This article gives an introduction to some new techniques for multilevel covariance
structure modeling with latent variables. Although these fechniques only incorporate a
subset of models that are relevant to multilevel data, the techniques do provide a large
et of new analysis possibilities and have the advantage that they only require conven-
fienal structural equation modeling software. The presentation draws on methodology
presented in earlier works by the author,
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his article gives an introduction to some new techniques

for multilevel covariance structure modeling with latent
variables. Although these techniques only incorporate a subset of
models that are relevant to multilevel data, the techniques do provide
a large set of new analysis possibilities and have the advantage that
they only require conventional structural equation modeling software.
The presentation draws on methodology presented in Muthén (1989,
1990). Muthén (1990) provides technical details, _

The analysis of multilevel data is a complex topic because it draws
on contributions from many different areas of methodological re-
search. Two perspectives can be distinguished, that of sampling and
that of varying parameters, From a sampling perspective, multilevel
data can be viewed as obtained by cluster sampling. For example, a
simple random sample of schools is obtained and within each school
arandom sample of students is obtained. The analysis needs to specify
stochastic variation that mirrors the sampling scheme, such as formu-
lating a model that decomposes the student variation in a school and
an individual component. Modeling cluster sampling in this way
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reflects the sampling theory tradition of Scott and Smith (1969), Fuller
and Battese (1973), Malec and Sedransk (1985), and Battese, Harter,
and Fuller (1988). The perspective of varying parameters is more akin
to concerns of multilevel writing in the educational literature
(Cronbach 1976; Bock 1989), to random coefficient modeling in
econometrics (Swamy 1970), and to the repeated measurement liter-
ature on individual differences in growth parameters for longitudinal
data (Laird and Ware, 1982). Continuing the example of students
sampled within schools, the perspective of varying parameters con-
siders a model for relationships among variables observed for the
students as having parameters that can obtain different values for
different schools.

One can also structure the topic by distinguishing between analyses
that estimate the same parameters as would usually be estimated under
the conventional assumption of simple random sampling and analyses
that also estimate additional parameters due to the multilevel structure.
The second type of approach would estimate both student-level and
school-level parameters. For a discussion of both type of approaches,
see Muthén and Satorra (1991). The present article focuses on the
second approach. It is, however, important to be aware of the issues
involved in the first approach. Consider again the example of students
sampled within schools. Formulating a conventional covariance struc-
ture model for the variables observed for these students, the first
approach would estimate the usual parameters but use special formu-
las for computing standard errors of estimates as well as special
formulas for computing a chi-square test of model fit. The special
formulas are developed without resorting to the incorrect assumption
of simple random sampling. The consequences of incorrectly assum-
ing simple random sampling when data are obtained via cluster
sampling are customarily studied in terms of design effects (Kish
1965), describing the ratio of the variance of an estimator under cluster
sampling to the variance under simple random sampling, For example,
from sampling theory it is well-known that the design effect for the
sample mean of a random sample of G clusters, each having c
elements, is 1 + (¢ — 1)p, where p is the intraclass correlation coeffi-
cient measuring the degree of homogeneity of the observations within
each cluster (see, e.g., Cochran 1977, p. 262). In our example, the
larger the number of students sampled per school (c) and the larger the
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homogeneity of students with respect to what is measured (p), the
larger the underestimation of the true variance of the estimator when
using a variance expression based on conventional simple random
sampling theory. Conventional inference procedures would only be
correctif c =1 or p = 0. The first type of approach would use formulas
that give correct inference for the usual set of parameters. For a good
overview of relevant issues in survey sampling, see Skinner, Holt, and
Smith (1989).

MULTILEVEL COVARIANCE STRUCTURE MODELS

In conventional covariance structure modeling, a p-variate vector
¥ is observed for individual i. For simplicity, we will consider the
special case of each y, being multivariate normally distributed. The
individual observation vectors are assumed to be independently and
identically distributed (i.i.d.). Consider this assumption in the setting
of students observed within G schools. Table 1 gives an example of
the implication of this assumption for the five first individuals of the
data matrix. Here, School 1 has three students, School 2 has two
students, and so on. The top left of the covariance matrix for all
observations is indicated in the right part of Table 1. Due to the
assumption of independence, this matrix has zero off-diagonal
submatrices whereas the assumption of identically distributed ob-
servations states that the diagonal submatrices are identical. Al-
though not shown, the population mean vector is also identical for all
observations.

