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Covariance Structure and Factor Models 
Mid-term exam answers 

 
Andrej: All statements in brackets are supplementary, comments to you and/or given to 
help the class understand better, and so they are not necessary for a full credit. 
 
1. The following diagram defines a structural equation model for data with two 

independent and two dependent manifest variables. For convenience, suppose all 
variables have a mean of zero. Write the structural equation for each of the dependent 
variables as a linear function exclusively of independent variables. For this and the 
following question, use an explicit notation for the individual variables and 
parameters, instead of using the vector/matrix notation that collects the same kinds of 
variables and parameters in vectors or matrices. For example, don’t combine  X1  and  
X2  into a two-element vector  [ ]1 2,X X′ =x . 

 
There are four independent variables  X1,  X2,  ζ1  and  ζ2, and so the dependent 
variables  Y1  and  Y2  should be written as linear combinations (functions) of only 
these independent variables as follows: 
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2. From the two equations you wrote for question (1), derive the equation to represent 
the covariance between the two dependent variables (call it COV(Y1,Y2)) exclusively 
by model parameters.  
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[Andrej: The validity of answer to this question depends on how students answered to 
question (1). And so the dependency should not be graded. That is, if a student 
correctly derived from a wrong answer to (a), a full credit should be given.] 
Covariance between  Y1  and  Y2  are derived from the equations given for question (1) 
as follows:  
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Since the error terms are not correlated with each other and with  X1  and  X2,  it 
becomes 
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[As I announced during the exam,  φ11 indicating the covariance between  X1  and  X2  
in the diagram model was a typo. It should have been  φ12.  If the mistaken  φ11  was 
taken as it was, it can be considered as an equality constraint  φ12 = φ11.  Then, the 
resulting derivation will be: 
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In addition, it should not change the identifiability of the model: With the equality 
constraint, the model is over-identified and the recursive rule still holds, and so it’s 
identifiable. Andrej: if a student does this, a full credit should be given as well.] 

3. For the model shown above, determine whether the model is identifiable. Whichever 
you determine, explain why it is, or is not, identifiable. (3 points) (b) The following 
model is identical to the model shown above except that each manifest variable in 
question (1) is now measured by two indicators as follows. Treat all unnamed path 
coefficients, loadings and covariances as free parameters (except for the path from an 
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error term to its DV which is always set to 1). Determine the identifiability of this 
model by the two-step rule and explain your conclusion. (4 points) 

 

(a) The path model given for question (1) is identifiable since it satisfies the recursive 
rule (i.e., there is no feedback loop of causal paths and the two error terms are not 
correlated with each other), which is a sufficient condition for identification. [In 
particular, it’s just identifiable since the number of distinctive data points (= 
4×5/2 = 10) is identical to the number of distinctive parameters: 5 path 
coefficients (γ11, γ12, γ21, γ22, β21), 4 variances of IV’s (φ11, φ22, ψ11, ψ22), and 1 
covariance between the two IV’s (φ12).] 

(b) In the first step of the two-step rule, we treat all 4 latent variables fully correlated 
and look at the identifiability of the resulting confirmatory factor model. This 
CFA model has a uni-factorial loading pattern with two indicators per factor (that 
is, every indicator is influenced by only one factor and every factor is measured 
by two indicators). In addition, all measurement error terms are mutually 
uncorrelated and all factors are allowed to correlate with each other. In 
consequence, this model satisfies the two indicator rule which is sufficient for 
identifiability and so passes the first step. 

In the second step of the two-step rule, we only consider the identifiability 
of the path modeling part among the latent variables, ignoring all indicators, 
which reduces to the path model given for question (1) and is identifiable. Since 
the two-step rule is a sufficient condition for identification of a general model, 
this general model is identifiable. [Andrej: the validity of identifiability of the 
second step per se should not be graded since it was asked before. Instead, how 
it’s used for the two-step rule should be graded. That is, if a student answers the 
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earlier question wrong, but correctly answers for the first step and accordingly 
concludes that this general model is not identifiable, then the student should get a 
full credit.] 

4. For a comparison between a nesting and a nested model, one can use the likelihood 
ratio test, the Lagrangian multiplier test or the Wald test. While the LR test requires 
fitting both models, fitting only one model is sufficient for the other two tests. 
Specifically, the LM test only uses estimates for the nested model whereas the Wald 
test only uses estimates for the nesting model. Particularly when only one parameter 
is considered, the LM and the Wald statistic are readily available in most SEM fitting 
program, namely modification index and squared critical ratio ( )( )2 avarθ θ , 
respectively. For such a case of  df-difference = 1 with a constraint  θ = 0 for a 
particular parameter in the nested model, state the null hypothesis for each of the LM 
and the Wald test. When statistical results suggest a rejection of both null hypotheses, 
what should you do with the currently fit model that is either the nesting or the nested 
model? 

