The Problem of Factor Scores

5.1. FACTOR ANALYSIS AS A TEST CONSTRUCTION
DEVICE

It might seem that a factor-analytic study would be painfully incomplete if we did
not obtain some assessment of the common factors themselves (i.e., of the
common factor scores, or factor values, of the individual subjects in the study) as
well as estimates of factor loadings. One reason why a factor-analytic study can
give the appearance of leading nowhere while it actually leads somewhere is that
it may serve as a guide to the construction of homogeneous tests of the traits or
generic properties identified in the analysis. Because there may be a time gap
between the publication of the factor analysis and the appearance of the conse-
quent invented test, we may fail to notice the follow-up work that adds a practical
Justification to the earlier study.

For example, Thurstone's work yielding a set of correlated *'primary mental
abilities™" led, through a series of refinements of sets of items, to a battery of
standardized and easily usable tests of those abilities. The simple sum scores
(total number of right answers—the “‘number right'* score) on these developed
cognitive tests can reasonably be thought of as the ultimate result of the factor-
analytic work and as good *‘practical’’ measures of the factors identified. In the
case of Thurstone's primary mental abilities, it is an epen question whether the
outcome of the whole enterprise was worthwhile. McNemar! (as mentioned
previously) has surveyed evidence in support of a conclusion that the measures of
general intelligence favored in Britain that stem naturally from the earliest factor-

'See MeNemar (1964),
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analytic tradition prove more effective in further research than the primary abili-
ties that stem from Thurstone's oblique simple structure notions. If this issue
remains controversial, it still serves to show that the effectiveness of research
based on mental tests can rest on the effectiveness of the prior analysis on which
the test construction was based.

The phrase “‘construction of homogeneous tests’ was used as though its
meaning is already quite obvious. Intuitively, we would expect that a set of
measures that were indicators of just one generic property that they shared in
common would be scored collectively to give a single measure of that property,
and we would regard them as a homogeneous set of indicators (homoge-
neous = of the same kind). In the context of psychological or educational testing,
such a combination of measures is said to yield a homogeneous test. The theory
of tests and test construction tends to be dealt with rather separately from the
theory of factor analysis. One reason for this lies in doubts as to whether the
common factor model can be applied to dichotomous items. Crude practical
devices have been developed for selecting and combining items intended to form
homogeneous tests, and there have been some conceptual confusions about the
meaning and the assessment of test homogeneity. But it seems reasonable to
recognize that the primary theoretical conception of a homogeneous test (or set of
measures) is one whose items measure only one (generic) property in common,
When that property is held constant, the measures are statistically independent
and certainly uncorrelated. In the context of this kind of thinking, we call the
generic property a latent trait. The view taken here is that common factors and
latent traits arc essentially the same quantities-——they are quantities that explain
the relations among our measures. However, dichotomous items do not meet the
usual assumptions of common factor analysis (e.g., we cannot assume their
regressions on the factors are linear). Hence theory for items has, regrettably,
been developed separately from factor theory, and their essential unity is not
always recognized. More will be said about this in Chapter 7. The point here is
that factor analysis, or closely related techniques, does provide a very good way
to construct homogeneous tests of interesting generic properties of the subjects
we study, though its role as a test construction device is not always recognized.

To repeat the central point of this section, although the connections are not
always obvious from the literature, a usual sequel to factor analysis is the con-
struction of a test intended to measure a common factor that has been *‘identi-
fied,” **discovered,”” or “‘invented.”” Where such tests are produced, we do not
need factor scoring procedures as such,