This article focuses on maximum likelihood estimation under nor-
mality. Given the Table 1 covariance structure, the likelihood of the
sample of all observations can be expressed in terms of the common
pXp X matrix.

Multilevel covariance structure modeling builds on different as-
sumptions. It relaxes the assumption of identically distributed obser-
vations. As a motivating example, we will consider a single-factor
model for the students in the set of G schools. To make clear the
hierarchical nature of the data, subscripts g and i will be used for
schools (group) and students (individual), respectively.

|
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TABLE 1: Conventional Covariance Structure Modeling

School Student Data Covariance Structure
1 1 Y X symmetric
1 2 Y2 0 X
1 3 Y 0 0 b
2 1 ¥4 0 0 0 b7
2 2 ¥s 0 0 0 0 p>
Y=V AN+ €, (1

Here, v is a measurement intercept vector, A is a vector of factor
loadings, M represents the factor, and € represents the residual
vector.

As pointed out in Muthén and Satorra (1989), the varying parameter
perspective is analogous to random coefficients in regression models.
One model is formulated for the individual-level variation and another
is formulated for the across-group variation in the parameters of the
individual-level model. We might for simplicity assume that only the
parameters of factor means vary across groups. In conventional,
multiple-group structural equation modeling, this could be interpreted
as having G (or G - 1 to be precise) factor means estimated for the G
groups (schools). In the multilevel setting, however, schools are
viewed as randomly sampled so that instead of fixed parameters, the
factor means should be specified by means of random effects. In this

way, we may write
4._-_. =0+ .:.: + .Js___u_. va

where o is the overall expectation for 1, Mg, is a random factor
component capturing school effects and having zero expectation, and
Tlwg is @ random factor component varying over students within their
respective schools and having zero expectation. Note that conditional
on student i being in school g, the mean of the factor 1, is & + T,
where T, varies randomly across schools. In this way, only two
parameters are needed to capture the school differences in factors, o
and the variance of 1, g, say. This random effects specification with
two parameters obviously is more parsimonious than the fixed effect,
multiple-group specification with G — 1 parameters as soon as the
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number of schools exceeds three. The random effects specification of
varying factor means is the natural way to model in the multilevel
setting. In this way, the total factor variance may be broken down into
a between-school variance component and a within-school variance
component

V (Mg) = Y5 =Yg + Yy (3)

From a substantive point of view, it is of interest to estimate the relative
size of the between-school factor variation W relative to the total
factor variation ;. Note that using (2) we find that the factor covari-
ance of students within a school is \;, since for two students i and i’,

Cov A.—._-.. .J-_.v =Cov A.—._-_-. .Ju-v + Cov H.Js___-_. ._._s___-_.u.
_— +0 @

This means that the factor values, and hence the observed scores, are
not independent for students who are in the same school. On the factor
level, the magnitude of y; describes the strength of the nonindepend-
ence. As discussed by Muthén (1991), the latent variable counterpart
of an “intraclass correlation” is consequently the ratio

Va/(Ws + Wy). (5)

The residual variation of €, in (1) can also be broken down in a
group-level (between) and an individual-level (within) component,

V (€;) = Oy + Oy, (6)

The covariance structure for this random effects model is
V(1) =Er=Ey +I, 0
where Z; is the “between” matrix representing across-school variation,
Ip=A YA + 64 ®

and Zy, is the within matrix representing within-school, student-level
variation,

Zy = Ay + Oy, )
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TABLE 2: Multilevel Covarinnce Structure Modeling

School Student Data Covariance Structure

1 1 Yu Iw+Zy symmetric

1 2 Yiz HU M_F. + MU

1 3 Yia Ep Xy Zy+Iy

2 1 Yi 0 0 0 M.f + MU

2 2 Y2 0 0 0 Mw M)< + MU

In line with (4), the covariance matrix for students who are in the same
school is Z,. We now have all the components needed to formulate the
multilevel counterpart to the covariance structure for the data matrix
of Table 1. Table 2 gives the structure for the same five students as in
Table 1. Table 2 reflects the fact that we no longer have independence
across all students in that X appears in certain off-diagonal positions.
The diagonal matrices are still constant across all students, but consist
of the sum of X, and X;;. The multilevel covariance structure of Table
2 is clearly less restrictive than that of Table 1. The conventional
modeling of Table 1 may be viewed as restricting % to zero, assuming
zero intraclass correlations. The multilevel modeling also has the
advantage of being able to disentangle the variation within and be-
tween groups. The separate estimation of Z,, and X, may be of great
substantive interest, as will be shown in the example section.