For both statistics, the null hypothesis is the same: θ = 0 [or equivalently, 
2 2
nested nesting 0χ χ− = , or  MI = 0 and W = 0, all defined in the population]. However, the 

same null hypothesis is tested differently by the LM and the Wald statistic, though a 
rejection of them imply “necessarily” the same conclusion, 0θ ≠ . Since the LM 
statistic is based on the nested model with the wrong constraint θ = 0 imposed, we 
should reject the fit model and respecify θ as a free parameter. The Wald statistic is 
computed with estimates for the nesting model where  θ  is correctly specified as a 
free parameter, and its specification is statistically supported. Thus, we should retain  
θ  as a free parameter. 

5. Comparative fit indices  Δ1  (a.k.a., Normed Fit Index) and  ρ2  (a.k.a., Tucker-Lewis 
Index) are defined as follows: 

 

2 2

2 2

1 2 22 , 1
11

b m b m

b m b m b m b m

b bb b

b b

F F
F F df df df df

FF
df N df

χ χ
χ χ ρ

χχ

− −
− −

Δ = = = =
− −

−

 

where  F,  χ2,  and  df  represent, respectively, fit function estimates, chi-square 
estimates and model degrees of freedom, and the subscripts  b  and  m  indicate, 
respectively, the baseline (or independence) and a hypothesized model. Both of these 
(goodness of fit) indices are relative to a baseline fit as a worst fit given the data. 
These indices differ in two aspects:  dfm  and  N.  That is, while  Δ1  does not take the 
model  df  and the sample size into account,  ρ2  incorporates both of them into the 
formula. Describe how different levels of  dfm  and  N  would affect  ρ2.  
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Once we have a dataset with a certain sample size, the basedline model’s fit  Fb  (and 
2
bχ ) and degrees of freedom  dfb  are fixed (and so the denominator of the  ρ2  formula 

is fixed as well). In contrast,  Fm  and  dfm  will be determined by what kind of model 
is proposed. What determines the numerator of the  ρ2  formula is relative 
improvement of fit per degree of freedom from the fixed, worst model. Thus, for two 
alternative models with different  df  [not necessarily one nested in the other] the 
numerator will be smaller for the one with the smaller badness of fit per  df  (i.e., 
more effectively fitting model per  df). [In this regard,  Δ1  is expected less than 1 
(unless it’s a just-identified model) even when the proposed model is correct, due to 
sampling error. However,  ρ2  is expected 1 if the proposed model is correct.] 

To see the effect of different sample sizes, we consider a particular proposed 
model so as to fix  dfm. Different sample sizes will mostly affect the denominator of 
the  ρ2  formula, smaller  N  resulting in larger  ρ2  if   Fm  doesn’t change by  N  
which is in practice unlikely. [More realistically, when the model is correct, as  N  
grows  Fm  will become smaller and increase  ρ2,  while the denominator becomes 
larger and decreases  ρ2.  Thus, there will be a trade-off by increasing  N:  Increasing 
a small  N  is beneficial since the increasing numerator will be more than the 
increasing denominator. But such positive net outcome will become negative once  N  
reaches some unknown optimal level. When the model is wrong, the effect of  N  is 
not obvious in that it involves the non-centrality in  Fm  or  2

mχ .]  

6. The following diagram shows 4 possible cases for a chi-square test, where the 
horizontal and vertical axes represent computed p-value and power, respectively. The 
marked horizontal and vertical cut-off locations correspond to nominal levels of type 
I error and power (marked “alpha” and “p0”, respectively). Thus, the region indicated 
by “Acceptable” is a situation where the p-value is greater than the alpha level while 
the test is estimated to have sufficient power, suggesting the proposed model to be 
accepted (or equivalently, whatever constraints that caused the tested chi-square 
statistic are correct). In contrast, the region indicated by “Unacceptable” is a situation 
where the p-value is small enough to be significant although the test is not sufficiently 
powerful, hence suggesting that the proposed model is not acceptable (or equivalently, 
the imposed constraints are not correct). There are 2 more cases left in the diagram, 
which are indicated to be ambiguous and are so for different reasons. Explain why 
these situations are ambiguous (use examples as relevant), and provide at least 2 
remedies for each ambiguous situation. 
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In case of Ambiguous-1, computed p-value is less than alpha, which suggests the null 
hypothesis to be rejected (i.e., the constraints causing the test chi-square are not 
correct). But the test is sufficiently powerful, and so what’s significant could be a tiny 
effect detected by an excessive power. A typical example of such a case is when 
sample size is “too” large. To alleviate such excessive power, we may (a) decrease 
the alpha level so that the rejection becomes harder. (b) [Though controversial,] we 
may reduce the same size to an optimal size if it’s known. (c) [More problematic] 
remedy is to reduce the reliability of measurement so as to yield a weaker test.  

The other ambiguous case arises when the computed p-value is too large to 
reject the null hypothesis, but the test is not powerful enough to detect a legitimate 
effect. The test could be weak because the sample is too small or because measures 
are not [internally] reliable enough. Thus, to increase the power of testing, we may (a) 
increase alpha so as to make it easier to reject the null hypothesis at the expense of 
tolerating a higher type I error rate (if the null hypothesis is indeed true). (b) If 
affordable, we may increase the sample size so as to reduce the sampling error. (c) 
Particularly when the measurement of latent variables is not reliable enough, we may 
add more indicators or replace the current less reliable indicators with more reliable 
ones. 
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