5.2. THE ESTIMATION OF COMMON FACTORS

Suppose that we know the population parameters of the common factor model in
some application of it. That is, we know the nm factor loadings in the factor
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pattern and the n residual variances, and, if the factors are correlated, we know
their correlations, We can draw a subject from the population and measure his or
her values of the n variables. The question is, what can we say about the m factor
"scores”’ of the individual, corresponding to the n observed scores? It should be
immediately clear that the factor scores are not uniquely determined by the
observed scores. This fact has worried some workers in the field and is some-
times perceived as a basic fault of the model, justifying its abandonment in favor
of, for example, principal components or images (Section 2.3). The position
taken here is that we should not expect factor scores, measures of generic
properties, to be exactly determined by means of a small number of empirical
measures, each with its specific property and error of measurement, any more
than we expect a population parameter to be precisely determined by statistics
from a small sample of subjects, If the measures are drawn from a well-defined,
appropriate behavior domain, they tend to yield estimates of factors that become
increasingly precise as the number of measures is increased, just as the subjects
drawn from a well-defined population tend to yield estimates of the model
parameters that become increasingly precise as the number of subjects is in-
creased, If we adopt a conception of our field of inquiry as a behavior domain,
we may think of the factor score as a limit of its estimate as we draw all possible
variables from the behavior domain. (See Section 5.2.)

To return to our question: We know the regression wei ghts of the n observed
variables on the m common factors, and we assumed at the outset that the
regressions are linear, It is natural to ask if we can now reverse the roles of the
observed variables and the factors. That is, we wish to estimate the factors by
determining their regressions on the observed variables. We want m linear com-
binations £, of the n observed variables that will have maximum correlations
with the unknown factors in the population, or, with the right scaling of variables
and factors, we want m linear combinations X, whose discrepancies (x, — £,
from the unknown factors x,, in the population are as small as possible (i.c., have
minimum variance), Let us write

&= bM_es_.,...h (-l COPST (5.2.1)

to represent a general expression for the regression estimates £, of the factor
scores x,. We need a procedure for computing the factor-variable (f-v) regres-
sion weights b, (i.e., the regression weights of the factors on the tests), The f~v
regression weights, b, can be computed by the standard formulas of regression
theory from knowledge of the correlations between the factors and the variables
and the correlations between the variables. As usual we assume that a computer
program is looking after this problem for us. The f~v regression weights are
always necessarily different from the v—f regression weights (i.e., the factor
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Iqadings). (They would be the same theoretically if the observed variables were
uncorrelated, but then all the regression weights would be zero; there would be
no common factors, and the whole case would have degenerated into triviality.)
We can arrange the f~v regression weights b,,; in either an (m X n) matrix as the
order of its coefficients suggests or transpose it as is usually convenient and have
the computer print it out as an (n X m) matrix, of which the pth column contains
the n regression weights of the pth factor on the n variables. This matrix would
be unambiguously recognizable in computer printout or in a program write up, if
it is described as ‘‘regression weights for estimating factors,” *‘weights for
least-squares estimation of factor scores,” or a clearly equivalent phrase. It is
desirable to have in the printout also the multiple correlation between each factor
and the n variables. This is a fundamental quantity, as we can think of it as an
index of the precision of the estimates. We would not feel that we had used
enough measures to estimate their generic property if this coefficient were low.
(See following for typical coefficients). Table 5.2.1 gives the f-v regression
weights calculated for the Thurstone case, from (1) the orthogonal factor pattern
in Table 2,2.6; and (2) the oblique factor pattern in Table 3.2.2 and also gives the
multiple correlation of each factor with the variables. The estimates £, are

TABLE 5.2.1
Regression Welghts for Thurstone Case

(a) From Orthogonal Pattern (b) From Oblique Pattern

I 11 111 1 L III
1 451 -.135 -,028 .353 044 064
2 485 -,013 -.133 »391 049 ,071
3 263 -,025 -.054 226 .028 .041
4 -.152 572 =-,072 025 406 .056
5 -,110 .347 .013 .020 319 .044
6 -.019 224 -.072 .012 ,203 .028
7 -.126 -.139 .650 .025 L041  ,359
8 027 -,072 .197 .019 031 .269
) -.095 .023 .286 .017 .029 ,250
(c) Correlation Matrix (d) Cross-Correlation Matrix
of Estimates From of Estimates and Factors
Orthogonal Pattern From Orthogonal Pattern
¥ 1,000 -.072 -.069 £, .927 -.062 -.059

%3 -.072 1.000 -.098 T} .066 .872 -.084
3 -.069 -.098 1.000 ¥2-1064 -.086 855
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computed by combining the standard scores of each subject, using (5.2.1), with
these regression coefficients,

The mathematical theory of the problem reveals the following further proper-
ties of regression estimators;

I. By definition, each estimator £, is uncorrelated with its own residual
x, —%,, but also each estimator £, is uncorrelated with the residual Xg. = &, of
every other estimate.