In some applications, however, only the total variation of X+ may
be of interest. In this case, the multilevel modeling still provides a X
estimate via the sum of X, and X and does provide correct inference.
As mentioned earlier, simpler approaches are, however, possible in
that the parameters of % can be estimated directly and correct infer-
ence can be provided by special calculations of standard errors and
chi-square (see Muthén and Satorra 1991).

The covariance structure of Table 2 is more complex than that of
Table 1. Whereas the Table 1 structure enables the formulation of a
likelihood in terms of a single p x p % matrix, the multilevel likelihood
for Table 2 is more complicated. As shown in McDonald and Goldstein
(1989) and Muthén (1989, 1990), however, the likelihood can fortu-
nately also here be expressed in terms of p X p covariance matrices.
Muthén (1989, 1990) shows that the likelihood can, in fact, be simply
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where ¢ reflects the group size.

The multilevel factor modeling discussed above leads to a covari-
ance structure model for two-level data, which uses a conventional
factor analysis covariance structure on both the between and within
level. As opposed to the covariance structures of (8) and (9), a more
general formulation allows the factor loading matrices to differ on the
within and between levels so that with multiple factors,

Yo =V + Aghp, + €g + AyTwy + €y (10)
V() =2y + Xy, (11)

3= A WeAy + Oy, and (12)

Ew = AT Ay + Oy, (13)

More general structural equation models can also be formulated as
in Schmidt and Wisenbaker (1986), McDonald and Goldstein (1989),
and Muthén (1989, 1990). _

MULTILEVEL COVARIANCE STRUCTURE ESTIMATION

In the two-level case with G groups to be considered here, the
likelihood is formulated for G multivariate normal observation vec-
tors, where each vector contains all variables for all individuals in the
group. There are N, individuals in group g, where N = IN, is the total
sample size. Unlike conventional analysis, independence of observa-
tions is not assumed over all N observations but only over the G
groups, while the intraclass correlation is modeled via 3;. The covar-
iance matrices of X4 and X, contain the parameters of interest. In this
article, we will assume that we study the common case of no mean
structure. As opposed to conventional covariance structure analysis,
we do not use only the regular p X p sample covariance matrix, In the
balanced case with no mean structure, the customary between and
pooled-within sample covariance matrices (see below) provide suffi-

_

balanced case also needs information on each group’s mean 508@1 Ol

With maximum-likelihood estimation, a large-sample chi-square vari-
able is obtained to test restrictions imposed by the model on X and
¥ With p variables and r parameters, the number of degrees of
freedom is p(p + 1) — r. We note that a conventional covariance
structure model has p(p + 1)/2 — r degrees of freedom since this
analysis restricts the matrix % to be zero (in this case r is reduced by
the number of parameters for the between part). For more details and
the relationship to conventional structural equation modeling, see
Muthén (1989, 1990).

Although in principal, special formulas and software could be devel-
oped for multilevel covariance structure analysis (MCA) maximum-
likelihood (ML) estimation, Muthén (1989, 1990) showed that multiple-
group structural equation modeling software can be modified for MCA
ML analysis. In line with this idea, Muthén proposed a simpler
ML-based MCA estimator, which can be used with already existing
multiple-group structural equation software such as LISREL,
LISCOMP, and EQS. This estimator uses the customary between and
pooled-within sample covariance matrices. In the balanced case, it is
equivalent to the MCA ML estimator. In the unbalanced case, the
estimator is consistent and, despite the fact that it uses less information
than ML, has given similar results in the analyses to date (Muthén
1990). The true ML procedure will be referred to as FIML (full
information ML) and the simpler estimator as MUML (Muthén’s
ML-based estimator). We will use both procedures in our analyses for
comparison purposes.

