If you don’t, you

discard that one too.

Tommy: And you’re stuck with the third. I get it.

Ray: The chance of getting the highest number is one in three. Or

is it? Is there a strategy by which you can improve the odds?

Ray: Well, it turns out there is a way to improve the odds—and

leave it to our pal Vinnie to figure out how to do it. Vinnie’s strategy

changes the odds to one in two. Here’s how he does it: First, he picks

one of the three slips of paper at random and looks at the number.

No matter what the number is, he throws the slip of paper away.

But he remembers that number. If the second slip he chooses has a

higher number than the first, he sticks with that one. If the number

on the second slip is lower than the first number, he goes on to the

third slip.

Here’s an example. Let’s say for the sake of simplicity that the

three slips are numbered 1000, 500, and 10.

Let’s say Vinnie picks the slip with the 1000. We know he can’t

possibly win because, according to his rules, he’s going to throw that

slip out. No matter what he does he loses, whether he picks 500 next

or 10. So, Vinnie loses—twice.
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Now, let’s look at what happens if Vinnie starts with the slip with

the 500 on it. If he picks the 10 next, according to his rules, he

throws that slip away and goes to the 1000.

Tommy: Whopee! He wins.

Ray: Right. And if Vinnie picks the 1000 next, he wins again!

Finally, if he picks up the slip with the 10 on it first, he’ll do,

what?

Tommy: Throw it out. Those are his rules.

Ray: Right. And if he should be unfortunate enough to pick up

the one that says 500 next, he’s going to keep it and he’s going to

lose. However, if his second choice is not the 500 one but the 1000

one, he’s gonna keep that slip—and he’ll win.

If you look at all six scenarios, Tommy will win one in three times,

while Vinnie will win three times out of six.

Tommy: That’s almost half!

Ray: In some countries.

One particularly rich area in probability theory that extends the

type of Car Talk example just given is in the applied probability

topic known as optimal stopping, or more colloquially, “the secre-

tary problem.” We paraphrase the simplest form of this problem

from Thomas Ferguson’s review paper in Statistical Science (1989),

“Who Solved the Secretary Problem?”: There is one secretarial po-

sition to be filled from among n applicants who are interviewed se-

quentially and in a random order. All applicants can be ranked from

best to worse, with the choice of accepting an applicant based only

on the relative ranks of those interviewed thus far. Once an applicant

has been rejected, that decision is irreversible. Assuming the goal is

to maximize the probability of selecting the absolute best applicant,
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it can be shown that the selection rules can be restricted to a class

of strategies defined as follows: for some integer r ≥ 1, reject the

first r − 1 applicants and select the next who is best in the relative

ranking of the applicants interviewed thus far. The probability of

selecting the best applicant is 1/n for r = 1; for r > 1, it is

(
r − 1

n
)

n∑
j=r

1

j − 1
.

For example, when there are 5 (= n) applicants, the probabilities of

choosing the best for values of r from 1 to 5 are given in the following

table:

r Probability

1 1/5 = .20

2 5/12 ≈ .42

3 13/30 ≈ .43

4 7/20 = .35

5 1/5 = .20

Thus, because an r value of 3 leads to the largest probability of about

.43, it is best to interview and reject the first two applicants and then

pick the next relatively best one. For large n, it is (approximately)

optimal to wait until about 37% (≈ 1/e) of the applicants have been

interviewed and then select the next relatively best one. This also

gives the probability of selecting the best applicant as .37 (again,

≈ 1/e).

In the Car Talk Puzzler discussed above, n = 3 and Vinnie uses

the rule of rejecting the first “interviewee” but then selects the next
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that is relatively better. The probability of choosing the best there-

fore increases from 1/3 to 1/2.

Any beginning statistics class should always include a number

of formal tools to help work through puzzling situations. Several

of these are mentioned elsewhere in this monograph: Bayes’ theo-

rem and implications for screening using sensitivities, specificities,

and prior probabilities; conditional probabilities more generally and

how probabilistic reasoning might work for facilitative and inhibitive

events; sample sizes and variability in, say, a sample mean, and how

a confidence interval might be constructed that could be made as

accurate as necessary by just increasing the sample size, and without

any need to consider the size of the original population of interest;

how statistical independence operates or doesn’t; the pervasiveness

of natural variability and the use of simple probability models (such

as the binomial) to generate stochastic processes.
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