2. In general, when the common factors x, in the model are uncorrelated
(i.e., when we have used the orthogonal model) the estimates £, are mutually
correlated, The correlation matrix of the estimates for the Thurstone matrix is
given in Table 5.2.1,

3. In gencral, when the common factors x, are uncorrelated, the estimator £,
of one factor can be correlated with the other m— | factors x, (g # p). The
cross-correlation matrix of estimators and factors for the Thurstone case is shown
in Table 5.2.1.

4. The regression estimators are biased, in the sense that if we could select a
subpopulation of subjects all having the same factor score X,, the mean of the
estimator for the selected subpopulation would not be the same as the factor score
on the basis of which they were selected. This causes a worry that if we had
groups of subjects selected on the basis of experimental treatments and we
wished to compare their mean factor scores, we might be misled by a comparison
of means of regression estimators.

The properties 2 and 3 are rightly thought of as unfortunate defects of the
regression estimators, In practice, these correlations tend to be low, so perhaps
only theoretical purists should worry ubout them,

In practice and as already illustrated, we do not know the parameters of the
model but have to estimate them. In practice, therefore, we use estimated cor-
relations in the formulas for regression weights in place of the population values.

By definition, the regression estimators yield best estimators in the sense of
least squares and have maximum correlations with the factors in the given popu-
lation. They are based on one clear notion of a **best’* choice for the population
as a whole.

An alternative to regression estimation arises when we consider just one
subject drawn from the population, not necessarily at random, and we want
“best"" estimates of just that subject’s factor scores, We have no concern now
with any other individual and certainly not with the population as a whole. There
are two recognized ways to get best estimates of just one individual's factor
scores, which yield the same answer so it can be encountered under two distinet
headings, The first way is to get maximum likelihood (ML) estimates of the
factor scores, That is, given the model itself, which states that, for this and other
individuals,
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m

,
Y= 2hte J= i n
=

we will assume that the subject's n unique factors e, . . . , e, are normally
distributed variables and choose values of x,, . . . , x,, that make the obtained
values of y,, . . . , y, maximally probable. The second way is known in the
literature as weighted least squares, but to avoid ambiguity (as this sounds like a
variation of the regression estimates) and for another reason it would be better to
call it specifically weighted least-squared residuals (WLSR), We choose values

of x\, ..., x, for our individual to minimize the quantity
6=3% 5
- ; (5.2.2
P :
where
#n
&=y = 2k, (5.2.3)
J=
That is, we choose numbers x|, . . . , x,, that minimize the sum of the ratios of

the squares of the n unique scores to the variances of those unigue scores. (This is
what is meant by weighted least-squared residuals. )

The mathematician, on being presented with the task of finding an expression
for the ML estimator of our individual's factor scores and with the task of finding
an expression for the WLSR estimator, announces that the same solution applies
to both problems. Again the problem yields an expression for a set of coeffi-
cients, let us say t,, calculated from knowledge of the factor loadings and
residual variances from which we shall compute the ML/WLSR estimators,
denoted by &, . . ., £, as

e

H
£, = b.M_ Loy (5.2.4)

[Note that we use u caret (') for the regression estimators and a tilde () for the
ML/WLSR estimators.]

The expression for ML/WLSR estimates was first given by Bartlett, and these
estimates are often referred to in the literature as the Bartlett estimates of factor
scores, We shall call them ML/WLSR estimates. As in the case of the regression
estimates, we can expect to find the weights 1, printed out by a computer
program either as an (m X n) matrix or transposed into an (n X m) matrix.
Unambiguous titles or descriptions would include **weights for maximum like-
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lihood/weighted least-squares estimators of factor scores’' and **Bartlett scoring
weights."" Table 5,2.2 gives the ML weights for the Thurstone case (from Tables
2.2.2 and 3.2.2).