The MUML estimator of Muthén (1989, 1990) demonstrates the
basic features of MCA. Consider the three customary sample covari-
ance matrices Sy, Sy, Sa,

G Ng
Se=WN=10"Y, XY= Gu=y) (14)
g=li=]
G Ng _ _
Sew=(N=G)"Y, ¥ (yu—¥p) Ou—Yy’ (15)
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a
S =G-1)"YN, 3~ y) ¥, -y (16)
=1

The matrix Sy is used in conventional covariance structure analysis.
In the multilevel case, it is a consistent estimator of the total covariance
matrix Xy + Xy In line with expected mean squares developments in
univariate analysis of variance (cf. Winer, Brown, and Michels 1991),
one can show that the pooled-within matrix S, is a consistent and
unbiased estimator of Xy, while the between matrix S, is a consistent
and unbiased estimator of

b RS (17)

where c reflects the group size,

[¢]
c uT - M.\LEQ -, (18)

For balanced data, c is the common group size. Forunbalanced data
and large number of groups, c is close to the mean of the group sizes.
Note that the between matrix S, is the covariance matrix of group
means y, weighted by the group size, Equation (17) shows that the
population counterpart of S, is a function of both X, and 3,,. The ML
estimate of Xy, is Sy, while the ML estimate of X, is (Muthén 1990)

¢ (Sp = Spw). (19)

the MUML estimator (Muthén 1989, 1990) minimize the fitting
function,

G{1n[Zy +cZyl + trace[(Zy + cZy)”'Sy] = IniSyl — p} +
(N - G){ 1nlEy] + trace[E5iSpw] — 1nlSpl - p). (20)

Here, G is the number of groups, ¢ is defined in (18), p is the number
of variables, N is the total number of observations, and S, and S,y are
the conventional between and pooled-within sample covariance ma-
trices of (15) and (16). This fitting function is analogous to that of a
conventional two-population (two-group) covariance structure analy-
sis using ML estimation under normality. A sample of G observations
is considered for the first population while for the second, N = G
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observations are used. The S, and S,,, sample matrices are used to fit
their corresponding population quantities. This implies that the
MUML estimation of multilevel factor analysis parameters can be
performed by the ML fitting function in conventional multiple-group
structural equation software. The chi-square and standard errors given
by the software are rough approximations to the correct values. The
quasi-chi-square test of model fit refers to the testing of H, against
unrestricted %, and X, matrices as is desired. The S; and S, matrices
can be obtained via standard statistical packages. The author has
written a program, available to anyone who wants it, which computes
these two matrices, the c value, the intraclass correlations, and the ML
estimate of X, for two-level data, Instructions for arranging the data
to be able to use this program are given in Nelson and Muthén (1991).
This means that the MUML estimator is easily accessible today, while
this is not true, in general cases, for FIML. The FIML estimator uses
a fitting function similar to (20), but involves terms for each distinct
group size, including information on the mean vectors (Muthén 1990).
Even when FIML can be done, it will be computationally heavier than
MUML as the number of distinct group sizes increases, It should be
noted that problems of nonconvergence due to a poor choice of starting
values appear to be more common in multilevel factor analysis (MFA)
than in conventional covariance structure modeling. The next section
specifies a series of analysis steps, which make for a more informed
choice of starting values.

MULTILEVEL COVARIANCE STRUCTURE ANALYSIS
PATH DIAGRAMS AND SOFTWARE IMPLEMENTATION

Muthén (1990) showed that the input specification for the structural
equation modeling software needed for MUML using (20) can be
conveniently indicated via conventional path diagrams. Using a one-
factor model for both between and within leads to the model diagram
of Figure 1. This diagram follows the notation of (10). Below the row
of squares are variables on the within level, €y, and n,. This part of
the diagram corresponds to a conventional one-factor model. Above
the row of squares is a row of circles corresponding to the between
components of the observed variables, denoted yy. In this way, the
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observed variables y in the squares are functions of within and between
components. The between components follow a one-factor model with
residuals €, and factor 1.

The path diagram corresponds directly to the first group in the
two-group setup indicated by (20). The first group involves the covar-
iance matrix structure X, + cXy. This deviates from the total covari-
ance matrix Sy + %y by the scalar multiplier ¢ for the between part.
This means that the between components of the variables have to be
scaled by Vc, which is accomplished by letting the paths (loadings)
from the ygs to the ys have coefficients \c. The second group in (20)
corresponds to the within variation. The covariance structure of yis
captured by using the same model structure as for the first group,
following Figure 1, but fixing all between coefficients and variance-
covariance parameters to zero. Because ¥ also appears in the covar-
iance structure of the first group, equality restrictions across groups
need to be applied for the within parameters.

STRATEGIES FOR MULTILEVEL COVARIANCE STRUCTURE ANALYSIS

As pointed out in Muthén (1989), MCA is a complex analysis,
which needs to follow a sound strategy. The actual MCA should, ina
typical case, be preceded by four important analysis steps: conven-
tional factor analysis of Sy, estimation of between variation, estimation
of within structure, and estimation of between structure.