Although we have discussed this estimation method as though it is for just one
individual, obviously we can apply it to each of many individuals drawn from the
population, and we can in fact ask what properties the ML estimates have in the
population. We find the following:

1. Necessarily, they have lower correlations with the common factors than do
the regression estimates. In practice, the difference would usually be small.

2. Like the regression estimates, the ML estimates are correlated with cach
other even when the factors themselves are uncorrelated.

3. Unlike the regression estimates, the ML estimates have zero correlations
with noncorresponding factors. Thus they are unambiguously related to *'the
right'" factors and unrelated to *‘the wrong'' factors,

4, Unlike the regression estimates, the ML estimates are unbiased. That is, if

TABLE 5.2.2
ML/WLSR Weights for Thurstone Case
(a) From " (b) From
Orthogonal Pattern Oblique Pattern
1 II 11 L I1 I1I
1 546 -.222 -,064 405 .0 .0
2 .553 -.044 -,228 469 .0 .0
3 317 -.052 -.097 .260 .0 .0
4 -,229 L790  -.167 Al 351 .0
5 =~-.165 473 -.020 .0 434 .0
6 ~-.038 .312 -,130 40 275, .0
7 -.198 -.266 .937 .0 .0 » 553
8 .019 -,127 .282 .0 .0 <414
9 142 -.001 404 .0 ol . 385
(¢) Correlation Matrix (d) Cross-Correlation
of Estimates Matrix of Estimates and
from Orthogonal Pattern Factors from Orthogonal
Pattern
¥ X, Xy Xy Xy Xy
X; 1.000 .079 .007 X, .992
X5 .079 1,000 104 Xy .865
X3 .077 104 1.000 X3 848
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we could select a subpopulation of subjects all having the same factor score X,
the mean of the estimator over the subpopulation selected would be x.. It rather
seems that properties 3 and 4 of ML estimators, compared with the regression
estimates, give the advantage to the ML estimates for both individual purposes
and research on groups. Given an individual drawn from the population, cer-
tainly we would use the ML estimator, and we can use the normal distribu-
tion to put confidence bounds on the true values in the usual way. For group
comparisons, unambiguous and unbiased estimates would generally seem
desirable.

A small technical point should be noted in passing. By the usual principles of
regression theory, the regression estimation procedure divides the factor score x

into two uncorrelated parts, the regression part X, and the residual X =&, .?..h
i5, we have

X =% +d, (5.2.5)
say, where

LN T Y (5.2.6)

and £, and d,, are uncorrelated. It turns out that the ML estimator £, itself can be
written as the sum of the factor score X, and a discrepancy that are uncorrelated.
That is, we have

£,=x,+38, 5.2.7)
say, where
b, =%, -~ (5.2.8)

and x, and &, are uncorrelated, The result is that the variance of X, is the sum of
the (unit) variance of x,, and the variance of 8, the error about the true value. If
the computer program prints out the variances of the ML estimators, these must
be greater than one, and we can compute the standard deviation of the error term
and hence get confidence bounds. If the computer program prints out the vari-
ances of the regression estimators, these must be less than one, and of course we
cannot obtain confidence bounds, which are meaningless for biased estimators.
This paragraph is a technical aside that can be ignored, except that the reader
should note the implied device for deciding whether given factor score estimates,
inadequately labeled, are regression estimates or ML estimates. If their variances
are less than one, they are regression scores, If their variances are greater than
one, they are ML scores, To apply this test, it is necessary to know that they are
one of these two, however,

Other estimators have been described in the literature but do not seem to have
anything to recommend them. Package programs often contain estimates that
cannot be recommended without enough information for one to be able to tell
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what device is being employed. In particular, the factor pattern itself, the v—f
regression weight matrix, is sometimes used as though it were the f~v regression
weight matrix. There is absolutely no foundation for this procedure in theory. It
does not produce nonsensical results in general, however. In multivariate statis-
tical methods, crude weighting methods have a way of giving results that are not
at all horrible in comparison with optimal methods,

From one point of view, we could describe the process discussed in m.nﬁmc:
5.1 of developing a test out of factor-analytic work as the process of assigning
weights 10 a set of items equal to +1, =1, or 0, according to whether their factor
loadings are *‘high positive,”” *‘high negative,” or "‘low."" Such crude but
convenient scoring systems tend to yield sums of variables that are very highly
correlated with combinations of them that employ ‘‘best'’ weights, in some
precise sense of the word best, so it often may not seem worthwhile to work with
optimal weights, .