Step 1: Conventional factor analysis of Sy. This analysis is useful
to try out model ideas. The analysis is incorrect when the data is
multilevel due to the correlated observations. The model test of fit is
usually inflated, particularly for data with large intraclass correlations,
large class sizes, and highly correlated variables. However, the test of
fit might still be of practical use by giving a rough sense of fit.

Step 2: Estimation of between variation. It is wise to first check if
a multilevel analysis is warranted by testing X = 0. This can be carried
out in an MCA. A simpler way, however, to get a rough indication of
the amount of between variation is to compute the estimated intraclass
correlations for each variable obtained as the estimate of
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Oa/(05 + OW). (21)
In line with (19), of, is estimated as s, and o2 is estimated as
™' (S5~ Spw). (22)

These estimates may be obtained by random effects ANOVA (Winer,
Brown, and Michels 1991). The author’s program, mentioned above,
can also be used. If all intraclass correlations are close to zero, as is
the case for many applications, it might not be worthwhile to go
further. A good overview of intraclass correlation estimation is given
in Koch (1983).

Step 3: Estimation of within structure. If the multilevel model is
correct, a conventional covariance structure analysis of Sy, is the same
as an MCA with an unrestricted X, matrix. This analysis estimates
individual-level parameters only. Experience has shown that the anal-
ysis gives estimates that are close to the within parameters of an MCA.
The conventional analysis would use a sample size of N -G and either
the normal theory GLS or ML estimator. Since the S,y, analysis is not
distorted by the between covariation, it is expected to give a better
model fit than the S; analysis (see also Keesling and Wiley 1974;
Muthén 1989) and it is, therefore, the preferred way to explore the
individual-level variation.

Step 4: Estimation of between structure. The analysis of between
structure is the more difficult part of multilevel analysis. Little might
be known about the covariance structure of %, because it does not
concern the customary individual-level data but instead across-group
(co)variation. The between components have a different meaning than
the within components, and it is not clear that the between-group
covariation follows a simple model. As analyses in Cronbach (1976)
and Harnqvist (1978) have shown, the same structure as that seen in
the within level cannot be expected. It is tempting to use S, to explore
the between structure. Note, however, that S, is not an unbiased or
consistent estimator of %, as is indicated in (17). The %, estimator is
also a function of Syy. In other words, any simple structure expected
to hold for X does not necessarily hold for S, but it should hold within

_.
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sampling error for the ML estimate of X,. Unfortunately, the ML
estimator of %, is frequently not positive definite and might not even
have positive variance estimates, This means that, in practice, we
might have to resort to analyzing S, to get a notion of the X, structure,
Fortunately, experience shows that when it is possible to analyze both
matrices, similar results are obtained. It might be noted that the ML
option of conventional software gives very distorted chi-square test of
fit values when using the estimated X, matrix, An alternative is to use
MCA with an unrestricted %, matrix (see also Longford and Muthén
1992), only testing the restrictions on X, One might also obtain an
MCA estimate of X using the X, structure indicated in Step 3 and
submit this estimate to covariance structure analysis.

The next set of steps uses the outcomes of the four initial steps to
specify a sequence of MCAs, As is shown in (20), the MCA makes
use of Sy, and S, simultaneously. The computations are not compli-
cated by a nonpositive definite X, estimate, since this matrix only
appears in the sum X, + cX,.

AN EXAMPLE

In the Second International Mathematics Study (SIMS; Crosswhite,
Dossey, Swafford, McKnight, and Cooney 1985), a national probabil-
ity sample of school districts was selected proportional to size; a
probability sample of schools was selected proportional to size within
school district; and two classes were randomly drawn within each
school. We will consider a subset of the U.S, eighth-grade data of 3,724
students who took the core test at both the pretest in fall of 1982 and
posttest in spring of 1983, These students were observed in 197 classes
from 113 schools. The class sizes vary from 2 to 38, with a typical
value of around 20.

The core test consisted of 40 items in the areas of arithmetic,
algebra, geometry, and measurement. The topics covered in these
items were broken down into eight subscores, where each subscore is
the sum of binary items. The subscore RPP consists of eight ratio,
proportion, and percentage items. FRACT consists of eight common
and decimal fraction items. EQEXP consists of six algebra items
involving equalities and expression. INTNUM consists of two items
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involving integer number algebra manipulations. STESTI consists of
five items dealing with measurement items involving standard units
and estimation. AREAVOL consists of two measurement items deal-
ing with area and volume determination. COORVIS consists of three
geometry items involving coordinates and spatial visualization.
PFIGURE consists of five geometry items involving properties of
plane figures.