We can gain a sense of the typical numerical properties of factor score esti-
mates by considering the special case of just one factor with equal factor _cma_dmm
yielding equally correlated variables. In this case, the square of the nc:n_w:s._._
between the factor and its estimate from the n tests, whether regression or ML, is

given by

.I E. .u..n.__.
P D) = T = (922

where r is the correlation between any two variables y,, y,. (This expression is
the same as the Spearman—Brown formula for the effect of test length on reliabil-
ity. Here it is just a special case of factor score estimation theory. Whether or not
true scores are factor scores depends on nonmathematical considerations,) By
prevailing standards, in social science research, we might feel content with a
correlation of about .85 or more between our estimate and that which we are
estimating. By such a standard, it seems that 5 variables whose average correla-
tion is above .4 or 2 with a correlation above .6 or 10 with an average above .2
will serve to determine a factor adequately.

The results on regression estimates and ML/WLSR estimates of common
factor scores generalize, though not without complications, to models for linear
structural relations as discussed in Chapter 4. In such models, if we wish to
estimate the latent variables from the corresponding observed variables, we can
do so with expressions that are of the same form as the ones used in the common
factor model. However, in order to apply them it is necessary to do some extra
manipulations of the parameter values obtained by fitting the model in order to
compute the residual covariances of the observed variables about their regres-
sions on the unobserved variables, to get ML/WLSR estimates, and to compute
the covariances of the unobserved variables in order to get the regression esti-

5.3, THE INDETERMINACY OF COMMON FACTORS 165

mates. A description of these manipulations without the language of matrix
algebra would be quite uninformative.?

53. THE INDETERMINACY OF COMMON FACTORS

A number of investigators working on the mathematical theory of factor analysis
have become convinced that common factor scores are seriously indeterminate
quantities. As shown in equation (5.2.5), the unknown factor score X, is the sum
of its computable estimate £, and the unknown residual d . It trns out that we

can always invent arbitrary numbers d,, to add to £, that wﬂna arbitrary numbers
X, that have all the required properties of factor scores. There has been disagree-
ment about the interpretation of the arbitrariness of the numbers x,. We can work
out the correlation between two sets of possible factor scores (estimates plus or
minus invented numbers) that are chosen to be as dissimilar as possible. (This is
a purely mathematical exercise, given the factor loadings.) The minimum possi-
ble correlation between alternative factor scores is given by 2p(x, £) — I,
where, as before, p*(x, £) is the square of the multiple correlation between the
factor x and the n tests. If p(x, £) is :z\mﬁuvnoianﬁ_w .707), which does not
seem a very low correlation, then p2(x, £) is 4, and the correlation between the
most dissimilar alternative factor scores that we can arbitrarily construct is zero.

The implications of this mathematical result are perhaps not yet fully under-
stood and are still subject to disagreement. Some investigators have taken it to
mean that the common factor model is subject to such a serious indeterminacy in
its fundamental measurements that it should not be used, even if we have no
interest in the factor scores themselves. The notion seems to be that if the factor
scores of a set of examinees are not well determined by their scores on a set of
tests, then the abstractive attributes that these scores serve to measure are not
well defined by the characteristics of the tests in the set. That is, if the scores on a
small number of items measuring 4 common property do not yield a unique score
for the property, then correlatively the common features of the items do not
provide a unique interpretation of the common property itself. Indeed, there is a
sense in which this can be true.

As implied earlier, if we can imagine that the tests in a factor analysis are
drawn from an infinite set of tests comprising a behavior domain, in which every

See McDonald and Burr (1967) for o review of these and further results on factor score
estimation. The importance of these results is probably diminishing as new, more general, models for
linear structural analysis are doveloped. In research work on groups of examinees, we would now be
likely to incorporate hypatheses about mean factor scores in models for simultaneous analysis In
several populations (Section 6.2) or for repeated-measures, multimode data (Section 6.3), with no
need to estimate individual factor scores and compare the means of the estimates teross groups of
exiniiness of across cotiditions,
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common factor has infinitely many tests with nonzero loadings on it, then in the
domain the common factor scores are correlated unity with their estimates from
the infinity of tests. Suppose two investigators independently draw nonoverlap-
ping subsets of tests from what is understood to be this behavior domain. Then
the correlation between their factor score estimates will be equal to the product of
the correlations of their estirates with the factor scores, as defined by the entire
behavior domain. This correlation must be positive. As each augments the given
set of tests to improve their estimates of the factor scores, the correlation between
their factor score estimates must increase until in the limit the estimates coincide
with each other and with the factor scores uniquely defined by the behavior
domain they are both, by agreement, drawing from.

On the other hand, suppose that two investigators were to begin with the same
set of tests, already factor analyzed, but with no idea of a defined behavior
domain to draw from. Each then independently chooses further tests to add to the
initial set to improve the estimation of the factors but with no concept of a
defined behavior domain to draw them from. The augmented sets of tests are
subject only to the requirement that the new tests have nonzero loadings on the
same factors as the initial set. In such a case, there is no mathematical or logical
reason why the two investigators should improve the agreement in their factor
score estimates as they increase the number of their tests. Indeed, as this number
becomes very large, the correlation between their estimates can be anything
between unity and the quantity 2p3(x, £) — 1, the minimum correlation between
arbitrary mathematical constructions of factor scores, where p2(x, £) is calculated
on the basis of the original, perhaps quite small, set of tests that both investigators
started from. If the squared multiple correlation between the factor and the original
tests is less than a half, then the correlation between their estimates can become
and remain negative,

The mathematical theory just summarized in English is based on an extreme
idealization of the process of inventing usable tests. Such idealizations are com-
mon in fields like classical physics, where the behavior of infinite homogeneous
entities is commonly worked out as a theoretical approximation to the behavior
of finite inhomogeneous entities. For the relation in our case between theory and
practice, we must first make a further examination of the concept of a behavior
domain.

We can imagine an exploratory factor analysis of a given, extremely large and
thus virtually infinite collection of tests, whose extension (the range of its mem-
bers) is defined by simple enumeration of its contents. In it, each factor score is
determined almost certainly by scores on extremely large subsets of the tests,
Given the tests and the factor analysis, the factor scores are measures of factor
attributes that are definable post facto by abstraction of the common properties of
the tests in those subsets. However, the collection of tests has not been supposed
to have a clear denotation, n set of defining characteristics that distinguish tests
that belong (and should belong) to the collection from those that do not (and
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should not). This means that two investigators cannot be conceived of as inde-
pendently drawing tests from this one collection, except in the literal sense that
they share a list of all the tests and agree (o choose tests out of that list. This will
not happen in practice, because there is just no reason why they should wish to
do such a thing. And if there is no agreed list, there is no reason, as we have
seen, why the investigators should approach agreement with each other,

On the other hand, if a behavior domain is a set of tests with a stated de-
notation of their attributes, enabling us to distinguish tests that have these
attributes from tests that do not, then two investigators can be conceived of as
drawing tests from this one behavior domain whenever they invent a set of tests
that possess the required denotation. We can then reasonably hope that as they
augment their sets of tests to improve the measures of their defined common
attributes, measures that in this case follow naturally from a confirmatory rather
than an exploratory factor analysis, they will approach agreement in their mea-
surements of these. The question of disagreement about the *interpretation™ of
the factors cannot arise as such in this case,

The conclusion we draw is that common factor scores appear to be centrally
and essentially defined on the basis of the generalizability of the tests we use to
tests we have not used that are in a clear sense of the same kind, in the sense that
factor score estimates from the tests we have used are estimates of the scores
defined by all the tests of that kind. As a special case of this, in classical test
theory, the score on a test of finite length estimates the *'true score™" that would
be obtained by augmenting the test to make one of infinite length, But unless the
items in the imagined test of infinite length have a clear denotation in terms of
their content, we can in theory find more than one test of infinite length that
contains a given finite test and more than one *‘true score'" that it is estimating.