The analysis strategy suggested in the previous section will now be
applied to the eight achievement variables at both pretest and posttest.
A two-level MFA for students within classes will be used in all cases.
The school level will be ignored here for simplicity. Because there are
only two classes per school and the school variance proportions are
relatively small (Muthén 1991), this clustering effect should not
seriously bias the results. A single-factor model is expected to hold
reasonably well on the individual level, given that mathematics skills
are rather undifferentiated in the eighth grade and are likely to reflect
a single, general dimension.

Until now, factor analyses of educational data have routinely ig-
nored the multilevel character of the data. Because of this, it is of
interest to compare the results of conventional factor analyses with
those of MFA. Various MFA approaches will also be compared. In this
way, the Step 1 analysis of S, will be contrasted with MFA, and in
terms of MFA, the traditional estimation via Sy, and S; used in Steps
3 and 4 will be contrasted with MUML and FIML.

INITIAL ANALYSES IN FOUR STEPS

Step 1: Conventional factor analysis of S;. Table 3 shows the
one-factor chi-square tests of model fit and estirhated item character-
istics for pretest, whereas Table 4 gives the same values for posttest.
Standard errors of estimates will not be given in this article because
all models presented show parameters significantly different from
zero due to the large sample size, The univariate skewness and kurtosis
values in these tables do not indicate substantial deviations from the
assumed normality, which might have been the case given the small
number of items forming the subscores. The St analysis gives a
reasonable fit at both pretest and posttest, given the large sample size

|

TABLE3: Pretest Factor Analysis Results

Model tests

Method

g9

B3.71
5829
106.16
98.91

Item Characteristics

MFA Error-Free
Between  Proportion Between

MFA

Proportion

MFA

Spw

Skewness Kurtosis Between

e
38
18
i8
2.3
18
18
17

CERAI[AN

ARRRHEEY

-68
=57
=57
.80
-64
-89
=70
=21

NOTE: MFA = multilevel factor analysis; MUML = Muthén's maximum-likelihood-based estimator; FIML = full information ML; RPP =cight ratio, proportion,

six algebra items involving equalities and expression; INTNUM = two

determination; COORVIS = three geometry items involving coordinates and spatial visualization;

PFIGURE = five geometry items involving properties of plane figures.

FRACT = eight common and decimal fraction items; EQEXP
a For MUML, A quasi chi-square value is given.

and percentage items;
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of 3,724. This sample size makes the power of the test high and thus
rejection at the 5% level might reflect trivial deviations from the
model. We note again that this test is incorrect, given that the hierar-
chical nature of the data is ignored. The chi-square value is most likely
inflated.

ARIGRARA

ERERBIZR

MEFA Error-Free
Between Proportion Between

Step 2: Estimation of between variation. The proportion between
variation, or intraclass correlation, for the eight items are in the range
.18-.39 at pretest and .24-.40 at posttest. The values increase over time
for all variables and particularly for EQEXP and PFIGURE. Note that
individual-level measurement error contributes to the within vari-
ances. Due to this, individual level measurement error probably de-
flates the intraclass correlations. The fact that they are still large makes
it reasonable to proceed to Step 3.

MFA

A9
32
25
34
23
26
31

Reliability
Within
52

Spw
52

49
A2
25
34
B < §
26
3

Step 3: Estimation of within structure. The third step carries out the
analysis of the pooled-within matrix Spy. For both pretest and posttest,
the conventional ML analysis gives a worse fit for S; than S, for the
one-factor model. The difference in number of observations is negli-
gible, N = 3,724 versus N — G = 3,527 and cannot alone explain the

| difference. The worsening of fit is expected, given the large size of the

BRIRIANARNY intraclass correlations and the large average class size of about 20.

Judging from the Sy analysis, the within part of the model has a very

good fit to the one-factor model, given the large sample size. Itis also

interesting to note from Tables 3 and 4 that, relative to the S, analysis,
the conventional analysis of Sy strongly overestimates the reliabilities
of the variables as estimated by the factor model. The Spy analysis
adjusts for differences in class means. Heterogeneity in the means
_ across classes increases the reliable part of the variation, whichinflates
| the reliabilities (see, also, Muthén 1989, pp. 559-60). The S; reliabili-
ties might be correct for inference to this particular mixture of class
means, but is not correct for the student scores in any of the classes.
This is further discussed below in connection with the MFA results, It
appears that the conventional S; factor analysis of students sampled
within classes can be quite misleading,

TR G

%
L}

Item Characteristics
S
68
68
55
A3
52
38
A2
45

S LNy

df

20

20

440

40

Proportion

Between

-0.89
-1.41
-0.62
=144
-1.00
054

Kurtosis
-1.07
-0.52

Model tests
Cili-Squm"
88.59
57.45
116.00
128.89
0.16
-0.03
0.15

Skewness
0.03
-0.01
-0.02
-0.07
-0.44

TABLE 4: Posttest Factor Analysis Results
b. For MUML A quasi chi-square value is given.

Method

S

Spw

MFA
MUML
FIML

MFA

RPP

FRACT

EQEXP

STESTI

AREAVOL

COORVIS

2 See Table 2 for definitions

Step 4: Estimation of between structure. In the fourth step, we

st _ investigate the between structure. The estimated 2., was scaled to a
,
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correlation matrix and subjected to ordinary exploratory factor anal-
ysis by unweighted least squares. Judging from the eigenvalues, a
one-factor model holds at both pretest and posttest, For pretest, the
first four values are 7.08, 0.26, 0.21, 0.17, whereas for posttest, they
are 6.79, 0.30, 0.25, 0.21. The two-factor solutions had no interpret-
able structure. The analysis of the correlation matrix corresponding to
S, gave similar results. The estimated loadings are rather close to those
obtained via the estimated X, although somewhat lower overall. MFA
analysis using an unrestricted %, matrix and a one-factor model for
2. results in a 20 degree of freedom MUML quasi-chi-square value
of about 50 for the pretest and posttest, indicating a reasonable fit for
the one-factor between structure. In passing, we may note that the
corresponding MUML test of fit for the model with an unrestricted X,
and a one-factor model for %, resulted in slightly higher quasi-chi-square
values with the same degrees of freedom. These values correspond to
the chi-square values given for Sy, in Tables 3 and 4. In this sense, the
between structure has no worse fit than the within structure.

MFA ANALYSES

The four initial analysis steps suggest an MFA model with one
factor for both within and between. This is the model of Figure 1, As
in conventional factor analysis, the metric of each factor has to be
determined, and this is done by fixing the between and within loadings
for RPP to unity.

The MUML quasi-chi-square tests of model fit are 106.16 and
116.00 for pretest and posttest with 40 degrees of freedom. Given the
sample size of 3,724, this is taken as a good fit. As is frequently
observed, the corresponding proper chi-square values of FIML are
rather close, 98.91 and 128.89. Given the unusually large range of class
sizes (2-38) in this application, the data are far from balanced and the
MUML approximation to FIML is put to a hard test. MUML estimates
are in no case more than 7% off from the FIML estimates (not reported)
and are usually much closer. The item characteristics deduced from
these estimates in Tables 3 and 4 typically differ by 0.01 between
MUML and FIML. The within values are almost exactly the same.

The S,y analysis fitted the within part of the model with 20 degrees
of freedom, which may be viewed as an analysis with no between

ﬁ
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structure imposed. The addition of the between structure in the MFA
adds about 50 to 60 chi-square points, for an additional 20 degrees of
freedom. This increase does not seem unduly large for the sample size.
It is interesting to note the perfect agreement, to two digits, in the
estimated within reliabilities for MFA and S,;,,. This is because the
MFA estimation of X, is largely determined by the second group in
the MUML fitting function of (20) due to the large number of students
per class,

The MFA within reliabilities are very low, as is expected, given the
small number of items comprising each subscore. There is a strong
increase over time, particularly for EQEXP and PFIGURE. These
correspond to new topics at pretest for many eighth graders, whereas
they have been better covered at posttest.