In practice, the idealized theory described here can fail to approximate reality
well for a number of reasons, There can be and no doubt will be hidden ambigu-
ities in the denotation of the behavior domain, leading to distinct realizations of it
in the constructed tests (¢.g., hidden ambiguitics in the concept of extraversion
or of clinical anxiery). Also, it can be difficult or impossible to find many
exemplars of a concept that do not form groups on the basis of other charac-
teristics, which cause the number of common factors to multiply rapidly.

Whatever the difficulties of implementing behavior domain concepts in prac-
tice, we can use these concepts as a framework for examining a common alter-
native view of the problem of factor score indeterminacy. Some of those who
regard this problem as indicating a serious flaw in the common factor model have
suggested that we abandon the model in favor of other methods of analysis that
yield very similar results, yet with all their quantities (*‘loadings” and
"'scores’’) uniquely determined by the test scores even from a quite small
number of tests. For example, as shown in Chapter 2, principal component
theory and image analysis give close approximations to common factor loadings.
They also give close approximations to common factor score estimates. It has
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therefore been argued that, for example, principal component scores are prefera-
ble 1o common factor scores because they are determinate and known and also
that the methods are preferable to common factor analysis because they contain
no indeterminate, unknown quantities. This argument, however, does not take
into account the complementary facts that (1) the common factor score estimates
are also determinate, so there is no reason to substitute principal component
scores, for example, for estimates of common factor scores; (2) the principal
component scores cannot have higher correlations with the corresponding prin-
cipal component scores in a defined behavior domain from which the tests are
drawn than do common factor score estimates with their corresponding factor
scores in the domain. That is, principal components, images, and the like suffer a
greater problem of indeterminacy than do common factors, in the sense that they
have lower correlations with their counterparts in a defined behavior domain.

Some writers assert, then, that the common factor model has a serious indeter-
minacy problem in respect to its factor scores. Some further suggest that we
should therefore use component theory, image theory, or even ad hoc adaptations
of multidimensional scaling to the analysis of correlation coefficients as sub-
stitutes for the common factor model to achieve its intended purpose. In the
present state of knowledge, the reader need not feel coerced by these assertions,
Such alternative devices may be useful for certain purposes, but they have not
been shown to be improvements on common factor analysis, preferably in its
confirmatory form, for the purpose of investigating the generic properties of
tests.*

54. MATHEMATICAL NOTES ON CHAPTER 5

By the theory of regression already given in Section 1.6, given the (n % m)
matrix of regression weights F of the observed variables y on the factors x, the
(m % m) correlation matrix of the factors, P, and the (n ¥ n) correlation matrix
of the observed variables, R, we know that the correlation matrix S, of order
(n % m), of y and x is given by

S =FP.

Then by (1.6.16), applied to the present problem, the vector of regression esti-
mates X of x, required in (5.2.1), is given by

=By (5.4.1)

'In a penetrating article, Guttman (1955) extended earlier results of Kestelman and used them to
raise the prablem discussed in this section, Mulaik and McDonald (1978) and McDonald (1977) give
technical discussions of the issue, and MeDonald and Mulaik (1979) give 4 nontechnical review of
the question.
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where

B=R"'S (5.4.2)
or, alternatively,

B = R'FP. (5.4.3)
In the special case of uncorrelated factors, (5.4.3) reduces to

B=R"'F. (5.4.4)
To obtain the ML/WLSR estimates X, we minimize the quantity

¢ =(y - Fx)U-Xy = Fx) (5.4.5)

where, as usual, U? is the diagonal matrix of uniquenesses. The idea is to
minimize the sum of squares of an individual's residuals but weighted propor-
tionally to the variance of each residual in the population. The alternative ap-
proach via maximum likelihood leads us to maximize

b* = aa_c_n_u_; exp — w@ - Fx)'U-%(y - Fx) (5.4.6)

and, by inspection, the two problems must have the same solution. The
ML/WLSR estimator X of x turns out to be

£ = (FU2F)-'FU-Yy (5.4.7)
a result obtained by methods outside the scope of the algebra introduced in
Appendix Al.