The S, analysis gives reliabilities that agree with the within values
of the MFA to two digits. The higher S; values observed above might
be viewed in terms of the MFA model. For simplicity, assume that to
a reasonable approximation, Ay equals Ay;. Then the reliable part of
the S; variance is modeled as A(6%; + 0%y) while the error variance
sums the between and within errors. The reliable part thereby increases
which, taken together with a relatively small between error variance,
results in the S; reliability overestimation. In this application, both the
pretest and posttest data led to a rejection of the test of equality of
between and within loadings. This might be due to the large sample
size, however, because the pattern of estimated loadings is very
similar,

The between reliabilities are very high and the indicators of the
between factor are very similar. It might be noted that the Step 4
one-factor analysis of the estimated X gave between reliabilities that
are almost identical to the MFA results, Step 4 analysis based on Sg,
however, gives consistently lower between reliabilities. The MFA
estimation with unrestricted X, and a one-factor X; resulted in values
close to those obtained by using the estimated X, as should be the
case because the within structure fits rather well.

The right-most columns of Tables 3 and 4 give the intraclass
correlation of the factors, defined as the true intraclass correlation by
the ratio W/, given in (5). These values are around 0.6 and do not
change much from pretest to posttest. These intraclass correlation

values might be compared to the observed variable counterparts under
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the heading “Proportion between.” The latter values range from 0.2 to
0.4, with higher values at posttest. In this way, one method can be taken
to say that between-class variation does not increase relative to within-
class variation across eighth grade, whereas the other says that it does.
The substantive implications in terms of effects of tracking students
into classes with different curricula are quite different. The latter
values are, however, attenuated due to individual-level measurement
error, which inflates the within variance part. The attenuation is
stronger at pretest than at posttest resulting from the fact that measure-
ment error decreases across time as a function of an increase in
exposure to new topics. Distorted comparisons of intraclass correla-
tions across time are thereby obtained. In contrast, MFA takes mea-
surement error into account, avoids the underestimation of true
between-class variation, and avoids the distorted across-time compar-
ison of intraclass correlations (see also Muthén 1991).

A final methodological note is of interest regarding the influence
of the between structure on the results. As has been pointed out, the
between structure might be difficult to determine or might not be a
simple one. If the research interest is not in the between structure per
se, but only in correctly accounting for the between (co)variation, a
simpler alternative approach exists if it can be assumed that the
between error variation is negligible. This approach consists of using
an MFA with an unrestricted X. Such a model avoids committing to
a specific between structure. Using the assumption of the between
error being negligible relative to the within error of this model still
enables the calculation of error-free between variance proportions, as
in Tables 3 and 4. Here, W, of (5) is replaced by the estimated 2
variances. The usually larger within error is still taken into account.
Applying this approach to the posttest gave error-free between pro-
portion values that overestimated those of Table 4 by no more than
0.07 for the last two variables having the lowest between reliabilities
and no more than 0.03 for the first five variables having the highest
between reliabilities.

Further applications of the MUML approach are given in Gold and
Muthén (forthcoming) and Harnqvist, Gustafsson, Muthén, and
Nelson (forthcoming). As shown in Muthén (1990), the estimation
approach can also include group-level variables. For an application
using classroom-level information on opportunity to learn, see Muthén

_
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(1990). Furthermore, the approach can be directly extended to more
than two levels of hierarchical data using more than one between-

group structure.
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A two-level (hierarchical) model for path analysis with latent variables is described,
together with some properties of a computer program written to implement the model.,
A simple illustrative example is given.

The Bilevel Reticular Action Model for Path
Analysis With Latent Variables

RODERICK P. McDONALD
University of Hlinois

he object of this article is to give a relatively nontechnical

account of a general model given by McDonald and
Goldstein (1988, 1989), illustrated by results from a computer pack-
age under development for the application of that model. As other
contributions to this issue will make clear, in the recent spate of
activity on the construction of suitable statistical models for multi-
level data, the main line of development has been concerned with the
regression of a single response (dependent) variable on one or more
fixed (explanatory) variables, expressed as a random slopes and
random intercepts (variance components) model (see Kreft, Kim,
and de Leeuw 1990, for a review of developments in theory and
computer programs). For convenience, we will hereafter refer to this class
of models as fixed-independent-single-response models. It is not easy
to generalize such random-coefficients models to yield counterpart
structural models—path analysis with latent variables—for multivar-
iate data, essentially because in structural models, generally, all vari-
ables are random. de Leeuw (1985) has shown that theory for a
fixed-independent- single-response model can, in principle, be applied
with little modification to fit a multilevel recursive path model with
random exogenous and endogenous variables, provided that the ran-
dom path coefficients of distinct variables are mutually independent.
Goldstein (1986) pointed out that an A-level fixed-independent-single-
response model could be applied to give an (h - 1)-level model for a
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