In a computer program designed to produce factor scores after completing
estimation of the factor pattern and so on, we would expect to find that the
observed scores, formed into an (r % N) matrix Y, are put into standard measure
in the sample and stored on scratch tape while the main computations are going
on: then, after F and U have been estimated, the estimates are employed to obtain
the matrices required by (5.4.3) or (5.4.7). Finally, the scores on scratch tape
would be called in, one subject at a time, and the estimates computed.

For the rest of these remarks we assume the model with uncorrelated factors.

From (5.4.1) we find that

E{&t'} = B'E{yy'}B
= B'RB (5.4.8)
hence, with (5.4.4)
E{#k'} = FFR~'F (54.9)

which in general is not a diagonal matrix, That is, in general the regression
estimators are mutually correlated even when the “‘true’’ values are assumed
uncorrelated.
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Further,
E{xk'} = E{xy’R~'F)
= E{xy'}JR™'F
or
E{xt'} = FFR-'F (5.4.10)

That is, in general the regression estimators are correlated with noncorrespond-
ing “‘true’’ values as well as with the corresponding *‘true’" values.
In contrast,

E{xt'} = (F'U-2F)~'F'U~-2 E{yy'}U—2F(F'U-%F) !
| = (F'U-2F)~ 'F'U~*RU~3F(F'U~ F)~
= (F'U~2F)~ 'F'U~%FF' + UH)U-2F(F'U-2F)-!
from which we obtain
E{xx'} = 1,, + (F'U~2F)~! (5.4.11)
and similarly
E{xx'} = E{xy'U-2F(F'U~2F)~}
=F'U-?FF'U-2F) !
=1

that is, the ML/WLSR estimators are uncorrelated with noncorresponding true
factors.
It should also be noted that we can express (5.4.3) in the form

B=R"'FP = U-2F[F'U-?F + P~ !]"! (5.4.12)

This is a well-known *‘shortcut’ expression for computing the regression
weights, due originally to Ledermann, It has been used in Table 5.2, 1. It requires
the inversion of an m X m matrix instead of an n X n matrix, thus saving
arithmetic. The reader may prove the identity of the expressions in (5.4.12) by
multiplying on the left by R in the form FPF' + U2,

Problems of Relationship
Between Factor Analyses

6.1. THE COMPARISON OF SEPARATE ANALYSES

So far we have considered factor-analytic hypotheses relating to a single-sample
correlation matrix drawn from a single population. In this and Section 6.2 we
consider the problem that arises when we wish to compare and contrast sets of
factor-analytic results from wo or more populations. In section 6.3 we consider
the distinct but similar problem in repeated-measures designs where we compare
factor-analytic results from the same measures repeatedly administered o the
same subjects in two or more conditions. The first problem in its most general
form arises when we have multivariate data from two or more samples of sub-
Jects, based on variables that might be the same or might be overlapping sets or
different yet similar in what is deemed to be measured, and we wish to make
comparative judgments. The comparison may be based on raw data matrices, or
it may be based on our own data relative to published, possibly quite ancient,
correlation matrices or published factor patterns whose origins in data have been
left a total mystery.

Here we briefly consider a list of problems; then in Section 6.2 we describe a
general system, due to Joreskog, that handles a number of situations very well.

(a) Factorial Invariance

The question is, to what extent will a variable retain its factorial description
(i.c., the list of factor loadings on the m factors that describes the variable as a
mixture of factors) independently of the set of other variables in the matrix and
independently of the population sample? It seems just obvious that we should not
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